EP1664500A1 - Method for determining a temperature downstream the entry of a catalytic converter for a turbocharged engine - Google Patents

Method for determining a temperature downstream the entry of a catalytic converter for a turbocharged engine

Info

Publication number
EP1664500A1
EP1664500A1 EP04764223A EP04764223A EP1664500A1 EP 1664500 A1 EP1664500 A1 EP 1664500A1 EP 04764223 A EP04764223 A EP 04764223A EP 04764223 A EP04764223 A EP 04764223A EP 1664500 A1 EP1664500 A1 EP 1664500A1
Authority
EP
European Patent Office
Prior art keywords
temperature
turbocharger
engine
turbine
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04764223A
Other languages
German (de)
French (fr)
Inventor
Kein Thibaut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive France SAS
Original Assignee
Siemens VDO Automotive SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VDO Automotive SAS filed Critical Siemens VDO Automotive SAS
Publication of EP1664500A1 publication Critical patent/EP1664500A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • F01N11/005Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus the temperature or pressure being estimated, e.g. by means of a theoretical model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method for determining the temperature before entering a catalytic converter of a turbocharged engine.
  • a catalyzed engine it is important to know the temperature at the level of the catalytic converter so as not to destroy it. This temperature is important for various functions: protection of the catalyst and its upstream oxygen sensor, detection of ready upstream oxygen sensor, heating of upstream oxygen sensor as well as heating of the catalyst. On some engines these four functions, or at least part of them, do not exist. On other motors, these functions are regulated in open loop. It is also known for the management of these functions to take into account less precise parameters than the temperature at the inlet of the catalytic converter.
  • the object of the present invention is therefore to provide a method making it possible to reliably determine in a catalyzed turbocharged engine the inlet temperature of the exhaust gases into the catalytic converter, that is to say downstream of the turbocharger.
  • a method for determining the temperature of the exhaust gases downstream of the turbine of the turbocharger in a turbocharged engine which comprises the following steps: - determination of the temperature upstream of the turbocharger turbine, - calculation of a corrective term from engine operating parameters, and - determination of the temperature downstream of the turbocharger turbine by subtracting the corrective term of the temperature upstream of the turbocharger turbine.
  • This determination is very simple to perform, but as it has been shown, the determination of the temperature obtained by this process allows obtain temperatures substantially in line with those recorded using a temperature probe to confirm this process.
  • the temperature upstream of the turbocharger turbine can be determined using a temperature sensor, but to minimize the cost of the corresponding engine it is preferably obtained by modeling.
  • the corrective term is obtained first of all by a predetermined curve giving a temperature variation as a function of the engine speed and the air flow rate passing through the engine, then by the multiplication of this temperature variation by a adiabatic compression factor.
  • the adiabatic compression factor is advantageously dependent on at least one physical quantity chosen from the assembly comprising the pressure at the engine exhaust, the difference between this pressure and the external pressure and the opening of a pressure relief valve of the turbocharger.
  • FIG. 1 schematically represents the architecture of a turbocharged engine
  • FIG. 2 is a diagram to explain the operation of a method according to the invention.
  • Figure 1 very schematically shows an air supply and exhaust system of a turbocharged engine. This system makes it possible to supply fresh air to an engine in which at least one piston 2 moves in a cylinder 4.
  • a valve 8 is in turn provided for the exhaust of the burnt gases out of the cylinder 4.
  • the air supply system shown comprises, from upstream to downstream, an air inlet 10, a mass air flow meter 12 , a turbocharger 14, a chamber called an intercooler 16, a butterfly valve 18 disposed in a duct through which the air supplying the cylinders passes and making it possible to act on the air flow section of this duct, as well as a manifold d intake generally called manifold 20.
  • the intake valves 6 are in direct connection with the intake manifold 20.
  • the exhaust valves 8 are in turn in direct connection with an exhaust duct 22.
  • this exhaust duct 22 is only shown at the cylinder outlet and at the level of the turbocharger 14.
  • the latter comprises two turbines connected together by a shaft.
  • a first turbine is disposed in the exhaust duct and is rotated by the burnt gases leaving the cylinders 4 by the exhaust valves 8.
  • the second turbine is disposed, as indicated above, in the supply system for engine air and pressurizes the air in the intercooler 16.
  • a turbocharger discharge valve 24 makes it possible to short-circuit the turbine placed in the exhaust duct 22.
  • the exhaust gases pass through a catalytic converter 26 before being discharged into the open air. The method described below makes it possible to determine the temperature of the exhaust gases as they enter the catalytic converter 26.
  • This catalytic converter 26 contains an upstream oxygen sensor (not shown) which gives indications to the engine management device to act on the richness of the fuel / oxidant mixture sent by the air supply system in the cylinders 4.
  • Knowledge of the temperature upstream of the catalytic converter 26, and downstream of the turbocharger 14, makes it possible to protect the catalyst and the upstream oxygen sensor from excessively high temperatures. When an excessively high temperature is detected, it is possible to act on the engine supply in order to reduce the temperature of the exhaust gases leaving the cylinders 4. Conversely, the catalyst and the probe must also be corresponding upstream oxygen are at a relatively high temperature to be able to function perfectly.
  • Knowing the temperature at the inlet of the catalytic converter 26 therefore makes it possible to know whether the upstream oxygen sensor is ready and therefore whether the information which it provides must be taken into consideration. It is also possible to provide for heating of the upstream oxygen sensor and of the catalyst when the temperature thereof is not sufficient.
  • an atmospheric or turbocharged engine it is known to a person skilled in the art to model the temperature in the exhaust duct at the outlet of the cylinders 4. Many parameters are used to determine this temperature, for example, and not exclusively, the engine speed, the air flow, the richness of the fuel / oxidizer mixture sent into the cylinders, the ignition advance, etc.
  • the present invention proposes to calculate the temperature at the inlet of the catalytic converter 26, that is to say at the outlet of the turbocharger, from the temperature (modeled) upstream of the turbocharger. To do this, it proposes to subtract from the basic mapping determining the temperature before the turbocharger 14 a mapping dependent on the engine speed and the air flow rate passing through the engine multiplied by an adiabatic compression factor depending on a parameter such as the pressure at the exhaust and / or the opening of the discharge valve of the turbocharger 24.
  • FIG. 2 illustrates a diagram explaining how the temperature downstream of the turbocharger 14, at the inlet of the catalytic converter 26, is determined according to l 'invention. In this FIG. 2, there is a three-dimensional curve shown diagrammatically in a first window 28.
  • An orthogonal coordinate system is also shown diagrammatically in this window 28.
  • the curve represented diagrammatically gives a variation in temperature TC determined from the engine speed N and of the MAF air flow measured by the flow meter 12.
  • one axis of the reference corresponds to the engine speed N
  • the third axis indicates the value of the temperature variation TC.
  • Under window 28 is a second window 30 inside which are represented a curve and a two-axis orthogonal coordinate system.
  • the abscissa axis corresponds to a parameter while the ordinate axis corresponds to a multiplicative factor ⁇ .
  • the parameter on the abscissa can be the pressure at the PE exhaust measured in the exhaust duct 22 at the outlet of the cylinders 4. It can also be the pressure difference between this PE exhaust pressure and the atmospheric pressure prevailing outside the engine. Finally, it may be the opening (in degree or in percentage) of the discharge valve of the turbocharger 24. This opening is called WG in FIG. 2. It is considered that the temperature in the exhaust duct 22 upstream of the catalytic converter 26 takes the value T am have- Similarly, downstream of the turbocharger 14, the temperature takes a value T ava ⁇ . So then
  • the values TCo and TCi found correspond to an opening of the discharge valve of the turbocharger 24 corresponding to a value WG 0 .
  • the curve of window 30 is produced.
  • the value of the parameter WG is then varied.
  • FIG. 2 the obtaining of two points of the curve of window 30 with the values of the parameter WG being equal to WGi and WG 2 .
  • the temperature upstream of the turbocharger 14 is first of all determined in a known manner. This function is already known and performed on certain engines.
  • the same means can determine the temperature downstream of this turbocharger using a method according to the invention.
  • the additional cost linked to the determination of this temperature at the inlet of the catalytic converter 26 is therefore very low while bringing great advantages with regard to the lifetime of the catalyst and of the upstream oxygen sensor which equips it.
  • a numerical example is indicated below. It is generally considered that the inlet temperature of the exhaust gases into the turbocharger should not exceed approximately 1000 ° C. With regard to the upstream oxygen sensor, it is preferable not to exceed temperatures of the order of 750 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Supercharger (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The invention relates to a method for determining an exhaust gas temperature downstream of a turbocompessor turbine for a turbocharged engine consists in determining a temperature upstream of the turbocompessor turbine, calculating a correction term on the basis of the engine operating parameters and in determining a temperature downstream of said turbocompessor turbine by subtracting the correction term of the temperature upstream of the turbocompessor turbine.

Description

Procédé de détermination de la température avant l'entrée dans un pot catalvtiαue d'un moteur turbocompressé La présente invention concerne un procédé de détermination de la température avant l'entrée dans un pot catalytique d'un moteur turbocompressé. Dans un moteur catalysé, il est important de connaître la température au niveau du pot catalytique pour ne pas détruire celui-ci. Cette température est importante pour diverses fonctions : protection du catalyseur et de sa sonde oxygène amont, détection de sonde oxygène amont prête, chauffage de sonde oxygène amont ainsi que chauffage du catalyseur. Sur certains moteurs ces quatre fonctions, ou du moins une partie d'entre-elles, n'existent pas. Sur d'autres moteurs, ces fonctions sont régulées en boucle ouverte. Il est également connu pour la gestion de ces fonctions de prendre en compte des paramètres moins précis que la température à l'entrée du pot catalytique. Sur un moteur atmosphérique, il est connu de modéliser la température à l'entrée et à la sortie du pot catalytique. On connaît également par cartographie la température de l'échappement en sortie de moteur. La présente invention a alors pour but de fournir un procédé permettant de déterminer de manière fiable dans un moteur turbocompressé catalysé la température d'entrée des gaz d'échappement dans le pot catalytique, c'est-à-dire en aval du turbocompresseur. A cet effet, elle propose un procédé de détermination dans un moteur turbocompressé de la température des gaz d'échappement en aval de la turbine du turbocompresseur, qui comporte les étapes suivantes : - détermination de la température en amont de la turbine du turbocompresseur, - calcul d'un terme correctif à partir de paramètres de fonctionnement du moteur, et - détermination de la température en aval de la turbine du turbocompresseur en soustrayant le terme correctif de la température en amont de la turbine du turbocompresseur. Cette détermination est très simple à réaliser mais comme il a pu être démontré, la détermination de la température obtenue par ce procédé permet d'obtenir des températures sensiblement conformes à celles enregistrées à l'aide d'une sonde de température pour confirmer ce procédé. La détermination de la température en amont de la turbine du turbocompresseur peut être obtenue à l'aide d'une sonde de température mais pour minimiser le coût du moteur correspondant elle est de préférence obtenue par modélisation. Il est connu de l'homme du métier de modéliser cette température et cette modélisation est déjà utilisée pour éviter la surchauffe du turbocompresseur. Cette modélisation est par exemple réalisée par un dispositif électronique intégré au dispositif de gestion et de commande du moteur. Le calcul du terme correctif peut alors avantageusement être réalisé par ce même dispositif électronique. Dans une forme de réalisation préférée, le terme correctif est obtenu tout d'abord par une courbe prédéterminée donnant une variation de température en fonction du régime moteur et du débit d'air traversant le moteur puis par la multiplication de cette variation de température par un facteur de compression adiabatique. Le facteur de compression adiabatique est avantageusement dépendant d'au moins une grandeur physique choisie dans l'ensemble comprenant la pression à l'échappement du moteur, la différence entre cette pression et la pression extérieure et l'ouverture d'une vanne de décharge du turbocompresseur. Dans la pratique, une seule grandeur permet d'obtenir d'excellents résultats. Pour alors définir la courbe tridimensionnelle donnant la variation de température, dépendant du régime moteur et du débit d'air, on fait par exemple varier ce régime moteur et le débit d'air en maintenant constante(s) la(les) grandeur(s) dont dépend le facteur de compression adiabatique. Des détails et avantages de la présente invention assortiront mieux de la description qui suit, faite en référence au dessin schématique annexé sur lequel : La figure 1 représente schématiquement l'architecture d'un moteur turbocompressé, et La figure 2 est un schéma pour expliquer le fonctionnement d'un procédé selon l'invention. La figure 1 représente très schématiquement un système d'alimentation en air et d'échappement d'un moteur turbocompressé. Ce système permet d'alimenter en air frais un moteur dans lequel au moins un piston 2 se déplace dans un cylindre 4. L'air frais pénètre dans le cylindre 4 par une ouverture commandée par une soupape 6 d'admission. Une soupape 8 est quant à elle prévue pour l'échappement des gaz brûlés hors du cylindre 4. Le système d'alimentation en air représenté comporte, d'amont en aval, une entrée d'air 10, un débitmètre d'air massique 12, un turbocompresseur 14, une chambre appelée intercooler 16, un papillon 18 disposé dans un conduit dans lequel passe l'air alimentant les cylindres et permettant d'agir sur la section de débit d'air de ce conduit, ainsi qu'un collecteur d'admission appelé généralement manifold 20. Les soupapes d'admission 6 sont en liaison directe avec le collecteur d'admission 20. Les soupapes d'échappement 8 sont quant à elles en liaison directe avec un conduit d'échappement 22. Pour ne pas encombrer le dessin, ce conduit d'échappement 22 n'est représenté qu'en sortie de cylindre et au niveau du turbocompresseur 14. Ce dernier comporte deux turbines reliées entre-elles par un arbre. Une première turbine est disposée dans le conduit d'échappement et est entraînée en rotation par les gaz brûlés sortant des cylindres 4 par les soupapes d'échappement 8. La seconde turbine est disposée, comme indiqué plus haut, dans le système d'alimentation en air du moteur et met sous pression l'air se trouvant dans l'intercooler 16. De façon classique, une vanne de décharge de turbocompresseur 24 permet de court-circuiter la turbine disposée dans le conduit d'échappement 22. En sortie du turbocompresseur, les gaz d'échappement passent dans un pot catalytique 26 avant d'être rejetés à l'air libre. Le procédé décrit ci-après permet de déterminer la température des gaz d'échappement à leur entrée dans le pot catalytique 26. Comme indiqué au préambule, la connaissance de cette température est importante pour le fonctionnement du pot catalytique 26. Ce pot catalytique 26 contient une sonde oxygène amont (non représentée) qui permet de donner des indications au dispositif de gestion du moteur pour agir sur la richesse du mélange carburant/comburant envoyé par le système d'alimentation en air dans les cylindres 4. La connaissance de la température en amont du pot catalytique 26, et en aval du turbocompresseur 14, permet de protéger le catalyseur et la sonde oxygène amont de températures trop élevées. Lorsqu'une température trop élevée est détectée, il est possible d'agir sur l'alimentation du moteur afin de diminuer la température des gaz d'échappement en sortie des cylindres 4. Il faut aussi à l'inverse que le catalyseur et la sonde oxygène amont correspondante soient à une température relativement élevée pour pouvoir parfaitement fonctionner. La connaissance de la température à l'entrée du pot catalytique 26 permet donc de savoir si la sonde oxygène amont est prête et donc si les informations qu'elle fournit doivent être prises en considération. On peut également prévoir un chauffage de la sonde oxygène amont et du catalyseur lorsque la température ce ceux-ci n'est pas suffisante. Dans un moteur atmosphérique ou turbocompressé, il est connu de l'homme du métier de modéliser la température dans le conduit d'échappement à la sortie des cylindres 4. De nombreux paramètres sont utilisés pour déterminer cette température comme par exemple, et non exclusivement, le régime moteur, le débit d'air, la richesse du mélange carburant/comburant envoyé dans les cylindres, l'avance à l'allumage, etc.... La présente invention propose de calculer la température à l'entrée du pot catalytique 26, c'est-à-dire en sortie de turbocompresseur, à partir de la température (modélisée) en amont du turbocompresseur. Pour ce faire, elle propose de retrancher de la cartographie de base déterminant la température avant le turbocompresseur 14 une cartographie dépendante du régime moteur et du débit d'air traversant le moteur multipliée par un facteur de compression adiabatique dépendant d'un paramètre tel la pression à l'échappement et/ou l'ouverture de la vanne de décharge du turbocompresseur 24. La figure 2 illustre un schéma expliquant la manière dont la température en aval du turbocompresseur 14, à l'entrée du pot catalytique 26, est déterminée selon l'invention. Sur cette figure 2, on remarque une courbe tridimensionnelle schématisée dans une première fenêtre 28. Un repère orthogonal est également schématisé dans cette fenêtre 28. La courbe représentée schématiquement donne une variation de température TC déterminée à partir du régime moteur N et du débit d'air MAF mesuré par le débitmètre 12. Ainsi, un axe du repère correspond au régime moteur N, un second axe au débit d'air MAF tandis que le troisième axe indique la valeur de la variation de température TC. Sous la fenêtre 28 se trouve une seconde fenêtre 30 à l'intérieur de laquelle sont représentés une courbe et un repère orthogonal à deux axes. L'axe des abscisses correspond à un paramètre tandis que l'axe des ordonnées correspond à un facteur multiplicatif α. Le paramètre en abscisse peut être la pression à l'échappement PE mesurée dans le conduit d'échappement 22 à la sortie des cylindres 4. Il peut également s'agir de la différence de pression entre cette pression d'échappement PE et la pression atmosphérique régnant à l'extérieur du moteur. Il peut enfin s'agir de l'ouverture (en degré ou en pourcentage) de la vanne de décharge du turbocompresseur 24. Cette ouverture est appelée WG sur la figure 2. On considère que la température dans le conduit d'échappement 22 en amont du pot catalytique 26 prend la valeur Tamont- De même, en aval du turbocompresseur 14, la température prend une valeur Tavaι. Soit alorsThe present invention relates to a method for determining the temperature before entering a catalytic converter of a turbocharged engine. In a catalyzed engine, it is important to know the temperature at the level of the catalytic converter so as not to destroy it. This temperature is important for various functions: protection of the catalyst and its upstream oxygen sensor, detection of ready upstream oxygen sensor, heating of upstream oxygen sensor as well as heating of the catalyst. On some engines these four functions, or at least part of them, do not exist. On other motors, these functions are regulated in open loop. It is also known for the management of these functions to take into account less precise parameters than the temperature at the inlet of the catalytic converter. On an atmospheric engine, it is known to model the temperature at the inlet and at the outlet of the catalytic converter. The temperature of the exhaust leaving the engine is also known by mapping. The object of the present invention is therefore to provide a method making it possible to reliably determine in a catalyzed turbocharged engine the inlet temperature of the exhaust gases into the catalytic converter, that is to say downstream of the turbocharger. To this end, it proposes a method for determining the temperature of the exhaust gases downstream of the turbine of the turbocharger in a turbocharged engine, which comprises the following steps: - determination of the temperature upstream of the turbocharger turbine, - calculation of a corrective term from engine operating parameters, and - determination of the temperature downstream of the turbocharger turbine by subtracting the corrective term of the temperature upstream of the turbocharger turbine. This determination is very simple to perform, but as it has been shown, the determination of the temperature obtained by this process allows obtain temperatures substantially in line with those recorded using a temperature probe to confirm this process. The temperature upstream of the turbocharger turbine can be determined using a temperature sensor, but to minimize the cost of the corresponding engine it is preferably obtained by modeling. It is known to a person skilled in the art to model this temperature and this modeling is already used to avoid overheating of the turbocharger. This modeling is for example carried out by an electronic device integrated into the engine management and control device. The calculation of the corrective term can then advantageously be carried out by this same electronic device. In a preferred embodiment, the corrective term is obtained first of all by a predetermined curve giving a temperature variation as a function of the engine speed and the air flow rate passing through the engine, then by the multiplication of this temperature variation by a adiabatic compression factor. The adiabatic compression factor is advantageously dependent on at least one physical quantity chosen from the assembly comprising the pressure at the engine exhaust, the difference between this pressure and the external pressure and the opening of a pressure relief valve of the turbocharger. In practice, only one quantity gives excellent results. To then define the three-dimensional curve giving the temperature variation, depending on the engine speed and the air flow, we vary this engine speed and the air flow for example by keeping the quantity (s) constant (s) ) on which the adiabatic compression factor depends. Details and advantages of the present invention will better match the description which follows, given with reference to the appended schematic drawing in which: FIG. 1 schematically represents the architecture of a turbocharged engine, and FIG. 2 is a diagram to explain the operation of a method according to the invention. Figure 1 very schematically shows an air supply and exhaust system of a turbocharged engine. This system makes it possible to supply fresh air to an engine in which at least one piston 2 moves in a cylinder 4. Fresh air enters the cylinder 4 through an opening controlled by an intake valve 6. A valve 8 is in turn provided for the exhaust of the burnt gases out of the cylinder 4. The air supply system shown comprises, from upstream to downstream, an air inlet 10, a mass air flow meter 12 , a turbocharger 14, a chamber called an intercooler 16, a butterfly valve 18 disposed in a duct through which the air supplying the cylinders passes and making it possible to act on the air flow section of this duct, as well as a manifold d intake generally called manifold 20. The intake valves 6 are in direct connection with the intake manifold 20. The exhaust valves 8 are in turn in direct connection with an exhaust duct 22. To avoid clutter the drawing, this exhaust duct 22 is only shown at the cylinder outlet and at the level of the turbocharger 14. The latter comprises two turbines connected together by a shaft. A first turbine is disposed in the exhaust duct and is rotated by the burnt gases leaving the cylinders 4 by the exhaust valves 8. The second turbine is disposed, as indicated above, in the supply system for engine air and pressurizes the air in the intercooler 16. Conventionally, a turbocharger discharge valve 24 makes it possible to short-circuit the turbine placed in the exhaust duct 22. At the outlet of the turbocharger, the exhaust gases pass through a catalytic converter 26 before being discharged into the open air. The method described below makes it possible to determine the temperature of the exhaust gases as they enter the catalytic converter 26. As indicated in the preamble, knowing this temperature is important for the functioning of the catalytic converter 26. This catalytic converter 26 contains an upstream oxygen sensor (not shown) which gives indications to the engine management device to act on the richness of the fuel / oxidant mixture sent by the air supply system in the cylinders 4. Knowledge of the temperature upstream of the catalytic converter 26, and downstream of the turbocharger 14, makes it possible to protect the catalyst and the upstream oxygen sensor from excessively high temperatures. When an excessively high temperature is detected, it is possible to act on the engine supply in order to reduce the temperature of the exhaust gases leaving the cylinders 4. Conversely, the catalyst and the probe must also be corresponding upstream oxygen are at a relatively high temperature to be able to function perfectly. Knowing the temperature at the inlet of the catalytic converter 26 therefore makes it possible to know whether the upstream oxygen sensor is ready and therefore whether the information which it provides must be taken into consideration. It is also possible to provide for heating of the upstream oxygen sensor and of the catalyst when the temperature thereof is not sufficient. In an atmospheric or turbocharged engine, it is known to a person skilled in the art to model the temperature in the exhaust duct at the outlet of the cylinders 4. Many parameters are used to determine this temperature, for example, and not exclusively, the engine speed, the air flow, the richness of the fuel / oxidizer mixture sent into the cylinders, the ignition advance, etc. The present invention proposes to calculate the temperature at the inlet of the catalytic converter 26, that is to say at the outlet of the turbocharger, from the temperature (modeled) upstream of the turbocharger. To do this, it proposes to subtract from the basic mapping determining the temperature before the turbocharger 14 a mapping dependent on the engine speed and the air flow rate passing through the engine multiplied by an adiabatic compression factor depending on a parameter such as the pressure at the exhaust and / or the opening of the discharge valve of the turbocharger 24. FIG. 2 illustrates a diagram explaining how the temperature downstream of the turbocharger 14, at the inlet of the catalytic converter 26, is determined according to l 'invention. In this FIG. 2, there is a three-dimensional curve shown diagrammatically in a first window 28. An orthogonal coordinate system is also shown diagrammatically in this window 28. The curve represented diagrammatically gives a variation in temperature TC determined from the engine speed N and of the MAF air flow measured by the flow meter 12. Thus, one axis of the reference corresponds to the engine speed N, a second axis to the MAF air flow while the third axis indicates the value of the temperature variation TC. Under window 28 is a second window 30 inside which are represented a curve and a two-axis orthogonal coordinate system. The abscissa axis corresponds to a parameter while the ordinate axis corresponds to a multiplicative factor α. The parameter on the abscissa can be the pressure at the PE exhaust measured in the exhaust duct 22 at the outlet of the cylinders 4. It can also be the pressure difference between this PE exhaust pressure and the atmospheric pressure prevailing outside the engine. Finally, it may be the opening (in degree or in percentage) of the discharge valve of the turbocharger 24. This opening is called WG in FIG. 2. It is considered that the temperature in the exhaust duct 22 upstream of the catalytic converter 26 takes the value T am have- Similarly, downstream of the turbocharger 14, the temperature takes a value T ava ι. So then
Δ l = I amont - I aval- Selon la présente invention, on considère que ΔT = α. TC. On a donc Tavaι = Tamont-α. TC. Pour réaliser la cartographie représentée schématiquement dans la fenêtre 28, on maintient le paramètre de la fenêtre 30 (WG, PE, Patm - PE) constant. On fait alors varier à la fois le régime moteur et le débit d'air dans le moteur pour obtenir une variation de température TC. Sur la figure 2, on a représenté schématiquement la construction de deux points de la cartographie de la fenêtre 28. Ces points donnent les valeurs TC0 et TCi lorsque le couple (MAF, N) prend respectivement les valeurs (MAF0, N0) et (MAF-i, Ni). Les valeurs TCo et TCi trouvées correspondent à une ouverture de la vanne de décharge du turbocompresseur 24 correspondant à une valeur WG0. Une fois cette cartographie réalisée, on réalise la courbe de la fenêtre 30. Pour ce faire, on fait alors varier la valeur du paramètre WG. On a schématisé sur la figure 2 l'obtention de deux points de la courbe de la fenêtre 30 avec les valeurs du paramètre WG valant WGi et WG2. On obtient alors respectivement des coefficients i et cc2- Pour ainsi connaître dans un moteur turbocompressé la température à l'entrée du pot catalytique 26, on détermine tout d'abord, de manière connue, la température en amont du turbocompresseur 14. Cette fonction est déjà connue et réalisée sur certains moteurs. Il convient alors en fonction du régime moteur N et du débit d'air MAF mesuré par le débitmètre 12 de déterminer la valeur TC. De même, en fonction de la variable choisie, WG, PE ou Patm - PE, de déterminer à l'aide de la courbe correspondante le facteur correctif α. En multipliant le coefficient TC par α on obtient ΔT le terme correctif permettant de déterminer immédiatement la valeur Tavaι. Ce procédé a été validé sur des moteurs et permet d'obtenir de manière assez précise la température en aval du turbocompresseur, à l'entrée du pot catalytique 26. Il est donc ainsi possible de connaître précisément cette température sans utiliser de capteur. En outre, il n'est pas nécessaire de mettre des moyens électroniques supplémentaires en œuvre pour déterminer cette température. En effet, lorsqu'un véhicule est équipé de moyens permettant de connaître la température en amont du turbocompresseur, les mêmes moyens peuvent déterminer la température en aval de ce turbocompresseur à l'aide d'un procédé selon l'invention. Le surcoût lié à la détermination de cette température à l'entrée du pot catalytique 26 est donc très faible tout en apportant de grands avantages en ce qui concerne la durée de vie du catalyseur et de la sonde oxygène amont qui l'équipe. Pour illustrer l'avantage apporté par la détermination de la température à l'entrée du pot catalytique 26 un exemple numérique est indiqué ci-après. On considère généralement que la température d'entrée des gaz d'échappement dans le turbocompresseur ne doit pas dépasser environ 1000°C. En ce qui concerne la sonde oxygène amont, il est préférable de ne pas dépasser des températures de l'ordre de 750°C. Dans le cas où des températures proches de 1000°C sont obtenues en amont de la turbine d'échappement du turbocompresseur 14, par exemple 950°C, on arrive en aval du turbocompresseur à des températures pouvant atteindre 850°C. Dans le cas où la sonde oxygène est proche de la turbine du turbocompresseur, il est alors nécessaire de déclencher un enrichissement en carburant du mélange brûlé pour abaisser la température à l'entrée du pot catalytique 26. Dans les moteurs de l'art antérieur, aucun enrichissement n'est prévu pour protéger la turbine puisque la valeur limite de 1000°C n'est pas atteinte. La présente invention ne se limite pas à la forme de réalisation du procédé ci-dessus décrite à titre d'exemple non limitatif. Elle concerne également toutes les variantes de réalisation à la portée de l'homme du métier dans le cadre des revendications ci-après. Δ l = I upstream - I downstream- According to the present invention, it is considered that ΔT = α. TC. We therefore have T ava ι = T a mont-α. TC. To carry out the mapping represented schematically in window 28, the parameter of window 30 (WG, PE, P atm - PE) is kept constant. We then vary both the engine speed and the air flow in the engine to obtain a temperature variation TC. In FIG. 2, the construction of two points of the cartography of window 28 is represented diagrammatically. These points give the values TC 0 and TCi when the pair (MAF, N) takes the values (MAF 0 , N 0 ) respectively. and (MAF-i, Ni). The values TCo and TCi found correspond to an opening of the discharge valve of the turbocharger 24 corresponding to a value WG 0 . Once this mapping has been carried out, the curve of window 30 is produced. To do this, the value of the parameter WG is then varied. We have shown diagrammatically in FIG. 2 the obtaining of two points of the curve of window 30 with the values of the parameter WG being equal to WGi and WG 2 . We then obtain coefficients i and cc2- respectively In order to know the temperature at the inlet of the catalytic converter 26 in a turbocharged engine, the temperature upstream of the turbocharger 14 is first of all determined in a known manner. This function is already known and performed on certain engines. It is then appropriate, as a function of the engine speed N and of the air flow MAF measured by the flow meter 12, to determine the value TC. Similarly, depending on the variable chosen, WG, PE or P at m - PE, determine the corrective factor α using the corresponding curve. By multiplying the coefficient TC by α we obtain ΔT the corrective term allowing the value T ava ι to be determined immediately. This process has been validated on engines and makes it possible to obtain the temperature downstream of the turbocharger fairly precisely, at the inlet of the catalytic converter 26. It is therefore thus possible to know this temperature precisely without using a sensor. Furthermore, it is not necessary to use additional electronic means to determine this temperature. In fact, when a vehicle is equipped with means making it possible to know the temperature upstream of the turbocharger, the same means can determine the temperature downstream of this turbocharger using a method according to the invention. The additional cost linked to the determination of this temperature at the inlet of the catalytic converter 26 is therefore very low while bringing great advantages with regard to the lifetime of the catalyst and of the upstream oxygen sensor which equips it. To illustrate the advantage provided by the determination of the temperature at the inlet of the catalytic converter 26, a numerical example is indicated below. It is generally considered that the inlet temperature of the exhaust gases into the turbocharger should not exceed approximately 1000 ° C. With regard to the upstream oxygen sensor, it is preferable not to exceed temperatures of the order of 750 ° C. In the case where temperatures close to 1000 ° C. are obtained upstream of the exhaust turbine of the turbocharger 14, for example 950 ° C., one arrives downstream of the turbocharger at temperatures which can reach 850 ° C. In the case where the oxygen sensor is close to the turbine of the turbocharger, it is then necessary to trigger a fuel enrichment of the burnt mixture to lower the temperature at the inlet of the catalytic converter 26. In the engines of the prior art, no enrichment is planned to protect the turbine since the limit value of 1000 ° C is not reached. The present invention is not limited to the embodiment of the method described above by way of nonlimiting example. It also relates to all the variant embodiments within the reach of those skilled in the art within the scope of the claims below.

Claims

REVENDICATIONS 1. Procédé de détermination dans un moteur turbocompressé de la température des gaz d'échappement en aval de la turbine du turbocompresseur (14), caractérisé en ce qu'il comporte les étapes suivantes : - détermination de la température en amont de la turbine du turbocompresseur (14), - calcul d'un terme correctif à partir de paramètres de fonctionnement du moteur, et - détermination de la température en aval de la turbine du turbocompresseur (14) en soustrayant le terme correctif de la température en amont de la turbine du turbocompresseur (14). CLAIMS 1. Method for determining in a turbocharged engine the temperature of the exhaust gases downstream of the turbine of the turbocharger (14), characterized in that it comprises the following steps: - determination of the temperature upstream of the turbine of the turbocharger (14), - calculation of a corrective term from engine operating parameters, and - determination of the temperature downstream of the turbocharger turbine (14) by subtracting the corrective term from the temperature upstream of the turbocharger turbine (14).
2. Procédé de détermination selon la revendication 1 , caractérisé en ce que la détermination de la température en amont de la turbine du turbocompresseur (14) est obtenue par modélisation. 2. Determination method according to claim 1, characterized in that the determination of the temperature upstream of the turbine of the turbocharger (14) is obtained by modeling.
3. Procédé de détermination selon la revendication 2, caractérisé en ce que la modélisation est réalisée par un dispositif électronique intégré au dispositif de gestion et de commande du moteur. 3. Determination method according to claim 2, characterized in that the modeling is carried out by an electronic device integrated into the engine management and control device.
4. Procédé de détermination selon la revendication 3, caractérisé en ce que le calcul du terme correctif est réalisé par le dispositif électronique réalisant la modélisation. 4. Determination method according to claim 3, characterized in that the calculation of the corrective term is carried out by the electronic device performing the modeling.
5. Procédé de détermination selon l'une des revendications 1 à 4, caractérisé en ce que le terme correctif est obtenu tout d'abord par une courbe prédéterminée donnant une variation de température (TC) en fonction du régime moteur (N) et du débit d'air (MAF) traversant le moteur puis par la multiplication de cette variation de température (TC) par un facteur de compression adiabatique (α). 5. Determination method according to one of claims 1 to 4, characterized in that the corrective term is obtained first of all by a predetermined curve giving a temperature variation (TC) according to the engine speed (N) and the air flow (MAF) passing through the engine and then by multiplying this temperature variation (TC) by an adiabatic compression factor (α).
6. Procédé de détermination selon la revendication 5, caractérisé en ce que le facteur de compression adiabatique (α) est dépendant d'au moins une grandeur physique choisie dans l'ensemble comprenant la pression à l'échappement (PE) du moteur, la différence entre cette pression et la pression extérieure et l'ouverture (WG) d'une vanne de décharge du turbocompresseur (24). 6. Determination method according to claim 5, characterized in that the adiabatic compression factor (α) is dependent on at least one physical quantity chosen from the set comprising the exhaust pressure (PE) of the engine, the difference between this pressure and the external pressure and the opening (WG) of a discharge valve of the turbocharger (24).
7. Procédé de détermination selon la revendication 6, caractérisé en ce que pour définir la courbe tridimensionnelle donnant la variation de température, dépendant du régime moteur (N) et du débit d'air (MAF), on fait varier ce régime moteur (N) et le débit d'air (MAF) en maintenant constante(s) la(les) grandeur(s) dont dépend le facteur de compression adiabatique (α). 7. Determination method according to claim 6, characterized in that to define the three-dimensional curve giving the temperature variation, depending on the engine speed (N) and the air flow (MAF), this engine speed is varied (N ) and the air flow (MAF) by maintaining constant (s) the quantity (s) on which the adiabatic compression factor (α) depends.
EP04764223A 2003-09-05 2004-08-18 Method for determining a temperature downstream the entry of a catalytic converter for a turbocharged engine Withdrawn EP1664500A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0310516A FR2859501B1 (en) 2003-09-05 2003-09-05 METHOD OF DETERMINING THE TEMPERATURE BEFORE ENTERING A CATALYTIC POT OF A TURBOOCOMPRESS ENGINE
PCT/EP2004/009235 WO2005024198A1 (en) 2003-09-05 2004-08-18 Method for determining a temperature downstream the entry of a catalytic converter for a turbocharged engine

Publications (1)

Publication Number Publication Date
EP1664500A1 true EP1664500A1 (en) 2006-06-07

Family

ID=34178814

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04764223A Withdrawn EP1664500A1 (en) 2003-09-05 2004-08-18 Method for determining a temperature downstream the entry of a catalytic converter for a turbocharged engine

Country Status (7)

Country Link
US (1) US7261095B2 (en)
EP (1) EP1664500A1 (en)
JP (1) JP4575379B2 (en)
KR (1) KR20060090663A (en)
FR (1) FR2859501B1 (en)
MX (1) MXPA06002538A (en)
WO (1) WO2005024198A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2917782A3 (en) * 2007-06-22 2008-12-26 Renault Sas Exhaust gas temperature estimating method for internal combustion engine i.e. oil engine, of vehicle, involves estimating temperature in upstream of catalyst according to cartography of temperature in upstream of turbine, and engine speed
US8136357B2 (en) 2008-08-27 2012-03-20 Honda Motor Co., Ltd. Turbocharged engine using an air bypass valve
EP2615283B1 (en) * 2012-01-10 2020-08-19 Ford Global Technologies, LLC A method and observer for determining the exhaust manifold temperature in a turbocharged engine
US9664093B2 (en) 2015-03-27 2017-05-30 Caterpillar Inc. Method for calculating exhaust temperature
DE102016011440A1 (en) 2015-09-29 2017-03-30 Mazda Motor Corporation A control apparatus for an engine, a method of controlling a temperature of an exhaust system and computer program product
JP6319255B2 (en) * 2015-09-30 2018-05-09 マツダ株式会社 Engine control device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700542A (en) * 1984-09-21 1987-10-20 Wang Lin Shu Internal combustion engines and methods of operation
JP2663720B2 (en) * 1990-12-26 1997-10-15 トヨタ自動車株式会社 Diesel engine exhaust purification system
DE19525667A1 (en) * 1995-07-14 1997-01-16 Audi Ag Temp. adjustment device for IC engine with exhaust gas turbocharger and electronic engine management - alters control parameter of electronic engine control for lowering exhaust gas temp. with too high exhaust gas temp. for limiting thermal load on turbine
JPH0979092A (en) * 1995-09-12 1997-03-25 Nissan Motor Co Ltd Control device for internal combustion engine
JP3900590B2 (en) * 1996-05-17 2007-04-04 株式会社デンソー Exhaust gas purification device for internal combustion engine
WO1998007973A1 (en) * 1996-08-23 1998-02-26 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
US6230683B1 (en) * 1997-08-22 2001-05-15 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
CN1292153C (en) * 1998-02-23 2006-12-27 卡明斯发动机公司 Premixed charge compression ignition engine with optimal combustion control
JP3987199B2 (en) * 1998-03-31 2007-10-03 マツダ株式会社 Simulation device, simulation method, and storage medium
DE19907382A1 (en) * 1999-02-20 2000-08-24 Bayerische Motoren Werke Ag Engine catalyser temperture estimation method uses temperature model for calculating catalyst temperature in dependence on measured or calculated exhaust gas temperature
US6321157B1 (en) * 1999-04-27 2001-11-20 Ford Global Technologies, Inc. Hybrid modeling and control of disc engines
DE19963358A1 (en) * 1999-12-28 2001-07-12 Bosch Gmbh Robert Method and device for controlling an internal combustion engine with an air system
US6314735B1 (en) * 2000-02-23 2001-11-13 Ford Global Technologies, Inc. Control of exhaust temperature in lean burn engines
DE10111775B4 (en) * 2001-03-12 2008-10-02 Volkswagen Ag Method and device for determining the gas outlet temperature of the turbine of an exhaust gas turbocharger of a motor vehicle
JP4122770B2 (en) * 2002-01-07 2008-07-23 日産自動車株式会社 Exhaust temperature detection device for internal combustion engine
JP4056776B2 (en) * 2002-03-29 2008-03-05 本田技研工業株式会社 Control device for internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005024198A1 *

Also Published As

Publication number Publication date
US7261095B2 (en) 2007-08-28
WO2005024198A1 (en) 2005-03-17
FR2859501B1 (en) 2007-05-04
MXPA06002538A (en) 2006-06-20
JP4575379B2 (en) 2010-11-04
KR20060090663A (en) 2006-08-14
JP2007533885A (en) 2007-11-22
US20060276955A1 (en) 2006-12-07
FR2859501A1 (en) 2005-03-11

Similar Documents

Publication Publication Date Title
EP1989426B1 (en) Method and device for controlling supercharging air of an internal combustion engine
FR2500061A1 (en) METHOD AND DEVICE FOR ADJUSTING THE PRESSURE TO THE INTAKE OF AN INTERNAL COMBUSTION ENGINE WITH TURBOCHARGER
FR2874237A1 (en) Supercharged internal combustion engine e.g. gasoline engine, controlling method, involves comparing values of mass air flow, and estimating defect if values have amplitude difference higher than predefined threshold
FR2794803A1 (en) METHOD AND DEVICE FOR REGULATING THE FRACTION OF RECYCLED EXHAUST GASES IN AN ENGINE
FR2915237A1 (en) Variable geometry supercharger controlling system i.e. electronic control unit, for internal combustion engine i.e. diesel engine, of motor vehicle, has calculating block deducing set point of geometry of compressor to regulate geometry
FR2750454A1 (en) METHOD FOR DETERMINING THE LOAD SIGNAL OF AN INTERNAL COMBUSTION ENGINE WITH EXTERNAL RE-INJECTION OF EXHAUST GASES
EP1664500A1 (en) Method for determining a temperature downstream the entry of a catalytic converter for a turbocharged engine
FR2532362A1 (en) METHOD FOR CONTROLLING FUEL SUPPLY OF AN INTERNAL COMBUSTION ENGINE IMMEDIATELY AFTER STARTING
FR2553831A1 (en) METHOD FOR CONTROLLING THE VALUE OF QUANTITIES TO BE GENERATED BY A MEANS FOR CONTROLLING THE OPERATION OF AN INTERNAL COMBUSTION ENGINE
EP1671023B1 (en) Engine air supply control method which is intended, for example, for the control of a turbocharged engine
FR2548273A1 (en) METHOD FOR CONTROLLING THE OPERATING STATE OF AN INTERNAL COMBUSTION ENGINE
EP1347163B1 (en) Method for estimating pumping loss in an internal combustion engine
EP1606501A1 (en) Method of measuring ambient pressure in a turbocharged engine
FR2849897A1 (en) Internal combustion engine operating method, involves determining curve of counter pressure of exhaust gas based on average pressure on exhaust valve for engine cycle, and average downstream pressure of friction charge unit
EP1828578B1 (en) Method for controlling a supercharged engine
EP2045456B1 (en) Method and apparatus for avoiding compressor surging of a turbocharger of an internal combustion engine
FR2905408A1 (en) Internal combustion engine e.g. supercharged diesel engine, controlling method for e.g. diesel type motor vehicle, involves calculating set point of ratio of detent in turbine to execute adjustment of boot pressure in manifold of engine
FR2813098A1 (en) DEVICE FOR DETECTING MALFUNCTION OF THE ENGINE EXHAUST SYSTEM
WO2014095052A1 (en) Method for determining the recycled air flow rate and the quantity of oxygen available at the inlet of an internal combustion engine cylinder
EP0639704A1 (en) Method for calculating the mass of air admitted to an internal combustion engine
EP1748174B1 (en) Method and apparatus for estimating air flow quantity of a vehicle tubocharged engine
EP0637685B1 (en) Process and apparatus for auto-adaptation of air/fuel ratio in an internal combustion engine with canister purge system
EP0636778B1 (en) Method and apparatus for correcting the injection time as a function of the purge flow of a canister purge system in a fuel injected engine
EP2807353B1 (en) Method for thermal protection of the exhaust line of an internal combustion engine
WO2020070179A1 (en) Method for detecting the clogging of an air filter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081028