EP1664362B1 - Ods-alloy of molybdenum, silicon and boron - Google Patents

Ods-alloy of molybdenum, silicon and boron Download PDF

Info

Publication number
EP1664362B1
EP1664362B1 EP04761036A EP04761036A EP1664362B1 EP 1664362 B1 EP1664362 B1 EP 1664362B1 EP 04761036 A EP04761036 A EP 04761036A EP 04761036 A EP04761036 A EP 04761036A EP 1664362 B1 EP1664362 B1 EP 1664362B1
Authority
EP
European Patent Office
Prior art keywords
molybdenum
oxides
alloy
vol
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04761036A
Other languages
German (de)
French (fr)
Other versions
EP1664362A1 (en
Inventor
Pascal Jehanno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plansee SE
Original Assignee
Plansee SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee SE filed Critical Plansee SE
Publication of EP1664362A1 publication Critical patent/EP1664362A1/en
Application granted granted Critical
Publication of EP1664362B1 publication Critical patent/EP1664362B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/18Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a Mo-Si-B alloy consisting of the intermetallic phases molybdenum silicide and Molybdänborsilizid, optionally additionally molybdenum boride, wherein the Summengehalt intermetallic phase constituents 25 to 90 vol.% And the proportion of other microstructural constituents according to claim 1 and the balance of molybdenum or molybdenum mixed crystal.
  • Molybdenum and molybdenum alloys are widely used in engineering because of their good mechanical strength properties at high temperatures. A problem of these alloys is their low oxidation resistance at temperatures above about 600 ° C. Accordingly diverse are the known measures for improving the oxidation properties. They range from applying superficial protective coatings to alloying measures.
  • the EP 0 804 627 describes an oxidation resistant molybdenum alloy consisting of a molybdenum matrix and intermetallic phase domains dispersed therein of 10-70 vol.% Mo-B silicide, optionally up to 20 vol.% Mo boride and optionally up to 20 vol.% Mo-silicide exists.
  • the alloy comprises, in addition to molybdenum, the elements C, Ti, Hf, Zr, W, Re, Al, Cr, V, Nb, Ta, B and Si in the form that, in addition to the abovementioned phases, one or more elements of the group Ti, Zr, Hf and Al must be present in a proportion of 0.3 to 10 wt.% In the Mo mixed crystal phase.
  • the alloy may contain up to 2.5 vol.% Carbide.
  • the alloy can be produced by various processes, preferably by powder metallurgy or by Schichtabscheideclar. Alloys according to the EP 0 804 627 Form at temperatures above 540 ° C a borosilicate layer, which prevents further penetration of oxygen into the body. The addition of elements such as Ti, Zr, Hf or Al promotes the wetting of the boron silicate layer, increases its melting point and leads to the formation of a refractory oxide layer below the boron silicate layer, which reduces further oxygen transport into the interior.
  • the object of the present invention is then to provide an oxidation-resistant Mo-Si-B alloy with high strength, which compared to known alloys has improved fracture toughness and improved formability at temperatures of about 1000 ° C.
  • the material according to the invention consists of the intermetallic phases molybdenum silicide and molybdenum boron silicide, optionally also molybdenum boride and molybdenum or molybdenum mixed crystal.
  • Mo 3 Si and Mo 5 SiB 2 are to be mentioned as preferred molybdenum silicide or Molybdänborsilizid phases.
  • oxides or mixed oxides which have a vapor pressure at 1500 ° C of ⁇ 5x10 -2 bar, finely dispersed.
  • the preferred mean particle size is ⁇ 5 ⁇ m.
  • alloys with the structure according to the invention have an elongation at break which is at least a factor of 3 at 1200 ° C., compared to state-of-the-art Mo-Si-B alloys having the same silicon and boron content, but without the oxide additives according to the invention.
  • a vapor pressure at 1500 ° C of ⁇ 5x10 -2 is required to provide sufficient processability guarantee.
  • Preferred oxides are: Y 2 O 3 , ZrO 2 , HfO 2 , TiO 2 , Al 2 O 3 , CaO, MgO and SrO.
  • the alloy according to the invention may contain elements which form a mixed crystal with molybdenum. These include Re, Ti, Zr, Hf, V, Nb, Ta, Cr and Al. A Nb addition has proved to be particularly advantageous.
  • Nb 5 at% of Nb to a Mo-Si-B alloy containing 8.8 at% Si and 7.6 at% B and 0.5 vol.% Of yttria, the tensile strength can be measured at a test temperature of 1000 ° C 5%, while increasing the elongation at break by 80%.
  • the silicon and boron contents are advantageously to be selected such that the composition in the three-component system molybdenum-silicon-boron in the range Mo-Mo 3 Si-T 2 (Mo 5 SiB 2 ) - Mo 2 B is. This is the case when the Si content is 0.1-8.9 wt.% And the B content is 0.1-5.3 wt.%.
  • a particularly advantageous concentration range both in terms of strength, creep resistance, fracture toughness and oxidation behavior is 2-6 wt.% Si, 0.5-2 wt.% B and 0.2-1 vol.% Oxide content.
  • suitable powder metallurgical process techniques ensures that the oxide additives are present in sufficient fineness and homogeneity in the alloy matrix.
  • powder mixtures consisting of the corresponding components are treated by mechanical alloying, wherein both elemental powders, as well as pre-alloyed powders can be used.
  • aggregates are customary high energy mills such as attritors, ball drop mills or vibrating mills suitable.
  • compaction process the hot isostatic pressing has been proven. The milled powder is filled into a jar made of a Mo alloy, welded vacuum-tight and compressed at temperatures in the range of 1300 ° C - 1500 ° C.
  • Other pressure-assisted hot-compacting processes such as powder extrusion presses, can also be used.
  • melt metallurgical production processes can be used.
  • spray compacting processes where oxide additives are added during the spraying phase.
  • 0.5% by weight of yttrium oxide powder having a mean grain size of Fisher of 0.8 microns was 96.5 wt.% Mo with a grain size of 4.12 .mu.m, 3.1 wt.% Si with a grain size of 4.41 microns and 1.14 wt.% B with a particle size of 0.92 microns mixed and mechanically alloyed.
  • the mechanical alloying took place in an attritor under hydrogen.
  • the attritor volume was 50 l and 100 kg balls of Fe-Cr-Ni alloy with a diameter of 9 mm were used.
  • the attrition time was 10 hours. After mechanical alloying, only molybdenum and Y 2 O 3 could be detected by XRD.
  • the powder was filled in a pot of Mo base alloy.
  • the pot was evacuated and vacuum-sealed. Jug and powder were heated in an indirect oven to a temperature of 1500 ° C and compacted by extrusion. In this case, the extrusion ratio was 1: 6.
  • Tensile samples were worked out by means of erosion and turning processes from the extrudates produced in this way.
  • a material without yttrium oxide was prepared using the above-mentioned process steps.
  • the characterization of the samples according to the invention and of the comparative samples was carried out by a hot tensile test, the strain rate being 10 -4 sec -1 . The test temperature was successively increased until a temperature could be determined at which the elongation of the tested sample was at least 10%.
  • La (OH) 3 powder having an average particle size of 0.2 ⁇ m was coated with 93.9% by weight of Mo with a powder particle size of 4.25 ⁇ m, 3.9% by weight of Si with a powder particle size of 4.30 .mu.m and 1.4 wt.% B mixed with a powder grain size of 1.15 .mu.m and mechanically alloyed.
  • the mechanical alloying again took place in an attritor under hydrogen for 10 hours.
  • the powder was cold isostatically pressed at 2000 bar and then compacted by sintering at 1350 ° C / 5 hours under hydrogen.
  • the determination of the density showed that 91% of the theoretical density (8.7 g / cm 3 ) could be achieved.

Abstract

The invention relates to a Mo-Si-B alloy comprising a Mo or Mo mixed crystal matrix, in which 25 vol. % to 90 vol. % of molybdenum silicide and molybdenum borosilicide, optionally with additional molybdenum boride are included. The alloy further comprises, as a fine dispersion, 0.1 - 5 vol. % of one or more oxides or mixed oxides with a vapour pressure at 1500 °C of < 5x10-2 bar. Not only thermal resistance is improved by the addition of oxide, but also the ductility is greatly improved.

Description

Die Erfindung betrifft eine Mo-Si-B-Legierung, bestehend aus den intermetallischen Phasen Molybdänsilizid und Molybdänborsilizid, wahlweise zusätzlich Molybdänborid, wobei der Summengehalt intermetallischer Phasenbestandteile 25 bis 90 Vol.% und der Anteil weiterer Gefügebestandteile gemäß Anspruch 1 beträgt und der Rest aus Molybdän oder Molybdänmischkristall besteht.The invention relates to a Mo-Si-B alloy consisting of the intermetallic phases molybdenum silicide and Molybdänborsilizid, optionally additionally molybdenum boride, wherein the Summengehalt intermetallic phase constituents 25 to 90 vol.% And the proportion of other microstructural constituents according to claim 1 and the balance of molybdenum or molybdenum mixed crystal.

Molybdän und Molybdän-Legierungen finden wegen ihrer guten mechanischen Festigkeitseigenschaften bei hohen Temperaturen verbreitet technische Verwendung. Ein Problem dieser Legierungen ist deren geringe Oxidationsbeständigkeit bei Temperaturen oberhalb etwa 600°C. Entsprechend vielfältig sind die bekannten Maßnahmen zur Verbesserung der Oxidationseigenschaften. Sie reichen vom Aufbringen oberflächlicher Schutzschichten bis zu legierungstechnischen Maßnahmen.Molybdenum and molybdenum alloys are widely used in engineering because of their good mechanical strength properties at high temperatures. A problem of these alloys is their low oxidation resistance at temperatures above about 600 ° C. Accordingly diverse are the known measures for improving the oxidation properties. They range from applying superficial protective coatings to alloying measures.

Die EP 0 804 627 beschreibt eine oxidationsbeständige Molybdän-Legierung, die aus einer Molybdän-Matrix und darin dispergierten, intermetallischen Phasenbereichen aus 10 - 70 Vol.% Mo-B-Silizid, wahlweise bis zu 20 Vol.% Mo-Borid und wahlweise bis zu 20 Vol.% Mo-Silizid besteht. Die Legierung umfasst neben Molybdän die Elemente C, Ti, Hf, Zr, W, Re, Al, Cr, V, Nb, Ta, B und Si in der Form, dass neben den oben genannten Phasen eines oder mehrere Elemente der Gruppe Ti, Zr, Hf und Al in einem Anteil von 0,3 - 10 Gew.% in der Mo-Mischkristallphase vorhanden sein muss. Wahlweise kann die Legierung bis zu 2,5 Vol.% Karbid enthalten. Die Legierung lässt sich nach verschiedenen Verfahren fertigen, vorzugsweise mittels pulvermetallurgischer Verfahren oder über Schichtabscheideverfahren. Legierungen gemäß der EP 0 804 627 bilden bei Temperaturen über 540°C eine Borsilikat-Schicht aus, die ein weiteres Eindringen von Sauerstoff ins Körperinnere verhindert. Die Zugabe von Elementen wie Ti, Zr, Hf oder Al fördert die Benetzung der Bor-Silikatschicht, erhöht deren Schmelzpunkt und führt zur Bildung einer hochschmelzenden Oxidschicht unterhalb der Bor-Silikatschicht, welche einen weiteren Sauerstofftransport ins Innere verringert.The EP 0 804 627 describes an oxidation resistant molybdenum alloy consisting of a molybdenum matrix and intermetallic phase domains dispersed therein of 10-70 vol.% Mo-B silicide, optionally up to 20 vol.% Mo boride and optionally up to 20 vol.% Mo-silicide exists. The alloy comprises, in addition to molybdenum, the elements C, Ti, Hf, Zr, W, Re, Al, Cr, V, Nb, Ta, B and Si in the form that, in addition to the abovementioned phases, one or more elements of the group Ti, Zr, Hf and Al must be present in a proportion of 0.3 to 10 wt.% In the Mo mixed crystal phase. Optionally, the alloy may contain up to 2.5 vol.% Carbide. The alloy can be produced by various processes, preferably by powder metallurgy or by Schichtabscheideverfahren. Alloys according to the EP 0 804 627 Form at temperatures above 540 ° C a borosilicate layer, which prevents further penetration of oxygen into the body. The addition of elements such as Ti, Zr, Hf or Al promotes the wetting of the boron silicate layer, increases its melting point and leads to the formation of a refractory oxide layer below the boron silicate layer, which reduces further oxygen transport into the interior.

Die Zugabe von Karbiden führt zu einer Steigerung der mechanischen Festigkeit. Ein schwerwiegender Nachteil derartiger Legierungen ist deren niedrige Bruchzähigkeit. Es schränkt nicht nur die technische Anwendung ein, sondern erschwert und beschränkt die Formgebung von daraus gefertigten Bauteilen. So lassen sich Legierungen mit einem in Hinblick auf deren Oxidationsbeständigkeit optimalen Silizium- und Bor-Gehalt (ca. 4 Gew.% Si, ca. 1,5 Gew.% B) umformtechnisch nicht mehr herstellten.The addition of carbides leads to an increase in mechanical strength. A serious disadvantage of such alloys is their low fracture toughness. It not only restricts the technical application, but complicates and restricts the shape of components made from it. Thus, alloys with an optimum in terms of their oxidation resistance silicon and boron content (about 4 wt.% Si, about 1.5 wt.% B) forming technology no longer produced.

Aufgabe der vorliegenden Erfindung ist danach die Bereitstellung einer oxidationsbeständigen Mo-Si-B-Legierung mit hoher Festigkeit, welche gegenüber bekannten Legierungen eine verbesserte Bruchzähigkeit und ein verbessertes Umformvermögen bei Temperaturen von ca. 1000°C besitzt.The object of the present invention is then to provide an oxidation-resistant Mo-Si-B alloy with high strength, which compared to known alloys has improved fracture toughness and improved formability at temperatures of about 1000 ° C.

Gelöst wird diese Aufgabe durch eine Mo-Si-B-Legierung, die 0,1 - 5 Vol.% eines oder mehrerer Oxide oder Mischoxide mit einem Dampfdruck bei 1500 °C von < 5x10-2 bar enthält wie gemäß Anspruch 1.This object is achieved by a Mo-Si-B alloy containing 0.1-5 vol.% Of one or more oxides or mixed oxides having a vapor pressure at 1500 ° C of <5x10 -2 bar as in claim 1.

Der erfindungsgemäße Werkstoff besteht aus den intermetallischen Phasen Molybdänsilizid und Molybdänborsilizid, wahlweise auch Molybdänborid und Molybdän bzw. Molybdänmischkristall. Als bevorzugte Molybdänsilizid bzw. Molybdänborsilizid Phasen sind dabei Mo3Si und Mo5SiB2 zu nennen. In dieser Legierungsmatrix sind Oxide oder Mischoxide, die einen Dampfdruck bei 1500°C von < 5x10-2 bar aufweisen, feinst verteilt. Die bevorzugte, mittlere Teilchengröße liegt dabei bei < 5 µm.The material according to the invention consists of the intermetallic phases molybdenum silicide and molybdenum boron silicide, optionally also molybdenum boride and molybdenum or molybdenum mixed crystal. Mo 3 Si and Mo 5 SiB 2 are to be mentioned as preferred molybdenum silicide or Molybdänborsilizid phases. In this alloy matrix are oxides or mixed oxides, which have a vapor pressure at 1500 ° C of <5x10 -2 bar, finely dispersed. The preferred mean particle size is <5 μm.

Es hat sich gezeigt, dass Oxidzusätze bei Mo-Si-B-Legierungen nicht nur, wie bei ODS-Legierungen üblich, die Festigkeit erhöhen, sondern überraschenderweise auch in hohem Maße die Duktilitätseigenschaften. So weisen Legierungen mit dem erfindungsgemäßen Aufbau eine bei 1200°C um zumindest den Faktor 3 höhere Bruchdehnung auf, als Mo-Si-B-Legierungen nach dem Stand der Technik mit gleichem Silizium- und Bor-Gehalt, jedoch ohne den erfindungsgemäßen Oxidzusätzen. Ein Dampfdruck bei 1500°C von < 5x10-2 ist erforderlich, um eine ausreichende Verarbeitbarkeit zu gewährleisten. Als bevorzugte Oxide sind dabei zu nennen: Y2O3, ZrO2, HfO2, TiO2, Al2O3, CaO, MgO und SrO. Ein erfindungsgemäßer Effekt kann auch dann erzielt werden, wenn Mischoxide zum Einsatz kommen.It has been shown that additions of oxides in the case of Mo-Si-B alloys not only increase the strength, as usual with ODS alloys, but also, to a large extent, the ductility properties to a great extent. Thus, alloys with the structure according to the invention have an elongation at break which is at least a factor of 3 at 1200 ° C., compared to state-of-the-art Mo-Si-B alloys having the same silicon and boron content, but without the oxide additives according to the invention. A vapor pressure at 1500 ° C of <5x10 -2 is required to provide sufficient processability guarantee. Preferred oxides are: Y 2 O 3 , ZrO 2 , HfO 2 , TiO 2 , Al 2 O 3 , CaO, MgO and SrO. An inventive effect can also be achieved when mixed oxides are used.

Weiters kann die erfindungsgemäße Legierung Elemente enthalten, die mit Molybdän einen Mischkristall bilden. Zu nennen sind dabei Re, Ti, Zr, Hf, V, Nb, Ta, Cr und Al. Besonders vorteilhaft hat sich dabei ein Nb-Zusatz erwiesen. Durch die Zugabe von 5 Atom% Nb zu einer Mo-Si-B-Legierung mit 8,8 Atom% Si und 7,6 Atom% B und 0,5 Vol.% Yttriumoxid kann die Zugfestigkeit bei einer Prüftemperatur von 1000°C um 5 % gesteigert werden, bei gleichzeitiger Erhöhung der Bruchdehnung um 80 %.Furthermore, the alloy according to the invention may contain elements which form a mixed crystal with molybdenum. These include Re, Ti, Zr, Hf, V, Nb, Ta, Cr and Al. A Nb addition has proved to be particularly advantageous. By adding 5 at% of Nb to a Mo-Si-B alloy containing 8.8 at% Si and 7.6 at% B and 0.5 vol.% Of yttria, the tensile strength can be measured at a test temperature of 1000 ° C 5%, while increasing the elongation at break by 80%.

Die Silizium- und Bor-Gehalte sind vorteilhafterweise so zu wählen, dass sich die Zusammensetzung im Dreistoffsystem Molybdän-Silizium-Bor im Bereich Mo-Mo3Si-T2 (Mo5SiB2) - Mo2B befindet. Dies ist dann der Fall, wenn der Si-Gehalt bei 0,1 - 8,9 Gew.% und der B-Gehalt bei 0,1 - 5,3 Gew.% liegt. Ein besonders vorteilhafter Konzentrationsbereich sowohl im Hinblick auf Festigkeit, Kriechbeständigkeit, Bruchzähigkeit und Oxidationsverhalten liegt bei 2 - 6 Gew.% Si, 0,5 - 2 Gew.% B und 0,2 - 1 Vol.% Oxidanteil. Bei Anwendung geeigneter pulvermetallurgischer Verfahrenstechniken ist gewährleistet, dass die Oxidzusätze in ausreichender Feinheit und Homogenität in der Legierungsmatrix vorliegen. Dabei werden Pulvermischungen, die aus den entsprechenden Komponenten bestehen durch mechanisches Legieren behandelt, wobei sowohl elementare Pulver, als auch vorlegierte Pulver zum Einsatz kommen können. Als Aggregate sind dabei übliche Hochenergiemühlen wie beispielsweise Attritoren, Kugelfallmühlen oder Schwingmühlen geeignet. Um eine Oxidation der Legierungskomponenten zu vermeiden, ist es vorteilhaft, den Mahlprozess unter Wasserstoff durchzuführen. Als Kompaktierverfahren hat sich das heißisostatische Pressen bewährt. Dabei wird das gemahlene Pulver in eine Kanne aus einer Mo-Legierung gefüllt, vakuumdicht verschweißt und bei Temperaturen im Bereich von 1300°C - 1500°C verdichtet. Auch andere druckunterstützte Warmkompaktierverfahren, wie beispielsweise Pulverstrangpressen, können zum Einsatz kommen. Um eine Gefügefeinung und Homogenisierung zu erreichen, ist es vorteilhaft, den kompaktierten Körper einem Umformprozess zu unterziehen. Dies erweist sich besonders dann als günstig, wenn die Warmkompaktierung durch druckloses Sintern erfolgt. Dabei werden die nach dem Sintern grob vorliegenden intermetallischen Phasenanteile zerkleinert. Eine nennenswerte Vergröberung der intermetallischen Phasenanteile während der thermomechanischen Behandlung wird durch die Oxidzusätze verhindert. Zudem wird eine Rekristallisation, speziell auch der molybdänreichen Phasenanteile, vermieden.The silicon and boron contents are advantageously to be selected such that the composition in the three-component system molybdenum-silicon-boron in the range Mo-Mo 3 Si-T 2 (Mo 5 SiB 2 ) - Mo 2 B is. This is the case when the Si content is 0.1-8.9 wt.% And the B content is 0.1-5.3 wt.%. A particularly advantageous concentration range both in terms of strength, creep resistance, fracture toughness and oxidation behavior is 2-6 wt.% Si, 0.5-2 wt.% B and 0.2-1 vol.% Oxide content. Using suitable powder metallurgical process techniques ensures that the oxide additives are present in sufficient fineness and homogeneity in the alloy matrix. In this case, powder mixtures consisting of the corresponding components are treated by mechanical alloying, wherein both elemental powders, as well as pre-alloyed powders can be used. As aggregates are customary high energy mills such as attritors, ball drop mills or vibrating mills suitable. In order to avoid oxidation of the alloy components, it is advantageous to carry out the milling process under hydrogen. As compaction process, the hot isostatic pressing has been proven. The milled powder is filled into a jar made of a Mo alloy, welded vacuum-tight and compressed at temperatures in the range of 1300 ° C - 1500 ° C. Other pressure-assisted hot-compacting processes, such as powder extrusion presses, can also be used. In order to achieve texture refinement and homogenization, it is advantageous to have the compacted body undergo a forming process. This proves to be particularly favorable when the hot compaction is carried out by pressureless sintering. In this case, the coarsely present after sintering intermetallic phase fractions are crushed. A significant coarsening of the intermetallic phase components during the thermomechanical treatment is prevented by the oxide additives. In addition, a recrystallization, especially the molybdenum-rich phase components avoided.

Neben pulvermetallurgischen Verfahrenstechniken können grundsätzlich auch schmelzmetallurgische Herstellprozesse zum Einsatz kommen. Zu nennen sind dabei besonders Sprühkompaktierverfahren, wo Oxidzusätze während der Sprühphase beigemengt werden.In addition to powder metallurgical process techniques, in principle also melt metallurgical production processes can be used. Particularly noteworthy are spray compacting processes, where oxide additives are added during the spraying phase.

Im Folgenden wird die Erfindung durch Beispiele näher beschrieben.In the following the invention will be described by examples.

Beispiel 1example 1

0,5 Gew.% Yttriumoxidpulver mit einer mittleren Korngröße nach Fisher von 0,8 µm wurde mit 96,5 Gew.% Mo mit einer Korngröße von 4,12 µm, 3,1 Gew.% Si mit einer Korngröße von 4,41 µm und 1,14 Gew.% B mit einer Korngröße von 0,92 µm vermengt und mechanisch legiert. Das mechanische Legieren erfolgte in einem Attritor unter Wasserstoff. Das Attritorvolumen betrug 50 l und es kamen 100 kg Kugeln aus einer Fe-Cr-Ni-Legierung mit einem Durchmesser von 9 mm zum Einsatz. Die Attritierzeit betrug 10 Stunden. Nach dem mechanischen Legieren konnten mittels XRD nur Molybdän und Y2O3 detektiert werden. Das Pulver wurde in ein Kanne aus einer Mo-Basislegierung gefüllt. Die Kanne wurde evakuiert und vakuumdicht verschweißt. Kanne und Pulver wurden in einem Indirektofen auf eine Temperatur von 1500°C erhitzt und durch Strangpressen verdichtet. Das Strangpressverhältnis betrug dabei 1 : 6. Aus den so hergestellten Strangpresslingen wurden Zugproben mittels Erosion und Drehverfahren herausgearbeitet. Zu Vergleichszwecken wurde auch ein Werkstoff ohne Yttriumoxid hergestellt, wobei die oben erwähnten Verfahrensschritte zum Einsatz kamen. Die Charakterisierung der erfindungsgemäßen Proben und der Vergleichsproben erfolgte durch einen Warmzugversuch, wobei die Dehnrate 10-4Sek-1 betrug. Die Prüftemperatur wurde dabei sukzessive erhöht, bis eine Temperatur ermittelt werden konnte, bei der die Dehnung der geprüften Probe zumindest 10 % betrug. Bei der erfindungsgemäßen Probe konnte dabei eine Temperatur von 1000°C bestimmt werden. Beim Werkstoff ohne Oxidzusatz betrug diese 1300°C. Die korrespondierenden Festigkeitswerte bei 1300 °C betrugen dabei 300 MPa für die erfindungsgemäße Probe und 200 MPa für die Probe ohne Oxidzusatz.0.5% by weight of yttrium oxide powder having a mean grain size of Fisher of 0.8 microns was 96.5 wt.% Mo with a grain size of 4.12 .mu.m, 3.1 wt.% Si with a grain size of 4.41 microns and 1.14 wt.% B with a particle size of 0.92 microns mixed and mechanically alloyed. The mechanical alloying took place in an attritor under hydrogen. The attritor volume was 50 l and 100 kg balls of Fe-Cr-Ni alloy with a diameter of 9 mm were used. The attrition time was 10 hours. After mechanical alloying, only molybdenum and Y 2 O 3 could be detected by XRD. The powder was filled in a pot of Mo base alloy. The pot was evacuated and vacuum-sealed. Jug and powder were heated in an indirect oven to a temperature of 1500 ° C and compacted by extrusion. In this case, the extrusion ratio was 1: 6. Tensile samples were worked out by means of erosion and turning processes from the extrudates produced in this way. For comparison purposes, a material without yttrium oxide was prepared using the above-mentioned process steps. The characterization of the samples according to the invention and of the comparative samples was carried out by a hot tensile test, the strain rate being 10 -4 sec -1 . The test temperature was successively increased until a temperature could be determined at which the elongation of the tested sample was at least 10%. In the case of the sample according to the invention, it was possible to determine a temperature of 1000 ° C. For the material without added oxide, this was 1300 ° C. The corresponding strength values at 1300 ° C. were 300 MPa for the sample according to the invention and 200 MPa for the sample without added oxide.

Beispiel 2Example 2

0,7 Gew.% La(OH)3-Pulver mit einer mittleren Korngröße von 0,2 µm wurde mit 93,9 Gew.% Mo mit einer Pulverkorngröße von 4,25 µm, 3,9 Gew.% Si mit einer Pulverkorngröße von 4,30 µm und 1,4 Gew.% B mit einer Pulverkorngröße von 1,15 µm vermengt und mechanisch legiert. Das mechanische Legieren erfolgte wiederum in einem Attritor unter Wasserstoff während 10 Stunden. Das Pulver wurde kaltisostatisch bei 2000 bar verpresst und anschließend durch eine Sinterbehandlung bei 1350°C / 5 Stunden unter Wasserstoff verdichtet. Die Bestimmung der Dichte zeigte, dass 91 % der theoretischen Dichte (8,7 g/cm3) erreicht werden konnte. Da der Anteil an offener Porosität vernachlässigbar gering war, konnte eine weitere Verdichtung durch heißisostatisches Pressen ohne die Verwendung einer Kanne erfolgen. Die Temperatur betrug dabei 1500°C, der Druck 1980 bar und die HIP-Zeit 4 Stunden. Die Dichte nach dem heißisostatischen Pressen betrug 9,5 g/cm3, was 99 % der theoretischen Dichte entspricht. Aus dieser Legierung gefertigte Proben wurden eine Oxidationsbehandlung bei 1200°C unterzogen. Die Gewichtsmessung erfolgte nach 1, 3, 10 und 30 Stunden. Diese Werte und Werte eines Werkstoffes ohne Oxidzusatz, ansonsten jedoch gleicher Zusammensetzung und Herstellung, sind in nachstehender Tabelle wiedergegeben. Werkstoff Gewichtsverlust bei einer Prüftemperatur = 1200 °C [mg/cm-2] Prüfzeit = 1 h Prüfzeit = 3h Prüfzeit = 10h Prüfzeit = 30 h Erfindungsgemäßer Werkstoff gemäß Beispiel 2 25 42 45 46 Werkstoff ohne Oxidzusatz gemäß Beispiel 2 27 50 58 60 0.7% by weight of La (OH) 3 powder having an average particle size of 0.2 μm was coated with 93.9% by weight of Mo with a powder particle size of 4.25 μm, 3.9% by weight of Si with a powder particle size of 4.30 .mu.m and 1.4 wt.% B mixed with a powder grain size of 1.15 .mu.m and mechanically alloyed. The mechanical alloying again took place in an attritor under hydrogen for 10 hours. The powder was cold isostatically pressed at 2000 bar and then compacted by sintering at 1350 ° C / 5 hours under hydrogen. The determination of the density showed that 91% of the theoretical density (8.7 g / cm 3 ) could be achieved. Since the proportion of open porosity was negligible, further densification could be achieved by hot isostatic pressing without the use of a jug. The temperature was 1500 ° C, the pressure of 1980 bar and the HIP time 4 hours. The density after hot isostatic pressing was 9.5 g / cm 3 , which corresponds to 99% of the theoretical density. Samples made from this alloy were subjected to oxidation treatment at 1200 ° C. The weight measurement took place after 1, 3, 10 and 30 hours. These values and values of a material without added oxide, but otherwise the same composition and production, are shown in the table below. material Weight loss at a test temperature = 1200 ° C [mg / cm -2 ] Test time = 1 h Test time = 3h Test time = 10h Test time = 30 h Inventive material according to Example 2 25 42 45 46 Material without oxide additive according to Example 2 27 50 58 60

Claims (11)

  1. Mo-Si-B alloy with 0.1 - 8.9 wt.% of Si and 0.1 - 5.3 wt.% of B, comprising the intermetallic phases of molybdenum silicide and molybdenum borosilicide, optionally additionally molybdenum boride, wherein the total content of intermetallic phase constituents is 25 to 90 vol.% and the remainder comprises molybdenum or a molybdenum mixed crystal,
    characterized in that
    the alloy contains 0.1 - 5 vol.% of at least one oxide or mixed oxide from the group of oxides of the metals Y, lanthanides, Zr, Hf, Ti, Al, Ca, Mg and Sr with a vapour pressure at 1,500 °C of < 5 x 10-2 bar.
  2. Mo-Si-B alloy according to claim 1, characterized in that the oxides or mixed oxides have an average particle size of < 5 µm.
  3. Mo-Si-B alloy according to one of the preceding claims, characterized in that the oxides or mixed oxides have a vapour pressure of < 5 x 10-4 bar.
  4. Mo-Si-B alloy according to one of the preceding claims, characterized in that the total content of molybdenum silicide and molybdenum borosilicide is 40 - 80 vol.%.
  5. Mo-Si-B alloy according to one of the preceding claims, characterized in that the Mo mixed crystal contains one or more metals from the group of Re, Ti, Zr, Hf, V, Nb, Ta, Cr and Al.
  6. Mo-Si-B alloy according to one of the preceding claims, characterized in that this comprises 2 - 6 wt.% of Si, 0.5 - 2 wt.% of B, 0.2 - 1 vol.% of Y2O3 and Mo as the remainder.
  7. Mo-Si-B alloy according to one of the preceding claims, characterized in that this comprises 0.1 - 8.9 wt.% of Si, 0.1 - 5.3 wt.% of B, 1 - 25 wt.% of Nb, 0.1 - 5 vol.% of one or more oxides or mixed oxides of the metals of the group Y, lanthanides, Zr, Hf, Ti, Al, Ca, Mg and Sr and molybdenum as the remainder.
  8. Mo-Si-B alloy according to one of the preceding claims, characterized in that this comprises 2 - 6 wt.% of Si, 0.5 - 2 wt.% of B, 0.2 - 1 vol.% of Y2O3, 5 - 10 wt.% of Nb and molybdenum as the remainder.
  9. Process for the preparation of an Mo-Si-B alloy according to one of the preceding claims, characterized in that powder metallurgy process techniques are employed.
  10. Process for the preparation of an Mo-Si-B alloy according to claim 9, characterized in that the oxides or mixed oxides are ground by mechanical alloying into the alloy powder, which can be in elemental or prealloyed form.
  11. Process for the preparation of an Mo-Si-B alloy according to claim 9 and 10, characterized in that the mechanically alloyed powder is compacted by thermal compacting.
EP04761036A 2003-09-19 2004-09-15 Ods-alloy of molybdenum, silicon and boron Not-in-force EP1664362B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0064003U AT6955U1 (en) 2003-09-19 2003-09-19 ODS MOLYBDENUM-SILICON ALLOY BOR
PCT/AT2004/000314 WO2005028692A1 (en) 2003-09-19 2004-09-15 Ods-alloy of molybdenum, silicon and boron

Publications (2)

Publication Number Publication Date
EP1664362A1 EP1664362A1 (en) 2006-06-07
EP1664362B1 true EP1664362B1 (en) 2012-02-01

Family

ID=32234844

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04761036A Not-in-force EP1664362B1 (en) 2003-09-19 2004-09-15 Ods-alloy of molybdenum, silicon and boron

Country Status (5)

Country Link
US (1) US7806995B2 (en)
EP (1) EP1664362B1 (en)
CN (1) CN1852999B (en)
AT (2) AT6955U1 (en)
WO (1) WO2005028692A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015209583A1 (en) * 2015-05-26 2016-12-01 Siemens Aktiengesellschaft Molybdenum-silicon-boron alloy and process for the production and component
DE102017217082A1 (en) * 2017-09-26 2019-03-28 Siemens Aktiengesellschaft Powder of a molybdenum, silicon and boron-containing alloy, use of this powder and additive manufacturing process for a workpiece from this powder

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090011266A1 (en) * 2007-07-02 2009-01-08 Georgia Tech Research Corporation Intermetallic Composite Formation and Fabrication from Nitride-Metal Reactions
CN101397617B (en) * 2008-10-28 2010-11-24 西安交通大学 Method for preparing alloy nano rare-earth oxide doping molybdenum-silicium-boron alloy
CN102424928B (en) * 2011-12-03 2013-07-31 西北有色金属研究院 Mo-Si-B-W multi-phase composite material and preparation method thereof
JP5905907B2 (en) 2011-12-28 2016-04-20 株式会社アライドマテリアル Method for producing Mo-Si-B alloy powder, metal material raw material powder and Mo-Si-B alloy powder
CA2872500A1 (en) * 2012-05-21 2013-11-28 Dow Corning Corporation Silicothermic reduction of metal oxides to form eutectic composites
JP5394582B1 (en) 2012-06-07 2014-01-22 株式会社アライドマテリアル Molybdenum heat-resistant alloy
US9527777B2 (en) 2013-03-11 2016-12-27 Rolls-Royce Corporation Compliant layer for ceramic components and methods of forming the same
US9358613B2 (en) * 2013-04-08 2016-06-07 Baker Hughes Incorporated Hydrophobic porous hard coating with lubricant, method for making and use of same
US9992917B2 (en) 2014-03-10 2018-06-05 Vulcan GMS 3-D printing method for producing tungsten-based shielding parts
US9994937B1 (en) 2014-05-20 2018-06-12 Imaging Systems Technology, Inc. Mo-Si-B manufacture
DE102015214730A1 (en) * 2014-08-28 2016-03-03 MTU Aero Engines AG Creep and oxidation resistant molybdenum superalloy
CN105220051B (en) * 2015-10-28 2017-04-12 西北有色金属研究院 Mo-Si-B intermetallic compound rod and preparation method thereof
CN105506331B (en) * 2016-01-19 2017-10-03 西安航天新宇机电设备厂 A kind of Mo Si B Ti Zr Al Nb composites and preparation method thereof
CN105821272B (en) * 2016-05-18 2017-07-28 金堆城钼业股份有限公司 A kind of wear-resistant molybdenum alloy material cut and preparation method thereof
CN108034875B (en) * 2017-11-21 2020-03-31 西安理工大学 Rare earth oxide doped Mo-Si-B alloy and preparation method thereof
CN108015445A (en) * 2017-12-06 2018-05-11 中广核研究院有限公司 Microalloying connection method and microalloying connection structure
CN108193115B (en) * 2017-12-14 2019-09-24 昆山胜典机电科技进出口有限公司 A kind of preparation method of molybdenum alloy, molybdenum alloy and its application
CN108060338B (en) * 2017-12-21 2019-11-08 陕西理工大学 A kind of cerium zinc strengthens molybdenum silicon boron alloy and preparation method thereof altogether
DE102018113340B4 (en) * 2018-06-05 2020-10-01 Otto-Von-Guericke-Universität Magdeburg Density-optimized molybdenum alloy
AT16308U3 (en) * 2018-11-19 2019-12-15 Plansee Se Additively manufactured refractory metal component, additive manufacturing process and powder
CN109518053B (en) * 2018-11-30 2019-09-24 江苏东浦钨钼制品有限责任公司 A kind of high-purity molybdenum-rhenium lanthanum ternary alloy three-partalloy guide rod and its production technology
CN111041319B (en) * 2019-12-31 2020-12-08 中国人民解放军空军工程大学 Tough high-temperature-resistant molybdenum oxide alloy and preparation method thereof
CN112176235A (en) * 2020-09-14 2021-01-05 自贡硬质合金有限责任公司 Molybdenum alloy and preparation method thereof
US11761064B2 (en) * 2020-12-18 2023-09-19 Rtx Corporation Refractory metal alloy
CN112941407B (en) * 2021-01-27 2022-07-01 中国核动力研究设计院 Nano-oxide reinforced ferrite steel for reactor, pipe and preparation method thereof
CN114540814A (en) * 2022-03-08 2022-05-27 南京理工大学 High-temperature wear-resistant anti-oxidation coating
CN114406284A (en) * 2022-03-09 2022-04-29 南京理工大学 Low-density high-strength high-temperature oxidation resistant Mo-Si-B-Ti alloy

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195247A (en) * 1978-07-24 1980-03-25 General Electric Company X-ray target with substrate of molybdenum alloy
JPS6075545A (en) * 1983-09-29 1985-04-27 Toshiba Corp Dies and their manufacture
JPS60197839A (en) * 1984-03-22 1985-10-07 Toshiba Corp Jig for sintering ceramics and its production
US4755712A (en) * 1986-12-09 1988-07-05 North American Philips Corp. Molybdenum base alloy and lead-in wire made therefrom
AT395493B (en) * 1991-05-06 1993-01-25 Plansee Metallwerk POWER SUPPLY
US5693156A (en) * 1993-12-21 1997-12-02 United Technologies Corporation Oxidation resistant molybdenum alloy
NO180361C (en) * 1995-01-20 1997-04-09 Modulvegger Marketing As Device by a jack, such as a shelf jack, and a profile associated with a light wall
US5865909A (en) * 1995-07-28 1999-02-02 Iowa State University Research Foundation, Inc. Boron modified molybdenum silicide and products
US5868876A (en) * 1996-05-17 1999-02-09 The United States Of America As Represented By The United States Department Of Energy High-strength, creep-resistant molybdenum alloy and process for producing the same
AT2017U1 (en) * 1997-05-09 1998-03-25 Plansee Ag USE OF A MOLYBDENUM / TUNGSTEN ALLOY IN COMPONENTS FOR GLASS MELTING
CN1083900C (en) * 1999-04-06 2002-05-01 株洲硬质合金厂 Preparation of doped molybdenum-base alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015209583A1 (en) * 2015-05-26 2016-12-01 Siemens Aktiengesellschaft Molybdenum-silicon-boron alloy and process for the production and component
US10865467B2 (en) 2015-05-26 2020-12-15 Siemens Aktiengesellschaft Molybdenum-silicon-boron alloy and method for producing same, and component
DE102017217082A1 (en) * 2017-09-26 2019-03-28 Siemens Aktiengesellschaft Powder of a molybdenum, silicon and boron-containing alloy, use of this powder and additive manufacturing process for a workpiece from this powder
WO2019063498A1 (en) 2017-09-26 2019-04-04 Siemens Aktiengesellschaft Powder made of an alloy containing molybdenum, silicon and boron, use of said powder and additive production method for a workpiece made of said powder

Also Published As

Publication number Publication date
CN1852999B (en) 2012-05-30
WO2005028692A1 (en) 2005-03-31
US20060169369A1 (en) 2006-08-03
ATE543921T1 (en) 2012-02-15
CN1852999A (en) 2006-10-25
US7806995B2 (en) 2010-10-05
EP1664362A1 (en) 2006-06-07
AT6955U1 (en) 2004-06-25

Similar Documents

Publication Publication Date Title
EP1664362B1 (en) Ods-alloy of molybdenum, silicon and boron
EP1718777B1 (en) Method for the production of a molybdenum alloy
DE69734515T2 (en) SINTERED HARD ALLOY
EP0628525B1 (en) Composites based on boron carbide, titanium boride and elemental carbon and method of their production
EP0433856B1 (en) Mixed hard metal materials based on borides, nitrides and iron group matrix metals
DE3238555C2 (en)
DE2751998A1 (en) PROCESS FOR MANUFACTURING POLYCRYSTALLINE DENSE MOLDED BODIES FROM BORON CARBIDE BY PRESSURELESS SINTERING
DE102006013746A1 (en) Sintered wear-resistant material used in the production of wear components comprises finely ground transition metal diboride or mixed crystal, oxygen-containing grain boundary phase and particulate boron and/or silicon carbide
DE19756608A1 (en) Liquid phase sintered ferrous metal article production
WO2008071184A2 (en) Composite material made of metal and ceramic, and method for production thereof
EP3041631B1 (en) Chromium metal powder
EP0396185A1 (en) Process for preparing semi-finished creep resistant products from high melting metal
EP3015199A2 (en) Method for producing a target alloy that is resistant to high temperatures, a device, an alloy and a corresponding component
DE102018101391A1 (en) Process for the preparation of a dispersion strengthened copper material and dispersion strengthened copper material
WO2004043875A2 (en) Ceramic-metal or metal-ceramic composite
DE112021005360T5 (en) PULVERIZING/STIRRING/MIXING/KNEADING MACHINE COMPONENT
DE2826544C2 (en) Super-hard mixed material based on cubic boron nitride
EP0207268A1 (en) Aluminium alloy suitable for the rapid cooling of a melt supersaturated with alloying elements
DE10117657B4 (en) Complex boride cermet body and use of this body
WO2009112192A2 (en) Composite material based on transition metal borides, method for the production thereof, and use thereof
WO1995033079A1 (en) Method of producing intermetallic master alloys
DE3603331A1 (en) SILICON CARBIDE SINTER PRODUCT AND METHOD FOR THE PRODUCTION THEREOF
EP1548137B1 (en) Use of a hard metal for tools
EP1047649A1 (en) Method for producing composite materials and examples of such composite materials
DE19752805A1 (en) Dispersion strengthened copper is produced in a falling ball mill

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060225

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PLANSEE SE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100503

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 543921

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004013275

Country of ref document: DE

Effective date: 20120329

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120601

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120920

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120921

Year of fee payment: 9

26N No opposition filed

Effective date: 20121105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121010

Year of fee payment: 9

Ref country code: NL

Payment date: 20120920

Year of fee payment: 9

Ref country code: BE

Payment date: 20120920

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004013275

Country of ref document: DE

Effective date: 20121105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120512

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120501

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 543921

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120915

BERE Be: lapsed

Owner name: PLANSEE SE

Effective date: 20130930

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120915

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004013275

Country of ref document: DE

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040915

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401