EP1651799B1 - Electrochemical cell - Google Patents

Electrochemical cell Download PDF

Info

Publication number
EP1651799B1
EP1651799B1 EP04740955.2A EP04740955A EP1651799B1 EP 1651799 B1 EP1651799 B1 EP 1651799B1 EP 04740955 A EP04740955 A EP 04740955A EP 1651799 B1 EP1651799 B1 EP 1651799B1
Authority
EP
European Patent Office
Prior art keywords
gas
gap
electrolyte
cell
diffusion electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04740955.2A
Other languages
German (de)
French (fr)
Other versions
EP1651799A1 (en
Inventor
Andreas Bulan
Michael Grossholz
Volker Michele
Hans-Joachim Brockhaus
Hans-Dieter Pinter
Fritz Gestermann
Rainer Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Intellectual Property GmbH
Original Assignee
Bayer Intellectual Property GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Intellectual Property GmbH filed Critical Bayer Intellectual Property GmbH
Publication of EP1651799A1 publication Critical patent/EP1651799A1/en
Application granted granted Critical
Publication of EP1651799B1 publication Critical patent/EP1651799B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the invention relates to an electrochemical cell, at least consisting of an anode half-cell with an anode, a cathode half-cell with a cathode and an ion exchange membrane arranged between anode half-cell and cathode half-cell, wherein the anode and / or the cathode is a gas diffusion electrode.
  • the invention further relates to a process for the electrolysis of an aqueous solution of alkali chloride.
  • WO-A 01/57290 An electrolytic cell with a gas diffusion electrode is known in which a porous layer is provided in the gap between the gas diffusion electrode and the ion exchange membrane. The electrolyte flows from top to bottom over the porous layer under the action of gravity through the gap.
  • the porous layer according to WO-A 01/57290 can be made of foams, wire nets or the like. consist.
  • an electrolytic cell with gas diffusion electrode for the electrolysis of a sodium chloride solution in which a layer of a hydrophilic material is in the gap between the gas diffusion electrode and the ion exchange membrane.
  • the layer of hydrophilic material preferably has a porous structure containing a corrosion-resistant metal or resin.
  • a porous structure for example, nets, fabrics or foams can be used.
  • Sodium hydroxide, the electrolyte flows down the layer of hydrophilic material down to the bottom of the electrolytic cell under gravity.
  • EP-A 1 033 419 an electrolytic cell with gas diffusion electrode as a cathode for the electrolysis of a sodium chloride solution known.
  • a hydrophilic porous material through which the electrolyte flows.
  • porous material metals metal oxides or organic materials are considered, provided they are corrosion resistant.
  • a disadvantage of the electrolytic cells with gas diffusion electrode known from the prior art is that the gap between gas diffusion electrode and ion exchange membrane can not be completely filled with electrolyte due to the porous material. This creates areas in the gap where gas is located and accumulates. No electrical current can flow in these areas. Current flows exclusively through electrolyte-filled areas in the gap, so that locally generates a higher current density, which has a higher electrolysis voltage result. Gathers the gas on the ion exchange membrane, this may be damaged due to the lack of electrolyte. Porous layers also have the disadvantage that gas which has once entered the porous structure, from this difficult to get out again. Within the porous layer, the gas can accumulate, whereby the above-mentioned disadvantages arise. Gas from the gas space can also pass through the gas diffusion electrode from the gas space into the gap under operating conditions.
  • the object of the present invention is therefore to provide an electrolytic cell which avoids the disadvantages of the prior art.
  • the invention relates to an electrochemical cell, at least consisting of an anode half-cell with an anode, a cathode half-cell with a cathode and an ion exchange membrane arranged between anode half-cell and cathode half-cell, wherein the anode and / or the cathode is a gas diffusion electrode and between the gas diffusion electrode and the ion exchange membrane Gap is arranged and the half-cell with gas diffusion electrode has an electrolyte inlet and an electrolyte outlet and a gas inlet and a gas outlet, characterized in that the electrolyte inlet is sealed to the gap according to claim 1.
  • the electrolyte flows in the gap between gas diffusion electrode and ion exchange membrane from top to bottom through the half cell.
  • the gap is completely filled with electrolyte.
  • the remaining space of the half cell, the gas space is filled with gas, which is supplied by the gas inlet and discharged through the gas outlet.
  • the electrolyte feed is tightly connected to the gap. This prevents gas from entering the gap via the electrolyte feed into the gap. Due to the tight connection between the electrolyte inlet and the gap, the electrolyte can be conveyed through the gap by means of a pump, so that the electrolyte flow does not flow in free fall in the gap along the gas diffusion electrode. With the help of the pump, the volume flow of the electrolyte flowing through the gap can be adjusted. The volume flow is preferably adjusted so that the flow velocity of the electrolyte is lower than in free fall.
  • flow guide structures are provided in the gap.
  • the flow guiding structures also prevent a free fall of the electrolyte in the gap, so that the flow velocity is reduced compared to the free fall. At the same time, however, the electrolyte must not accumulate in the gap due to the Strƶmungsleit Modellen.
  • the flow guide structures are chosen so that the pressure loss the hydrostatic fluid column in the gap is compensated. If flow guide structures are provided, they can completely take over the function of the pump, namely the reduction of the flow velocity in the gap, so that no pump is necessary. However, it is also possible to use a pump in combination with flow guide structures.
  • the Strƶmungsleit Jardin consist of thin plates, films or the like., Which have openings for the passage of the electrolyte. They are transversal, i. perpendicular or oblique, arranged to the flow direction of the electrolyte in the gap.
  • the plate-shaped Strƶmungsleit Modellen are preferably inclined relative to the horizontal, wherein they are inclined either only in one axis or in both axes. If the flow guide structures are arranged obliquely to the flow direction, they can be inclined both in the direction of the ion exchange membrane and in the direction of the gas diffusion electrode.
  • the inclination in the direction of the gas diffusion electrode or the ion exchange membrane corresponds to an inclination about an axis which is parallel to the gas diffusion electrode or ion exchange membrane and horizontal.
  • the flow guiding structures may be inclined across the width of the electrochemical cell. This corresponds to an inclination about an axis which is perpendicular to the gas diffusion electrode or ion exchange membrane. This inclination can be 0 to 45 Ā°, preferably 3 to 15 Ā°.
  • the gas diffusion electrode Since, during operation of the electrochemical cell, even small amounts of gas are always released from the space behind the gas diffusion electrode, i. the ion exchange membrane from the facing space of the half-cell, passes through the gas diffusion electrode in the flowed through with electrolyte gap, it must be ensured that the gas is discharged from the gap. As the content of gas in the electrolyte increases, the resistance of the electrolyte increases. If flow guide structures are present in the gap, the gas can either escape upwards through openings in the flow guide structures or it can be carried along by the flow of electrolyte downwards. The inclination of the flow guide structures promotes in particular the discharge of the gas bubbles upwards.
  • the flow guide structures are further arranged to contact the gas diffusion electrode on the one hand and the ion exchange membrane on the other hand.
  • the electrolyte passes only through the openings of the conductive structures.
  • the flow guide structures may be fixedly or detachably connected to the gas diffusion electrode and the ion exchange membrane.
  • the flow guide structures are preferably clamped between the gas diffusion electrode and the ion exchange membrane.
  • the Strƶmungsleit Jardin are attached to a in the gap substantially vertically, that is substantially parallel to the gas diffusion electrode and the ion exchange membrane, arranged holding structure.
  • the holding structure extends, for example, in the middle of the gap, so that the flow guide structures protrude on the one hand in the direction of the ion exchange membrane, on the other hand in the direction of the gas diffusion electrode.
  • the support structure consists for example of a thin plastic rod whose diameter is smaller than the gap width between gas diffusion electrode and ion exchange membrane.
  • the number of support structures, for example in the form of plastic rods, over the length of the gas diffusion electrode, and thus the Strƶmungsleitpatenteden, is dependent on the material thickness of the Strƶmungsleit fabricaten, since the plastic rods, the stability, eg when assembling the electrolyzer, effect.
  • the flow guide structures can be flat. In order to facilitate trapping of the flow guide structures between the gas diffusion electrode and the ion exchange membrane, the flow guide structures can have, for example, a Z, L, T, double T or trapezoidal profile.
  • the flow guide structures can also be arbitrarily angled or curved. Preferably, they consist of an elastic plate which is wider than the width of the gap. When pinched between the gas diffusion electrode and the ion exchange membrane and under the influence of the flow of electrolyte in the gap, the elastic plates bend downwards. The flow guide structures are then curved downwards. However, it is also possible to use upwardly curved flow guide structures. Curved Strƶmungsleit Jardin are advantageous because they compensate for manufacturing tolerances of the electrochemical cell, which manifest themselves, for example, in the width of the gap.
  • the opening in the flow guide structures may have any shape, e.g. round or angular.
  • the openings in superimposed or mutually arranged Strƶmungsleit Weg can either be superimposed or with each other, i. the openings coincide.
  • the electrolyte flow in this case runs essentially perpendicularly through the gap. However, they can also be offset from each other, so that the electrolyte flow is not rectilinear, but for example, zigzag or meandering flows through the gap. This reduces the formation of dead zones.
  • the flow guide structures can be made of a non-prone material, in particular of a non-prone metal or plastic.
  • a non-prone metal or plastic For example, nickel or PTFE can be used as the material.
  • the number of Strƶmungsleit Jardin and the number and the cross-sectional area of the openings are chosen so that the flow velocity of the electrolyte is lower than in free fall.
  • a height of the electrolyzer of e.g. 1.3 m and an amount of electrolyte of e.g. 180 1 / h can e.g. 26 flow guide structures with 64 openings can be used.
  • the openings have e.g. a diameter of 1 mm.
  • 6 flow guide structures with 127 openings of 0.5 mm diameter could be used.
  • a corresponding pressure compensation can be achieved via the diameter and the number of openings as well as the number of flow guiding structures.
  • the electrolyte flowing downwards in the gap must not build up on the flow guide structures. Therefore, it must be ensured that the sum of the cross-sectional areas of all openings of a flow-guiding structure is the same for all flow-guiding structures. This can be done by varying the number of openings or the cross-sectional area.
  • the preferred volume flow of the electrolyte in the gap is 100 to 300 l / h.
  • the volume flow is preferably a maximum of 500 l / h.
  • the flow rate is preferably at most 1 cm / s.
  • the advantage of flow guide structures over the porous layers known from the prior art is the improved removal of gas bubbles entering the gap through the gas diffusion electrode. Furthermore, the electrolyte is pumped through the gap between gas diffusion electrode and ion exchange membrane, whereby this gap is completely filled with electrolyte. Porous structures, which the electrolyte according to the prior art undergoes in free fall, are usually not completely filled with electrolyte, which is manifested by a higher electrolysis voltage.
  • the electrochemical cell according to the invention can be used for different electrolysis processes, in which at least one electrode is a gas diffusion electrode.
  • the gas diffusion electrode acts as a cathode, particularly preferably as an oxygen-consuming cathode, wherein the gas supplied to the electrochemical cell is an oxygen-containing gas, for example air, oxygen-enriched air or oxygen itself.
  • the cell according to the invention is preferably used for the electrolysis of an aqueous solution of an alkali halide, in particular of sodium chloride.
  • the gas diffusion electrode is constructed, for example, as follows:
  • the gas diffusion electrode consists at least of an electrically conductive carrier and an electrochemically active coating.
  • the electrically conductive carrier is preferably a mesh, woven, braided, knitted, nonwoven or foam of metal, in particular of nickel, silver or silver-plated nickel.
  • the electrochemically active coating preferably consists of at least one catalyst, e.g. Silver (I) oxide, and a binder, e.g. Polytetrafluoroethylene (PTFE).
  • the electrochemically active coating may be composed of one or more layers.
  • a gas diffusion layer for example of a mixture of carbon and polytetrafluoroethylene, can be provided, which is applied to the support.
  • electrodes of titanium may be used, which are e.g. coated with ruthenium-iridium oxides or ruthenium oxide.
  • ion exchange membrane a commercially available membrane, e.g. DuPont, Nafion NX2010.
  • the electrolysis cell according to the invention which is suitable for the electrolysis of an aqueous sodium chloride solution, has a gap between gas diffusion electrode and ion exchange membrane with a width of the order of 3 mm.
  • the flow guide structures are preferably made of thin sheets of PTFE or PVDF and have a thickness of 0.1 to 0.5 mm
  • the electrolyte inlet is a channel, for example a tube, which extends over the entire length of the gas diffusion electrode.
  • the electrolyte can be fed uniformly over the entire length from above into the gap between the gas diffusion electrode and the ion exchange membrane.
  • the feed can also take place only in one region, for example in the upper region of one of the two ends of the gas diffusion electrode.
  • the aid of the flow guide structures which are inclined in an axis perpendicular to the gas diffusion electrode or to the ion exchange membrane, a uniform distribution of the electrolyte over the entire length of the gap can be effected.
  • Another object of the invention is a method for the electrolysis of an aqueous alkali halide solution in an electrochemical cell, at least consisting of an anode half-cell with an anode, a cathode half-cell with a cathode and an arranged between the anode half-cell and cathode half-cell ion exchange membrane, wherein, the anode and / or the cathode is a gas diffusion electrode and a gap is arranged between the gas diffusion electrode and the ion exchange membrane and the half cell with a gas diffusion electrode has an electrolyte inlet and an electrolyte outlet and a gas inlet and a gas outlet, characterized in that the electrolyte by means of a pump in the gap from above flows down, the gap is completely filled with electrolyte.
  • an electrochemical cell 1 according to the invention is shown, which is constructed from an anode half cell 2 with an anode 21 and a cathode half cell 3 with a gas diffusion electrode 31 as a cathode.
  • the two half-cells 2, 3 are separated from each other by an ion exchange membrane 4.
  • the gas diffusion electrode 31 is separated from the ion exchange membrane 4 by a gap 32.
  • Seals 39 seal the half-cell 3 to the outside.
  • the cathode half-cell 3 has an electrolyte inlet 33 and an electrolyte outlet 34 as well as a gas inlet 35 and a gas outlet 36.
  • the electrolyte inlet 33 is tightly connected to the gap 32.
  • the electrolyte is supplied via the electrolyte inlet 33 of the half-cell 3 and flows in the gap 32 down before it is discharged via the electrolyte effluent 34 from the half-cell 3.
  • the gap 32 is completely filled with electrolyte during operation of the electrolysis cell 1.
  • Gas is supplied via the gas inlet 35 to the gas space 37 of the half-cell 3, flows upwards in the gas space 37 and is discharged from the half-cell 3 via the gas outlet 36.
  • the tight connection of the electrolyte inlet 33 with the gap 32 makes it possible to promote the electrolyte by means of a pump through the gap 32 and so a desired volume flow or a desired flow rate of the electrolyte in gap 32.
  • the tight connection must prevent gas from flowing from the gas space 37 into the gap 32.
  • the electrolyte feed 33 is completely filled.
  • the compensation opening 38 is to be dimensioned such that a very small volume flow of the electrolyte flows through the opening 38 into the gas space 37.
  • the volume flow through the opening 38 in the back space is less than 5% of the total volume flow.
  • the compensation opening 38 allows gas to escape, which enters the gap 32 in small quantities from the gas space 37 through the gas diffusion electrode 31 during operation of the electrolytic cell 1 and rises in the form of gas bubbles. In this way, the gas can pass from the gap 32 via the compensation opening 38 in the electrolyte inlet 33 into the gas space 37.
  • the electrolysis cell 1 in FIG. 2 in addition to the tight connection of the electrolyte inlet 33 with the gap 32 Strƶmungsleit Quilt Quilt 51, 52, 53, 54 in the gap 32.
  • the flow guide structures 51, 52, 53, 54 reduce the flow rate of the electrolyte in the gap 32 with respect to the flow rate that the electrolyte would assume in free fall.
  • the flow guide structures 51, 52, 53, 54 consist of thin plates with openings 56, which allow a passage of the electrolyte. They are clamped in the illustrated embodiments between the ion exchange membrane 4 and the gas diffusion electrode 31.
  • the flow guide structures 51 are arranged in the gap 32 substantially horizontally, ie transversely to the flow direction of the electrolyte.
  • the flow guide structures 53 can be arranged obliquely, ie inclined at an angle to the flow direction, for example in the direction of the ion exchange membrane 4.
  • the flow guide structures 53 are V-shaped.
  • the flow guide structures 54 are curved downwards.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

Die Erfindung betrifft eine elektrochemische Zelle, wenigstens bestehend aus einer Anodenhalbzelle mit einer Anode, einer Kathodenhalbzelle mit einer Kathode und einer zwischen Anodenhalbzelle und Kathodenhalbzelle angeordneten Ionenaustauschermembran, wobei die Anode und/oder die Kathode eine Gasdiffusionselektrode ist. Die Erfindung betrifft ferner ein Verfahren zur Elektrolyse einer wƤssrigen Lƶsung von Alkalichlorid.The invention relates to an electrochemical cell, at least consisting of an anode half-cell with an anode, a cathode half-cell with a cathode and an ion exchange membrane arranged between anode half-cell and cathode half-cell, wherein the anode and / or the cathode is a gas diffusion electrode. The invention further relates to a process for the electrolysis of an aqueous solution of alkali chloride.

Aus WO-A 01/57290 ist eine Elektrolysezelle mit Gasdiffusionselektrode bekannt, bei der in dem Spalt zwischen der Gasdiffusionselektrode und der Ionenaustauschermembran eine porƶse Schicht vorgesehen ist. Der Elektrolyt strƶmt von oben nach unten Ć¼ber die porƶse Schicht unter Einwirkung der Schwerkraft durch den Spalt. Die porƶse Schicht gemƤƟ WO-A 01/57290 kann aus SchƤumen, Drahtnetzen o.dgl. bestehen.Out WO-A 01/57290 An electrolytic cell with a gas diffusion electrode is known in which a porous layer is provided in the gap between the gas diffusion electrode and the ion exchange membrane. The electrolyte flows from top to bottom over the porous layer under the action of gravity through the gap. The porous layer according to WO-A 01/57290 can be made of foams, wire nets or the like. consist.

In US 6 117 286 ist ebenfalls eine Elektrolysezelle mit Gasdiffusionselektrode zur Elektrolyse einer Natriumchlorid-Lƶsung beschrieben, in der sich eine Schicht aus einem hydrophilen Material im Spalt zwischen der Gasdiffusionselektrode und der Ionenaustauschermembran befindet. Die Schicht aus hydrophilem Material hat vorzugsweise eine porƶse Struktur, welche ein korrosionsbestƤndiges Metall oder Harz enthƤlt. Als porƶse Struktur kƶnnen z.B. Netze, Gewebe oder SchƤume verwendet werden. Natriumhydroxid, der Elektrolyt, strƶmt unter der Schwerkraft Ć¼ber die Schicht aus hydrophilem Material nach unten auf den Boden der Elektrolysezelle.In US 6 117 286 Also, an electrolytic cell with gas diffusion electrode for the electrolysis of a sodium chloride solution is described, in which a layer of a hydrophilic material is in the gap between the gas diffusion electrode and the ion exchange membrane. The layer of hydrophilic material preferably has a porous structure containing a corrosion-resistant metal or resin. As a porous structure, for example, nets, fabrics or foams can be used. Sodium hydroxide, the electrolyte, flows down the layer of hydrophilic material down to the bottom of the electrolytic cell under gravity.

Weiterhin ist aus EP-A 1 033 419 eine Elektrolysezelle mit Gasdiffusionselektrode als Kathode zur Elektrolyse einer Natriumchlorid-Lƶsung bekannt. In der Kathodenhalbzelle, in der der Elektrolyt, von dem Gasraum durch eine Gasdiffusionselektrode getrennt, nach unten strƶmt, ist ein hydrophiles, porƶses Material vorgesehen, durch das der Elektrolyt strƶmt. Als porƶses Material kommen Metalle, Metalloxide oder organische Materialien in Betracht, sofern sie korrosionsbestƤndig sind.Furthermore, it is off EP-A 1 033 419 an electrolytic cell with gas diffusion electrode as a cathode for the electrolysis of a sodium chloride solution known. In the cathode half-cell in which the electrolyte, separated from the gas space by a gas diffusion electrode, flows downward, there is provided a hydrophilic porous material through which the electrolyte flows. As porous material metals, metal oxides or organic materials are considered, provided they are corrosion resistant.

Nachteilig an den aus dem Stand der Technik bekannten Elektrolysezellen mit Gasdiffusionselektrode ist, dass der Spalt zwischen Gasdiffusionselektrode und Ionenaustauschermembran aufgrund des porƶsen Materials nicht vollstƤndig mit Elektrolyt gefĆ¼llt werden kann. Hierdurch entstehen Bereiche in dem Spalt, in denen sich Gas befindet und ansammelt. In diesen Bereichen kann kein elektrischer Strom flieƟen. Strom flieƟt ausschlieƟlich durch elektrolytgefĆ¼llte Bereiche in dem Spalt, sodass lokal eine hƶhere Stromdichte entsteht, die eine hƶherer Elektrolysespannung zur Folge hat. Sammelt sich das Gas an der Ionenaustauschermembran, so kann diese aufgrund des fehlenden Elektrolyten beschƤdigt werden. Porƶse Schichten haben weiterhin den Nachteil, dass Gas, welches einmal in die porƶse Struktur eingetreten ist, aus dieser nur schwierig wieder heraus gelangen kann. Innerhalb der porƶsen Schicht kann sich das Gas ansammeln, wodurch die oben genannten Nachteile entstehen. Gas aus dem Gasraum kann unter Betriebsbedingungen auch durch die Gasdiffusionselektrode aus dem Gasraum in den Spalt hindurchtreten.A disadvantage of the electrolytic cells with gas diffusion electrode known from the prior art is that the gap between gas diffusion electrode and ion exchange membrane can not be completely filled with electrolyte due to the porous material. This creates areas in the gap where gas is located and accumulates. No electrical current can flow in these areas. Current flows exclusively through electrolyte-filled areas in the gap, so that locally generates a higher current density, which has a higher electrolysis voltage result. Gathers the gas on the ion exchange membrane, this may be damaged due to the lack of electrolyte. Porous layers also have the disadvantage that gas which has once entered the porous structure, from this difficult to get out again. Within the porous layer, the gas can accumulate, whereby the above-mentioned disadvantages arise. Gas from the gas space can also pass through the gas diffusion electrode from the gas space into the gap under operating conditions.

Die Aufgabe der vorliegenden Erfindung besteht demnach darin, eine Elektrolysezelle bereitzustellen, welche die Nachteile des Standes der Technik vermeidet.The object of the present invention is therefore to provide an electrolytic cell which avoids the disadvantages of the prior art.

Gegenstand der Erfindung ist eine elektrochemische Zelle, wenigstens bestehend aus einer Anodenhalbzelle mit einer Anode, einer Kathodenhalbzelle mit einer Kathode und einer zwischen Anodenhalbzelle und Kathodenhalbzelle angeordneten Ionenaustauschermembran, wobei die Anode und/oder die Kathode eine Gasdiffusionselektrode ist und zwischen der Gasdiffusionselektrode und der Ionenaustauschermembran ein Spalt angeordnet ist und die Halbzelle mit Gasdiffusionselektrode einen Elektrolytzulauf und einen Elektrolytablauf sowie einen Gaseintritt und einen Gasaustritt aufweist, dadurch gekennzeichnet, dass der Elektrolytzulauf mit dem Spalt dicht verbunden ist nach Anspruch 1.The invention relates to an electrochemical cell, at least consisting of an anode half-cell with an anode, a cathode half-cell with a cathode and an ion exchange membrane arranged between anode half-cell and cathode half-cell, wherein the anode and / or the cathode is a gas diffusion electrode and between the gas diffusion electrode and the ion exchange membrane Gap is arranged and the half-cell with gas diffusion electrode has an electrolyte inlet and an electrolyte outlet and a gas inlet and a gas outlet, characterized in that the electrolyte inlet is sealed to the gap according to claim 1.

Im Betrieb der erfindungsgemƤƟen elektrochemischen Zelle strƶmt der Elektrolyt in dem Spalt zwischen Gasdiffusionselektrode und Ionenaustauschermembran von oben nach unten durch die Halbzelle. Der Spalt ist dabei vollstƤndig mit Elektrolyt gefĆ¼llt. Der Ć¼brige Raum der Halbzelle, der Gasraum, ist mit Gas gefĆ¼llt, welches durch den Gaseintritt zugefĆ¼hrt und durch den Gasaustritt abgefĆ¼hrt wird. ErfindungsgemƤƟ ist der Elektrolytzulauf mit dem Spalt dicht verbunden. Dadurch wird verhindert, dass Gas aus dem Gasraum Ć¼ber den Elektrolytzulauf in den Spalt eindringt. Aufgrund der dichten Verbindung zwischen Elektrolytzulauf und Spalt kann der Elektrolyt durch den Spalt mit Hilfe einer Pumpe gefƶrdert werden, sodass der Elektrolytstrom nicht im freien Fall in dem Spalt an der Gasdiffusionselektrode entlang strƶmt. Mit Hilfe der Pumpe kann der Volumenstrom des Elektrolyten, welcher durch den Spalt strƶmt, eingestellt werden. Der Volumenstrom wird bevorzugt so eingestellt, dass die Strƶmungsgeschwindigkeit des Elektrolyten niedriger ist als im freien Fall.During operation of the electrochemical cell according to the invention, the electrolyte flows in the gap between gas diffusion electrode and ion exchange membrane from top to bottom through the half cell. The gap is completely filled with electrolyte. The remaining space of the half cell, the gas space, is filled with gas, which is supplied by the gas inlet and discharged through the gas outlet. According to the invention, the electrolyte feed is tightly connected to the gap. This prevents gas from entering the gap via the electrolyte feed into the gap. Due to the tight connection between the electrolyte inlet and the gap, the electrolyte can be conveyed through the gap by means of a pump, so that the electrolyte flow does not flow in free fall in the gap along the gas diffusion electrode. With the help of the pump, the volume flow of the electrolyte flowing through the gap can be adjusted. The volume flow is preferably adjusted so that the flow velocity of the electrolyte is lower than in free fall.

In einer bevorzugten AusfĆ¼hrungsform sind Strƶmungsleitstrukturen in dem Spalt vorgesehen. Die Strƶmungsleitstrukturen verhindern ebenfalls einen freien Fall des Elektrolyten in dem Spalt, sodass die Strƶmungsgeschwindigkeit gegenĆ¼ber dem freien Fall verringert ist. Gleichzeitig darf sich jedoch der Elektrolyt in dem Spalt aufgrund der Strƶmungsleitstrukturen nicht aufstauen. Die Strƶmungsleitstrukturen sind so gewƤhlt, dass der Druckverlust der hydrostatischen FlĆ¼ssigkeitssƤule in dem Spalt kompensiert wird. Sind Strƶmungsleitstrukturen vorgesehen, kƶnnen diese die Funktion der Pumpe, nƤmlich die Verringerung der Strƶmungsgeschwindigkeit in dem Spalt, vollstƤndig Ć¼bernehmen, so dass keine Pumpe notwendig ist. Es kann aber auch eine Pumpe in Kombination mit Strƶmungsleitstrukturen eingesetzt werden.In a preferred embodiment, flow guide structures are provided in the gap. The flow guiding structures also prevent a free fall of the electrolyte in the gap, so that the flow velocity is reduced compared to the free fall. At the same time, however, the electrolyte must not accumulate in the gap due to the Strƶmungsleitstrukturen. The flow guide structures are chosen so that the pressure loss the hydrostatic fluid column in the gap is compensated. If flow guide structures are provided, they can completely take over the function of the pump, namely the reduction of the flow velocity in the gap, so that no pump is necessary. However, it is also possible to use a pump in combination with flow guide structures.

Die Strƶmungsleitstrukturen bestehen aus dĆ¼nnen Platten, Folien o.dgl., welche Ɩffnungen zum Durchstrƶmen des Elektrolyten aufweisen. Sie sind quer, d.h. senkrecht oder schrƤg, zur Strƶmungsrichtung des Elektrolyten in dem Spalt angeordnet. Die plattenfƶrmigen Strƶmungsleitstrukturen sind vorzugsweise gegenĆ¼ber der Horizontalen geneigt, wobei sie entweder nur in einer Achse oder in beiden Achsen geneigt sind. Sind die Strƶmungsleitstrukturen schrƤg zur Strƶmungsrichtung angeordnet, kƶnnen sie sowohl in Richtung der Ionenaustauschermembran als auch in Richtung der Gasdiffusionselektrode geneigt sein. Die Neigung in Richtung der Gasdiffusionselektrode bzw. der Ionenaustauschermembran entspricht einer Neigung um eine Achse, welche parallel zur Gasdiffusionselektrode bzw. Ionenaustauschermembran und horizontal verlƤuft. DarĆ¼ber hinaus kƶnnen die Strƶmungsleitstrukturen Ć¼ber die Breite der elektrochemischen Zelle geneigt sein. Dies entspricht einer Neigung um eine Achse, die senkrecht zur Gasdiffusionselektrode bzw. Ionenaustauschermembran verlƤuft. Diese Neigung kann 0 bis 45Ā° betragen, bevorzugt 3 bis 15Ā°.The Strƶmungsleitstrukturen consist of thin plates, films or the like., Which have openings for the passage of the electrolyte. They are transversal, i. perpendicular or oblique, arranged to the flow direction of the electrolyte in the gap. The plate-shaped Strƶmungsleitstrukturen are preferably inclined relative to the horizontal, wherein they are inclined either only in one axis or in both axes. If the flow guide structures are arranged obliquely to the flow direction, they can be inclined both in the direction of the ion exchange membrane and in the direction of the gas diffusion electrode. The inclination in the direction of the gas diffusion electrode or the ion exchange membrane corresponds to an inclination about an axis which is parallel to the gas diffusion electrode or ion exchange membrane and horizontal. In addition, the flow guiding structures may be inclined across the width of the electrochemical cell. This corresponds to an inclination about an axis which is perpendicular to the gas diffusion electrode or ion exchange membrane. This inclination can be 0 to 45 Ā°, preferably 3 to 15 Ā°.

Da im Betrieb der elektrochemischen Zelle immer auch geringe Mengen Gas aus dem Raum hinter der Gasdiffusionselektrode, d.h. dem der Ionenaustauschermembran ab gewandten Raum der Halbzelle, durch die Gasdiffusionselektrode in den mit Elektrolyt durchstrƶmten Spalt tritt, muss gewƤhrleistet sein, dass das Gas aus dem Spalt abgefĆ¼hrt wird. Erhƶht sich der Gehalt an Gas in dem Elektrolyten, steigt der Widerstand des Elektrolyten an. Sind Strƶmungsleitstrukturen in dem Spalt vorhanden, so kann das Gas entweder durch Ɩffnungen in den Strƶmungsleitstrukturen nach oben entweichen oder es wird von der Elektrolytstrƶmung nach unten mitgerissen. Die Neigung der Strƶmungsleitstrukturen fƶrdert insbesondere die AbfĆ¼hrung der Gasblasen nach oben.Since, during operation of the electrochemical cell, even small amounts of gas are always released from the space behind the gas diffusion electrode, i. the ion exchange membrane from the facing space of the half-cell, passes through the gas diffusion electrode in the flowed through with electrolyte gap, it must be ensured that the gas is discharged from the gap. As the content of gas in the electrolyte increases, the resistance of the electrolyte increases. If flow guide structures are present in the gap, the gas can either escape upwards through openings in the flow guide structures or it can be carried along by the flow of electrolyte downwards. The inclination of the flow guide structures promotes in particular the discharge of the gas bubbles upwards.

Die Strƶmungsleitstrukturen sind ferner so angeordnet, dass sie die Gasdiffusionselektrode einerseits und die Ionenaustauschermembran andererseits kontaktieren. Somit tritt der Elektrolyt nur durch die Ɩffnungen der Leitstrukturen hindurch. Die Strƶmungsleitstrukturen kƶnnen fest oder lƶsbar mit der Gasdiffusionselektrode und der Ionenaustauschermembran verbunden sein. Bevorzugt sind die Strƶmungsleitstrukturen zwischen die Gasdiffusionselektrode und die Ionenaustauschermembran eingeklemmt. In einer besonders bevorzugten AusfĆ¼hrungsform sind die Strƶmungsleitstrukturen an einer in dem Spalt im Wesentlichen vertikal, d.h. im Wesentlichen parallel zu der Gasdiffusionselektrode und der Ionenaustauschermembran, angeordneten Haltestruktur befestigt. Die Haltestruktur verlƤuft beispielsweise in der Mitte des Spaltes, sodass die Strƶmungsleitstrukturen einerseits in Richtung der Ionenaustauschermembran, andererseits in Richtung der Gasdiffusionselektrode ragen. Die Haltestruktur besteht beispielsweise aus einem dĆ¼nnen Kunststoffstab, dessen Durchmesser kleiner ist als die Spaltbreite zwischen Gasdiffusionselektrode und Ionenaustauschermembran. Die Anzahl der Haltestrukturen, z.B. in Form von KunststoffstƤben, Ć¼ber die LƤnge der Gasdiffusionselektrode, und damit der Strƶmungsleitstrukturen, ist abhƤngig von der Materialdicke der Strƶmungsleitstrukturen, da die KunststoffstƤbe die StabilitƤt, z.B. beim Zusammenbau des Elektrolyseurs, bewirken.The flow guide structures are further arranged to contact the gas diffusion electrode on the one hand and the ion exchange membrane on the other hand. Thus, the electrolyte passes only through the openings of the conductive structures. The flow guide structures may be fixedly or detachably connected to the gas diffusion electrode and the ion exchange membrane. The flow guide structures are preferably clamped between the gas diffusion electrode and the ion exchange membrane. In a particularly preferred Embodiment, the Strƶmungsleitstrukturen are attached to a in the gap substantially vertically, that is substantially parallel to the gas diffusion electrode and the ion exchange membrane, arranged holding structure. The holding structure extends, for example, in the middle of the gap, so that the flow guide structures protrude on the one hand in the direction of the ion exchange membrane, on the other hand in the direction of the gas diffusion electrode. The support structure consists for example of a thin plastic rod whose diameter is smaller than the gap width between gas diffusion electrode and ion exchange membrane. The number of support structures, for example in the form of plastic rods, over the length of the gas diffusion electrode, and thus the Strƶmungsleitstrukturen, is dependent on the material thickness of the Strƶmungsleitstrukturen, since the plastic rods, the stability, eg when assembling the electrolyzer, effect.

Die Strƶmungsleitstrukturen kƶnnen eben sein. Um das Einklemmen der Strƶmungsleitstrukturen zwischen Gasdiffusionselektrode und Ionenaustauschermembran zu erleichtern, kƶnnen die Strƶmungsleitstrukturen beispielsweise ein Z-, L-, T-, Doppel-T- oder trapezfƶrmiges Profil aufweisen. Die Strƶmungsleitstrukturen kƶnnen auch beliebig gewinkelt oder gekrĆ¼mmt sein. Vorzugsweise bestehen sie aus einer elastischen Platte, welche breiter ist als die Breite des Spaltes. Beim Einklemmen zwischen Gasdiffusionselektrode und Ionenaustauschermembran und unter Einwirkung des Elektrolytstroms in dem Spalt biegen sich die elastischen Platten nach unten durch. Die Strƶmungsleitstrukturen sind dann nach unten gekrĆ¼mmt. Es ist jedoch auch mƶglich, nach oben gekrĆ¼mmte Strƶmungsleitstrukturen einzusetzen. GekrĆ¼mmte Strƶmungsleitstrukturen sind vorteilhaft, da sie Fertigungstoleranzen der elektrochemischen Zelle, die sich beispielsweise in der Breite des Spaltes ƤuƟern, kompensieren.The flow guide structures can be flat. In order to facilitate trapping of the flow guide structures between the gas diffusion electrode and the ion exchange membrane, the flow guide structures can have, for example, a Z, L, T, double T or trapezoidal profile. The flow guide structures can also be arbitrarily angled or curved. Preferably, they consist of an elastic plate which is wider than the width of the gap. When pinched between the gas diffusion electrode and the ion exchange membrane and under the influence of the flow of electrolyte in the gap, the elastic plates bend downwards. The flow guide structures are then curved downwards. However, it is also possible to use upwardly curved flow guide structures. Curved Strƶmungsleitstrukturen are advantageous because they compensate for manufacturing tolerances of the electrochemical cell, which manifest themselves, for example, in the width of the gap.

Die Ɩffnung in den Strƶmungsleitstrukturen kƶnnen eine beliebige Form haben, z.B. rund oder eckig. Die Ɩffnungen in Ć¼bereinander bzw. untereinander angeordneten Strƶmungsleitstrukturen kƶnnen entweder Ć¼bereinander bzw. untereinander liegen, d.h. die Ɩffnungen decken sich. Die Elektrolytstrƶmung verlƤuft dabei im Wesentlichen senkrecht durch den Spalt. Sie kƶnnen jedoch auch gegeneinander versetzt sein, sodass die Elektrolytstrƶmung nicht geradlinig, sondern beispielsweise zickzackfƶrmig oder mƤanderfƶrmig durch den Spalt strƶmt. Dies reduziert die Bildung von Totzonen.The opening in the flow guide structures may have any shape, e.g. round or angular. The openings in superimposed or mutually arranged Strƶmungsleitstrukturen can either be superimposed or with each other, i. the openings coincide. The electrolyte flow in this case runs essentially perpendicularly through the gap. However, they can also be offset from each other, so that the electrolyte flow is not rectilinear, but for example, zigzag or meandering flows through the gap. This reduces the formation of dead zones.

Die Strƶmungsleitstrukturen kƶnnen aus einem laugebestƤndigen Material, insbesondere aus einem laugebestƤndigen Metall oder Kunststoff, gefertigt sein. Beispielsweise kann als Material Nickel oder PTFE eingesetzt werden.The flow guide structures can be made of a non-prone material, in particular of a non-prone metal or plastic. For example, nickel or PTFE can be used as the material.

Die Anzahl der Strƶmungsleitstrukturen sowie die Anzahl und die QuerschnittsflƤche der Ɩffnungen sind so gewƤhlt, dass die Strƶmungsgeschwindigkeit des Elektrolyten niedriger ist als im freien Fall. Bei einer Bauhƶhe des Elektrolyseurs von z.B. 1,3 m und einer Elektrolytmenge von z.B. 180 1/h kƶnnen z.B. 26 Strƶmungsleitstrukturen mit 64 Ɩffnungen eingesetzt werden. Die Ɩffnungen haben z.B. einen Durchmesser von 1 mm. Alternativ dazu kƶnnten auch 6 Strƶmungsleitstrukturen mit 127 Ɩffnungen mit 0,5 mm Durchmesser eingesetzt werden. Ɯber den Druchmesser und die Anzahl der Ɩffnungen sowie die Anzahl der Strƶmungsleitstrukturen kann je nach Durchfluss eine entsprechende Druckkompensation erzielt werden.The number of Strƶmungsleitstrukturen and the number and the cross-sectional area of the openings are chosen so that the flow velocity of the electrolyte is lower than in free fall. At a height of the electrolyzer of e.g. 1.3 m and an amount of electrolyte of e.g. 180 1 / h can e.g. 26 flow guide structures with 64 openings can be used. The openings have e.g. a diameter of 1 mm. Alternatively, 6 flow guide structures with 127 openings of 0.5 mm diameter could be used. Depending on the flow, a corresponding pressure compensation can be achieved via the diameter and the number of openings as well as the number of flow guiding structures.

Der in dem Spalt nach unten strƶmende Elektrolyt darf sich an den Strƶmungsleitstrukturen nicht aufstauen. Daher muss gewƤhrleistet sein, dass die Summe der QuerschnittsflƤchen aller Ɩffnungen einer Strƶmungsleitstruktur fĆ¼r alle Strƶmungsleitstrukturen gleich groƟ ist. Dies kann durch Variation der Anzahl der Ɩffnungen oder der QuerschnittsflƤche geschehen.The electrolyte flowing downwards in the gap must not build up on the flow guide structures. Therefore, it must be ensured that the sum of the cross-sectional areas of all openings of a flow-guiding structure is the same for all flow-guiding structures. This can be done by varying the number of openings or the cross-sectional area.

UnabhƤngig davon, ob der Elektrolyt mit Hilfe einer Pumpe durch den Spalt strƶmt oder ob Strƶmungsleitstrukturen vorgesehen sind oder beides, betrƤgt der bevorzugte Volumenstrom des Elektrolyten in dem Spalt (bei einer Breite des Spaltes von z.B. 3 mm) 100 bis 300 1/h. Der Volumenstrom betrƤgt bevorzugtmaximal 500 l/h. Die Strƶmungsgeschwindigkeit betrƤgt vorzugsweise maximal 1 cm/s.Regardless of whether the electrolyte flows through the gap by means of a pump or whether flow guiding structures are provided or both, the preferred volume flow of the electrolyte in the gap (at a gap width of, for example, 3 mm) is 100 to 300 l / h. The volume flow is preferably a maximum of 500 l / h. The flow rate is preferably at most 1 cm / s.

Der Vorteil von Strƶmungsleitstrukturen gegenĆ¼ber den aus dem Stand der Technik bekannten porƶsen Schichten liegt in der verbesserten AbfĆ¼hrung von Gasblasen, die durch die Gasdiffusionselektrode in den Spalt eintreten. Weiterhin wird der Elektrolyt mittels Pumpen durch den Spalt zwischen Gasdiffusionselektrode und Ionenaustauschermembran gefƶrdert, wodurch dieser Spalt vollstƤndig mit Elektrolyt gefĆ¼llt wird. Porƶse Strukturen, welche der Elektrolyt gemƤƟ Stand der Technik im freien Fall durchlƤuft, sind meist nicht vollstƤndig mit Elektrolyt gefĆ¼llt, was sich durch eine hƶhere Elektrolysespannung bemerkbar macht.The advantage of flow guide structures over the porous layers known from the prior art is the improved removal of gas bubbles entering the gap through the gas diffusion electrode. Furthermore, the electrolyte is pumped through the gap between gas diffusion electrode and ion exchange membrane, whereby this gap is completely filled with electrolyte. Porous structures, which the electrolyte according to the prior art undergoes in free fall, are usually not completely filled with electrolyte, which is manifested by a higher electrolysis voltage.

Die erfindungsgemƤƟe elektrochemische Zelle kann fĆ¼r unterschiedliche Elektrolyseverfahren eingesetzt werden, in denen mindestens eine Elektrode eine Gasdiffusionselektrode ist. Vorzugsweise fungiert die Gasdiffusionselektrode als Kathode, besonders bevorzugt als Sauerstoffverzehrkathode, wobei das der elektrochemischen Zelle zugefĆ¼hrte Gas ein sauerstoffhaltiges Gas ist, z.B. Luft, mit Sauerstoff angereicherte Luft oder Sauerstoff selbst. Bevorzugt wird die erfindungsgemƤƟe Zelle fĆ¼r die Elektrolyse einer wƤssrigen Lƶsung eines Alkalihalogenids, insbesondere von Natriumchlorid, verwendet.The electrochemical cell according to the invention can be used for different electrolysis processes, in which at least one electrode is a gas diffusion electrode. Preferably, the gas diffusion electrode acts as a cathode, particularly preferably as an oxygen-consuming cathode, wherein the gas supplied to the electrochemical cell is an oxygen-containing gas, for example air, oxygen-enriched air or oxygen itself. The cell according to the invention is preferably used for the electrolysis of an aqueous solution of an alkali halide, in particular of sodium chloride.

Im Falle der Elektrolyse einer wƤssrigen Natriumchlorid-Lƶsung ist die Gasdiffusionselektrode beispielsweise wie folgt aufgebaut: Die Gasdiffusionselektrode besteht wenigstens aus einem elektrisch leitfƤhigen TrƤger und einer elektrochemisch aktiven Beschichtung. Der elektrisch leitfƤhige TrƤger ist bevorzugt ein Netz, Gewebe, Geflecht, Gewirke, Vlies oder Schaum aus Metall, insbesondere aus Nickel, Silber oder versilbertem Nickel. Die elektrochemisch aktive Beschichtung besteht vorzugsweise wenigstens aus einem Katalysator, z.B. Silber(I)-Oxid, und einem Binder, z.B. Polytetrafluorethylen (PTFE). Die elektrochemisch aktive Beschichtung kann aus einer oder mehreren Schichten aufgebaut sein. ZusƤtzlich kann eine Gasdiffusionsschicht, beispielsweise aus einer Mischung aus Kohlenstoff und Polytetrafluorethylen, vorgesehen sein, welche auf dem TrƤger aufgebracht wird.In the case of the electrolysis of an aqueous sodium chloride solution, the gas diffusion electrode is constructed, for example, as follows: The gas diffusion electrode consists at least of an electrically conductive carrier and an electrochemically active coating. The electrically conductive carrier is preferably a mesh, woven, braided, knitted, nonwoven or foam of metal, in particular of nickel, silver or silver-plated nickel. The electrochemically active coating preferably consists of at least one catalyst, e.g. Silver (I) oxide, and a binder, e.g. Polytetrafluoroethylene (PTFE). The electrochemically active coating may be composed of one or more layers. In addition, a gas diffusion layer, for example of a mixture of carbon and polytetrafluoroethylene, can be provided, which is applied to the support.

Als Anode kƶnnen beispielsweise Elektroden aus Titan eingesetzt werden, welche z.B. mit Ruthenium-Iridium-Oxiden oder Rutheniumoxid beschichtet sind.As the anode, for example, electrodes of titanium may be used, which are e.g. coated with ruthenium-iridium oxides or ruthenium oxide.

Als Ionenaustauschermembran kann eine handelsĆ¼bliche Membran, z.B. der Fa. DuPont, Nafion NX2010, eingesetzt werden.As the ion exchange membrane, a commercially available membrane, e.g. DuPont, Nafion NX2010.

Die erfindungsgemƤƟe Elektrolysezelle, welche sich fĆ¼r die Elektrolyse einer wƤssrigen Natriumchlorid-Lƶsung eignet, hat einen Spalt zwischen Gasdiffusionselektrode und Ionenaustauschermembran mit einer Breite in der GrĆ¶ĆŸenordnung von 3 mm. Die Strƶmungsleitstrukturen werden vorzugsweise aus dĆ¼nnen Platten aus PTFE oder PVDF gefertigt und haben eine Dicke von 0,1 bis 0,5 mmThe electrolysis cell according to the invention, which is suitable for the electrolysis of an aqueous sodium chloride solution, has a gap between gas diffusion electrode and ion exchange membrane with a width of the order of 3 mm. The flow guide structures are preferably made of thin sheets of PTFE or PVDF and have a thickness of 0.1 to 0.5 mm

Der Elektrolytzulauf ist ein Kanal, z.B. ein Rohr, welches sich Ć¼ber die gesamte LƤnge der Gasdiffusionselektrode erstreckt. In diesem Fall kann mit Hilfe des kanalfƶrmigen Elektrolytzulaufs der Elektrolyt gleichmƤƟig Ć¼ber die gesamte LƤnge von oben in den Spalt zwischen Gasdiffusionselektrode und Ionenaustauschermembran zugefĆ¼hrt werden. Anstelle eines Elektrolytzulaufs, der sich Ć¼ber die gesamte LƤnge der Gasdiffusionselektrode ersteckt, kann der Zulauf auch nur in einem Bereich, z.B. im oberen Bereich einer der beiden Enden der Gasdiffusionselektrode erfolgen. In diesem Fall kann mit Hilfe der Strƶmungsleitstrukturen, welche in einer Achse senkrecht zur Gasdiffusionselektrode bzw. zur Ionenaustauschermembran geneigt sind, eine gleichmƤƟige Verteilung des Elektrolyten Ć¼ber die gesamte LƤnge des Spaltes bewirkt werden.The electrolyte inlet is a channel, for example a tube, which extends over the entire length of the gas diffusion electrode. In this case, with the aid of the channel-shaped electrolyte feed, the electrolyte can be fed uniformly over the entire length from above into the gap between the gas diffusion electrode and the ion exchange membrane. Instead of an electrolyte feed which extends over the entire length of the gas diffusion electrode, the feed can also take place only in one region, for example in the upper region of one of the two ends of the gas diffusion electrode. In this case, with the aid of the flow guide structures, which are inclined in an axis perpendicular to the gas diffusion electrode or to the ion exchange membrane, a uniform distribution of the electrolyte over the entire length of the gap can be effected.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Elektrolyse einer wƤssrigen Alkalihalogenid-Lƶsung in einer elektrochemischen Zelle, wenigstens bestehend aus einer Anodenhalbzelle mit einer Anode, einer Kathodenhalbzelle mit einer Kathode und einer zwischen Anodenhalbzelle und Kathodenhalbzelle angeordneten Ionenaustauschermembran, wobei,die Anode und/oder die Kathode eine Gasdiffusionselektrode ist und zwischen der Gasdiffusionselektrode und der Ionenaustauschermembran ein Spalt angeordnet ist und die Halbzelle mit einer Gasdiffusionselektrode einen Elektrolytzulauf und einen Elektrolytablauf sowie einen Gaseintritt und einen Gasaustritt aufweist, dadurch gekennzeichnet, dass der Elektrolyt mittels einer Pumpe in dem Spalt von oben nach unten strƶmt, wobei der Spalt vollstƤndig mit Elektrolyt angefĆ¼llt ist.Another object of the invention is a method for the electrolysis of an aqueous alkali halide solution in an electrochemical cell, at least consisting of an anode half-cell with an anode, a cathode half-cell with a cathode and an arranged between the anode half-cell and cathode half-cell ion exchange membrane, wherein, the anode and / or the cathode is a gas diffusion electrode and a gap is arranged between the gas diffusion electrode and the ion exchange membrane and the half cell with a gas diffusion electrode has an electrolyte inlet and an electrolyte outlet and a gas inlet and a gas outlet, characterized in that the electrolyte by means of a pump in the gap from above flows down, the gap is completely filled with electrolyte.

Nachfolgend wird die Erfindung anhand der beigefĆ¼gten Zeichnungen nƤher erlƤutert. Es zeigen:

  • Figur 1 einen schematischen Querschnitt einer ersten AusfĆ¼hrungsform der erfindungsgemƤƟen elektrochemischen Zelle ohne Strƶmungsleitstrukturen im Spalt zwischen Gasdiffusionselektrode und Ionenaustauschermembran
  • Figur 2 einen schematischen Querschnitt einer zweiten AusfĆ¼hrungsform der erfindungsgemƤƟen elektrochemischen Zelle mit Strƶmungsleitstrukturen im Spalt zwischen Gasdiffusionselektrode und Ionenaustauschermembran
The invention will be explained in more detail with reference to the accompanying drawings. Show it:
  • FIG. 1 a schematic cross section of a first embodiment of the electrochemical cell according to the invention without Strƶmungsleitstrukturen in the gap between the gas diffusion electrode and ion exchange membrane
  • FIG. 2 a schematic cross section of a second embodiment of the electrochemical cell according to the invention with Strƶmungsleitstrukturen in the gap between the gas diffusion electrode and ion exchange membrane

In Figur 1 ist eine erfindungsgemƤƟe elektrochemische Zelle 1 dargestellt, welche aus einer Anodenhalbzelle 2 mit einer Anode 21 und einer Kathodenhalbzelle 3 mit einer Gasdiffusionselektrode 31 als Kathode aufgebaut ist. Die beiden Halbzellen 2, 3 sind durch eine Ionenaustauschermembran 4 voneinander getrennt. Die Gasdiffusionselektrode 31 ist von der Ionenaustauschermembran 4 durch einen Spalt 32 getrennt. Dichtungen 39 dichten die Halbzelle 3 nach auƟen ab. Die Kathodenhalbzelle 3 besitzt einen Elektrolytzulauf 33 und einen Elektrolytablauf 34 sowie einen Gaseintritt 35 und einen Gasaustritt 36. Der Elektrolytzulauf 33 ist mit dem Spalt 32 dicht verbunden. Der Elektrolyt wird Ć¼ber den Elektrolytzulauf 33 der Halbzelle 3 zugefĆ¼hrt und strƶmt im Spalt 32 nach unten, bevor er Ć¼ber den Elektrolytablauf 34 aus der Halbzelle 3 abgefĆ¼hrt wird. Der Spalt 32 ist im Betrieb der Elektrolysezelle 1 vollstƤndig mit Elektrolyt gefĆ¼llt. Gas wird Ć¼ber den Gaseintritt 35 dem Gasraum 37 der Halbzelle 3 zugefĆ¼hrt, strƶmt in dem Gasraum 37 nach oben und wird Ć¼ber den Gasaustritt 36 aus der Halbzelle 3 abgefĆ¼hrt. Die dichte Verbindung des Elektrolytzulaufs 33 mit dem Spalt 32 erlaubt es, den Elektrolyten mit Hilfe eine Pumpe durch den Spalt 32 zu fƶrdern und so einen gewĆ¼nschten Volumenstrom bzw. eine gewĆ¼nschte Strƶmungsgeschwindigkeit des Elektrolyten im Spalt 32 einzustellen. Die dichte Verbindung muss verhindern, dass Gas aus dem Gasraum 37 in den Spalt 32 strƶmt. Dazu ist der Elektrolytzulauf 33 vollstƤndig gefĆ¼llt. Die Ausgleichsƶffnung 38 ist dabei so zu bemessen, dass ein sehr geringer Volumenstrom des Elektrolyten Ć¼ber die Ɩffnung 38 in den Gasraum 37 abflieƟt. Vorzugsweise betrƤgt der Volumenstrom Ć¼ber die Ɩffnung 38 in den RĆ¼ckraum weniger als 5 % des Gesamtvolumenstromes. Gleichzeitig erlaubt die Ausgleichsƶffnung 38 ein Austritt von Gas, welches im Betrieb der Elektrolysezelle 1 in geringen Mengen vom Gasraum 37 durch die Gasdiffusionselektrode 31 in den Spalt 32 eintritt und in Form von Gasblasen nach oben steigt. Auf diese Weise kann das Gas aus dem Spalt 32 Ć¼ber die Ausgleichsƶffnung 38 in dem Elektrolytzulauf 33 in den Gasraum 37 gelangen.In FIG. 1 an electrochemical cell 1 according to the invention is shown, which is constructed from an anode half cell 2 with an anode 21 and a cathode half cell 3 with a gas diffusion electrode 31 as a cathode. The two half-cells 2, 3 are separated from each other by an ion exchange membrane 4. The gas diffusion electrode 31 is separated from the ion exchange membrane 4 by a gap 32. Seals 39 seal the half-cell 3 to the outside. The cathode half-cell 3 has an electrolyte inlet 33 and an electrolyte outlet 34 as well as a gas inlet 35 and a gas outlet 36. The electrolyte inlet 33 is tightly connected to the gap 32. The electrolyte is supplied via the electrolyte inlet 33 of the half-cell 3 and flows in the gap 32 down before it is discharged via the electrolyte effluent 34 from the half-cell 3. The gap 32 is completely filled with electrolyte during operation of the electrolysis cell 1. Gas is supplied via the gas inlet 35 to the gas space 37 of the half-cell 3, flows upwards in the gas space 37 and is discharged from the half-cell 3 via the gas outlet 36. The tight connection of the electrolyte inlet 33 with the gap 32 makes it possible to promote the electrolyte by means of a pump through the gap 32 and so a desired volume flow or a desired flow rate of the electrolyte in gap 32. The tight connection must prevent gas from flowing from the gas space 37 into the gap 32. For this purpose, the electrolyte feed 33 is completely filled. The compensation opening 38 is to be dimensioned such that a very small volume flow of the electrolyte flows through the opening 38 into the gas space 37. Preferably, the volume flow through the opening 38 in the back space is less than 5% of the total volume flow. At the same time, the compensation opening 38 allows gas to escape, which enters the gap 32 in small quantities from the gas space 37 through the gas diffusion electrode 31 during operation of the electrolytic cell 1 and rises in the form of gas bubbles. In this way, the gas can pass from the gap 32 via the compensation opening 38 in the electrolyte inlet 33 into the gas space 37.

Im Vergleich zu der in Figur 1 dargestellten AusfĆ¼hrungsform weist die Elektrolysezelle 1 in Figur 2 zusƤtzlich zu der dichten Verbindung des Elektrolytzulaufs 33 mit dem Spalt 32 Strƶmungsleitstrukturen 51, 52, 53, 54 in dem Spalt 32 auf. Die Strƶmungsleitstrukturen 51, 52, 53, 54 verringern die Strƶmungsgeschwindigkeit des Elektrolyten in dem Spalt 32 gegenĆ¼ber der Strƶmungsgeschwindigkeit, die der Elektrolyt im freien Fall annehmen wĆ¼rde. Die Strƶmungsleitstrukturen 51, 52, 53, 54 bestehen aus dĆ¼nnen Platten mit Ɩffnungen 56, die einen Durchtritt des Elektrolyten erlauben. Sie sind in den dargestellten AusfĆ¼hrungsformen zwischen die Ionenaustauschermembran 4 und die Gasdiffusionselektrode 31 eingeklemmt. Die Strƶmungsleitstrukturen 51 sind in dem Spalt 32 im Wesentlichen horizontal, d.h. quer zur Strƶmungsrichtung des Elektrolyten, angeordnet. Ebenso kƶnnen die Strƶmungsleitstrukturen 53 schrƤg, d.h. in einem Winkel zur Strƶmungsrichtung, z.B. in. Richtung der Ionenaustauschermembran 4 geneigt, angeordnet sein. In einer weiteren AusfĆ¼hrungsform sind die Strƶmungsleitstrukturen 53 V-fƶrmig ausgebildet. Die Strƶmungsleitstrukturen 54 sind nach unten gekrĆ¼mmt.Compared to the in FIG. 1 illustrated embodiment, the electrolysis cell 1 in FIG. 2 in addition to the tight connection of the electrolyte inlet 33 with the gap 32 Strƶmungsleitstrukturen 51, 52, 53, 54 in the gap 32. The flow guide structures 51, 52, 53, 54 reduce the flow rate of the electrolyte in the gap 32 with respect to the flow rate that the electrolyte would assume in free fall. The flow guide structures 51, 52, 53, 54 consist of thin plates with openings 56, which allow a passage of the electrolyte. They are clamped in the illustrated embodiments between the ion exchange membrane 4 and the gas diffusion electrode 31. The flow guide structures 51 are arranged in the gap 32 substantially horizontally, ie transversely to the flow direction of the electrolyte. Likewise, the flow guide structures 53 can be arranged obliquely, ie inclined at an angle to the flow direction, for example in the direction of the ion exchange membrane 4. In a further embodiment, the flow guide structures 53 are V-shaped. The flow guide structures 54 are curved downwards.

Claims (5)

  1. Electrochemical cell (1), at least consisting of an anode half-cell (2) with an anode (21), a cathode half-cell (3) with a cathode (31), and an ion exchange membrane (4) that is arranged between the anode half-cell (2) and the cathode half-cell (3), the anode (21) and/or the cathode (31) being a gas diffusion electrode and a gap (32) being arranged between the gas diffusion electrode (31) and the ion exchange membrane (4), and the half-cell (2, 3) with the gas diffusion electrode (31) having an electrolyte inflow (33) and an electrolyte outflow (34) as well as a gas inlet (35) and a gas outlet (36), characterized in that the electrolyte inflow (33) is connected to the gap (32) in a sealed manner, in that a gas space (37) is arranged downstream of the gas diffusion electrode (31) and in that the gas space (37) has a gas inlet (35) and a gas outlet (36).
  2. Electrochemical cell according to Claim 1, characterized in that flow directing structures (51; 52; 53; 54) are arranged in the gap (32).
  3. Electrochemical cell according to either of Claims 1 and 2, characterized in that the flow directing structures (51; 52; 53; 54) are clamped between the gas diffusion electrode (31) and the ion exchange membrane (4).
  4. Electrochemical cell according to one of Claims 1-3, characterized in that the flow directing structures (51; 52; 53; 54) are inclined with respect to the horizontal.
  5. Method for the electrolysis of an aqueous alkali halide solution in an electrochemical cell (1), at least consisting of an anode half-cell (2) with an anode (21), a cathode half-cell (3) with a cathode (31), and an ion exchange membrane (4) that is arranged between the anode half-cell (2) and the cathode half-cell (3), the anode (21) and/or the cathode (31) being a gas diffusion electrode and a gap (32) being arranged between the gas diffusion electrode (31) and the ion exchange membrane (4), and the half-cell (2, 3) with a gas diffusion electrode (31) having an electrolyte inflow (33) and an electrolyte outflow (34) as well as a gas inlet (35) and a gas outlet (36), characterized in that the electrolyte flows from top to bottom in the gap (32) by means of a pump, the gap (32) being completely filled with electrolyte, in that a gas space (37) is arranged downstream of the gas diffusion electrode (31) and in that the gas space (37) has a gas inlet (35) and a gas outlet (36) for the reaction gas.
EP04740955.2A 2003-07-24 2004-07-13 Electrochemical cell Active EP1651799B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10333853A DE10333853A1 (en) 2003-07-24 2003-07-24 Electrochemical cell
PCT/EP2004/007713 WO2005012595A1 (en) 2003-07-24 2004-07-13 Electrochemical cell

Publications (2)

Publication Number Publication Date
EP1651799A1 EP1651799A1 (en) 2006-05-03
EP1651799B1 true EP1651799B1 (en) 2015-05-27

Family

ID=34088814

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04740955.2A Active EP1651799B1 (en) 2003-07-24 2004-07-13 Electrochemical cell

Country Status (8)

Country Link
US (2) US20050029116A1 (en)
EP (1) EP1651799B1 (en)
JP (1) JP4680901B2 (en)
CN (1) CN100549239C (en)
DE (1) DE10333853A1 (en)
HK (1) HK1097885A1 (en)
TW (1) TWI351447B (en)
WO (1) WO2005012595A1 (en)

Families Citing this family (12)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20060726A1 (en) * 2006-04-12 2007-10-13 De Nora Elettrodi S P A ELECTRIC DIFFUSION ELECTRODE FOR CELLS WITH ELECTROLYTE DISCHARGE
JP4198726B2 (en) * 2006-09-06 2008-12-17 ć‚Æ惭ćƒŖćƒ³ć‚Øćƒ³ć‚øćƒ‹ć‚¢ć‚ŗę Ŗ式会ē¤¾ Ion exchange membrane electrolytic cell
DE102008011473A1 (en) * 2008-02-27 2009-09-03 Bayer Materialscience Ag Process for the production of polycarbonate
DE102009004031A1 (en) * 2009-01-08 2010-07-15 Bayer Technology Services Gmbh Structured gas diffusion electrode for electrolysis cells
US8266736B2 (en) * 2009-07-16 2012-09-18 Watkins Manufacturing Corporation Drop-in chlorinator for portable spas
US8273254B2 (en) 2010-04-19 2012-09-25 Watkins Manufacturing Corporation Spa water sanitizing system
US9478803B2 (en) * 2011-06-27 2016-10-25 Primus Power Corporation Electrolyte flow configuration for a metal-halogen flow battery
GB2539478B (en) 2015-06-17 2017-11-22 Siemens Ag Electrochemical cell and process
ES2870615T3 (en) * 2016-03-17 2021-10-27 Hpnow Aps Electrochemical cell for gas phase reagent in liquid environment
EP3440241A1 (en) 2016-04-07 2019-02-13 Covestro Deutschland AG Difunctional electrode and electrolysis device for chlor-alkali electrolysis
US11407661B2 (en) 2017-07-17 2022-08-09 Watkins Manufacturing Corporation Chlorine generator system
EP3805429A1 (en) * 2019-10-08 2021-04-14 Covestro Deutschland AG Method and electrolysis device for producing chlorine, carbon monoxide and hydrogen if applicable

Citations (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040040A1 (en) * 2002-10-23 2004-05-13 Uhdenora Technologies S.R.L. Electrolytic cell comprising an interior trough

Family Cites Families (10)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
JP2749861B2 (en) * 1989-03-23 1998-05-13 äø‰č±é‡å·„ę„­ę Ŗ式会ē¤¾ Gas diffusion electrode
DE4306889C1 (en) * 1993-03-05 1994-08-18 Heraeus Elektrochemie Electrode arrangement for gas-forming electrolytic processes in membrane cells and their use
DE19646950A1 (en) * 1996-11-13 1998-05-14 Bayer Ag Electrochemical gas diffusion half cell
JP3553775B2 (en) * 1997-10-16 2004-08-11 ćƒšćƒ«ćƒ”ćƒ¬ćƒƒć‚Æ電ꄵę Ŗ式会ē¤¾ Electrolyzer using gas diffusion electrode
EP1033419B1 (en) * 1998-08-25 2006-01-11 Toagosei Co., Ltd. Soda electrolytic cell provided with gas diffusion electrode
JP3086853B2 (en) * 1999-02-25 2000-09-11 長äø€ 古屋 Electrolytic cell
IT1317753B1 (en) * 2000-02-02 2003-07-15 Nora S P A Ora De Nora Impiant ELECTROLYSIS CELL WITH GAS DIFFUSION ELECTRODE.
JP2001300537A (en) * 2000-04-25 2001-10-30 Matsushita Electric Works Ltd Water purifier
JP2002275670A (en) * 2001-03-13 2002-09-25 Association For The Progress Of New Chemistry Ion exchange membrane electrolytic cell and electrolysis method
ITMI20012379A1 (en) * 2001-11-12 2003-05-12 Uhdenora Technologies Srl ELECTROLYSIS CELL WITH GAS DIFFUSION ELECTRODES

Patent Citations (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040040A1 (en) * 2002-10-23 2004-05-13 Uhdenora Technologies S.R.L. Electrolytic cell comprising an interior trough

Also Published As

Publication number Publication date
CN1829825A (en) 2006-09-06
DE10333853A1 (en) 2005-02-24
JP2006528730A (en) 2006-12-21
CN100549239C (en) 2009-10-14
JP4680901B2 (en) 2011-05-11
US20050029116A1 (en) 2005-02-10
TW200519233A (en) 2005-06-16
WO2005012595A1 (en) 2005-02-10
US20110073491A1 (en) 2011-03-31
HK1097885A1 (en) 2007-07-06
EP1651799A1 (en) 2006-05-03
TWI351447B (en) 2011-11-01

Similar Documents

Publication Publication Date Title
DE3051012C2 (en)
DE4444114C2 (en) Electrochemical half cell with pressure compensation
DE2847955C2 (en) Process for producing halogens by electrolysis of aqueous alkali metal halides
DE3000313C2 (en)
EP1651799B1 (en) Electrochemical cell
DE2616614C2 (en) Electrolysis device
EP0591293B1 (en) Electrolytic cell and capillary slit electrode for gas-developing or gas-consuming electrolytic reactions and electrolysis process therefor
DE2435185A1 (en) BIPOLAR ELECTROLYTE CELL
EP0189535A1 (en) Electrolysis apparatus
DE2262173A1 (en) DETACHABLE BIPOLAR ELECTRODE
EP1740739B1 (en) Electrochemical cell
DE2739324B2 (en) Method and device for carrying out electrochemical reactions as well as suitable bipolar electrodes
WO1994020649A1 (en) Electrode arrangement for gas-forming electrolytic processes in membrane cells and its use
DE2545339A1 (en) BIPOLAR ELECTROLYSIS CELLS
DE2059868B2 (en) Electrode plate to be arranged vertically for gas-forming electrolysis
EP2961696B1 (en) Micro-lamellae electrode cells and their use
EP1601817A1 (en) Electrolytic cell comprising an interior trough
DE10234806A1 (en) Electrochemical cell
DE102017219766A1 (en) Arrangement for the carbon dioxide electrolysis
DE2022696C3 (en) Electrolysis cell for the production of adipic acid dinitrile
DE2923818C2 (en)
EP1285103B1 (en) Bipolar multi-purpose electrolytic cell for high current loads
DE2510396A1 (en) METHOD FOR ELECTROLYSIS OF Aqueous SOLUTIONS AND ELECTROLYSIS CELL FOR CARRYING OUT THE METHOD
DE2909640A1 (en) ELECTROLYSIS
DE112005002020T5 (en) The fuel cell system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110309

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150211

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004014919

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNER: BAYER MATERIALSCIENCE AKTIENGESELLSCHAFT, 51373 LEVERKUSEN, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 728926

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014919

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150928

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150828

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004014919

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNER: BAYER INTELLECTUAL PROPERTY GMBH, 40789 MONHEIM, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150527

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014919

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

26N No opposition filed

Effective date: 20160301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150713

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150827

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 728926

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160712

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170714

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502004014919

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25B0009080000

Ipc: C25B0009190000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220628

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220531

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004014919

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201