EP1650441B1 - Vibrationsarme Vakuumpumpe - Google Patents

Vibrationsarme Vakuumpumpe Download PDF

Info

Publication number
EP1650441B1
EP1650441B1 EP20050021097 EP05021097A EP1650441B1 EP 1650441 B1 EP1650441 B1 EP 1650441B1 EP 20050021097 EP20050021097 EP 20050021097 EP 05021097 A EP05021097 A EP 05021097A EP 1650441 B1 EP1650441 B1 EP 1650441B1
Authority
EP
European Patent Office
Prior art keywords
vacuum pump
pump according
bearings
motor stator
rotor shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20050021097
Other languages
English (en)
French (fr)
Other versions
EP1650441A2 (de
EP1650441A3 (de
Inventor
Helmut Bernhardt
Armin Blecker
Anneliese Reichhart
Jörg Stanzel
Wolfgang Eberl
Christopher Mark Rippl
Michael Willig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP1650441A2 publication Critical patent/EP1650441A2/de
Publication of EP1650441A3 publication Critical patent/EP1650441A3/de
Application granted granted Critical
Publication of EP1650441B1 publication Critical patent/EP1650441B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations

Definitions

  • the invention relates to a low-vibration vacuum pump according to the preamble of the first claim.
  • Vacuum pumps have many components that can generate mechanical vibrations of the entire pump. These vibrations can then be transferred via the flange to the vacuum chamber or other connected systems.
  • Molecular pumps and turbomolecular pumps are used to generate high and ultra-high vacuum.
  • the pumping action is achieved in a turbomolecular pump by a combination of very fast rotating and with standing alternating wing discs.
  • the fast-rotating wing discs sit on a shaft and together with this form the rotor. It rotates about its axis at tens of thousands of revolutions per minute.
  • the rotation support is provided by axial and radial bearings, such as roller bearings and / or magnetic bearings.
  • the rotation also creates vibrations, for example, by small imbalances of the rotor, which can arise on the one hand by the limited balancing accuracy in the production and on the other hand by deposition of particles on the wing discs. These vibrations are delivered via the bearings to the pump housing.
  • the drive can also be the source of vibrations ( Journal of Vacuum Science and Technology A, 7 (1989) May / June, No. 311, New York, US, pp. 2377-2380 ).
  • the motor geometry, ie roundness and orientation of the components, is, according to this article, decisive for the strength of the vibration and also for a successful suppression.
  • the object is to present a vacuum pump in which the vibrations occurring at the housing are reduced compared to the prior art. Additional space outside the pump and an enlargement of the housing should be avoided.
  • the vibrations occurring at the housing are reduced by at least part of the electrically operated bearing and drive elements being decoupled from the housing of the vacuum pump in terms of vibration technology.
  • These electrically operated bearings and drive elements include the motor stator.
  • the vibrational decoupling is achieved by the stator of the drive, hereinafter “motor stator”, elastically suspended in the housing of the vacuum pump.
  • motor stator elastically suspended in the housing of the vacuum pump.
  • the vibration isolation of the bearings can be improved by the housing of the pump by between housing and bearing an intermediate member of a high density material is suspended in elastic material.
  • PWM pulse width modulation
  • the heat loss occurring in the motor stator must be taken into account. Therefore, according to the invention, the motor stator vibrationally decoupled from the housing and still maintain the heat technology coupling. For this purpose, elements are incorporated that transmit no vibrations but heat. As a result, an impermissible stagnation of the heat is avoided in the motor stator and still reduces the occurring at the housing of the pump level of vibration.
  • the first figure shows a turbomolecular pump 1 with a housing 2, which has a gas inlet 3 and a gas outlet 4. Between the gas inlet and outlet, the gas is conveyed through a pump-active structure.
  • This structure has rotating pump-active components 9 and stationary pump-active components 10.
  • the rotating components 9 are mounted on a rotor shaft 5, both parts 5 and 9 together form the rotor of the pump.
  • the rotor is rotatably supported with bearings 8.
  • On the rotor shaft sits the motor rotor 6, which forms the drive together with the motor stator 7.
  • the motor stator is suspended in elastic components 11 in the housing 2. These elastic components may be elastomeric rings.
  • a displacement of the rings in the axial direction can be avoided by grooves are provided in the housing and motor stator, in which the rings dive with a portion of their diameter.
  • the motor rotor can be designed as an arrangement of permanent magnets, so that the overall result is a DC motor.
  • the energization of the motor stator is then carried out with pulse width modulation.
  • FIG. 2 a section of the vacuum pump 1 is shown.
  • the rotor shaft 5 with the permanent magnets 6 is rotatably supported by a rolling bearing, which has an inner ring 17 seated on the rotor shaft and an outer ring 18.
  • This ring is taken in an intermediate member 12, which is supported by elastic components 11, for example elastomeric rings, in the housing 2.
  • This intermediate member is made of high-density material, so that it has a high mass with a small size and thus acts vibration-damping.
  • the motor stator 7 can be seen.
  • FIG. 3 shows an embodiment of the elastic suspension of the motor stator.
  • energy In order to set the rotor in rotation via the drive, energy must be supplied, for example by energizing the coils of the motor stator. In this case, not all of the supplied electrical energy is converted into rotational energy. A part is released as heat loss. For pumps with high power requirements, a correspondingly high heat loss must be dissipated. In these cases, a heat technology coupling of the motor stator is to be provided, or to avoid the thermal decoupling.
  • FIG. 3 represented: Between the rotor shaft 5 and housing 2 of the vacuum pump sits the motor stator 7. The elastic components 11 decouple it vibrationally. The result is a space 15 in the area between the motor stator 7, housing 2 and the elastic members 11. This area is filled with a good heat conducting material 16, but does not transmit vibrations. Such agents may be, for example, highly viscous liquids.
  • these means may be thermal grease.
  • these means are a woven fabric or a mesh of good heat-conducting material.
  • this fabric or braid may consist of material with high proportions of copper or aluminum.
  • An effective cooling of the motor stator can also be achieved by providing at least one cooling channel in the region of the motor stator, in which a coolant circulates. This is in FIG. 4 shown.
  • a coolant such as water
  • the motor stator itself is suspended with the elastic components 11 in the housing 2 of the vacuum pump.
  • Another embodiment relates to such vacuum pumps whose bearings are 8 active magnetic bearings, which can be active in both the axial and in the radial direction. These bearings also belong to the electrically operated bearing and drive elements. This is shown by way of example on an active radial magnetic bearing 24 in FIG. 5 , In active magnetic bearing control of the current takes place in the control coils 21, which magnetic restoring forces are generated with this current. These forces are intended to counteract the deflection of the rotor shaft 5 measured by a sensor 23.
  • a common method is the current control by pulse width modulation. The frequency of this pulse width modulation is impressed on the actuating forces, whereby mechanical vibrations occur on the bearing stator 22, which are transmitted to the pump housing 2. According to the invention, these vibrations can be avoided by supporting the bearing stator in elastic components 11. The amplitudes of those vibrations generated by the bearing stator need not be comparable to those of the motor stator. Depending on the given

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Vibration Prevention Devices (AREA)
  • Reciprocating Pumps (AREA)

Description

  • Die Erfindung betrifft eine vibrationsarme Vakuumpumpe nach dem Oberbegriff des ersten Anspruches.
  • Vakuumpumpen besitzen viele Bauteile, die mechanische Schwingungen bzw. Vibrationen der gesamten Pumpe erzeugen können. Diese Vibrationen können dann über den Flansch auf die Vakuumkammer oder andere angeschlossene Systeme übertragen werden.
  • Molekularpumpen und Turbomolekularpumpen dienen der Erzeugung von Hoch- und Ultrahochvakuum. Die Pumpwirkung wird in einer Turbomolekularpumpe durch eine Kombination aus sehr schnell drehenden und mit stehenden abwechselnden Flügelscheiben erzielt. Die schnelldrehenden Flügelscheiben sitzen auf einer Welle und bilden mit dieser zusammen den Rotor. Dieser rotiert mit einigen zehntausend Umdrehungen pro Minute um seine Achse. Die Unterstützung der Drehung erfolgt durch axiale und radiale Lager, beispielsweise Wälzlager und/oder Magnetlager. Die Drehung erzeugt überdies Schwingungen, beispielsweise durch geringe Unwuchten des Rotors, die einerseits durch die begrenzte Wuchtgenauigkeit bei der Herstellung und andererseits auch durch Ablagerung von Partikeln auf den Flügelscheiben entstehen können. Diese Schwingungen werden über die Lager an das Pumpengehäuse abgegeben.
  • Gerade wenn Turbomolekularpumpen in Analysegeräten zum Einsatz kommen, müssen Schwingungen unterdrückt werden, um Eznpfindlichkeitsverluste der Analysesysteme zu vermeiden. Der Formschritt in den elektrischen und elektronischen Komponenten der Analysesysteme hat zu einer deutlichen Steigerung der Nachweisempfindlichkeit geführt. In der Umkehrung bedeutet dies, dass Schwingungen des Vakuumsystems, also beispielsweise der Turbomolekularpumpe, in immer geringerem Maße toleriert werden können.
  • Im Stand der Technik werden zwei Wege beschritten, um eine Übertragung der Schwingungen auf das Analysesystem zu vermeiden.
  • Der erste Weg, offenbart in DE-OS 101 17 075 , versucht, die Vakuumpumpe über eine schwingungsentkoppelnde Komponente mit Flansch und Analysesystem oder Vakuumkammer zu verbinden. Dadurch soll eine Übertragung der Schwingungen vermieden werden. Diese Lösung erfordert allerdings zusätzlichen Bauraum, der in den heute immer kleiner werdenden Systemen nicht zur Verfügung steht. Außerdem führen zusätzliche Komponenten im Valcuumsystem insbesondere vor dem Ansaugflansch zu Leitwertverlusten. Auch diese sind im Zuge der Effizienzsteigerung und angestrebter sinkender Leistungsaufnahme nicht oder schwer tolerierbar.
  • In DE 35 37 822 wird daher eine Vakuumpumpe vorgestellt, in der die Lager des schnelldrehenden Rotors durch ein System aus Elastomerringen gegen das Pumpengehäuse abgestützt wird. Dadurch wird die Übertragung von Schwingungen über die Lager reduziert. Leider zeigt sich, dass noch immer Schwingungen von der Vakuumpumpe übertragen werden.
  • Auch der Antrieb kann Quelle von Schwingungen sein (Journal of Vacuum Science and Technology A, 7 (1989) May/June, Nr. 311, New York, US, pp. 2377-2380). Die Motorgeometrie, also Rundheit und Ausrichtung der Komponenten, ist nach diesem Artikel maßgeblich für die Stärke der Schwingung und ebenso für eine erfolgreiche Unterdrückung.
  • Ein weiteres zum Stand der Technik gehörendes Dämpfungssystem für magnetisch gelagerte Rotoren ( DE 197 12 711 A1 ) sieht ein Zwischenbauteil vor, welches schwingungsgedämpft gelagert ist. An dem Zwischenbauteil ist ein Statormagnct angeordnet. Dem Statormagnet gegenüberliegend ist ein Rotormagnet angeordnet. Diese zum Stand der Technik gehörende Vorrichtung weist den Nachteil auf, dass Schwingungen des Antriebes nicht gedämpft werden.
  • Weiterhin gehört zum Stand der Technik ( DE 2 249 985 A1 ) eine Turbomolekularpumpe. Gemäß dieser Druckschrift ist zwar das Gehäuse des Antriebsmotors in einem Flanschteil des Pumpengehäuses elastisch gelagert. Weitere Lagerstellen der Rotorwelle können ebenfalls mit dämpfenden Federpaketen oder dergleichen versehen sein. Diese zum Stand der Technik gehörende Turbomolekularpumpe weist jedoch den Nachteil auf, dass die Dämpfung noch nicht optimiert ist
  • Die Aufgabe ist es, eine Vakuumpumpe vorzustellen, bei der die am Gehäuse auftretenden Schwingungen gegenüber dem Stand der Technik reduziert werden. Zusätzlicher Platzbedarf außerhalb der Pumpe und eine Vergrößerung des Gehäuses sollen vermieden werden.
  • Gelöst wird diese Aufgabe durch die kennzeichnenden Merkmale des ersten Anspruchs. Die weiteren Ansprüche stellen Ausgestaltungsformen dar.
  • Erfindungsgemäß werden die am Gehäuse auftretenden Schwingungen reduziert, indem mindestens ein Teil der elektrisch betriebenen Lager- und Antriebselemente schwingungstechnisch vom Gehäuse der Vakuumpumpe entkoppelt wird. Zu diesen elektrisch betriebenen Lager und Antriebselementen gehört der Motorstator. Die schwingungstechnische Entkopplung wird erreicht, indem der Stator des Antriebs, im Folgenden "Motorstator", elastisch im Gehäuse der Vakuumpumpe aufgehängt wird. Bei Vakuumpumpen mit konventioneller Lagerung kann die schwingungstechnische Entkopplung der Lager vom Gehäuse der Pumpe verbessert werden, indem zwischen Gehäuse und Lager ein Zwischenglied aus einem Material hoher Dichte in elastischem Material aufgehängt wird.
    Bei solchen Vakuumpumpen, die einen Gleichstrommotor als Antrieb haben, der mit Pulsweitenmodulation (PWM) angesteuert wird, wird eine Übertragung der durch die PWM ausgelösten hochfrequenten Schwingungen auf das Gehäuse vermieden.
    Bei leistungsstarken Antrieben muss die im Motorstator auftretende Verlustwärme berücksichtigt werden. Daher wird gemäß der Erfindung der Motorstator schwingungstechnisch vom Gehäuse entkoppelt und trotzdem die wärmetechnische Ankopplung beibehalten. Dazu werden Elemente eingebaut, die keine Schwingungen aber Wärme übertragen. Hierdurch wird eine unzulässige Stauung der Wärme im Motorstator vermieden und trotzdem das am Gehäuse der Pumpe auftretende Maß an Schwingungen reduziert.
  • Die Erfindung soll am Beispiel einer erfindungsgemäß gestalteten Turbomolekularpumpe an Hand der Figuren dargestellt werden.
    Es zeigen:
  • Fig. 1
    Senkrechter Schnitt durch eine Turbomolekularpumpe mit schwingungstechnischer Entkopplung des Antriebes;
    Fig. 2
    schwingungstechnische Entkopplung eines der Rotorlager mit einem Zwischenglied;
    Fig. 3
    schwingungstechnische Entkopplung bei wärmetcchnischer Kopplung des Motorstators;
    Fig. 4
    eine weitere Maßnahme zur Abführung der Wärme vom Motor;
    Fig. 5
    vertikaler Schnitt durch ein aktiv geregeltes Radialmagnetlager.
  • Die erste Figur zeigt eine Turbomolekularpumpe 1 mit einem Gehäuse 2, welches einen Gaseintritt 3 und einen Gasaustritt 4 aufweist. Zwischen dem Gaseintritt und - austritt wird das Gas durch eine pumpaktive Struktur gefördert. Diese Struktur weist rotierende pumpaktive Bauteile 9 und stehende pumpaktive Bauteile 10 auf. Die rotierenden Bauteile 9 sind auf einer Rotorwelle 5 befestigt, beide Teile 5 und 9 bilden zusammen den Rotor der Pumpe. Der Rotor ist mit Lagern 8 drehbar unterstützt. Auf der Rotorwelle sitzt der Motorrotor 6, der zusammen mit dem Motorstator 7 den Antrieb bildet. Erfindungsgemäß ist der Motorstator in elastischen Bauteilen 11 im Gehäuse 2 aufgehängt. Diese elastischen Bauteile können Elastomerringe sein. Eine Verschiebung der Ringe in axialer Richtung kann vermieden werden, indem in Gehäuse und Motorstator Nuten vorgesehen sind, in denen die Ringe mit einem Teil ihres Durchmessers eintauchen.
    Der Motorrotor kann als eine Anordnung von Permanentmagneten ausgebildet sein, so dass sich insgesamt ein Gleichstrommotor ergibt. Vorzugsweise wird die Bestromung des Motorstators dann mit Pulsweitenmodulation durchgeführt.
  • Die durch die Lager übertragenen Schwingungen sind abhängig von der Art der Lager. In Vakuumpumpen, insbesondere Molekularpumpen, kommen verschiedene Lager wie Magnetlager (aktiv und passiv) und Wälzlager zum Einsatz. Letztere erzeugen und übertragen Schwingungen auf das Pumpengehäuse. Eine Ausführungsform der Erfindung reduziert daher die am Lager übertragenen Schwingungen. In Figur 2 ist ein Ausschnitt aus der Vakuumpumpe 1 gezeigt. Die Rotorwelle 5 mit den Permanentmagneten 6 ist durch ein Wälzlager drehbar unterstützt, welches einen auf der Rotorwelle sitzenden inneren Ring 17 und einen äußeren Ring 18 aufweist. Dieser Ring ist in einem Zwischenglied 12 gefasst, welches sich durch elastische Bauteile 11, z.B. Elastomerringe, im Gehäuse 2 abstützt. Dieses Zwischenglied ist aus Material mit hoher Dichte hergestellt, so dass es bei geringer Baugröße eine hohe Masse besitzt und damit schwingungsdämpfend wirkt. Im oberen Teil der Abbildung ist noch der Motorstator 7 zu sehen.
  • Figur 3 zeigt eine Ausführungsform der elastischen Aufhängung des Motorstators. Um den Rotor über den Antrieb in Drehung zu versetzen, muss Energie zugeführt werden, beispielsweise durch Bestromung der Spulen des Motorstators. Dabei wird nicht die gesamte zugeführte elektrische Energie in Rotationsenergie umgesetzt. Ein Teil wird als Verlustwärme frei. Bei Pumpen mit hohem Leistungsbedarf muss eine entsprechend hohe Verlustwärme abgeführt werden. In diesen Fällen ist eine wärmetechnische Ankopplung des Motorstators vorzusehen, bzw. die wärmetechnische Abkopplung zu vermeiden. Die notwendige Maßnahme ist in Figur 3 dargestellt: Zwischen Rotorwelle 5 und Gehäuse 2 der Vakuumpumpe sitzt der Motorstator 7. Die elastischen Bauteile 11 entkoppeln ihn schwingungstechnisch. Es entsteht ein Zwischenraum 15 im Bereich zwischen Motorstator 7, Gehäuse 2 und den elastischen Bauteilen 11. Dieser Bereich wird mit einem gut wärmeleitenden Material 16 gefüllt, das aber keine Schwingungen überträgt. Solche Mittel können beispielsweise hochviskose Flüssigkeiten sein.
  • In einer anderen Ausführungsform kann es sich bei diesen Mitteln um Wärmeleitpaste handeln.
  • In einer weiteren Ausführungsform handelt es sich bei diesen Mitteln um ein Gewebe oder ein Geflecht aus gut wärmeleitendem Material. Beispielsweise kann dieses Gewebe oder Geflecht aus Material mit hohen Kupfer- oder Aluminiumanteilen bestehen.
  • Eine wirksame Kühlung des Motorstators kann auch erreicht werden, indem mindestens ein Kühlkanal im Bereich des Motorstators vorgesehen ist, in dem ein Kühlmittel zirkuliert. Dies ist in Figur 4 dargestellt. Auf dem Motorstator 7 sitzt eine Hülse 19 mit einem gewindeartig um den Motorstator geführten Kühlkanal 20. In diesem Kanal zirkuliert ein Kühlmittel, beispielsweise Wasser, welches durch den Einlass 25 in den Kanal oder die Kanäle ein- und durch den Auslass 26 wieder austritt. Statt dem einfachen Kanal können auch mehrere parallele Kanäle angeordnet sein. Der Motorstator selbst ist mit den elastischen Bauelementen 11 im Gehäuse 2 der Vakuumpumpe aufgehängt.
  • Eine weitere Ausführungsform betrifft solche Vakuumpumpen, deren Lager 8 aktive Magnetlager sind, wobei diese sowohl in axialer als auch in radialer Richtung aktiv sein können. Diese Lager gehören ebenfalls zu den elektrisch betriebenen Lager- und Antriebselementen. Gezeigt ist dies beispielhaft an einem aktiven radialen Magnetlager 24 in Figur 5. In aktiven Magnetlager findet eine Regelung des Stromes in den Steuerspulen 21 statt, wobei mit diesem Strom magnetische Rückstellkräfte erzeugt werden. Diese Kräfte sollen der durch einen Sensor 23 gemessenen Auslenkung der Rotorwelle 5 entgegenwirken. Ein gängiges Verfahren ist die Stromregelung per Pulsweitenmodulation. Die Frequenz dieser Pulsweitenmodulation ist den Stellkräften aufgeprägt, wodurch mechanische Schwingungen an dem Lagerstator 22 auftreten, die auf das Pumpengehäuse 2 übertragen werden. Erfindungsgemäß können diese Schwingungen vermieden werden, indem der Lagerstator in elastischen Bauteilen 11 gelagert wird. Die Amplituden jener Schwingungen, die durch den Lagerstator erzeugt werden, müssen nicht mit denjenigen des Motorstators vergleichbar sein. Abhängig vom gegebenen
  • Fall kann es daher sinnvoll sein, Motorstator und Lagerstator in elastischen Bauelementen (wie bspw. Elastomerringe, Vitonringe, etc.) zu lagern.

Claims (14)

  1. Vakuumpumpe (1) mit einem Gehäuse (2), welches mindestens einen Gaseintritt (3) und Gasaustritt (4) besitzt, mit einer Rotorwelle (5), mit einem Antrieb, der die Rotorwelle in Drehung versetzt und einen Motorrotor (6) auf der Rotorwelle und einen Motorstator (7) umfasst, mit Lagern (8), die die Rotorwelle drehbar unterstützen, mit rotierenden (9) und stehenden (10) pumpaktiven Bauteilen,
    dadurch gekennzeichnet, dass
    der Motorstator ein elektrisch betriebenes Antriebselement ist und durch elastische Bauelemente (11) im Gehäuse gehalten wird, und dass im Zwischenraum (15) zwischen Motorstator (7) und Gehäuse (2) Mittel (16) zur thermischen Ankopplung vorgesehen sind.
  2. Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass mindestens eines der Lager (8) in einem durch elastische Bauelemente gehaltenem Zwischenglied (12) sitzt.
  3. Vakuumpumpe nach Anspruch 2, dadurch gekennzeichnet, dass das Zwischenglied (12) aus einem Material hoher Dichte besteht.
  4. Vakuumpumpe nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass mindestens eines der Lager (8) ein Wälzlager ist.
  5. Vakuumpumpe (1) nach Anspruch 1, dadurch gekennzeichnet, dass mindestens eines der Lager (8) ein aktiv geregeltes Magnetlager ist und zu den elektrisch betriebenen Lager- und Antriebselementen gehört.
  6. Vakuumpumpe nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die elastischen Bauelemente (11) Elastomerringe sind.
  7. Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel (16) zur thermischen Ankopplung hochviskose Flüssigkeiten sind.
  8. Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel Wärmeleitpaste sind.
  9. Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel Gewebe oder Geflechte aus gut wärmeleitendem Material sind.
  10. Vakuumpumpe nach Anspruch 9, dadurch gekennzeichnet, dass das Material Kupfer enthält.
  11. Vakuumpumpe nach Anspruch 9, dadurch gekennzeichnet, dass das Material Aluminium enthält.
  12. Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vakuumpumpe (1) eine Turbomolekularpumpe ist.
  13. Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Motorrotor (6) eine Anordnung von Permanentmagneten ist.
  14. Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens ein Kühlkanal (20) im Bereich des Motorstators (7) angeordnet ist.
EP20050021097 2004-10-19 2005-09-28 Vibrationsarme Vakuumpumpe Active EP1650441B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200410050743 DE102004050743A1 (de) 2004-10-19 2004-10-19 Vibrationsarme Vakuumpumpe

Publications (3)

Publication Number Publication Date
EP1650441A2 EP1650441A2 (de) 2006-04-26
EP1650441A3 EP1650441A3 (de) 2012-04-25
EP1650441B1 true EP1650441B1 (de) 2014-07-30

Family

ID=35506016

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050021097 Active EP1650441B1 (de) 2004-10-19 2005-09-28 Vibrationsarme Vakuumpumpe

Country Status (2)

Country Link
EP (1) EP1650441B1 (de)
DE (1) DE102004050743A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009027872A1 (de) 2009-07-21 2011-01-27 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Anordnung zur akustischen Entkopplung eines Stators eines Elektromotors
DE102011105806A1 (de) * 2011-05-05 2012-11-08 Pfeiffer Vacuum Gmbh Vakuumpumpe mit Rotor
CN102425561B (zh) * 2011-12-05 2014-04-30 北京中科科仪股份有限公司 一种磁悬浮分子泵动平衡方法
CN102425563B (zh) * 2011-12-08 2014-03-12 北京中科科仪股份有限公司 同步抑制磁悬浮分子泵转子次临界振动的方法和***
FR3016294B1 (fr) * 2014-01-14 2019-08-02 Airfan Procede d'optimisation thermique et phonique d'un moteur de production regule de gaz et appareil d'assistance respiratoire correspondant
DE102022214013A1 (de) 2022-12-20 2024-06-20 Robert Bosch Gesellschaft mit beschränkter Haftung Anschlussplatte für eine elektrische Maschine mit einem flexiblen Entkoppelelement

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2249985A1 (de) * 1972-10-12 1974-04-18 Leybold Heraeus Gmbh & Co Kg Turbomolekularpumpe
US3877546A (en) * 1973-04-12 1975-04-15 Airco Inc Lubrication system for vertical spindle motor
DE3239328C2 (de) * 1982-10-23 1993-12-23 Pfeiffer Vakuumtechnik Magnetisch gelagerte Turbomolekularpumpe mit Schwingungsdämpfung
EP0196352A1 (de) * 1985-04-04 1986-10-08 Leybold Aktiengesellschaft Turbomolekular-Vakuumpumpe mit einem Rotor und mindestens einem Wälzlager
DE3537822A1 (de) 1985-10-24 1987-04-30 Leybold Heraeus Gmbh & Co Kg Vakuumpumpe mit gehaeuse und rotor
JP2823412B2 (ja) * 1992-02-21 1998-11-11 ファナック株式会社 電動機の冷却装置
DE19712711A1 (de) 1997-03-26 1998-10-01 Pfeiffer Vacuum Gmbh Dämpfungssystem für magnetisch gelagerte Rotoren
DE19846189A1 (de) * 1998-10-07 2000-04-13 Leybold Vakuum Gmbh Reibungsvakuumpumpe
JP2002123685A (ja) 2000-10-13 2002-04-26 Mitsubishi Electric Corp 情報端末装置
JP2003083249A (ja) * 2001-09-17 2003-03-19 Boc Edwards Technologies Ltd 真空ポンプ

Also Published As

Publication number Publication date
DE102004050743A1 (de) 2006-04-20
EP1650441A2 (de) 2006-04-26
EP1650441A3 (de) 2012-04-25

Similar Documents

Publication Publication Date Title
DE2349033C3 (de) Turbomolekularpumpe
EP1650441B1 (de) Vibrationsarme Vakuumpumpe
EP0414127B1 (de) Magnetgelagerte Vakuumpumpe
DE69525861T2 (de) Vorrichtung zum Speichern und Umwandeln von Energie
DE2337226A1 (de) Vakuumpumpe mit einem im innenraum ihres gehaeuses gelagerten laeufer
EP2017435A2 (de) Turbomaschine mit elektrischer Maschine und Magnetlagern
EP0380744A1 (de) Elektrische Maschine
EP2072755A1 (de) Magnetische Vorrichtung zur Dämpfung von Schaufelschwingungen bei Strömungsmaschinen
DE102012207758A1 (de) Vorrichtung mit wenigstens einem Scheibenläufermotorrotor und Montageverfahren
WO2010023190A1 (de) Elektrische maschine
DE2825400A1 (de) Stroemungsmaschine
DE102017009842A1 (de) Verdichteranordnung zum Betreiben einer Druckluftversorgungsanlage, Druckluftversorgungsanlage, Fahrzeug
EP2276934B1 (de) Umwälzpumpe
DE60319585T2 (de) Vakuumpumpe
EP0656099B1 (de) Verfahren zur überprüfung der betriebsposition des rotierenden systems einer vakuumpumpe, vorzugsweise turbomolekularpumpe
WO2004099622A1 (de) Turbopumpe
DE112011105315B4 (de) Gebläsevorrichtung und Gaslaser-Oszillationsvorrichtung
DE10394240B4 (de) Elektromotor
DE202005013923U1 (de) Anordnung zur Förderung von Fluiden
EP3653884B1 (de) Vakuumpumpe
EP3683449B1 (de) Magnetlager und vakuumgerät
EP3611381B1 (de) Verfahren zur herstellung einer vakuumpumpe
EP3708843A2 (de) Verfahren zur herstellung eines elektromotors oder eines vakuumgeräts mit einem solchen
DE102016214696A1 (de) Elektrischer Scheibenmotor mit Medientrennung im Motorspalt
DE102009033179A1 (de) Elektromagnetische Reibschaltkupplung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WILLIG, MICHAEL

Inventor name: RIPPL, CHRISTOPHER MARK

Inventor name: STANZEL, JOERG

Inventor name: BLECKER, ARMIN

Inventor name: BERNHARDT, HELMUT

Inventor name: REICHHART, ANNELIESE

Inventor name: EBERL, WOLFGANG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/66 20060101AFI20120320BHEP

Ipc: F04D 19/04 20060101ALI20120320BHEP

17P Request for examination filed

Effective date: 20121011

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20130311

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140305

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 680134

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005014457

Country of ref document: DE

Effective date: 20140911

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140730

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141030

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141202

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141031

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141130

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140928

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005014457

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20150504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140928

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 680134

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220727

Year of fee payment: 18

Ref country code: GB

Payment date: 20220831

Year of fee payment: 18

Ref country code: DE

Payment date: 20220707

Year of fee payment: 18

Ref country code: CZ

Payment date: 20220719

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005014457

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230928

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230928