EP1648198B1 - Verfahren und Anordnung zur Erzeugung eines Audiosignals - Google Patents

Verfahren und Anordnung zur Erzeugung eines Audiosignals Download PDF

Info

Publication number
EP1648198B1
EP1648198B1 EP05256227A EP05256227A EP1648198B1 EP 1648198 B1 EP1648198 B1 EP 1648198B1 EP 05256227 A EP05256227 A EP 05256227A EP 05256227 A EP05256227 A EP 05256227A EP 1648198 B1 EP1648198 B1 EP 1648198B1
Authority
EP
European Patent Office
Prior art keywords
sound
audio signal
sound source
channel
loudspeaker array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05256227A
Other languages
English (en)
French (fr)
Other versions
EP1648198A3 (de
EP1648198A2 (de
Inventor
Yoichiro Sony Corporation Sako
Susumu Sony Corporation YABE
Toshiro Sony Corporation Terauchi
Kosei Sony Corporation YAMASHITA
Masayoshi Sony Corporation MIURA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of EP1648198A2 publication Critical patent/EP1648198A2/de
Publication of EP1648198A3 publication Critical patent/EP1648198A3/de
Application granted granted Critical
Publication of EP1648198B1 publication Critical patent/EP1648198B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/403Linear arrays of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2203/00Details of circuits for transducers, loudspeakers or microphones covered by H04R3/00 but not provided for in any of its subgroups
    • H04R2203/12Beamforming aspects for stereophonic sound reproduction with loudspeaker arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/13Application of wave-field synthesis in stereophonic audio systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic

Definitions

  • the present invention contains subject matter related to Japanese Patent Application JP 2004-297093 filed in the Japanese Patent Office on October 12, 2004.
  • a Monitor System based on Wave-Synthesis discloses using wave-synthesis to place (virtual) sound sources in an other position than the actual transducer(s). To decrease the influence of room acoustics, the actual transducers are placed near the listener while the apparent (virtual) sources are positioned at a large distance to create a large listening triangle.
  • WO 2004/047485 discloses an audio playback system which is divided into a central wavefield synthesis module and a multitude of decentrally arranged loudspeaker modules.
  • the division into a central wavefield synthesis module and a multitude of decentralized loudspeaker modules enables the production of audio playback systems that can be scaled with regard to price in order to offer different size systems, which can be scaled in terms of price, for, in particular, cinema playback spaces that vary greatly in size.
  • the present invention relates to a method and apparatus for reproducing an audio signal.
  • a virtual sound source VSS is produced on a line between a left-channel loudspeaker SPL and a right-channel loudspeaker SPR, and sound is perceived as being output from the virtual sound source VSS.
  • a listener is positioned at a vertex of an isosceles triangle whose base is the line between the loudspeakers SPL and SPR, a stereo sound field with the balanced right and left outputs is realized.
  • the best stereo effects are given to the listener who is at a vertex P0 of an equilateral triangle (see PCT Japanese Translation Patent Publication No. 2002-505058 ).
  • the listener is not always at the best listening point P0.
  • some listeners may be near either loudspeaker.
  • Such listeners can listen to unnatural sound that is unbalanced sound in which reproduced sound in either channel is emphasized.
  • a method for reproducing an audio signal is defined by appended claim 1 and an apparatus for reproducing an audio signal is defined by appended claim 3.
  • right- and left-channel sound waves are output as parallel plane waves from loudspeakers. Therefore, sound can be reproduced at the same volume level throughout a listening area for each channel of sound waves, and the listener can listen to right- and left-channel sound with balanced volume levels throughout this listening area.
  • a virtual sound source is produced using wavefront synthesis, and the position of the virtual sound source is controlled to propagate left- and right-channel sound waves as parallel plane waves.
  • a closed surface S surrounds a space having an arbitrary shape, and no sound source is included in the closed surface S.
  • the following symbols are used to denote inner and outer spaces of the closed surface S:
  • Eq. (1) means that appropriate control of the sound pressure p(rj) at the point rj on the closed surface S and the particle velocity un(rj) at the point rj in the direction of the normal vector n allows for reproduction of a sound field in the inner space of the closed surface S.
  • a sound source SS is shown in the left portion of Fig. 2A
  • a closed surface SR (indicated by a broken circle) that surrounds a spherical space having a radius R is shown in the right portion of Fig. 2A .
  • a virtual sound source VSS is generated at the position of the sound source SS. Accordingly, the sound pressure and particle velocity on the closed surface SR are appropriately controlled, thereby allowing a listener within the closed surface SR to perceive sound as if the virtual sound source VSS were at the position of the sound source SS.
  • a planar surface SSR rather than the closed surface SR is defined, as indicated by a solid line shown in Fig. 2A .
  • a sound field generated in the inner space of the closed surface SR, or generated in the region right to the planar surface SSR, by the sound source SS can be reproduced without the sound source SS.
  • a virtual sound source VSS is generated at the position of the sound source SS.
  • the planar surface SSR is finite in width, and the sound pressure and particle velocity at finite points CP1 to CPx on the planar surface SSR are controlled.
  • control points the points CP1 to CPx at which the sound pressure and the particle velocity on the planar surface SSR are controlled are referred to as "control points”.
  • planar surface SSR is referred to as a "wavefront-synthesis surface.”
  • Figs. 4A and 4B show exemplary computer-based simulations of wavefront synthesis. Although processing of an audio signal supplied to the loudspeakers SP1 to SPm is discussed below, the simulations are performed using the following values:
  • the distance between the control points CP1 to CPx is not more than 1/4 to 1/5 of the wavelength corresponding to the sampling frequency in order to suppress sampling interference.
  • a sampling frequency of 8 kHz is provided, and the distance between the control points CP1 to CPx is 1.3 cm, as described above.
  • the sound waves output from the loudspeakers SP1 to SPm are reproduced using wavefront synthesis as if they were output from the virtual sound source VSS, and a clear wave pattern is shown in the listening area. That is, wavefront synthesis is appropriately performed to produce a target virtual sound source VSS and a sound field.
  • the position of the virtual sound source VSS is 1 m in front of the listening area, and the virtual sound source VSS is relatively close to the wavefront-synthesis surface SSR.
  • the curvature of the wave pattern is therefore small.
  • the position of the virtual sound source VSS is 3 m in front of the listening area, and the virtual sound source VSS is farther from the wavefront-synthesis surface SSR than that shown in Fig. 4A .
  • the curvature of the wave pattern is therefore larger than that shown in Fig. 4A .
  • the sound waves become closer to the parallel plane waves as the virtual sound source VSS is farther from the wavefront-synthesis surface SSR.
  • a virtual sound source VSS is produced based on the outputs from the loudspeakers SP1 to SPm using wavefront synthesis.
  • the virtual sound source VSS is placed at an infinite distance from the loudspeakers SP1 to SPm (the wavefront-synthesis surface SSR), and is placed on the acoustic axis in the center of the loudspeakers SP1 to SPm.
  • a sound wave (wave pattern) SW obtained by wavefront synthesis also has an infinite curvature, and the sound wave SW propagates as parallel plane waves along the acoustic axes of the loudspeakers SP1 to SPm.
  • the virtual sound source VSS when the virtual sound source VSS is placed at an infinite distance from the loudspeakers SP1 to SPm, if the position of the virtual sound source VSS is offset from the central acoustic axis of the loudspeakers SP1 to SPm, the sound wave SW obtained by wavefront synthesis propagates as parallel plane waves, and the angle ⁇ defined between the propagation direction of the sound wave SW and the acoustic axis of the loudspeakers SP1 to SPm is set to ⁇ ⁇ 0.
  • the angle ⁇ is referred to as a "yaw angle.”
  • ⁇ > 0 is set for the counterclockwise direction in the left channel
  • ⁇ ⁇ 0 is set for the clockwise direction in the right channel.
  • the sound wave SW shown in Figs. 5A and 5B includes parallel plane waves, the sound wave SW has the same sound pressure throughout a sound field generated by the sound wave SW, and there is no difference in sound pressure level. Therefore, the volume levels are the same throughout the sound field of the sound wave SW.
  • the transfer function C( ⁇ ) is defined by determining transfer functions from the loudspeakers SP1 to SPm to the control points CP1 to CPx.
  • a generation circuit for generating the reproduced audio signal q( ⁇ ) from the original audio signal u( ⁇ ) according to the wavefront synthesis algorithm described in the previous section may have an example structure shown in Fig. 7 .
  • This generation circuit is provided for each of the loudspeakers SP1 to SPm, and generation circuits WF1 to WFm are provided.
  • the original digital audio signal u( ⁇ ) is sequentially supplied to digital filters 12 and 13 via an input terminal 11 to generate the reproduced audio signal q( ⁇ ), and the signal q( ⁇ ) is supplied to the corresponding loudspeaker in the loudspeakers SP1 to SPm via an output terminal 14.
  • the generation circuits WF1 to WFm may be digital signal processors (DSPs).
  • the virtual sound source VSS is produced based on the outputs of the loudspeakers SP1 to SPm.
  • the virtual sound source VSS can be placed at an infinite distance from the loudspeakers SP1 to SPm by setting the transfer functions C( ⁇ ) and H( ⁇ ) of the filters 12 and 13 to predetermined values.
  • the yaw angle ⁇ can be changed by changing the transfer functions C( ⁇ ) and H( ⁇ ) of the filters 12 and 13.
  • Fig. 8 shows a reproduction apparatus according to a first example not embodying the present invention.
  • the reproduction apparatus produces the virtual sound source VSS according to the procedure described in the previous sections (Sections [1] to [6]), and sets the position of the virtual sound source VSS at an infinite distance from the wavefront-synthesis surface SSR.
  • the loudspeakers SP1 to SP24 are horizontally placed in front of the listener to produce a loudspeaker array.
  • a left-channel digital audio signal uL( ⁇ ) and a right-channel digital audio signal uR( ⁇ ) are obtained from a signal source SC, such as a compact disc (CD) player, a digital versatile disc (DVD) player, or a digital broadcasting tuner.
  • the signal uL( ⁇ ) is supplied to generation circuits WF1 to WF12 to generate reproduced audio signals q1( ⁇ ) to q12( ⁇ ) corresponding to the reproduced audio signal q( ⁇ ).
  • the signal uR( ⁇ ) is supplied to generation circuits WF13 to WF24 to generate reproduced audio signals q13( ⁇ ) to q24( ⁇ ) corresponding to the reproduced audio signal q( ⁇ ).
  • the signals q1( ⁇ ) to q12( ⁇ ) and q13( ⁇ ) to q24( ⁇ ) are supplied to digital-to-analog (D/A) converter circuits DA1 to DA12 and DA13 to DA24, and are converted into analog audio signals L1 to L12 and R13 to R24.
  • the signals L1 to L12 and R13 to R24 are supplied to loudspeakers SP1 to SP12 and SP13 to SP24 via power amplifiers PA1 to PA12 and PA13 to PA24.
  • the reproduction apparatus further includes a microcomputer 21 serving as a position setting circuit for setting the position of the virtual sound source VSS at an infinite distance.
  • the microcomputer 21 has data D ⁇ for setting the yaw angle ⁇ .
  • the yaw angle ⁇ can be changed in steps of 5° up to, for example, 45° from 0°.
  • the microcomputer 21 therefore includes 24 ⁇ 10 data sets D ⁇ which correspond to the number of signals q1( ⁇ ) to q24( ⁇ ), i.e., 24, and the number of yaw angles ⁇ that can be set, i.e., 10, and one of these data sets D ⁇ is selected by operating an operation switch 22.
  • the selected data set D ⁇ is supplied to the digital filters 12 and 13 in each of the generation circuits WF1 to WF24, and the transfer functions H( ⁇ ) and C( ⁇ ) of the digital filters 12 and 13 are controlled.
  • the left-channel digital audio signal uL( ⁇ ) output from the signal source SC is converted by the generation circuits WF1 to WF12 into the signals q1( ⁇ ) to q12( ⁇ ), and the audio signals L1 to L12 into which the signals q1( ⁇ ) to q12( ⁇ ) are digital-to-analog converted are supplied to the loudspeakers SP1 to SP12. Therefore, as shown in Figs. 9A and 9B , a left-channel sound wave SWL is output as parallel plane waves from the loudspeakers SP1 to SP12. Likewise, based on the right-channel digital audio signal uR( ⁇ ), a right-channel sound wave SWR is output as parallel plane waves from the loudspeakers SP13 to SP24.
  • the listener can therefore listen to the audio signals uL( ⁇ ) and uR( ⁇ ) output from the signal source SC in stereo.
  • the volume levels in the left channel are the same throughout the listening area for the left-channel sound wave SWL, and the volume levels in the right channel are the same throughout the listening area for the right-channel sound wave SWR.
  • the volume levels in the left channel and the volume levels in the right channel are the same throughout this listening area. Therefore, the listener can listen to right- and left-channel sound with balanced volume levels throughout this listening area.
  • the listening point is not limited to a specific point, and the listener can listen to sound at any place.
  • the sound can also be spatialized.
  • the characteristics of the filters 12 and 13 in each of the generation circuits WF1 to WF24 are controlled according to the data D ⁇ .
  • the yaw angle ⁇ is changed in steps of 5° up to 45° from 0° depending on the data D ⁇ .
  • Figs. 9A and 9B show that the yaw angle ⁇ is large and small, respectively.
  • the yaw angle ⁇ is changed to change the listening areas for the sound waves SWL and SWR depending on the listener or listeners, thereby providing a desired sound field.
  • Fig. 10 shows a reproduction apparatus according to a second example not embodying the present invention.
  • the area in which the sound waves SWL and SWR output from the virtual sound source VSS propagate as parallel plane waves is wider than that in the first example described in the previous section (Section [7]).
  • Left- and right-channel digital audio signals uL( ⁇ ) and uR( ⁇ ) are obtained from a signal source SC.
  • the signal uL( ⁇ ) is supplied to generation circuits WF1 to WF24 to generate reproduced audio signals q1( ⁇ ) to q24( ⁇ ) corresponding to the reproduced audio signal q( ⁇ ).
  • the signals q1( ⁇ ) to q24( ⁇ ) are supplied to adding circuits AC1 to AC24.
  • the signal uR( ⁇ ) is supplied to generation circuits WF25 to WF48 to generate reproduced audio signals q25( ⁇ ) to q48( ⁇ ) corresponding to the reproduced audio signal q( ⁇ ), and the signals q25( ⁇ ) to q48( ⁇ ) are supplied to the adding circuits AC24 to AC1.
  • the adding circuits AC1 to AC24 output added signals S1 to S24 of the signals q1( ⁇ ) to q24( ⁇ ) and q25( ⁇ ) to q48( ⁇ ).
  • S ⁇ 24 q ⁇ 24 ⁇ + q ⁇ 48 ⁇
  • the added signals S1 to S24 are supplied to D/A converter circuits DA1 to DA24, and are converted into analog audio signals.
  • the analog signals are supplied to the loudspeakers SP1 to SP24 via power amplifiers PA1 to PA24.
  • the reproduction apparatus further includes a microcomputer 21 serving as a position setting circuit for setting the position of the virtual sound source VSS at an infinite distance.
  • the microcomputer 21 has data D ⁇ for setting the yaw angle ⁇ . If the yaw angle ⁇ can be changed in steps of 5° up to, for example, 45° from 0°, the microcomputer 21 includes 48 ⁇ 10 data sets D ⁇ which correspond to the number of signals q1( ⁇ ) to q48( ⁇ ), i.e., 48, and the number of yaw angles ⁇ that can be set, i.e., 10, and one of these data sets D ⁇ is selected by operating an operation switch 22.
  • the selected data set D ⁇ is supplied to the digital filters 12 and 13 in each of the generation circuits WF1 to WF24, and the transfer functions H( ⁇ ) and C( ⁇ ) of the digital filters 12 and 13 are controlled.
  • the added signals S1 to S24 are added signals of the reproduced audio signals q1( ⁇ ) to q24( ⁇ ) in the left channel and the reproduced audio signals q48( ⁇ ) to q25( ⁇ ) in the right channel, as shown in Fig. 11A or 11B , a left-channel sound wave SWL and a right-channel sound wave SWR are linear added and output from the loudspeakers SP1 to SP24.
  • Fig. 11A or 11B show that the yaw angles ⁇ is large and small, respectively.
  • the reproduction apparatus can also output the left- and right-channel sound waves SWL and SWR as parallel plane waves, thereby allowing the listener to listen to the audio signals uL( ⁇ ) and uR( ⁇ ) output from the signal source SC in stereo.
  • the listener can also listen to right- and left-channel sound with balanced levels throughout an area in which the sound waves SWL and SWR overlap each other in Figs. 11A and 11B .
  • the area in which the sound waves SWL and SWR output from the virtual sound source VSS propagate as parallel plane waves is wider than that shown in Figs. 9A and 9B , thereby allowing the listener to listen to right- and left-channel sound with balanced levels in a wider area.
  • Fig. 12 shows exemplary application of parallel-planewave stereo reproduction to three-channel stereo reproduction in the right, left, and center channels.
  • Such three-channel stereo reproduction can be implemented by combining the surround right and surround left (or rear right and rear left) channels into the front right and front left channels in five-channel stereo reproduction.
  • analog signals of the reproduced audio signals q1( ⁇ ) to q8( ⁇ ) in the left channel are supplied to eight left-channel loudspeakers SP1 to SP8 in the loudspeakers SP1 to SP24, analog signals of the reproduced audio signals q9( ⁇ ) to q16( ⁇ ) in the center channel are supplied to eight center-channel loudspeakers SP9 to SP16, and analog signals of the reproduced audio signals q17( ⁇ ) to q24( ⁇ ) in the right channel are supplied to eight right-channel loudspeakers SP17 to SP24.
  • the reproduced audio signals q1( ⁇ ) to q8( ⁇ ), q9( ⁇ ) to q16( ⁇ ), and q17( ⁇ ) to q24( ⁇ ) are generated in the manner described above.
  • Figs. 12A and 12B therefore, left- and right-channel sound waves SWL and SWR are obtained as parallel plane waves, and a center-channel sound wave SWC is obtained as parallel plane waves.
  • the yaw angle ⁇ of the sound waves SWL and SWR can be changed in the manner shown in, for example, as shown in Fig. 12A or 12B.
  • Fig. 12A or 12B show that the yaw angles ⁇ is large and small, respectively.
  • Fig. 13 shows that parallel plane waves output from loudspeakers SP1 to SP24 are reflected on wall surfaces to direct the reflected waves to a listener.
  • analog signals of the reproduced audio signals q13( ⁇ ) to q24( ⁇ ) in the right channel are supplied to left-channel loudspeakers SP1 to SP12 in the loudspeakers SP1 to SP24, and a right-channel sound wave SWR is output as parallel plane waves.
  • the sound wave SWR is reflected on a right wall surface WR.
  • Analog signals of the reproduced audio signals q1( ⁇ ) to q12( ⁇ ) in the left channel are supplied to right-channel loudspeakers SP13 to SP24 in the loudspeakers SP1 to SP24, and a left-channel sound wave SWL is output as parallel plane waves.
  • the sound wave SWL is reflected on a left wall surface WL.
  • a sound field is produced by the sound waves SWL and SWR reflected on the wall surfaces WL and WR.
  • a loudspeaker array may be a collection of loudspeakers placed in a vertical plane into a matrix having a plurality of rows by a plurality of columns. While the loudspeakers SP1 to SPm and the wavefront-synthesis surface SSR have been parallel to each other, they may not necessarily be parallel to each other. The loudspeakers SP1 to SPm may not be placed in a line or in a plane.
  • the loudspeakers SP1 to SPm may be placed in a cross-like or inverted T-shaped configuration.
  • the loudspeakers SP1 to SPm may be placed on the left, right, top and bottom of a display in a frame-like configuration, or may be placed on the bottom or top, left, and right of the display in a U-shaped or inverted U-shaped configuration.
  • An embodiment of the present invention can also be applied to a rear loudspeaker or a side loudspeaker, or to a loudspeaker system adapted to output sound waves in the vertical direction.
  • An embodiment of the present invention can be combined with a general two-channel stereo or 5.1-channel audio system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Multimedia (AREA)
  • Stereophonic System (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Claims (4)

  1. Verfahren zur Wiedergabe eines Audiosignals, aufweisend die Schritte:
    Zuführten eines ersten Audiosignals (q13-q24) zu einem ersten Lautsprecherarray (SP1-SP12), um eine Wellenfrontsynthese auszuführen,
    Erzeugen einer ersten virtuellen Tonquelle in einer unendlichen Distanz unter Benutzung der Wellenfrontsynthese,
    Zuführen eines zweiten Audiosignals (q1-q12) zu einem zweiten Lautsprecherarray (SP13-SP24), um eine Wellenfrontsynthese auszuführen, und
    Erzeugen einer zweiten virtuellen Tonquelle in einer unendlichen Distanz unter Benutzung der Wellenfrontsynthese,
    wobei eine Ausbreitungsrichtung einer von der ersten virtuellen Tonquelle erhaltenen ersten Tonwelle (SWR) und eine Ausbreitungsrichtung einer von der zweiten virtuellen Tonquelle erhaltenen zweiten Tonwelle (SWL) einander kreuzen,
    wobei
    das erste Audiosignal (q13-q24) mit einem Rechtskanalton korrespondiert und das zweite Audiosignal (q1-q12) mit einem Linkskanalton korrespondiert,
    gekennzeichnet durch
    Anordnen des zweiten Lautsprecherarrays (SP13-SP24) aus der Perspektive eines intendierten Hörers rechts vom ersten Lautsprecherarray (SP1-SP12) und
    Reflektieren der ersten Tonwelle (SWR) an einer rechten Wandfläche (WR) und Reflektieren der zweiten Tonwelle (SWL) an einer linken Wandfläche (WL), um durch die reflektierten Tonwellen ein Tonfeld für den Hörer zu erzeugen.
  2. Verfahren nach Anspruch 1, wobei ein durch die Ausbreitungsrichtung der ersten Tonwelle (SWR) und die Ausbreitungsrichtung der zweiten Tonwelle (SWL), die einander kreuzen, definierter Winkel variabel ist.
  3. Vorrichtung zur Wiedergabe eines Audiosignals, aufweisend:
    eine erste Verarbeitungsschaltung, die geeignet ist zum Verarbeiten eines ersten Audiosignals (q13-q24), das einem ersten Lautsprecherarray (SP1-SP12) zugeführt wird, so dass eine erste virtuelle Tonquelle auf Basis von Tonwellen (SWR), die vom ersten Lautsprecherarray (SP1-SP12) ausgegeben werden, unter Benutzung einer Wellenfrontsynthese erzeugt wird, und
    eine erste Einstellungsschaltung, die geeignet ist zum Einstellen der Position der ersten virtuellen Tonquelle,
    wobei die erste Einstellungsschaltung die Position der ersten virtuellen Tonquelle auf eine unendliche Distanz einstellt und dadurch parallele ebene Wellen vom ersten Lautsprecherarray (SP1-SP12) ausgibt, wobei
    die Vorrichtung weiter aufweist:
    eine zweite Verarbeitungsschaltung, die geeignet ist zum Verarbeiten eines zweiten Audiosignals (q1-q12), das einem zweiten Lautsprecherarray (SP13-SP24) zugeführt wird, so dass eine zweite virtuelle Tonquelle auf Basis von Tonwellen (SWL), die vom zweiten Lautsprecherarray (SP13-SB24) ausgegeben werden, unter Benutzung einer Wellenfrontsynthese erzeugt wird, und
    eine zweite Einstellungsschaltung, die geeignet ist zum Einstellen der Position der zweiten virtuellen Tonquelle auf eine unendliche Distanz,
    wobei eine Ausbreitungsrichtung der von der ersten virtuellen Tonquelle erhaltenen ersten Tonwelle (SWR) und eine Ausbreitungsrichtung einer von der zweiten virtuellen Tonquelle erhaltenen zweiten Tonwelle (SWL) einander kreuzen,
    wobei das erste Audiosignal (q13-q24) mit einem Rechtskanalton korrespondiert und das zweite Audiosignal (q1-q12) mit einem Linkskanalton korrespondiert,
    dadurch gekennzeichnet, dass
    das zweite Lautsprecherarray (SP13-SP24) aus der Perspektive eines intendierten Hörers rechts vom ersten Lautsprecherarray (SP1-SP12) angeordnet ist und
    wobei die Ausbreitungsrichtungen so eingestellt sind, dass die erste Tonwelle (SWR) an einer rechten Wandfläche (WR) reflektiert wird und die zweite Tonwelle (SWL) an einer linken Wandfläche (WL) reflektiert wird, um durch die reflektierten Tonwellen ein Tonfeld für den Hörer zu erzeugen.
  4. Vorrichtung nach Anspruch 3, wobei die erste Einstellungsschaltung und die zweite Einstellungsschaltung einen durch die Ausbreitungsrichtung der ersten Tonwelle (SWR) und die Ausbreitungsrichtung der zweiten Tonwelle (SWL), die einander kreuzen, definierten Winkel ändern.
EP05256227A 2004-10-12 2005-10-05 Verfahren und Anordnung zur Erzeugung eines Audiosignals Expired - Fee Related EP1648198B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004297093A JP4625671B2 (ja) 2004-10-12 2004-10-12 オーディオ信号の再生方法およびその再生装置

Publications (3)

Publication Number Publication Date
EP1648198A2 EP1648198A2 (de) 2006-04-19
EP1648198A3 EP1648198A3 (de) 2009-02-25
EP1648198B1 true EP1648198B1 (de) 2012-08-08

Family

ID=35539149

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05256227A Expired - Fee Related EP1648198B1 (de) 2004-10-12 2005-10-05 Verfahren und Anordnung zur Erzeugung eines Audiosignals

Country Status (5)

Country Link
US (1) US7801313B2 (de)
EP (1) EP1648198B1 (de)
JP (1) JP4625671B2 (de)
KR (1) KR101177853B1 (de)
CN (1) CN1761368B (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006115396A (ja) * 2004-10-18 2006-04-27 Sony Corp オーディオ信号の再生方法およびその再生装置
GB0514361D0 (en) * 2005-07-12 2005-08-17 1 Ltd Compact surround sound effects system
DE102005033239A1 (de) * 2005-07-15 2007-01-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Steuern einer Mehrzahl von Lautsprechern mittels einer graphischen Benutzerschnittstelle
DE102005033238A1 (de) * 2005-07-15 2007-01-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Ansteuern einer Mehrzahl von Lautsprechern mittels eines DSP
JP4449998B2 (ja) * 2007-03-12 2010-04-14 ヤマハ株式会社 アレイスピーカ装置
JP4488036B2 (ja) 2007-07-23 2010-06-23 ヤマハ株式会社 スピーカアレイ装置
JP5577597B2 (ja) 2009-01-28 2014-08-27 ヤマハ株式会社 スピーカアレイ装置、信号処理方法およびプログラム
JP4810621B1 (ja) * 2010-09-07 2011-11-09 シャープ株式会社 音声信号変換装置、方法、プログラム、及び記録媒体
JP5720158B2 (ja) * 2010-09-22 2015-05-20 ヤマハ株式会社 バイノーラル録音された音信号の再生方法および再生装置
WO2013057948A1 (ja) * 2011-10-21 2013-04-25 パナソニック株式会社 音響レンダリング装置および音響レンダリング方法
EP2971393A4 (de) 2013-03-15 2016-11-16 Richard O'polka Tragbares audiosystem
US10149058B2 (en) 2013-03-15 2018-12-04 Richard O'Polka Portable sound system
CN103347245B (zh) * 2013-07-01 2015-03-25 武汉大学 一种立体声***中恢复声源方位信息的方法与装置
DE102013013378A1 (de) 2013-08-10 2015-02-12 Advanced Acoustic Sf Gmbh Aufteilung virtueller Schallquellen
USD740784S1 (en) 2014-03-14 2015-10-13 Richard O'Polka Portable sound device
JP6228945B2 (ja) * 2015-02-04 2017-11-08 日本電信電話株式会社 音場再生装置、音場再生方法、プログラム
EP3266224B1 (de) * 2015-04-08 2021-05-19 Huawei Technologies Co., Ltd. Vorrichtung und verfahren zur ansteuerung einer gruppe von lautsprechern
US10531196B2 (en) * 2017-06-02 2020-01-07 Apple Inc. Spatially ducking audio produced through a beamforming loudspeaker array
CN109151661B (zh) * 2018-09-04 2020-02-28 音王电声股份有限公司 一种环屏扬声器阵列及虚拟声源的形成方法
JP2023131544A (ja) * 2022-03-09 2023-09-22 カシオ計算機株式会社 音響出力装置、音響出力方法、およびプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132499A (ja) * 1990-09-25 1992-05-06 Matsushita Electric Ind Co Ltd 音像制御装置
AU735333B2 (en) * 1997-06-17 2001-07-05 British Telecommunications Public Limited Company Reproduction of spatialised audio
DE19739425A1 (de) * 1997-09-09 1999-03-11 Bosch Gmbh Robert Verfahren und Anordnung zur Wiedergabe eines sterophonen Audiosignals
US7577260B1 (en) * 1999-09-29 2009-08-18 Cambridge Mechatronics Limited Method and apparatus to direct sound
GB2376595B (en) * 2001-03-27 2003-12-24 1 Ltd Method and apparatus to create a sound field
US7706544B2 (en) * 2002-11-21 2010-04-27 Fraunhofer-Geselleschaft Zur Forderung Der Angewandten Forschung E.V. Audio reproduction system and method for reproducing an audio signal
DE10254404B4 (de) * 2002-11-21 2004-11-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audiowiedergabesystem und Verfahren zum Wiedergeben eines Audiosignals
JP2004297093A (ja) 2004-07-15 2004-10-21 Matsushita Electric Ind Co Ltd 電子部品およびその実装方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Speaker Placement", 10 October 2004 (2004-10-10), Retrieved from the Internet <URL:http://web.archive.org/web/20041010051626/http://www.gcaudio.com/resources/howtos/speakerplacement.html> [retrieved on 20100201] *
BAUER, BENJAMIN B.: "Broadening the area of stereophonic perception", JOURNAL OF THE AUDIO ENGINEERING SOCIETY, vol. 8, no. 2, 1 April 1960 (1960-04-01), pages 91 - 94, XP040375010 *
KATES, JAMES M.: "Optimum loudspeaker directional patterns", JOURNAL OF THE AUDIO ENGINEERING SOCIETY, AUDIO ENGINEERING SOCIETY, NEW YORK, NY, US, vol. 28, no. 11, 1 November 1980 (1980-11-01), pages 787 - 794, XP000761716, ISSN: 1549-4950 *

Also Published As

Publication number Publication date
KR101177853B1 (ko) 2012-08-28
US20060078132A1 (en) 2006-04-13
US7801313B2 (en) 2010-09-21
CN1761368B (zh) 2010-09-29
EP1648198A3 (de) 2009-02-25
EP1648198A2 (de) 2006-04-19
KR20060052141A (ko) 2006-05-19
JP4625671B2 (ja) 2011-02-02
JP2006114945A (ja) 2006-04-27
CN1761368A (zh) 2006-04-19

Similar Documents

Publication Publication Date Title
EP1648198B1 (de) Verfahren und Anordnung zur Erzeugung eines Audiosignals
US8130988B2 (en) Method and apparatus for reproducing audio signal
US9014404B2 (en) Directional electroacoustical transducing
EP2206365B1 (de) Verfahren und Vorrichtung für erhöhte Klangfeldwiedergabepräzision in einem bevorzugten Zuhörbereich
JP4633870B2 (ja) オーディオ信号処理方法
KR102024284B1 (ko) 통합 또는 하이브리드 사운드-필드 제어 전략을 적용하는 방법
US20040105550A1 (en) Directional electroacoustical transducing
JP2008227803A (ja) アレイスピーカ装置
Zotter et al. A beamformer to play with wall reflections: The icosahedral loudspeaker
JP2009077379A (ja) 立体音響再生装置、立体音響再生方法及びコンピュータプログラム
EP2759148A1 (de) Verfahren und vorrichtung zur erzeugung eines akustischen signals mit verbessertem räumlichem effekt
Novo Auditory virtual environments
US9066173B2 (en) Method for producing optimum sound field of loudspeaker
Chung et al. Sound reproduction method by front loudspeaker array for home theater applications
JP4407467B2 (ja) 音響シミュレーション装置、音響シミュレーション方法、および音響シミュレーションプログラム
Smith III A spatial sampling approach to wave field synthesis: PBAP and huygens arrays
Jin A tutorial on immersive three-dimensional sound technologies
WO2022181678A1 (ja) 音響システム
Geronazzo Sound Spatialization.
Sakamoto et al. Sound field recording using distributed spherical microphone arrays based on a virtual spherical model
Becker Franz Zotter, Markus Zaunschirm, Matthias Frank, and Matthias Kronlachner
Talone Multichannel signal reproduction optimization by means of dipole steering technique in a domestic non-treated environment
JP2010263295A (ja) スピーカ装置及び音の再生方法
De Sena et al. Introduction to Sound Field Recording and Reproduction
Carty Multi-channel and binaural spatial audio: an overview and possibilities of a unified system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20090130

17Q First examination report despatched

Effective date: 20090401

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD AND APPARATUS FOR REPRODUCING AN AUDIO SIGNAL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005035500

Country of ref document: DE

Effective date: 20121011

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005035500

Country of ref document: DE

Effective date: 20130510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602005035500

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20150421

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602005035500

Country of ref document: DE

Effective date: 20150410

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201022

Year of fee payment: 16

Ref country code: FR

Payment date: 20201021

Year of fee payment: 16

Ref country code: GB

Payment date: 20201022

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005035500

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211005

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031