EP1612257A2 - Kraftstoffzusammensetzung - Google Patents

Kraftstoffzusammensetzung Download PDF

Info

Publication number
EP1612257A2
EP1612257A2 EP05019565A EP05019565A EP1612257A2 EP 1612257 A2 EP1612257 A2 EP 1612257A2 EP 05019565 A EP05019565 A EP 05019565A EP 05019565 A EP05019565 A EP 05019565A EP 1612257 A2 EP1612257 A2 EP 1612257A2
Authority
EP
European Patent Office
Prior art keywords
groups
gasoline
additive
fuel composition
mono
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05019565A
Other languages
English (en)
French (fr)
Inventor
Harald Schwahn
Dietmar Posselt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1612257A2 publication Critical patent/EP1612257A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/08Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1966Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1985Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/23Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites
    • C10L1/231Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites nitro compounds; nitrates; nitrites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2364Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amide and/or imide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2431Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
    • C10L1/2437Sulfonic acids; Derivatives thereof, e.g. sulfonamides, sulfosuccinic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1616Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/1641Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aliphatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • C10L1/1905Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • C10L1/191Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polyhydroxyalcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • C10L1/2225(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates hydroxy containing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides

Definitions

  • the present invention relates to a fuel composition
  • a fuel composition comprising in a larger amount a specific gasoline fuel and in a smaller amount selected gasoline additives, in particular detergent additives having at least one polar grouping selected from the groups (a), (b), (c), (g ), (h) and (i).
  • Carburettors and intake systems of gasoline engines, as well as injection systems for fuel metering, are increasingly burdened by contaminants caused by dust particles from the air, unburned hydrocarbon residues from the combustion chamber and the crankcase vent gases directed into the gasifier.
  • valve seat wear-inhibiting additives based on alkali metal or alkaline earth metal compounds have been developed.
  • Modern gasoline engines require for a trouble-free use fuels with a complex property profile, which can be guaranteed only in combination with appropriate gasoline additives.
  • Such gasoline fuels usually consist of a complex mixture of chemical compounds and are characterized by physical quantities.
  • the interaction between gasoline fuels and corresponding additives is still in need of improvement in the case of the known fuel compositions with regard to the cleaning and / or retention effect and the valve seat wear-inhibiting effect.
  • the object of the present invention was therefore to find a more effective gasoline-petrol fuel additive composition.
  • the aromatic content of the gasoline is preferably not more than 40% by volume, in particular not more than 38% by volume. Preferred ranges for the aromatic content are from 20 to 42% by volume, in particular from 25 to 40% by volume.
  • the sulfur content of the gasoline is preferably not more than 100 ppm by weight, in particular not more than 50 ppm by weight. Preferred ranges for the sulfur content are from 0.5 to 150 ppm by weight, in particular from 1 to 100 ppm by weight.
  • the gasoline has an olefin content of not more than 21% by volume, preferably not more than 18% by volume, in particular not more than 10% by volume. Preferred ranges for the olefin content are from 6 to 21% by volume, in particular from 7 to 18% by volume.
  • the gasoline has a benzene content of not more than 1.0% by volume, in particular not more than 0.9% by volume.
  • Preferred ranges for the benzene content are from 0.5 to 1.0% by volume, in particular from 0.6 to 0.9% by volume.
  • the gasoline has an oxygen content of at most 2.7 wt .-%, preferably from 0.1 to 2.7 wt .-%, especially from 1.0 to 2.7 wt .-%, in particular from 1.2 to 2.0 wt .-%, on.
  • a gasoline fuel which simultaneously has an aromatics content of not more than 38% by volume, an olefin content of not more than 21% by volume, a sulfur content of not more than 50 ppm by weight, a benzene content of not more than 1.0% by volume and a Having oxygen content of 1.0 to 2.7 wt .-%.
  • the content of alcohols and ethers in gasoline is usually relatively low. Typical maximum contents for methanol are 3% by volume, for ethanol 5% by volume, for isopropanol 10% by volume, for tert-butanol 7% by volume, for isobutanol 10% by volume and for ethers 5 or more C atoms in the molecule 15 vol .-%.
  • the summer vapor pressure of the gasoline is usually not more than 70 kPa, in particular 60 kPa (each at 37 ° C).
  • the research octane number ("RON") of the gasoline is typically 90 to 100.
  • a common range for the corresponding engine octane number (“MOZ”) is 80 to 90.
  • the specified specifications are determined by conventional methods (DIN EN 228).
  • the hydrophobic hydrocarbon radical in the gasoline additives which provides sufficient solubility in the fuel, has a number average molecular weight (M N ) of from 85 to 20,000, especially from 113 to 10,000, especially from 300 to 5,000.
  • M N number average molecular weight
  • monoamino groups (a) containing additives are the compounds obtainable from polyisobutene epoxides by reaction with amines and subsequent dehydration and reduction of the amino alcohols, as described in particular in DE-A 196 20 262.
  • These reaction products typically are mixtures of pure nitropolyisobutanes (e.g., ⁇ , ⁇ -dinitropolyisobutane) and mixed hydroxynitropolyisobutanes (e.g., ⁇ -nitro- ⁇ -hydroxy polyisobutane).
  • Carboxyl groups or their alkali metal or alkaline earth metal salts (d) containing additives are preferably copolymers of C 2 -C 4O- olefins with maleic anhydride having a total molecular weight of 500 to 20,000, the carboxyl groups wholly or partly to the alkali metal or alkaline earth metal salts and a remaining Rest of the carboxyl groups are reacted with alcohols or amines.
  • Such additives are known in particular from EP-A 307 815. Such additives are primarily used to prevent valve seat wear and, as described in WO-A 87/01126, can be advantageously used in combination with conventional fuel detergents such as poly (iso) butenamines or polyetheramines.
  • Sulfonic acid groups or their alkali metal or alkaline earth metal salts (e) containing additives are preferably alkali metal or alkaline earth metal salts of a Sulfobernsteinklakylesters, as described in particular in EP-A 639 632.
  • Such additives are primarily for preventing valve seat wear and can be used to advantage in combination with conventional fuel detergents such as poly (iso) butenamines or polyetheramines.
  • Polyoxy-C 2 - to C 4 -alkylene (f) additives are preferably polyethers or polyetheramines which are obtainable by reaction of C 2 - to C 60 alkanols, C 6 - to C 30 alkanediols, mono- or di-C 2 C 30 -alkylamines, C 1 -C 30 -alkylcyclohexanols or C 1 -C 30 -alkylphenols with 1 to 30 mol of ethylene oxide and / or propylene oxide and / or butylene oxide per hydroxyl group or amino group and, in the case of polyetheramines, by subsequent reductive amination with ammonia, monoamines or polyamines are available.
  • Such products are described in particular in EP-A 310 875, EP-A 356 725, EP-A 700 985 and US-A 4,877,416.
  • polyethers such products also meet carrier oil properties. Typical examples of these are tridecanol or Isotridecanolbutoxylate, Isononylphenolbutoxylate and Polyisobutenolbutoxylate and propoxylates and the corresponding reaction products with ammonia.
  • Carboxylic ester groups (g) containing additives are preferably esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, especially those having a minimum viscosity of 2 mm 2 / s at 100 ° C, as described in particular in DE-A 38 38 918 are.
  • mono-, di- or tricarboxylic acids it is possible to use aliphatic or aromatic acids, especially suitable long-chain representatives having, for example, 6 to 24 carbon atoms as ester alcohols or polyols.
  • esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of iso-octanol, iso-nonanol, iso-decanol and of isotridecanol. Such products also meet carrier oil properties.
  • Mannich reaction of substituted phenols with aldehydes and mono- or polyamines generated groupings (i) containing additives are preferably reaction products of polyisobutene-substituted phenols with formaldehyde and mono- or polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine or dimethylaminopropylamine.
  • the polyisobutenyl-substituted Phenols may stem from conventional or highly reactive polyisobutene having an M N of from 300 to 5000th Such "polyisobutene-Mannich bases" are described in particular in EP-A 831 141.
  • the fuel composition of the invention may further contain other conventional components and additives.
  • Suitable solvents or diluents are aliphatic and aromatic hydrocarbons, e.g. Solvent naphtha, into consideration.
  • corrosion inhibitors for example those based on film-forming ammonium salts of organic carboxylic acids or heterocyclic aromatics in non-ferrous metal corrosion protection, antioxidants or stabilizers, for example based on amines such as p-phenylenediamine, dicyclohexylamine or derivatives thereof or on phenols such as 2,4-diester .-butylphenol or 3,5-di-tert-butyl-4-hydroxyphenylpropionic acid, demulsifiers, antistatic agents, metallocenes such as ferrocene or methylcyclopentadienyl manganese tricarbonyl, lubricity additives such as certain fatty acids, alkenyl succinic esters, bis (hydroxyalkyl) fatty amines, hydroxyacetamides or castor oil as well as dyes (markers). Sometimes amines are also added to lower the pH of the fuel.
  • antioxidants or stabilizers for example based on amines such as p-phenyl
  • Typical mixtures of this type contain polyisobutene amines in combination with alkanol-initiated polyethers such as tridecanol or isotridecanol butoxylates or propoxylates, polyisobuteneamines in combination with alkanol-started polyetheramines such as tridecanol or isotridecanol butoxylate ammonia reaction products and alkanol-started polyetheramines such as tridecanol or isotridecaol butoxylate ammonia reaction products in combination with alkanol-started polyethers such as tridecanol or isotridecanol butoxylates or propoxylates, in each case together with the cited corrosion inhibitors or lubricity improvers.
  • alkanol-initiated polyethers such as tridecanol or isotridecanol butoxylates or propoxylates
  • alkanol-started polyetheramines such as tridecanol or
  • the aforementioned gasoline additives with the polar groups (a) to (i) and the other components mentioned are added to the gasoline and unfold their effect there.
  • the components or additives can be added to the gasoline fuel individually or as a previously prepared concentrate ("additive package").
  • gasoline additives with the polar groups (a) to (i) are added to the gasoline usually in an amount of 1 to 5000 ppm by weight, in particular 5 to 3000 ppm by weight, especially 10 to 1000 ppm by weight ,
  • the other components and additives mentioned are added, if desired, in customary amounts.
  • the same cleaning or valve seat wear-inhibiting effect can be obtained as in conventional fuel compositions of the prior art. Furthermore, when using the same amounts of detergent or valve seat wear-inhibiting agent in the inventive fuel composition over conventional fuel compositions surprisingly results in a significantly better cleansing or retaining or valve seat wear-inhibiting effect.
  • the fuel composition according to the invention additionally has the advantage that fewer deposits are formed in the combustion chamber of the gasoline engine and that less additive is added via the fuel dilution in the engine oil.
  • Example 2 Gasoline according to Example 1 was tested for its suitability for intake system cleanliness. This was done with the help of engine tests, which were carried out in test bench tests with a Mercedes-Benz engine according to CEC F-05-A-93. As expected, the inlet valve deposits were significantly reduced compared to the non-additive base value according to Table 2 below.
  • Example 2 Gasoline according to Example 2 was tested for its suitability for intake system cleanliness. This was done with the help of engine tests, which were carried out in test bench trials with a Mercedes-Benz engine CEC F-05-A-93. As expected, the intake valve deposits were significantly reduced compared to the non-additized base value according to Table 2 below. Surprisingly, it has been found that in comparison to Example 13 with the same amount of fuel additive complete purification of the intake valves is achieved.
  • Example 3 Gasoline according to Example 3 was tested for its suitability for inlet system cleanliness. This was done with the help of engine tests in bench tests with a Mercedes-Benz engine CEC F-05-A-93. As expected, the intake valve deposits were significantly reduced compared to the non-additized base value according to Table 2 below.
  • Example 4 Gasoline according to Example 4 was tested for its suitability for intake system cleanliness. This was done with the help of engine tests, which were carried out in test bench trials with a Mercedes-Benz engine CEC F-05-A-93. As expected, the intake valve deposits were significantly reduced compared to the non-additized base value according to Table 2 below. Surprisingly, it has been found that in comparison with Example 15 with the same amount of fuel additive, a virtually complete purification of the intake valves is achieved.
  • Example 5 Gasoline according to Example 5 was tested for its suitability for intake system cleanliness. This was done with the help of engine tests, which were carried out in test bench trials with a Mercedes-Benz engine CEC F-05-A-93. As expected, the intake valve deposits were significantly reduced compared to the non-additized base value according to Table 2 below.
  • Example 6 Gasoline according to Example 6 was tested for its suitability for intake system cleanliness. This was done with the help of engine tests, which were carried out in test bench trials with a Mercedes-Benz engine CEC F-05-A-93. As expected, the intake valve deposits were significantly reduced compared to the non-additized base value according to Table 2 below. Surprisingly, it has been found that in comparison with Example 17 with the same amount of fuel additive, a virtually complete keeping clean of the intake valves is achieved.
  • Example 7 Gasoline according to Example 7 was tested for its suitability for intake system cleanliness. This was done with the help of engine tests, which were carried out in test bench trials with a Mercedes-Benz engine CEC F-05-A-93. As expected, the intake valve deposits were not compared to Additive basic value according to Table 2 below significantly reduced.
  • Example 8 Gasoline according to Example 8 was tested for its suitability for intake system cleanliness. This was done with the help of engine tests, which were carried out in test bench trials with a Mercedes-Benz engine CEC F-05-A-93. As expected, the intake valve deposits were significantly reduced compared to the non-additized base value according to Table 2 below. Surprisingly, it has been found that significantly less fuel additive compared to Example 19 is needed to the same order of magnitude cleanliness of the intake valves.
  • Example 9 Gasoline according to Example 9 was tested for its suitability for intake system cleanliness. This was done with the help of engine tests, which were carried out in test bench trials with a Mercedes-Benz engine CEC F-05-A-93. As expected, the intake valve deposits were significantly reduced compared to the non-additized base value according to Table 2 below.
  • Example 10 Gasoline according to Example 10 was tested for its suitability for intake system cleanliness. This was done with the help of engine tests, which were carried out in test bench trials with a Mercedes-Benz engine CEC F-05-A-93. As expected, the intake valve deposits were significantly reduced compared to the non-additized base value according to Table 2 below. Surprisingly, it was found that in comparison to Example 21 with the same amount of fuel additive significantly better cleanliness of the intake valves is achieved.
  • Gasoline according to Example 11 was tested for its suitability for intake system cleanliness. This was done with the help of engine tests, which were carried out in test bench trials with a Mercedes-Benz engine CEC F-05-A-93. As expected, the intake valve deposits were not compared to Additive basic value according to Table 2 below significantly reduced.
  • Example 12 Gasoline according to Example 12 was tested for its suitability for intake system cleanliness. This was done with the help of engine tests, which were carried out in test bench trials with a Mercedes-Benz engine CEC F-05-A-93. As expected, the intake valve deposits were significantly reduced compared to the non-additized base value according to Table 2 below. Surprisingly, it was found that in comparison to Example 23 with the same amount of fuel additive significantly better cleanliness of the intake valves is achieved.
  • Example 14 700 0 0 0 0 0 0 (239)
  • Example 15 600 19 60 86 34 50 (274)
  • Example 16 600 0 1 0 2 1 (239)
  • Example 17 400 0 75 17 182 69 (402)
  • Example 18 400 0 2 2 0 1 (239)
  • Example 19 750 31 120 111 30 73 (592)
  • Example 20 350 46 68 38 67 55 (239)
  • Example 21 500 181 95 26 68 93 (475)
  • Example 22 500 27 33 14 77 38 (239)
  • Example 23 700 123 12 98 55 72 (558)
  • Example 24 700 82 12 23 22 35 (239) (in brackets the basic value of the non-added fuel)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

Kraftstoffzusammensetzung enthaltend in einer größeren Menge einen Ottokraftstoff mit einem Aromatengehalt von maximal 42 Vol.-% und einem Schwefelgehalt von maximal 150 Gew.-ppm, sowie in einer kleineren Menge mindestens ein Ottokraftstoffadditiv mit Detergenzwirkung oder mit ventilsitzverschleißhemmender Wirkung, wobei dieses Ottokraftstoffadditiv mindestens einen hydrophoben Kohlenwasserstoffrest mit einem zahlengemittelten Molekulargewicht von 85 bis 20 000 und mindestens eine polare Gruppierung aufweist.

Description

  • Die vorliegende Erfindung betrifft eine Kraftstoffzusammensetzung enthaltend in einer größeren Menge einen speziellen Ottokraftstoff sowie in einer kleineren Menge ausgewählte Ottokraftstoffadditive, insbesondere Detergensadditive mit mindestens einer polaren Gruppierung, ausgewählt unter den hierin definierten Gruppen (a), (b), (c), (g), (h) und (i).
  • Vergaser und Einlaßsysteme von Ottomotoren, aber auch Einspritzsysteme für die Kraftstoffdosierung, werden in zunehmendem Maße durch Verunreinigungen belastet, die durch Staubteilchen aus der Luft, unverbrannte Kohlenwasserstoffreste aus dem Brennraum und die in den Vergaser geleiteten Kurbelwellengehäuseentlüftungsgase verursacht werden.
  • Diese Rückstände verschieben das Luft-Kraftstoff-Verhältnis im Leerlauf und im unteren Teillastbereich, so daß das Gemisch magerer, die Verbrennung unvollständiger und wiederum die Anteile unverbrannter oder teilverbrannter Kohlenwasserstoffe im Abgas größer werden und der Benzinverbrauch steigt.
  • Es ist bekannt, daß zur Vermeidung dieser Nachteile Kraftstoffadditive zur Reinhaltung von Ventilen und Vergaser bzw. Einspritzsystemen von Ottomotoren verwendet werden (vgl. z.B.: M.Rossenbeck in Katalysatoren, Tenside, Mineralöladditive, Hrsg. J. Falbe, U. Hasserodt, S. 223, G. Thieme Verlag, Stuttgart 1978).
  • Weiterhin taucht bei Ottomotoren älterer Bauart das Problem des Ventilsitzverschleißes beim Betreiben mit bleifreien Ottokraftstoffen auf. Hiergegen wurden ventilsitzverschleißhemmende Additive auf Basis von Alkali- oder Erdalkalimetallverbindungen entwickelt.
  • Moderne Ottomotoren erfordern für einen störungsfreien Einsatz Kraftstoffe mit einem komplexen Eigenschaftsprofil, das nur in Kombination mit entsprechenden Ottokraftstoffadditiven gewährleistet werden kann. Derartige Ottokraftstoffe bestehen in der Regel aus einem komplexen Gemisch chemischer Verbindungen und sind durch physikalische Größen charakterisiert. Das Zusammenspiel zwischen Ottokraftstoffen und entsprechenden Additiven ist aber bei den bekannten Kraftstoffzusammensetzungen hinsichtlich der reinigenden bzw. reinhaltenden und der ventilsitzverschleißhemmdenden Wirkung noch verbesserungsbedürftig.
  • Aufgabe der vorliegenden Erfindung war es daher, eine wirksamere Ottokraftstoff-Ottokraftstoffadditiv-Zusammensetzung zu finden.
  • Demgemäß wurde eine Kraftstoffzusammensetzung gefunden, welche in einer größeren Menge einen Ottokraftstoff mit einem Aromatengehalt von maximal 42 Vol.-% und einem Schwefelgehalt von maximal 150 Gew.-ppm, sowie in einer kleineren Menge mindestens ein Ottokraftstoffadditiv mit Detergenzwirkung oder mit ventilsitzverschleißhemmender Wirkung, enthält, wobei dieses Ottokraftstoffadditiv mindestens einen hydrophoben Kohlenwasserstoffrest mit einem zahlengemittelten Molekulargewicht (MN) von 85 bis 20 000 und mindestens eine polare Gruppierung ausgewählt aus
    • (a) Mono- oder Polyaminogruppen mit bis zu 6 Stickstoffatomen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat,
    • (b) Nitrogruppen, ggf. in Kombination mit Hydroxylgruppen,
    • (c) Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat,
    • (d) Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen,
    • (e) Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen,
    • (f) Polyoxy-C2- bis C4-alkylengruppierungen, die durch Hydroxylgruppen, Mono- oder Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat, oder durch Carbamatgruppen terminiert sind,
    • (g) Carbonsäureestergruppen,
    • (h) aus Bernsteinsäureanhydrid abgeleitete Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen und
    • (i) durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- oder Polyaminen erzeugte Gruppierungen
    aufweist.
  • Der Aromatengehalt des Ottokraftstoffes beträgt vorzugsweise maximal 40 Vol.-%, insbesondere maximal 38 Vol.-%. Bevorzugte Bereiche für den Aromatengehalt liegen bei 20 bis 42 Vol.-%, insbesondere bei 25 bis 40 Vol.-%.
  • Der Schwefelgehalt des Ottokraftstoffes beträgt vorzugsweise maximal 100 Gew.-ppm, insbesondere maximal 50 Gew.-ppm. Bevorzugte Bereiche für den Schwefelgehalt liegen bei 0,5 bis 150 Gew.-ppm, insbesondere bei 1 bis 100 Gew.-ppm.
  • In einer bevorzugten Ausführungsform weist der Ottokraftstoff einen Olefingehalt von maximal 21 Vol.-%, vorzugsweise maximal 18 Vol.-%, insbesondere maximal 10 Vol.-%, auf. Bevorzugte Bereiche für den Olefingehalt liegen bei 6 bis 21 Vol.-%, insbesondere bei 7 bis 18 Vol.-%.
  • In einer weiteren bevorzugten Ausführungsform weist der Ottokraftstoff einen Benzolgehalt von maximal 1,0 Vol.-%, insbesondere maximal 0,9 Vol.-%, auf. Bevorzugte Bereiche für den Benzolgehalt liegen bei 0,5 bis 1,0 Vol.-%, insbesondere bei 0,6 bis 0,9 Vol.-%.
  • In einer weiteren bevorzugten Ausführungsform weist der Ottokraftstoff einen Sauerstoffgehalt von maximal 2,7 Gew.-%, vorzugsweise von 0,1 bis 2,7 Gew.-%, vor allem von 1,0 bis 2,7 Gew.-%, insbesondere von 1,2 bis 2,0 Gew.-%, auf.
  • Besonders bevorzugt wird ein Ottokraftstoff, welcher gleichzeitig einen Aromatengehalt von maximal 38 Vol.%, einen Olefingehalt von maximal 21 Vol.-%, einen Schwefelgehalt von maximal 50 Gew.-ppm, eine Benzolgehalt von maximal 1,0 Vol.-% und eine Sauerstoffgehalt von 1,0 bis 2,7 Gew.-% aufweist.
  • Der Gehalt an Alkoholen und Ethern im Ottokraftstoff ist normalerweise relativ niedrig. Typische maximale Gehalte sind für Methanol 3 Vol.-%, für Ethanol 5 Vol.-%, für Isopropanol 10 Vol.-%, für tert.-Butanol 7 Vol.-%, für Isobutanol 10 Vol.-% und für Ether mit 5 oder mehr C-Atomen im Molekül 15 Vol.-%.
  • Der Sommer-Dampfdruck des Ottokraftstoffes beträgt üblicherweise maximal 70 kPa, insbesondere 60 kPa (jeweils bei 37°C).
  • Die Research-Octan-Zahl ("ROZ") des Ottokraftstoffes beträgt in der Regel 90 bis 100. Ein üblicher Bereiche für die entsprechende Motor-Octan-Zahl ("MOZ") liegt bei 80 bis 90.
  • Die genannten Spezifikationen werden nach üblichen Methoden bestimmt (DIN EN 228).
  • Der hydrophobe Kohlenwasserstoffrest in den Ottokraftstoffadditi-ven, welcher für die ausreichende Löslichkeit im Kraftstoff sorgt, hat ein zahlengemitteltes Molekulargewicht (MN) von 85 bis 20 000, insbesondere von 113 bis 10 000, vor allem von 300 bis 5000. Als typischer hydrophober Kohlenwasserstoffrest, insbesondere in Verbindung mit den polaren Gruppierungen (a), (c), (h) und (i), kommen der Polypropenyl-, Polybutenyl- und Polyisobutenylrest mit jeweils MN = 300 bis 5000, insbesondere 500 bis 2500, vor allem 750 bis 2250, in Betracht.
  • Als einzelne Ottokraftstoffadditive mit Detergenzwirkung oder mit ventilsitzverschleißhemmender Wirkung seien die folgenden genannt.
  • Mono- oder Polyaminogruppen (a) enthaltende Additive sind vorzugsweise Polyalkenmono- oder Polyalkenpolyamine auf Basis von Polypropen oder von hochreaktivem (d.h. mit überwiegend endständigen Doppelbindungen - meist in der α- und β-Position) oder konventionellem (d.h. mit überwiegend mittenständigen Doppelbindungen) Polybuten oder Polyisobuten mit MN = 300 bis 5000. Derartige Additive auf Basis von hochreaktivem Polyisobuten, welche aus dem Polyisobuten, welches bis zu 20 Gew.-% n-Buten-Einheiten enthalten kann, durch Hydroformylierung und reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen wie Dimethylaminopropylamin, Ethylendiamin, Diethylentriamin, Triethylentetramin oder Tetraethylenpentamin hergestellt werden können, sind insbesondere aus der EP-A 244 616 bekannt. Geht man bei der Herstellung der Additive von Polybuten oder Polyisobuten mit überwiegend mittenständigen Doppelbindungen (meist in der β- und γ-Position) aus, bietet sich der Herstellweg durch Chlorierung und anschließende Aminierung oder durch Oxidation der Doppelbindung mit Luft oder Ozon zur Carbonyl- oder Carboxylverbindung und anschließende Aminierung unter reduktiven (hydrierenden) Bedingungen an. Zur Aminierung können hier die gleichen Amine wie oben für die reduktive Aminierung des hydroformylierten hochreaktiven Polyisobutens eingesetzt werden. Entsprechende Additive auf Basis von Polypropen sind insbesondere in der WO-A 94/24231 beschrieben.
  • Weitere bevorzugte Monoaminogruppen (a) enthaltende Additive sind die Hydrierungsprodukte der Umsetzungsprodukte aus Polyisobutenen mit einem mittleren Polymerisationsgrad P = 5 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff, wie sie insbesondere in WO-A 97/03946 beschrieben sind.
  • Weitere bevorzugte Monoaminogruppen (a) enthaltende Additive sind die aus Polyisobutenepoxiden durch Umsetzung mit Aminen und nachfolgende Dehydratisierung und Reduktion der Aminoalkohole erhältlichen Verbindungen, wie sie insbesondere in DE-A 196 20 262 beschrieben sind.
  • Nitrogruppen, ggf. in Kombination mit Hydroxylgruppen, (b) enthaltende Additive sind vorzugsweise Umsetzungsprodukte aus Polyisobutenen des mittleren Polymerisationsgrades P = 5 bis 100 oder 10 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff, wie sie insbesondere in WO-A 96/03367 und WO-A 96/03479 beschrieben sind. Diese Umsetzungsprodukte stellen in der Regel Mischungen aus reinen Nitropolyisobutanen (z.B. α,β-Dinitropolyisobutan) und gemischten Hydroxynitropolyisobutanen (z.B. α-Nitro-β-hydroxypolyisobutan) dar.
  • Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen (c) enthaltende Additive sind insbesondere Umsetzungsprodukte von Polyisobutenepoxiden, erhältlich aus vorzugsweise überwiegend endständige Doppelbindungen aufweisendem Polyisobuten mit MN = 300 bis 5000, mit Ammoniak, Mono- oder Polyaminen, wie sie insbesondere in EP-A 476 485 beschrieben sind.
  • Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (d) enthaltende Additive sind vorzugsweise Copolymere von C2-C4O-Olefinen mit Maleinsäureanhydrid mit einer Gesamt-Molmasse von 500 bis 20 000, deren Carboxylgruppen ganz oder teilweise zu den Alkalimetall- oder Erdalkalimetallsalzen und ein verbleibender Rest der Carboxylgruppen mit Alkoholen oder Aminen umgesetzt sind. Solche Additive sind insbesondere aus der EP-A 307 815 bekannt. Derartige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und können, wie in der WO-A 87/01126 beschrieben, mit Vorteil in Kombination mit üblichen Kraftstoffdetergenzien wie Poly(iso)butenaminen oder Polyetheraminen eingesetzt werden.
  • Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (e) enthaltende Additive sind vorzugsweise Alkalimetall- oder Erdalkalimetallsalze eines Sulfobernsteinsäurealkylesters, wie er insbesondere in der EP-A 639 632 beschrieben ist. Derartige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und können mit Vorteil in Kombination mit üblichen kraftstoffdetergenzien wie Poly(iso)butenaminen oder Polyetheraminen eingesetzt werden.
  • Polyoxy-C2- bis C4-alkylengruppierungen (f) enthaltende Additive sind vorzugsweise Polyether oder Polyetheramine, welche durch Umsetzung von C2- bis C60-Alkanolen, C6- bis C30-Alkandiolen, Mono- oder Di-C2-C30-alkylaminen, C1-C30-Alkylcyclohexanolen oder C1-C30-Alkylphenolen mit 1 bis 30 mol Ethylenoxid und/oder Propylenoxid und/oder Butylenoxid pro Hydroxylgruppe oder Aminogruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen erhältlich sind. Derartige Produkte werden insbesondere in EP-A 310 875, EP-A 356 725, EP-A 700 985 und US-A 4 877 416 beschrieben. Im Falle von Polyethern erfüllen solche Produkte auch Trägeröleigenschaften. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenolbutoxylate sowie Polyisobutenolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Ammoniak.
  • Carbonsäureestergruppen (g) enthaltende Additive sind vorzugsweise Ester aus Mono-, Di- oder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen, insbesondere solche mit einer Mindestviskosität von 2 mm2/s bei 100°C, wie sie insbesondere in DE-A 38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können aliphatische oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw.- polyole eignen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 C-Atomen. Typische Vertreter der Ester sind Adipate, Phthalate, iso-Phthalate, Terephthalate und Trimellitate des iso-Octanols, iso-Nonanols, iso-Decanols und des iso-Tridecanols. Derartige Produkte erfüllen auch Trägeröleigenschaften.
  • Aus Bernsteinsäureanhydrid abgeleitete Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen (h) enthaltende Additive sind vorzugsweise entsprechende Derivate von Polyisobutenylbernsteinsäureanhydrid,. welche durch Umsetzung von konventionellem oder hochreaktivem Polyisobuten mit MN = 300 bis 5000 mit Maleinsäureanhydrid auf thermischen Wege oder über das chlorierte Polyisobuten erhältlich sind. Von besonderem Interesse sind hierbei Derivate mit aliphatischen Polyaminen wie Ethylendiamin, Diethylentriamin, Triethylentetramin oder Tetraethylenpentamin. Derartige Ottokraftstoffadditive sind insbesondere in US-A 4 849 572 beschrieben.
  • Durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- oder Polyaminen erzeugte Gruppierungen (i) enthaltende Additive sind vorzugsweise Umsetzungsprodukte von polyisobutensubstituierten Phenolen mit Formaldehyd und Mono- oder Polyaminen wie Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetraethylenpentamin oder Dimethylaminopropylamin. Die polyisobutenylsubstituierten Phenole können aus konventionellem oder hochreaktivem Polyisobuten mit MN = 300 bis 5000 stammen. Derartige "Polyisobuten-Mannichbasen" sind insbesondere in der EP-A 831 141 beschrieben.
  • Zur genaueren Definition der einzelnen aufgeführten Ottokraftstoffadditive wird hier auf die Offenbarungen der obengenannten Schriften des Standes der Technik ausdrücklich Bezug genommen.
  • Die erfindungsgemäße Kraftstoffzusammensetzung kann darüber hinaus noch weitere übliche Komponenten und Additive enthalten. Hier sind in erster Linie Trägeröle ohne ausgeprägte Detergenzwirkung zu nennen, beispielsweise mineralische Trägeröle (Grundöle), insbesondere solche der Viskositätsklasse "Solvent Neutral (SN) 500 bis 2000", und synthetische Trägeröle auf Basis von Olefinpolymerisaten mit MN = 400 bis 1800, vor allem auf Polybuten- oder Polyisobuten-Basis (hydriert oder nicht hydriert), von Polyalphaolefinen oder Polyinternalolefinen.
  • Als Lösungs- oder Verdünnungsmittel (bei Bereitstellung von Additivpaketen) kommen aliphatische und aromatische Kohlenwasserstoffe, z.B. Solvent Naphtha, in Betracht.
  • Weitere übliche Additive sind Korrosionsinhibitoren, beispielsweise auf Basis von zur Filmbildung neigenden Ammoniumsalzen organischer Carbonsäuren oder von heterocyclischen Aromaten bei Buntmetallkorrosionsschutz, Antioxidantien oder Stabilisatoren, beispielsweise auf Basis von Aminen wie p-Phenylendiamin, Dicyclohexylamin oder Derivaten hiervon oder von Phenolen wie 2,4-Ditert.-butylphenol oder 3,5-Di-tert.-butyl-4-hydroxyphenylpropionsäure, Demulgatoren, Antistatikmittel, Metallocene wie Ferrocen oder Methylcyclopentadienylmangantricarbonyl, Schmierfähigkeitsverbesserer (Lubricity-Additive) wie bestimmte Fettsäuren, Alkenylbernsteinsäureester, Bis(hydroxyalkyl)fettamine, Hydroxyacetamide oder Ricinusöl sowie Farbstoffe (Marker). Manchmal werden auch Amine zur Absenkung des pH-Wertes des Kraftstoffes zugesetzt.
  • Für die erfindungsgemäße Kraftstoffzusammensetzung kommen weiterhin insbesondere Kombinationen des beschriebenen Ottokraftstoffes mit einer Mischung aus Ottokraftstoffadditiven mit der polaren Gruppierung (f) und Korrosionsinhibitoren und/oder Schmierfähigkeitsverbesserern auf Basis von Carbonsäuren oder Fettsäuren, welche als monomere und/oder dimere Species vorliegen können, in Betracht. Typische Mischungen dieser Art enthalten Polyisobutenamine in Kombination mit alkanolgestarteten Polyethern wie Tridecanol- oder Isotridecanolbutoxylaten oder -propoxylaten, Polyisobutenamine in Kombination mit alkanolgestarteten Polyetheraminen wie Tridecanol- oder Isotridecanolbutoxylat-Ammoniak-Umsetzungsprodukten und alkanolgestartete Polyetheramine wie Tridecanol- oder Isotridecaolbutoxylat-Ammoniak-Umsetzungsprodukte in Kombination mit alkanolgestarteten Polyethern wie Tridecanol- oder Isotridecanolbutoxylaten oder -propoxylaten, jeweils zusammen mit den genannten Korrosionsinhibitioren bzw. Schmierfähigkeitsverbesserern.
  • Die genannten Ottokraftstoffadditive mit den polaren Gruppierungen (a) bis (i) sowie die sonstigen erwähnten Komponenten werden dem Ottokraftstoff zudosiert und entfalten dort ihre Wirkung. Die Komponenten bzw. Additive können dem Ottokraftstoff einzeln oder als vorher zubereitetes Konzentrat ("Additivpaket") zugegeben werden.
  • Die genannten Ottokraftstoffadditive mit den polaren Gruppierungen (a) bis (i) werden dem Ottokraftstoff üblicherweise in einer Menge von 1 bis 5000 Gew.-ppm, insbesondere 5 bis 3000 Gew.-ppm, vor allem 10 bis 1000 Gew.-ppm, zugegeben. Die sonstigen erwähnten Komponenten und Additive werden, wenn gewünscht, in hierfür üblichen Mengen zugesetzt.
  • Bei der erfindungsgemäßen Kraftstoffzusammensetzung läßt sich überraschenderweise mit deutlich weniger Detergenz oder ventilsitzverschleißhemmendem Mittel die gleiche reinigende oder reinhaltende bzw. ventilsitzverschleißhemmende Wirkung erzielen wie bei herkömmlichen Kraftstoffzusammensetzungen des Standes der Technik. Weiterhin resultiert bei Einsatz der gleichen Mengen an Detergenz oder ventilsitzverschleißhemmendem Mittel bei der erfindungsgemäßen Kraftstoffzusammensetzung gegenüber herkömmlichen Kraftstoffzusammensetzungen überraschenderweise eine deutlich bessere reinigende oder reinhaltende bzw. ventilsitzverschleißhemmende Wirkung.
  • Weiterhin zeigt die erfindungsgemäße Kraftstoffzusammensetzung zusätzlich dahingehend Vorteile, daß weniger Ablagerungen im Brennraum des Ottomotors gebildet werden und daß weniger Additiv über die Kraftstoffverdünnung in das Motorenöl eingetragen wird.
  • Die nachfolgenden Beispiele sollen die Erfindung näher erläutern, ohne sie jedoch zu beschränken.
  • Beispiele:
  • Als Ottokraftstoffe wurden die in Tabelle 1 aufgeführten mit der entsprechend angegebenen Spezifikation eingesetzt, wobei OK 1 einen typischen handelsüblichen Kraftstoff darstellt. Tabelle 1
    Spezifikation OK1 (zum Vergleich) OK2 (erfindungsgemäß)
    Aromatengehalt [Vol.-%] 48,4 41,8
    Benzolgehalt [Vol. -%] 2,0 1,0
    Olefingehalt [Vol.-%] 22,6 7,8
    Sauerstoffgehalt [Gew.-%] 0,5 1,7
    Schwefelgehalt [Gew.-ppm] 245 90
    Sommer-Dampfdruck (bei 37°C) [kPa] 78,4 69,3
  • Herstellung der Kraftstoffzusammensetzungen Beispiel 1 (Vergleichsversuch)
  • 700 mg eines Polyisobutenamins, hergestellt durch Hydroformylierung und anschließende reduktive Aminierung mit Ammoniak von hochreaktivem Polyisobuten mit MN = 1000 und Verdünnung zu gleichen Gew.-Teilen mit C10-C14-Paraffin (Kerocom® PIBA der Fa. BASF Aktiengesellschaft), wurden in 1 kg OK1 gemäß Tabelle 1 gelöst.
  • Beispiel 2 (erfindungsgemäß)
  • 700 mg des gleichen Polyisobutenamins wie in Beispiel 1 wurden in 1 kg OK2 gemäß Tabelle 1 gelöst.
  • Beispiel 3 (Vergleichsversuch)
  • 600 mg einer handelsüblichen Additvzusammensetzung für Ottokraft stoffe, enthaltend in einer üblichen Menge ein Detergenz mit Carbamatgruppen gemäß Gruppierung (f), wurden in 1 kg OK1 gemäß Tabelle 1 gelöst.
  • Beispiel 4 (erfindungsgemäß)
  • 600 mg der gleichen handelsüblichen Additivzusammensetzung für Ottokraftstoffe wie in Beispiel 3 wurden in 1 kg OK2 gemäß Tabelle 1 gelöst.
  • Beispiel 5 (Vergleichsversuch)
  • 400 mg einer handelsüblichen Additivzusammensetzung für Ottokraftstoffe, enthaltend ein Detergenz, hergestellt durch Chlorierung und anschließende Aminierung von Polyisobuten mit MN = 950 mit überwiegend mittenständigen Doppelbindungen, wurden in 1 kg OK1 gemäß Tabelle 1 gelöst.
  • Beispiel 6 (erfindungsgemäß)
  • 400 mg der gleichen handelsüblichen Additivzusammensetzung für Ottokraftstoffe wie in Beispiel 5 wurden in 1 kg OK2 gemäß Tabelle 1 gelöst.
  • Beispiel 7 (Vergleichsversuch)
  • 750 m einer handelsüblichen Additivzusammensetzung für Ottokraftstoffe, enthaltend 50 Gew.-% des gleichen Polyisobutenamins wie in Beispiel 1 sowie mineralische und synthetische Trägeröle und Korrosionsschutz jeweils in hierfür üblichen Mengen (Keropur® 3222 der Fa. BASF Aktiengesellschaft), wurden in 1 kg OK1 gemäß Tabelle 1 gelöst.
  • Beispiel 8 (erfindungsgemäß)
  • 350 mg der gleichen handelsüblichen Additivzusammensetzung für Ottokraftstoffe wie in Beispiel 7 wurden in 1 kg OK2 gemäß Tabelle 1 gelöst.
  • Beispiel 9 (Vergleichsversuch)
  • 500 mg einer handelsüblichen Additivzusammensetzung für Ottokraftstoffe, enthaltend 60 Gew.-% des gleichen Polyisobutenamins wie in Beispiel 1 sowie mineralisches Trägeröl und Korrosionsschutz jeweils in hierfür üblichen Mengen (Keropur® 3233 der Fa. BASF Aktiengesellschaft), wurden in 1 kg 0K1 gemäß Tabelle 1 gelöst.
  • Beispiel 10 (erfindungsgemäß)
  • 500 mg der gleichen handelsüblichen Additivzusammensetzung für Ottokraftstoffe wie in Beispiel 9 wurden in 1 kg OK2 gemäß Tabelle 1 gelöst.
  • Beispiel 11 (Vergleichsversuch)
  • 700 mg einer Mischung aus 50 Gew.-% des gleichen Polyisobutenamins wie in Beispiel 1 und 50 Gew.-% eines handelsüblichen Verschleißschutzadditivs (Kerocom® 3280 der Fa. BASF Aktiengesellschaft) wurden in 1 kg 0K1 gemäß Tabelle 1 gelöst.
  • Beispiel 12 (erfindungsgemäß)
  • 700 mg der gleichen Additivzusammensetzung für Ottokraftstoffe wie in Beispiel 11 wurden in 1 kg OK2 gemäß Tabelle 1 gelöst.
  • Anwendungstechnische Untersuchungen Beispiel 13 (Vergleichsversuch)
  • Ottokraftstoff gemäß Beispiel 1 wurde hinsichtlich seiner Eignung für die Einlaßsystemsauberkeit untersucht. Dies geschah mit Hilfe von Motorentests, die in Prüfstandsversuchen mit einem Mercedes-Benz-Motor gemäß CEC F-05-A-93 durchgeführt wurden. Erwartungsgemäß wurden die Einlaßventilablagerungen im Vergleich zum nicht additiverten Grundwert laut unten stehender Tabelle 2 deutlich reduziert.
  • Beispiel 14 (erfindungsgemäß)
  • Ottokraftstoff gemäß Beispiel 2 wurde hinsichtlich seiner Eignung für die Einlaßsystemsauberkeit untersucht. Dies geschah mit Hilfe von Motorentests, die in Prüfstandsversuchen mit einem Mercedes-Benz-Motor CEC F-05-A-93 durchgeführt wurden. Erwartungsgemäß wurden die Einlaßventilablagerungen im Vergleich zum nicht additivierten Grundwert laut unten stehender Tabelle 2 deutlich reduziert. Überraschenderweise wurde gefunden, daß im Vergleich zu Beispiel 13 mit der gleichen Menge Kraftstoffadditiv eine komplette Reinhaltung der Einlaßventile erreicht wird.
  • Beispiel 15 (Vergleichsversuch)
  • Ottokraftstoff gemäß Beispiel 3 wurde hinsichtlich seiner Eignung für die Einlaßsystemsauberkeit untersucht. Dies geschah mit Hilfe von Motorentests, die in Prüfstandsversuchen mit einem Mercedes-Benz-Motor CEC F-05-A-93 durchgeführt wurden. Erwartungsgemäß wurden die Einlaßventilablagerungen im Vergleich zum nicht additivierten Grundwert laut unten stehender Tabelle 2 deutlich reduziert.
  • Beispiel 16 (erfindungsgemäß)
  • Ottokraftstoff gemäß Beispiel 4 wurde hinsichtlich seiner Eignung für die Einlaßsystemsauberkeit untersucht. Dies geschah mit Hilfe von Motorentests, die in Prüfstandsversuchen mit einem Mercedes-Benz-Motor CEC F-05-A-93 durchgeführt wurden. Erwartungsgemäß wurden die Einlaßventilablagerungen im Vergleich zum nicht additivierten Grundwert laut unten stehender Tabelle 2 deutlich reduziert. Überraschenderweise wurde gefunden, daß im Vergleich zum Beispiel 15 mit der gleichen Menge Kraftstoffadditiv eine praktisch komplette Reinhaltung der Einlaßventile erreicht wird.
  • Beispiel 17 (Vergleichsversuch)
  • Ottokraftstoff gemäß Beispiel 5 wurde hinsichtlich seiner Eignung für die Einlaßsystemsauberkeit untersucht. Dies geschah mit Hilfe von Motorentests, die in Prüfstandsversuchen mit einem Mercedes-Benz-Motor CEC F-05-A-93 durchgeführt wurden. Erwartungsgemäß wurden die Einlaßventilablagerungen im Vergleich zum nicht additivierten Grundwert laut unten stehender Tabelle 2 deutlich reduziert.
  • Beispiel 18 (erfindungsgemäß)
  • Ottokraftstoff gemäß Beispiel 6 wurde hinsichtlich seiner Eignung für die Einlaßsystemsauberkeit untersucht. Dies geschah mit Hilfe von Motorentests, die in Prüfstandsversuchen mit einem Mercedes-Benz-Motor CEC F-05-A-93 durchgeführt wurden. Erwartungsgemäß wurden die Einlaßventilablagerungen im Vergleich zum nicht additivierten Grundwert laut unten stehender Tabelle 2 deutlich reduziert. Überraschenderweise wurde gefunden, daß im Vergleich zum Beispiel 17 mit der gleichen Menge Kraftstoffadditiv eine praktisch komplette Reinhaltung der Einlaßventile erreicht wird.
  • Beispiel 19 (Vergleichsversuch)
  • Ottokraftstoff gemäß Beispiel 7 wurde hinsichtlich seiner Eignung für die Einlaßsystemsauberkeit untersucht. Dies geschah mit Hilfe von Motorentests, die in Prüfstandsversuchen mit einem Mercedes-Benz-Motor CEC F-05-A-93 durchgeführt wurden. Erwartungsgemäß wurden die Einlaßventilablagerungen im Vergleich zum nicht additivierten Grundwert laut unten stehender Tabelle 2 deutlich reduziert.
  • Beispiel 20 (erfindungsgemäß)
  • Ottokraftstoff gemäß Beispiel 8 wurde hinsichtlich seiner Eignung für die Einlaßsystemsauberkeit untersucht. Dies geschah mit Hilfe von Motorentests, die in Prüfstandsversuchen mit einem Mercedes-Benz-Motor CEC F-05-A-93 durchgeführt wurden. Erwartungsgemäß wurden die Einlaßventilablagerungen im Vergleich zum nicht additivierten Grundwert laut unten stehender Tabelle 2 deutlich reduziert. Überraschenderweise wurde gefunden, daß deutlich weniger Kraftstoffadditiv im Vergleich zu Beispiel 19 zur größenordnungsmäßig gleichen Reinhaltung der Einlaßventile benötigt wird.
  • Beispiel 21 (Vergleichsversuch)
  • Ottokraftstoff gemäß Beispiel 9 wurde hinsichtlich seiner Eignung für die Einlaßsystemsauberkeit untersucht. Dies geschah mit Hilfe von Motorentests, die in Prüfstandsversuchen mit einem Mercedes-Benz-Motor CEC F-05-A-93 durchgeführt wurden. Erwartungsgemäß wurden die Einlaßventilablagerungen im Vergleich zum nicht additivierten Grundwert laut unten stehender Tabelle 2 deutlich reduziert.
  • Beispiel 22 (erfindungsgemäß)
  • Ottokraftstoff gemäß Beispiel 10 wurde hinsichtlich seiner Eignung für die Einlaßsystemsauberkeit untersucht. Dies geschah mit Hilfe von Motorentests, die in Prüfstandsversuchen mit einem Mercedes-Benz-Motor CEC F-05-A-93 durchgeführt wurden. Erwartungsgemäß wurden die Einlaßventilablagerungen im Vergleich zum nicht additivierten Grundwert laut unten stehender Tabelle 2 deutlich reduziert. Überraschenderweise wurde gefunden, daß im Vergleich zu Beispiel 21 mit der gleichen Menge Kraftstoffadditiv eine deutlich bessere Reinhaltung der Einlaßventile erreicht wird.
  • Beispiel 23 (Vergleichsversuch)
  • Ottokraftstoff gemäß Beispiel 11 wurde hinsichtlich seiner Eignung für die Einlaßsystemsauberkeit untersucht. Dies geschah mit Hilfe von Motorentests, die in Prüfstandsversuchen mit einem Mercedes-Benz-Motor CEC F-05-A-93 durchgeführt wurden. Erwartungsgemäß wurden die Einlaßventilablagerungen im Vergleich zum nicht additivierten Grundwert laut unten stehender Tabelle 2 deutlich reduziert.
  • Beispiel 24 (erfindungsgemäß)
  • Ottokraftstoff gemäß Beispiel 12 wurde hinsichtlich seiner Eignung für die Einlaßsystemsauberkeit untersucht. Dies geschah mit Hilfe von Motorentests, die in Prüfstandsversuchen mit einem Mercedes-Benz-Motor CEC F-05-A-93 durchgeführt wurden. Erwartungsgemäß wurden die Einlaßventilablagerungen im Vergleich zum nicht additivierten Grundwert laut unten stehender Tabelle 2 deutlich reduziert. Überraschenderweise wurde gefunden, daß im Vergleich zu Beispiel 23 mit der gleichen Menge Kraftstoffadditiv eine deutlich bessere Reinhaltung der Einlaßventile erreicht wird. Tabelle 2
    Additiv Dosierung [mg/kg] Einlaßventilablagerungen [mg/Ventil]
    Ventil 1 Ventil 2 Ventil 3 Ventil 4 im Mittel
    Beispiel 13 700 40 157 7 87 73 (547)
    Beispiel 14 700 0 0 0 0 0 (239)
    Beispiel 15 600 19 60 86 34 50 (274)
    Beispiel 16 600 0 1 0 2 1 (239)
    Beispiel 17 400 0 75 17 182 69 (402)
    Beispiel 18 400 0 2 2 0 1 (239)
    Beispiel 19 750 31 120 111 30 73 (592)
    Beispiel 20 350 46 68 38 67 55 (239)
    Beispiel 21 500 181 95 26 68 93 (475)
    Beispiel 22 500 27 33 14 77 38 (239)
    Beispiel 23 700 123 12 98 55 72 (558)
    Beispiel 24 700 82 12 23 22 35 (239)
    (in Klammern der Grundwert des nicht additvierten Kraftstoffes)

Claims (14)

  1. Kraftstoffzusammensetzung enthaltend in einer größeren Menge einen Ottokraftstoff mit einem Aromatengehalt von maximal 42 Vol.-% und einem Schwefelgehalt von maximal 150 Gew.-ppm, sowie in einer kleineren Menge mindestens ein Ottokraftstoffadditiv mit Detergenzwirkung gegebenenfalls in Kombination mit einem Ottokraftstoffadditiv mit ventilsitzverschleißhemmender Wirkung, wobei diese Ottokraftstoffadditive mindestens einen hydrophoben Kohlenwasserstoffrest mit einem zahlengemittelten Molekulargewicht (MN) von 85 bis 20 000 aufweisen, das Additiv mit Detergenzwirkung mindestens eine polare Gruppierung ausgewählt aus
    (a) Mono- oder Polyaminogruppen mit bis zu 6 Stickstoffatomen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat,
    (b) Nitrogruppen, ggf. in Kombination mit Hydroxylgruppen,
    (c) Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat,
    (g) Carbonsäureestergruppen,
    (h) aus Bernsteinsäureanhydrid abgeleitete Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen und
    (i) durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- oder Polyaminen erzeugte Gruppierungen

    aufweist, und das Additiv mit ventilsitzverschleißhemmender Wirkung mindestens eine polare Gruppierung ausgewählt aus
    (d) Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen, und
    (e) Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen,

    aufweist.
  2. Kraftstoffzusammensetzung nach Anspruch 1, enthaltend als Ottokraftstoffadditiv mit polaren Gruppierungen (a) Polyalkenmono- oder Polyalkenpolyamine auf Basis von Polypropen, Polybuten oder Polyisobuten mit MN = 300 bis 5000.
  3. Kraftstoffzusammensetzung nach Anspruch 1, enthaltend als Ottokraftstoffadditiv mit polaren Gruppierungen (b) Umsetzungsprodukte aus Polyisobutenen des mittleren Polymerisationsgrades P = 5 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff.
  4. Kraftstoffzusammensetzung nach Anspruch 1, enthaltend als Ottokraftstoffadditiv mit polaren Gruppierungen (c) Umsetzungsprodukte von Polyisobutenepoxiden, erhältlich aus überwiegend endständige Doppelbindungen aufweisendem Polyisobuten mit MN = 300 bis 5000, mit Ammoniak, Mono- oder Polyaminen.
  5. Kraftstoffzusammensetzung nach Anspruch 1, enthaltend als Ottokraftstoffadditiv mit polaren Gruppierungen (d) Copolymere von C2-C40-Olefinen mit Maleinsäureanhydrid mit einer Gesamt-Molmasse von 500 bis 20 000, deren Carboxylgruppen ganz oder teilweise zu den Alkalimetall- oder Erdalkalimetallsalzen und ein verbleibender Rest der Carboxylgruppen mit Alkoholen oder Aminen umgesetzt sind.
  6. Kraftstoffzusammensetzung nach Anspruch 1, enthaltend als Ottokraftstoffadditiv mit polaren Gruppierungen (e) Alkalimetall- oder Erdalkalimetallsalze eines Sulfobernsteinsäurealkylesters.
  7. Kraftstoffzusammensetzung nach Anspruch 1, enthaltend als Ottokraftstoffadditiv mit polaren Gruppierungen (g) Ester aus Mono-, Di- oder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen.
  8. Kraftstoffzusammensetzung nach Anspruch 1, enthaltend als Ottokraftstoffadditiv mit polaren Gruppierungen (h) Derivate von Polyisobutenylbernsteinsäureanhydrid, erhältlich durch Umsetzung von konventionellem oder hochreaktivem Polyisobuten mit MN = 300 bis 5000 mit Maleinsäureanhydrid auf thermischem Wege oder über das chlorierte Polyisobuten.
  9. Kraftstoffzusammensetzung nach Anspruch 1, enthaltend als Ottokraftstoffadditiv mit polaren Gruppierungen (i) Umsetzungsprodukte von polyisobutensubstituierten Phenolen mit Formaldehyd und Mono- oder Polyaminen.
  10. Kraftstoffzusammensetzung nach den Ansprüchen 1 bis 9, enthaltend einen Ottokraftstoff mit einem Olefingehalt von maximal 21 Vol.-%.
  11. Kraftstoffzusammensetzung nach den Ansprüchen 1 bis 10, enthaltend einen Ottokraftstoff mit einem Benzolgehalt von maximal 1,0 Vol.-%.
  12. Kraftstoffzusammensetzung nach den Ansprüchen 1 bis 11, enthaltend einen Ottokraftstoff mit einem Sauerstoffgehalt von maximal 2,7 Gew.-%.
  13. Kraftstoffzusammensetzung nach den Ansprüchen 1 bis 12, enthaltend die Ottokraftstoffadditive mit den polaren Gruppierungen (a) bis (e), (h) und (i) in einer Menge von 1 bis 5000 Gew.-ppm.
  14. Verwendung einer polaren Verbindung mit mindestens einer polaren Gruppe (a), (b), (c), (g), (h) oder (i) gemäß obiger Definition als Detergensadditiv für Ottokraftstoffe mit einem Aromatengehalt von maximal 42 Vol.-% und einem Schwefelgehalt von maximal 150 Gew.-ppm und gegebenenfalls mit einem Olefingehalt von maximal 21 Vol.-%, einem Benzolgehalt von maximal 1,0 Vol.-% und einem Sauerstoffgehalt von maximal 2,7 Gew.-%.
EP05019565A 1999-02-09 2000-02-05 Kraftstoffzusammensetzung Withdrawn EP1612257A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19905211A DE19905211A1 (de) 1999-02-09 1999-02-09 Kraftstoffzusammensetzung
EP00912452A EP1155102A1 (de) 1999-02-09 2000-02-05 Kraftstoffzusammensetzung

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP00912452A Division EP1155102A1 (de) 1999-02-09 2000-02-05 Kraftstoffzusammensetzung

Publications (1)

Publication Number Publication Date
EP1612257A2 true EP1612257A2 (de) 2006-01-04

Family

ID=7896865

Family Applications (3)

Application Number Title Priority Date Filing Date
EP05019565A Withdrawn EP1612257A2 (de) 1999-02-09 2000-02-05 Kraftstoffzusammensetzung
EP02023972A Withdrawn EP1277828A3 (de) 1999-02-09 2000-02-05 Kraftstoffzusammensetzung
EP00912452A Ceased EP1155102A1 (de) 1999-02-09 2000-02-05 Kraftstoffzusammensetzung

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP02023972A Withdrawn EP1277828A3 (de) 1999-02-09 2000-02-05 Kraftstoffzusammensetzung
EP00912452A Ceased EP1155102A1 (de) 1999-02-09 2000-02-05 Kraftstoffzusammensetzung

Country Status (22)

Country Link
EP (3) EP1612257A2 (de)
JP (1) JP2002536531A (de)
KR (1) KR100663774B1 (de)
AR (1) AR022534A1 (de)
AU (1) AU766424B2 (de)
BR (1) BR0008087A (de)
CA (1) CA2359723A1 (de)
CZ (1) CZ20012854A3 (de)
DE (1) DE19905211A1 (de)
EE (1) EE200100420A (de)
HR (1) HRP20010661A2 (de)
HU (1) HUP0200270A3 (de)
IL (1) IL144375A (de)
MY (1) MY121511A (de)
NO (1) NO20013864D0 (de)
NZ (1) NZ513306A (de)
PL (1) PL191309B1 (de)
RU (1) RU2238300C2 (de)
SK (1) SK10852001A3 (de)
TR (1) TR200102283T2 (de)
WO (1) WO2000047698A1 (de)
ZA (1) ZA200107409B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085740B2 (en) 2009-02-25 2015-07-21 Innospec Limited Methods relating to fuel compositions

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458172B1 (en) * 2000-03-03 2002-10-01 The Lubrizol Corporation Fuel additive compositions and fuel compositions containing detergents and fluidizers
US6660050B1 (en) 2002-05-23 2003-12-09 Chevron U.S.A. Inc. Method for controlling deposits in the fuel reformer of a fuel cell system
DE10314809A1 (de) * 2003-04-01 2004-10-14 Basf Ag Polyalkenamine mit verbesserten Anwendungseigenschaften
DE10316871A1 (de) * 2003-04-11 2004-10-21 Basf Ag Kraftstoffzusammensetzung
US7597726B2 (en) 2006-01-20 2009-10-06 Afton Chemical Corporation Mannich detergents for hydrocarbon fuels
EP1991643B1 (de) 2006-02-27 2019-10-30 Basf Se Verwendung von mehrkernigen phenolischen verbindungen als stabilisatoren
PT2132284E (pt) 2007-03-02 2010-12-20 Basf Se Formulação de um aditivo adequado ao acabamento antiestático e melhoramento da condutividade eléctrica de material orgânico inanimado
WO2009010441A2 (de) 2007-07-16 2009-01-22 Basf Se Synergistische mischung
GB0714725D0 (en) * 2007-07-28 2007-09-05 Innospec Ltd Fuel oil compositions and additives therefor
US9157041B2 (en) 2007-09-27 2015-10-13 Innospec Limited Fuel compositions
US20100319244A1 (en) 2008-02-01 2010-12-23 Basf Se Specific polyisobuteneamines and their use as detergents in fuels
US8790426B2 (en) 2010-04-27 2014-07-29 Basf Se Quaternized terpolymer
AU2011246506A1 (en) 2010-04-27 2012-11-01 Basf Se Quaternized terpolymer
EP2576739A1 (de) 2010-06-01 2013-04-10 Basf Se Niedermolekulare polyisobutyl-substitutierte amine als waschmittelverstärker
US8911516B2 (en) 2010-06-25 2014-12-16 Basf Se Quaternized copolymer
ES2680571T3 (es) 2010-06-25 2018-09-10 Basf Se Copolímero cuaternizado
CN103080145B (zh) 2010-07-06 2014-12-10 巴斯夫欧洲公司 不含酸的季铵化氮化合物及其在燃料和润滑剂中作为添加剂的用途
EP2646530B1 (de) 2010-12-02 2017-02-22 Basf Se Verwendung des reaktionsproduktes aus einer hydrocarbylsubstituierten dicarbonsäure und einer stickstoffverbindung zur reduktion des kraftstoffverbrauches
WO2012076428A1 (de) 2010-12-09 2012-06-14 Basf Se Polytetrahydrobenzoxazine und bistetrahydrobenzoxazine und ihre verwendung als kraftstoffadditiv oder schmierstoffadditiv
US9006158B2 (en) 2010-12-09 2015-04-14 Basf Se Polytetrahydrobenzoxazines and bistetrahydrobenzoxazines and use thereof as a fuel additive or lubricant additive
US20130133243A1 (en) 2011-06-28 2013-05-30 Basf Se Quaternized nitrogen compounds and use thereof as additives in fuels and lubricants
EP2540808A1 (de) 2011-06-28 2013-01-02 Basf Se Quaternisierte Stickstoffverbindungen und deren Verwendung als Additive in Kraft- und Schmierstoffen
EP2589647A1 (de) 2011-11-04 2013-05-08 Basf Se Quaternisierte Polyetheramine und deren Verwendung als Additive in Kraft- und Schmierstoffen
WO2013075978A1 (de) 2011-11-23 2013-05-30 Basf Se Amingemisch
EP2604674A1 (de) 2011-12-12 2013-06-19 Basf Se Verwendung quaternisierter Alkylamine als Additive in Kraft- und Schmierstoffen
MX2014008980A (es) 2012-02-10 2014-08-27 Basf Se Sales de imidazolio como aditivos para combustibles y carburantes.
US9062266B2 (en) 2012-02-10 2015-06-23 Basf Se Imidazolium salts as additives for fuels
AU2013265575B2 (en) 2012-05-25 2017-06-15 Basf Se Tertiary amines for reducing injector nozzle fouling in direct injection spark ignition engines
WO2014019911A1 (en) 2012-08-01 2014-02-06 Basf Se Process for improving thermostability of lubricant oils in internal combustion engines
WO2014064151A1 (de) 2012-10-23 2014-05-01 Basf Se Quaternisierte ammoniumsalze von hydrocarbylepoxiden und deren verwendung als additive in kraft- und schmierstoffen
WO2014023853A2 (en) 2012-11-06 2014-02-13 Basf Se Tertiary amines for reducing injector nozzle fouling and modifying friction in direct injection spark ignition engines
US9388354B2 (en) 2012-11-06 2016-07-12 Basf Se Tertiary amines for reducing injector nozzle fouling and modifying friction in direct injection spark ignition engines
RU2554348C2 (ru) * 2012-12-04 2015-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Вятский государственный университет"(ФГБОУ ВПО "ВятГУ") Топливная эмульсия
WO2014184066A1 (en) 2013-05-14 2014-11-20 Basf Se Polyalkenylsuccinimides for reducing injector nozzle fouling in direct injection spark ignition engines
EP2997087A1 (de) 2013-05-14 2016-03-23 Basf Se Amingemisch
EP2811007A1 (de) 2013-06-07 2014-12-10 Basf Se Verwendung mit Alkylenoxid und Hydrocarbyl-substituierter Polycarbonsäure quaternisierter Alkylamine als Additive in Kraft- und Schmierstoffen
WO2014195464A1 (de) 2013-06-07 2014-12-11 Basf Se Verwendung mit alkylenoxid und hydrocarbyl-substituierter polycarbonsäure quaternisierter stickstoffverbindungen als additive in kraft- und schmierstoffen
WO2015040147A1 (de) 2013-09-20 2015-03-26 Basf Se Verwendung spezieller derivate quaternisierter stickstoffverbindungen als additive in kraft- und schmierstoffen
US20150113864A1 (en) 2013-10-24 2015-04-30 Basf Se Use of a complex ester to reduce fuel consumption
US20150113859A1 (en) 2013-10-24 2015-04-30 Basf Se Use of polyalkylene glycol to reduce fuel consumption
US20150113867A1 (en) 2013-10-24 2015-04-30 Basf Se Use of an alkoxylated polytetrahydrofuran to reduce fuel consumption
WO2015114053A1 (de) 2014-01-29 2015-08-06 Basf Se Korrosionsinhibitoren für kraft- und schmierstoffe
MY180330A (en) 2014-01-29 2020-11-28 Basf Se Use of polycarboxylic-acid-based additives for fuels
WO2016083090A1 (de) 2014-11-25 2016-06-02 Basf Se Korrosionsinhibitoren für kraft- und schmierstoffe
US9688929B2 (en) 2014-12-09 2017-06-27 Afton Chemical Corporation Composition for surface voltage reduction in distillate fuel
EP3322775B1 (de) 2015-07-16 2021-10-27 Basf Se Verwendung von copolymeren in direkteinspritzenden verbrennungsmotoren
WO2017016909A1 (de) 2015-07-24 2017-02-02 Basf Se Korrosionsinhibitoren für kraft- und schmierstoffe
WO2017097685A1 (de) 2015-12-09 2017-06-15 Basf Se Neue alkoxylate und deren verwendung
RU2616624C1 (ru) * 2016-03-17 2017-04-18 Открытое акционерное общество "Нефтяная компания "Роснефть" Многофункциональная присадка к автомобильным бензинам
PT3481922T (pt) 2016-07-05 2021-03-29 Basf Se Inibidores de corrosão para combustíveis e lubrificantes
ES2896694T3 (es) 2016-07-05 2022-02-25 Basf Se Uso de inhibidores de la corrosión para combustibles y lubricantes
WO2018007486A1 (de) 2016-07-07 2018-01-11 Basf Se Polymere als additive für kraft und schmierstoffe
CN109312242A (zh) 2016-07-07 2019-02-05 巴斯夫欧洲公司 作为用于燃料和润滑剂的添加剂的共聚物
WO2018007445A1 (de) 2016-07-07 2018-01-11 Basf Se Korrosionsinhibitoren für kraft- und schmierstoffe
ES2948483T3 (es) 2016-12-15 2023-09-13 Basf Se Polímeros como aditivos de combustible diésel para motores diésel de inyección directa
EP3555242B1 (de) 2016-12-19 2020-11-25 Basf Se Additive zur verbesserung der thermischen stabilität von kraftstoffen
EP3559173A1 (de) 2016-12-20 2019-10-30 Basf Se Verwendung einer mischung eines komplexen esters mit einer monocarbonsäure zur verringerung von reibung
WO2018188986A1 (de) 2017-04-13 2018-10-18 Basf Se Polymere als additive für kraft und schmierstoffe
WO2021000317A1 (en) * 2019-07-04 2021-01-07 3M Innovative Properties Company Fuel additive, method of using fuel additive, and fuel mixture
WO2021063733A1 (en) 2019-09-30 2021-04-08 Basf Se Use of nitrogen compounds quaternised with alkylene oxide and hydrocarbyl-substituted polycarboxylic acid as additives in fuels and lubricants
ES2964845T3 (es) 2020-07-14 2024-04-09 Basf Se Inhibidores de corrosión para combustibles y lubricantes
DE102022114815A1 (de) 2022-06-13 2022-08-04 Basf Se Verfahren zum Entfernen von Ablagerungen aus Verbrennungsmotoren
EP4382588A1 (de) 2022-12-06 2024-06-12 Basf Se Additive zur verbesserung der thermischen stabilität von kraftstoffen

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2174787A1 (en) * 1972-03-10 1973-10-19 Ethyl Corp Petrol additives - to reduce deposits in engine fuel inlets contg alkyl phenol-aldehyde-amine condensates
US4191537A (en) * 1976-06-21 1980-03-04 Chevron Research Company Fuel compositions of poly(oxyalkylene) aminocarbamate
US4317657A (en) * 1978-03-27 1982-03-02 Ethyl Corporation Gasoline additive fluids to reduce hydrocarbon emissions
EP0307815B1 (de) * 1987-09-15 1992-04-08 BASF Aktiengesellschaft Kraftstoffe für Ottomotoren
US5057122A (en) * 1989-12-26 1991-10-15 Mobil Oil Corp. Diisocyanate derivatives as lubricant and fuel additives and compositions containing same
DE4030164A1 (de) * 1990-09-24 1992-03-26 Basf Ag Kraftstoffe fuer verbrennungsmotoren und schmierstoffe enthaltende hochmolekulare aminoalkohole
DE4137852A1 (de) * 1991-11-16 1993-05-19 Basf Ag Carbamidsaeureester, verfahren zu ihrer herstellung sowie kraft- und schmierstoffe, enthaltend die carbamidsaeureester
GB9208034D0 (en) * 1992-04-10 1992-05-27 Bp Chem Int Ltd Fuel composition
WO1994020593A1 (en) * 1993-03-05 1994-09-15 Mobil Oil Corporation Low emissions diesel fuel
AT400149B (de) * 1993-08-17 1995-10-25 Oemv Ag Additiv für unverbleite ottokraftstoffe sowie dieses enthaltender kraftstoff
ES2300103T3 (es) * 1994-03-02 2008-06-01 William C. Orr Compuesto de combustible sin plomo.
WO1995033022A1 (en) * 1994-05-31 1995-12-07 Orr William C Vapor phase combustion methods and compositions
DE4425835A1 (de) * 1994-07-21 1996-01-25 Basf Ag Verwendung von Umsetzungsprodukten aus Polyolefinen und Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff als Additive für Kraftstoffe
DE4434603A1 (de) * 1994-09-28 1996-04-04 Basf Ag Als Kraft- und Schmierstoffadditiv geeignete Mischung aus Aminen, Kohlenwasserstoffpolymeren und Trägerölen
GB9503104D0 (en) * 1995-02-17 1995-04-05 Bp Chemicals Additives Diesel fuels
JP3782140B2 (ja) * 1995-10-16 2006-06-07 新日本石油株式会社 無鉛ガソリン
JP3841905B2 (ja) * 1996-02-21 2006-11-08 出光興産株式会社 無鉛ガソリン組成物
GB9618546D0 (en) * 1996-09-05 1996-10-16 Bp Chemicals Additives Dispersants/detergents for hydrocarbons fuels
JP2000144157A (ja) * 1998-11-17 2000-05-26 Nippon Mitsubishi Oil Corp 筒内直接噴射式ガソリンエンジン用ガソリン組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085740B2 (en) 2009-02-25 2015-07-21 Innospec Limited Methods relating to fuel compositions
US9394499B2 (en) 2009-02-25 2016-07-19 Innospec Limited Methods relating to fuel compositions

Also Published As

Publication number Publication date
HUP0200270A2 (hu) 2002-05-29
EP1155102A1 (de) 2001-11-21
CA2359723A1 (en) 2000-08-17
ZA200107409B (en) 2003-01-29
AU766424B2 (en) 2003-10-16
JP2002536531A (ja) 2002-10-29
NO20013864L (no) 2001-08-08
KR100663774B1 (ko) 2007-01-03
DE19905211A1 (de) 2000-08-10
IL144375A (en) 2004-08-31
SK10852001A3 (sk) 2002-06-04
EP1277828A2 (de) 2003-01-22
PL349860A1 (en) 2002-09-23
WO2000047698A1 (de) 2000-08-17
NZ513306A (en) 2003-01-31
RU2238300C2 (ru) 2004-10-20
TR200102283T2 (tr) 2001-12-21
AU3422000A (en) 2000-08-29
NO20013864D0 (no) 2001-08-08
KR20010111491A (ko) 2001-12-19
EP1277828A3 (de) 2003-07-02
MY121511A (en) 2006-01-28
HRP20010661A2 (en) 2003-04-30
BR0008087A (pt) 2001-11-06
CZ20012854A3 (cs) 2002-05-15
AR022534A1 (es) 2002-09-04
PL191309B1 (pl) 2006-04-28
IL144375A0 (en) 2002-05-23
EE200100420A (et) 2002-12-16
HUP0200270A3 (en) 2003-08-28

Similar Documents

Publication Publication Date Title
EP1612257A2 (de) Kraftstoffzusammensetzung
EP1615985B1 (de) Kraftstoffzusammensetzung
EP1613694B1 (de) Polyalkenamine mit verbesserten anwendungseigenschaften
EP2114844B1 (de) Verzweigte decylnitrate und ihre verwendung als verbrennungsverbesserer und/oder cetanzahlverbesserer in kraftstoffen
EP1098953B1 (de) Propoxilat enthaltende kraftstoffzusammensetzungen
EP1278814B1 (de) Kraftstoffadditivpakete für ottokraftstoffe mit verbesserten viskositätseigenschaften und guter ivd performance
WO2006015800A1 (de) Stickstoffhaltige heterocyclische verbindungen als reibverschleissvermindernder zusatz zu kraftstoffen
EP2240519B1 (de) Spezielle polyisobutenamine und ihre verwendung als detergentien in kraftstoffen
EP1157086B1 (de) Polyalkenalkohol-polyalkoxylate und deren verwendung in kraft- und schmierstoffen
EP0704519B1 (de) Als Kraft- und Schmierstoffadditiv geeignete Mischung aus Aminen, Kohlenwasserstoffpolymeren und Trägerölen
EP1495096B1 (de) Kraftstoffadditivgemisch für ottokraftstoffe mit synergistischer ivd-performance
DE60020783T2 (de) Brennstoffdispergiermittel mit erhöhter Schmiereigenschaft
EP1177270B1 (de) Polyalkenalkohol-polyetheramine und deren verwendung in kraft- und schmierstoffen
EP1230328B1 (de) Schmierfähigkeitsverbesserer und diese enthaltende kraftstoff- und schmierstoffzusammensetzungen
EP2646530B1 (de) Verwendung des reaktionsproduktes aus einer hydrocarbylsubstituierten dicarbonsäure und einer stickstoffverbindung zur reduktion des kraftstoffverbrauches
US20050044779A1 (en) Fuel composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1155102

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080902