EP1606079A1 - Machine for grinding optical lenses - Google Patents

Machine for grinding optical lenses

Info

Publication number
EP1606079A1
EP1606079A1 EP04742359A EP04742359A EP1606079A1 EP 1606079 A1 EP1606079 A1 EP 1606079A1 EP 04742359 A EP04742359 A EP 04742359A EP 04742359 A EP04742359 A EP 04742359A EP 1606079 A1 EP1606079 A1 EP 1606079A1
Authority
EP
European Patent Office
Prior art keywords
axis
tool
relative
grinding
translation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04742359A
Other languages
German (de)
French (fr)
Other versions
EP1606079B1 (en
Inventor
Jean-Marc Meunier
Laurent Sroka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luneau Technology Operations SAS
Original Assignee
Briot International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Briot International SA filed Critical Briot International SA
Publication of EP1606079A1 publication Critical patent/EP1606079A1/en
Application granted granted Critical
Publication of EP1606079B1 publication Critical patent/EP1606079B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/0076Other grinding machines or devices grinding machines comprising two or more grinding tools

Definitions

  • the present invention relates to a machine for grinding optical glasses of the type described in the preamble of claim 1.
  • the main object of the invention is to remedy these drawbacks, that is to say to have a machine which makes it possible to simply perform the counter-beveling, the creasing and / or the drilling of optical glasses with a quality of 'constant operation regardless of the curvature of the lens, and which is compact.
  • the invention relates to a grinding machine of the aforementioned type, characterized in that the control means are adapted to retract the tool holder shaft by controlling said angle of inclination.
  • Another object of the invention is to obtain a grinding machine of the aforementioned type, the structure of which is simplified.
  • the machine of the aforementioned type comprises means for relative displacement of the tool-holder shaft relative to the lens support in translation along the third axis when the tool is in position active, and said relative displacement means comprise means of relative translation of the tool-holder shaft relative to the second axis in a first direction, parallel to the second axis, means of pseudo-translation of the lens support relative to the second axis in a second direction perpendicular to the second axis, and means for synchronizing said means of translation and pseudo-translation.
  • FIG. 1 is a partial perspective view of three-quarters upper of the relevant parts of a grinding machine according to the invention
  • FIG. 2 is a partial sectional view along the line II-II in Figure 1;
  • - Figure 3 is a perspective view taken along arrow III of Figure 1 of a detail of the grinding machine according to the invention, with the tool holder assembly in the retracted position;
  • FIG. 4 is a partial sectional view along line IV-IV of Figure 1 of the grinding machine according to the invention during a drilling operation;
  • FIG. 5 is a view of a detail of Figure 4.
  • the grinding machine shown in Figures 1 to 5 is intended to produce a beveled and counter-beveled optical glass, as well as creasing and drilling operations from a generally circular lens blank.
  • This grinding machine comprises a frame 11, a grinding assembly 13, a lens support 15, a tool holder assembly 17 and a control unit 19.
  • the grinding assembly 13 comprises a train of grinding wheels 21 rotatably mounted about a first horizontal axis AA in a grinding wheel support 22 and driven in rotation by a grinding motor (not shown).
  • the train of grinding wheels 21 is composed of several grinding wheels 21 A to 21 D juxtaposed.
  • the grinding wheels are associated with a type of glass for grinding and at different stages of the grinding process: a grinding wheel 21A for roughing mineral glasses, a grinding wheel 21 B for roughing synthetic glasses, a finishing grinding wheel with beveling 21 C provided a circular groove 23, and a polishing wheel 21 D with beveling.
  • This train of grinding wheels 21 can optionally be equipped with finishing or polishing grinding wheels without bevelling.
  • This train of grinding wheels 21 is mounted integrally on a grinding wheel shaft 25, itself mounted free in rotation in the support 22 around the first axis A-A '.
  • the lower part 27 of the grinding wheel support 22 is slidably mounted in an axial direction parallel to the first axis AA ′ on a sliding bar 29. Means (not shown) enable the grinding assembly 13 to move in translation in this axial direction by sliding the grinding wheel support 22 along the sliding bar 29.
  • the lens support 15 comprises a carriage 31 pivotally mounted on the frame 11 and provided with two half-shafts 33A and 33B suitable for gripping the lens blank 35, a motor 37 for driving the lens blank 35 in rotation. , and means 39 for radial positioning of the carriage 31 relative to the first axis AA ′.
  • the carriage is articulated by a longitudinal edge 41 around a tilting shaft 43 arranged parallel to the first axis AA ′.
  • the two half-shafts 33A and 33B are mounted along the other longitudinal edge 45 of the carriage 31. These half-shafts 33A and 33B are arranged along a second horizontal axis BB 'which, during grinding, is parallel to the first axis A-A '. Furthermore, these half-shafts 33A and 33B are provided with free ends 47A and 47B facing each other, adapted to grip the lens blank 35.
  • the drive motor 37 of the lens blank 35 rotates around the second axis BB 'the half-shaft 33B and the half-shaft 33A by a transmission mechanism (not shown).
  • the radial positioning means 39 of the carriage 31 relative to the first axis A-A ' comprise a drive mechanism 51 and a guide rod or button 53.
  • the drive mechanism 51 comprises an endless screw 55 for driving in cooperation with a nut 57.
  • the screw 55 is rotatably mounted on the frame 11 and arranged in a radial direction perpendicular to the axial direction. In the example illustrated in Figure 2, the drive screw 55 is vertical.
  • This drive screw 55 is rotated by a motor 59 secured to the frame 11.
  • the carriage 31 is provided with feelers 61 of the lens blank 35, connected to the control unit 19.
  • the tool holder assembly 17 comprises a support 71 provided with a projecting link arm 73, a tool holder shaft 75, a motor 77 for driving the rotation of the tool holder shaft 75, and means 79 for actuating the tool holder shaft 75.
  • the support 71 is of generally cylindrical shape. It is rotatably mounted on the grinding wheel support 22 around a horizontal pivot axis DD ', perpendicular to the first axis A-A'.
  • the tool-holder shaft 75 is rotatably mounted around a third axis CC at the free end of the link arm 73.
  • the tool-holder shaft 75 remains in the vertical plane passing through the first axis A-A '.
  • This shaft 75 carries a grinding wheel 81 for bevelling, a grinding wheel 83, and a drill bit 85 for drilling.
  • the counter-beveling grinding wheel 81 has a diameter much smaller than that of the grinding wheels 21 A to 21 D of the wheel train. As illustrated in FIG. 5, this counter-beveling grinding wheel has on the outside a cylindrical median surface 87, framed by two frustoconical surfaces 89 and 91 which converge away from this surface. As illustrated in FIG. 5, it is a surface 89 having a relatively small apex half-angle, for example of the order of 35 °, and an opposite surface 91 having a apex half-angle relatively large, for example 55 °.
  • the creasing wheel 83 comprises a single cylindrical central surface 92 of small width. In the example illustrated in Figure 5, the width of the cylindrical median surface is between 0.5 and 1.6 mm.
  • the drilling forest 85 is mounted at the free end of the tool-holder shaft 75 and is aligned along the third axis C-C.
  • the rotary drive motor 77 of the tool-holder shaft 75 is connected to this shaft 75 by transmission means comprising in particular a pulley 93 and a belt 95 ( Figure 1).
  • the actuation means 79 of the tool-holder shaft 75 comprise (FIG. 1) an actuation motor 101, the output shaft 103 of which is provided at its end with a worm screw 105. This worm screw 105 cooperates with a tangent toothed wheel secured to the support 71.
  • These actuating means 79 rotate the support 71 around the pivot axis on an angular displacement of at least 30 °, and preferably 180 °. Consequently, during this rotational movement, the angle formed between the third axis CC and the first axis AA 'or the second axis BB' varies at least between 0 and 30 ° and preferably between 0 and 180 °.
  • the control unit 19 makes it possible to control, on the one hand, the movement of the grinding wheel support 22 in the axial direction and, on the other hand, the movement of the carriage 31 around the articulation shaft 43. Thus, this unit control 19 coordinates the relative movement of the lens support relative to the train of grinding wheels.
  • this control unit is provided with synchronization means (not shown) making it possible to simultaneously control the axial movement of the grinding wheel support 22 and the movement of the carriage 31 around the articulation shaft, according to a predefined control law .
  • synchronization means (not shown) making it possible to simultaneously control the axial movement of the grinding wheel support 22 and the movement of the carriage 31 around the articulation shaft, according to a predefined control law .
  • the support 71 is oriented so that the arm 73 and the tool-holder shaft 75 are in a retracted position under the wheel train 21.
  • the space situated above grinding wheels 21 A to 21 D is completely free.
  • the blank 35 is wedged between the two ends 47A and 47B of the half-shafts 33A and 33B by an adapter suitably positioned on the blank.
  • an adapter suitably positioned on the blank.
  • the control unit 19 controls the axial displacement means of the grinding wheel support 22 and the radial displacement means 39 of the carriage 31 to position the lens blank 35 in contact with the roughing grinding wheel 21A.
  • the motor for rotating 37 of the lens blank 35 relative to the second axis B-B ' is then actuated to rotate this blank 35 around this second axis B-B'.
  • the distance between the first axis AA 'and the second axis BB' is adjusted according to the angular position of the blank 35 around the second axis B-B ', depending on the shape of the mount. glasses on which the lens will be fitted after treatment. In the same way, the lens is then brought to the finishing wheel with beveling 21 C.
  • the blank then has its final outline.
  • a drilling operation is then carried out.
  • the grinding wheel support 22 is positioned at the end of the axial stroke.
  • This limit switch corresponds to a position of the grinding wheel support 22 at the extreme right of FIG. 1.
  • the carriage 31 is moved away from the grinding wheel train 21 by displacement of the guide rod 53 upwards until a radial limit switch.
  • the actuating motor 101 of the tool holder assembly 17 is then activated.
  • the rotation of the output shaft 103 of this motor 101 rotates the worm 105 around an axis parallel to the first axis AA ′.
  • This endless screw 105 cooperates with the toothed wheel provided on the support 71.
  • the support 71 is then driven in rotation about its pivot axis D-D '.
  • This rotational movement of the support 71 causes the pivoting of the tool-holder shaft 75 about the pivot axis DD 'in the vertical plane passing through the axis A-A', from the retracted position shown in Figure 3 , located under the wheel train, in an active position shown in Figure 4, located above the wheel train.
  • the control unit 19 determines the angle formed by the tangent to the external or internal surface of the lens blank 35 at the point of drilling of this blank 35 and the direction perpendicular to the second axis BB 'which passes through this drilling point. This angle is designated by g in FIG. 5.
  • the angle ⁇ depends on the curvature of the lens blank 35.
  • the actuating motor 101 of the tool holder assembly 17 is deactivated when the angle formed by the third axis C-C and the second axis B- B 'is equal to this angle g.
  • the means of axial displacement of the support 22 and the means of radial displacement 51 of the carriage 31 are then controlled to bring the end of the forest 85 into contact with the drilling point ( Figure 4).
  • the forest 85 is then perpendicular to the external surface of the lens blank 35, whatever the curvature of this blank.
  • the rotary drive motor 77 of the tool holder shaft 75 is then activated.
  • the means of axial displacement of the support and the means of radial displacement 39 of the carriage 31 are then controlled by the synchronization means of the control unit 19 to move in translation the tool-holder shaft 75 along the third axis CC while maintaining the inclination of this third axis CC relative to the second axis BB 'constant and equal to ⁇ , during the entire drilling operation. More precisely, during drilling, the support 22 moves to the left and the carriage 31 moves downwards so that the drilling point moves exactly along the axis CC.
  • the angle formed by the third axis CC and the second axis BB ' is controlled before a counter-bevel operation so that the angle of attack between the surface of the counter-bevel grinding wheel 81 and the edge quick to machine the lens blank 35 is equal to a predetermined value regardless of the curvature of this blank.
  • the angle of inclination of the third axis CC relative to the second axis BB ' is controlled before a creasing operation so that the median plane P of the creasing wheel 85 is for example parallel to the tangent to the convex surface of the lens blank at the sharp edge, or parallel to a direction intermediate between the tangents of the convex and concave surfaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

The invention relates to a machine comprising a train of grinding stones (21), mounted to rotate about a first axis (A-A'), a lens support (15), provided with means (37), for rotating the lens (35) about a second axis (B-B') parallel to the first axis (A-A'), means (13, 39) for relative radial and axial positioning of the lens support (15) with relation to the train of grinding stones (21) and a tool carrier unit (17) with a tool (81; 83; 85) fixed to a tool support shaft (75) rotating about a third axis (C-C'). In an active position the tool is adjacent to the second axis (B-B') and the third axis (C-C') with a variable angle with relation to the second axis (B-B'). The tool support unit (17) further comprises means (79) for controlling the angle of inclination of the third axis (C-C') with relation to the second axis (B-B'), when the tool (81, 83, 85) is at a distance from the lens (35). Of application to the grinding of ophthalmic lenses.

Description

Machine de meulage de verres optiques. Optical lens grinding machine.
La présente invention relative à une machine de meulage de verres optiques du type décrit dans le préambule de la revendication 1.The present invention relates to a machine for grinding optical glasses of the type described in the preamble of claim 1.
Des machines connues (EP 0 350 216) permettent de réaliser de manière économique et efficace des opérations de contre-biseautage pour abattre les arêtes vives d'une ébauche de lentille ophtalmique après son meulage.Known machines (EP 0 350 216) make it possible to economically and effectively perform counter-beveling operations to cut down the sharp edges of an ophthalmic lens blank after it has been ground.
De telles machines ne donnent pas entière satisfaction. En effet, l'étendue de la surface usinée par la meule de contre-biseautage dépend de la courbure de la lentille. Lors de l'opération de contre-biseautage et dans le cas de lentilles fortement courbées, la meule de contre-biseautage est en contact avec la lentille suivant une surface plus étendue que dans le cas de lentilles planes ou quasi-planes. La qualité du contre-biseautage et par suite l'esthétique du verre obtenu varient donc en fonction de la courbure du verre. Par ailleurs, les machines du type précité (voir par exemple JP 8 155Such machines are not entirely satisfactory. Indeed, the extent of the surface machined by the counter-bevel wheel depends on the curvature of the lens. During the counter-beveling operation and in the case of highly curved lenses, the counter-beveling wheel is in contact with the lens over a larger surface than in the case of flat or quasi-flat lenses. The quality of the beveling and consequently the aesthetics of the glass obtained therefore vary according to the curvature of the glass. Furthermore, machines of the aforementioned type (see for example JP 8 155
945) permettent de réaliser plus précisément des opérations de rainage et/ou de perçage du verre, mais sont encombrantes.945) make it possible to more precisely perform creasing and / or drilling operations on the glass, but are bulky.
L'invention a pour but principal de remédier à ces inconvénients, c'est-à-dire de disposer d'une machine qui permette de réaliser simplement le contre-biseautage, le rainage et/ou le perçage de verres optiques avec une qualité d'opération constante quelle que soit la courbure de la lentille, et qui soit peu encombrante.The main object of the invention is to remedy these drawbacks, that is to say to have a machine which makes it possible to simply perform the counter-beveling, the creasing and / or the drilling of optical glasses with a quality of 'constant operation regardless of the curvature of the lens, and which is compact.
A cet effet, l'invention a pour objet une machine de meulage du type précité, caractérisée en ce que les moyens de commande sont adaptés pour escamoter l'arbre porte-outil par la commande dudit angle d'inclinaison.To this end, the invention relates to a grinding machine of the aforementioned type, characterized in that the control means are adapted to retract the tool holder shaft by controlling said angle of inclination.
D'autres caractéristiques de la machine suivant l'invention sont décrites dans les revendications 2 à 12.Other characteristics of the machine according to the invention are described in claims 2 to 12.
Par ailleurs, pour effectuer les opérations de contre-biseautage, de rainurage et de perçage, les machines connues du type précité requièrent des mécanismes complexes pour le déplacement de l'ensemble porte-outil par rapport au support de lentille. Un autre but de l'invention est d'obtenir une machine de meulage du type précité, dont la structure est simplifiée.Furthermore, to perform the operations of beveling, grooving and drilling, the known machines of the aforementioned type require complex mechanisms for the movement of the tool holder assembly relative to the lens support. Another object of the invention is to obtain a grinding machine of the aforementioned type, the structure of which is simplified.
A cet effet, suivant un autre aspect de l'invention, la machine du type précité comprend des moyens de déplacement relatif de l'arbre porte-outil par rapport au support de lentille en translation suivant le troisième axe lorsque l'outil est en position active, et lesdits moyens de déplacement relatifs comprennent des moyens de translation relative de l'arbre porte-outil par rapport au deuxième axe suivant une première direction, parallèle au deuxième axe, des moyens de pseudo-translation du support de lentilles par rapport au deuxième axe suivant une seconde direction perpendiculaire au deuxième axe, et des moyens de synchronisation desdits moyens de translation et de pseudo-translation.To this end, according to another aspect of the invention, the machine of the aforementioned type comprises means for relative displacement of the tool-holder shaft relative to the lens support in translation along the third axis when the tool is in position active, and said relative displacement means comprise means of relative translation of the tool-holder shaft relative to the second axis in a first direction, parallel to the second axis, means of pseudo-translation of the lens support relative to the second axis in a second direction perpendicular to the second axis, and means for synchronizing said means of translation and pseudo-translation.
Un exemple de réalisation de l'invention va maintenant être décrit en regard des dessins annexés, sur lesquels : - la Figure 1 est une vue partielle en perspective de trois-quarts supérieur des parties pertinentes d'une machine de meulage selon l'invention ;An exemplary embodiment of the invention will now be described with reference to the appended drawings, in which: - Figure 1 is a partial perspective view of three-quarters upper of the relevant parts of a grinding machine according to the invention;
- la Figure 2 est une vue en coupe partielle suivant la ligne ll-ll de la Figure 1 ; - la Figure 3 est une vue en perspective prise suivant la flèche III de la Figure 1 d'un détail de la machine de meulage selon l'invention, avec l'ensemble porte-outil en position escamotée ;- Figure 2 is a partial sectional view along the line II-II in Figure 1; - Figure 3 is a perspective view taken along arrow III of Figure 1 of a detail of the grinding machine according to the invention, with the tool holder assembly in the retracted position;
- la Figure 4 est une vue partielle en coupe suivant la ligne IV-IV de la Figure 1 de la machine de meulage selon l'invention lors d'une opération de perçage ; et- Figure 4 is a partial sectional view along line IV-IV of Figure 1 of the grinding machine according to the invention during a drilling operation; and
- la Figure 5 est une vue d'un détail de la Figure 4.- Figure 5 is a view of a detail of Figure 4.
La machine de meulage représentée sur les Figures 1 à 5 est destinée à réaliser un verre optique biseauté et contre-biseauté, ainsi que des opérations de rainage et de perçage à partir d'une ébauche de lentille généralement circulaire.The grinding machine shown in Figures 1 to 5 is intended to produce a beveled and counter-beveled optical glass, as well as creasing and drilling operations from a generally circular lens blank.
Cette machine de meulage comprend un bâti 11 , un ensemble de meulage 13, un support de lentille 15, un ensemble porte-outil 17 et une unité de commande 19. L'ensemble de meulage 13 comprend un train de meules 21 monté rotatif autour d'un premier axe A-A horizontal dans un support de meules 22 et entraîné en rotation par un moteur de meulage (non représenté).This grinding machine comprises a frame 11, a grinding assembly 13, a lens support 15, a tool holder assembly 17 and a control unit 19. The grinding assembly 13 comprises a train of grinding wheels 21 rotatably mounted about a first horizontal axis AA in a grinding wheel support 22 and driven in rotation by a grinding motor (not shown).
Le train de meules 21 est composé de plusieurs meules 21 A à 21 D juxtaposées. Les meules sont associées à un type de verre à meuler et à différentes étapes du procédé de meulage : une meule 21A d'ébauchage de verres minéraux, une meule 21 B d'ébauchage de verres synthétiques, une meule de finition avec biseautage 21 C pourvue d'une gorge circulaire 23, et une meule 21 D de polissage avec biseautage. Ce train de meules 21 peut être éventuellement équipé de meules de finition ou de polissage sans biseautage.The train of grinding wheels 21 is composed of several grinding wheels 21 A to 21 D juxtaposed. The grinding wheels are associated with a type of glass for grinding and at different stages of the grinding process: a grinding wheel 21A for roughing mineral glasses, a grinding wheel 21 B for roughing synthetic glasses, a finishing grinding wheel with beveling 21 C provided a circular groove 23, and a polishing wheel 21 D with beveling. This train of grinding wheels 21 can optionally be equipped with finishing or polishing grinding wheels without bevelling.
Ce train de meules 21 est monté solidairement sur un arbre de meules 25, lui-même monté libre en rotation dans le support 22 autour du premier axe A-A'. La partie inférieure 27 du support de meules 22 est montée coulissante suivant une direction axiale parallèle au premier axe A-A' sur une barre 29 de coulissement. Des moyens (non représentés) permettent l'entraînement en translation de l'ensemble de meulage 13 suivant cette direction axiale par coulissement du support de meules 22 le long de la barre de coulissement 29.This train of grinding wheels 21 is mounted integrally on a grinding wheel shaft 25, itself mounted free in rotation in the support 22 around the first axis A-A '. The lower part 27 of the grinding wheel support 22 is slidably mounted in an axial direction parallel to the first axis AA ′ on a sliding bar 29. Means (not shown) enable the grinding assembly 13 to move in translation in this axial direction by sliding the grinding wheel support 22 along the sliding bar 29.
Le support de lentille 15 comprend un chariot 31 monté basculant sur le bâti 11 et muni de deux demi-arbres 33A et 33B adaptés pour saisir l'ébauche de lentille 35, un moteur 37 d'entraînement en rotation de l'ébauche de lentille 35, et des moyens 39 de positionnement radial du chariot 31 par rapport au premier axe A-A'.The lens support 15 comprises a carriage 31 pivotally mounted on the frame 11 and provided with two half-shafts 33A and 33B suitable for gripping the lens blank 35, a motor 37 for driving the lens blank 35 in rotation. , and means 39 for radial positioning of the carriage 31 relative to the first axis AA ′.
Le chariot est articulé par un bord longitudinal 41 autour d'un arbre 43 de basculement disposé parallèlement au premier axe A-A'.The carriage is articulated by a longitudinal edge 41 around a tilting shaft 43 arranged parallel to the first axis AA ′.
Les deux demi-arbres 33A et 33B sont montés le long de l'autre bord longitudinal 45 du chariot 31. Ces demi-arbres 33A et 33B sont disposés suivant un second axe B-B' horizontal qui, en cours de meulage, est parallèle au premier axe A-A'. Par ailleurs, ces demi-arbres 33A et 33B sont munis d'extrémités libres 47A et 47B en regard l'une de l'autre, adaptées pour saisir l'ébauche de lentille 35. Le moteur d'entraînement 37 de l'ébauche de lentille 35 entraîne en rotation autour du second axe B-B' le demi-arbre 33B et le demi-arbre 33A par un mécanisme de transmission (non représenté).The two half-shafts 33A and 33B are mounted along the other longitudinal edge 45 of the carriage 31. These half-shafts 33A and 33B are arranged along a second horizontal axis BB 'which, during grinding, is parallel to the first axis A-A '. Furthermore, these half-shafts 33A and 33B are provided with free ends 47A and 47B facing each other, adapted to grip the lens blank 35. The drive motor 37 of the lens blank 35 rotates around the second axis BB 'the half-shaft 33B and the half-shaft 33A by a transmission mechanism (not shown).
Comme illustré sur la Figure 4, les moyens de positionnement radial 39 du chariot 31 par rapport au premier axe A-A' comprennent un mécanisme 51 d'entraînement et une tige de guidage ou touche 53.As illustrated in FIG. 4, the radial positioning means 39 of the carriage 31 relative to the first axis A-A 'comprise a drive mechanism 51 and a guide rod or button 53.
Le mécanisme d'entraînement 51 comprend une vis sans fin 55 d'entraînement en coopération avec un écrou 57. La vis 55 est montée rotative sur le bâti 11 et disposée suivant une direction radiale perpendiculaire à la direction axiale. Dans l'exemple illustré sur la Figure 2, la vis d'entraînement 55 est verticale.The drive mechanism 51 comprises an endless screw 55 for driving in cooperation with a nut 57. The screw 55 is rotatably mounted on the frame 11 and arranged in a radial direction perpendicular to the axial direction. In the example illustrated in Figure 2, the drive screw 55 is vertical.
Cette vis d'entraînement 55 est entraînée en rotation par un moteur 59 solidaire du bâti 11.This drive screw 55 is rotated by a motor 59 secured to the frame 11.
Par ailleurs, l'extrémité inférieure de la tige d'actionnement 53 est fixée à l'écrou 57. Le bord 45 du chariot 35 voisin du second axe horizontal B-B' est en appui sur l'extrémité supérieure de cette tige 55.Furthermore, the lower end of the actuating rod 53 is fixed to the nut 57. The edge 45 of the carriage 35 adjacent to the second horizontal axis B-B 'bears on the upper end of this rod 55.
Lorsque le moteur 59 entraîne en rotation la vis d'entraînement 55, l'écrou 57 et la tige d'actionnement 53 se déplacent en translation suivant la direction verticale. L'action de la tige 53 sur le chariot 31 permet de déplacer le deuxième axe B-B' par rapport au premier axe A-A' par basculement du chariot 31. Pour des basculements de faible amplitude, le mouvement du deuxième axe B-B' par rapport au premier axe A-A' est assimilable à un mouvement vertical de pseudo-translation. Par ailleurs, le chariot 31 est muni de palpeurs 61 de l'ébauche de lentille 35, reliés à l'unité de commande 19.When the motor 59 rotates the drive screw 55, the nut 57 and the actuating rod 53 move in translation in the vertical direction. The action of the rod 53 on the carriage 31 makes it possible to move the second axis BB 'relative to the first axis AA' by tilting the carriage 31. For tiltings of small amplitude, the movement of the second axis BB 'relative to the first axis AA 'is comparable to a vertical pseudo-translation movement. Furthermore, the carriage 31 is provided with feelers 61 of the lens blank 35, connected to the control unit 19.
En référence aux Figures 1 , 2 et 4, l'ensemble porte-outil 17 comprend un support 71 muni d'un bras 73 de liaison en saillie, un arbre porte-outil 75, un moteur 77 d'entraînement en rotation de l'arbre porte-outil 75, et des moyens 79 d'actionnement de l'arbre porte-outil 75. Comme illustré sur la Figure 2, le support 71 est de forme générale cylindrique. Il est monté rotatif sur le support de meules 22 autour d'un axe de pivotement D-D' horizontal, perpendiculaire au premier axe A-A'. L'arbre porte-outil 75 est monté rotatif autour d'un troisième axe C-C à l'extrémité libre du bras de liaison 73. Dans l'exemple illustré sur les Figures 1 à 5, l'arbre porte-outil 75 reste dans le plan vertical qui passe par le premier axe A-A'. Cet arbre 75 porte une meule 81 de contre-biseautage, une meule 83 de rainage, et un forêt 85 de perçage.Referring to Figures 1, 2 and 4, the tool holder assembly 17 comprises a support 71 provided with a projecting link arm 73, a tool holder shaft 75, a motor 77 for driving the rotation of the tool holder shaft 75, and means 79 for actuating the tool holder shaft 75. As illustrated in FIG. 2, the support 71 is of generally cylindrical shape. It is rotatably mounted on the grinding wheel support 22 around a horizontal pivot axis DD ', perpendicular to the first axis A-A'. The tool-holder shaft 75 is rotatably mounted around a third axis CC at the free end of the link arm 73. In the example illustrated in Figures 1 to 5, the tool-holder shaft 75 remains in the vertical plane passing through the first axis A-A '. This shaft 75 carries a grinding wheel 81 for bevelling, a grinding wheel 83, and a drill bit 85 for drilling.
La meule de contre-biseautage 81 a un diamètre très inférieur à celui des meules 21 A à 21 D du train de meules. Comme illustré sur la Figure 5, cette meule de contre-biseautage présente extérieurement une surface 87 médiane cylindrique, encadrée par deux surfaces 89 et 91 tronconiques qui convergent en s'éloignant de cette surface. Comme illustré sur la Figure 5, il s'agit d'une surface 89 ayant un demi-angle au sommet relativement petit, par exemple de l'ordre de 35°, et d'une surface opposée 91 ayant un demi- angle au sommet relativement grand, par exemple 55°. La meule de rainage 83 comprend une unique surface médiane cylindrique 92 de faible largeur. Dans l'exemple illustré sur la Figure 5, la largeur de la surface médiane cylindrique est comprise entre 0,5 et 1 ,6 mm.The counter-beveling grinding wheel 81 has a diameter much smaller than that of the grinding wheels 21 A to 21 D of the wheel train. As illustrated in FIG. 5, this counter-beveling grinding wheel has on the outside a cylindrical median surface 87, framed by two frustoconical surfaces 89 and 91 which converge away from this surface. As illustrated in FIG. 5, it is a surface 89 having a relatively small apex half-angle, for example of the order of 35 °, and an opposite surface 91 having a apex half-angle relatively large, for example 55 °. The creasing wheel 83 comprises a single cylindrical central surface 92 of small width. In the example illustrated in Figure 5, the width of the cylindrical median surface is between 0.5 and 1.6 mm.
Le forêt de perçage 85 est monté à l'extrémité libre de l'arbre porte- outil 75 et est aligné suivant le troisième axe C-C. Le moteur d'entraînement en rotation 77 de l'arbre porte-outil 75 est relié à cet arbre 75 par des moyens de transmission comprenant notamment une poulie 93 et une courroie 95 (Figure 1).The drilling forest 85 is mounted at the free end of the tool-holder shaft 75 and is aligned along the third axis C-C. The rotary drive motor 77 of the tool-holder shaft 75 is connected to this shaft 75 by transmission means comprising in particular a pulley 93 and a belt 95 (Figure 1).
Les moyens d'actionnement 79 de l'arbre porte-outil 75 comprennent (Figure 1) un moteur d'actionnement 101 dont l'arbre de sortie 103 est muni à son extrémité d'une vis sans fin 105. Cette vis sans fin 105 coopère avec une roue dentée tangente solidaire du support 71.The actuation means 79 of the tool-holder shaft 75 comprise (FIG. 1) an actuation motor 101, the output shaft 103 of which is provided at its end with a worm screw 105. This worm screw 105 cooperates with a tangent toothed wheel secured to the support 71.
Ces moyens d'actionnement 79 entraînent en rotation le support 71 autour de l'axe de pivotement sur un déplacement angulaire de 30° au minimum, et préférentiellement de 180°. Par suite, lors de ce déplacement en rotation, l'angle formé entre le troisième axe C-C et le premier axe A-A' ou le second axe B-B' varie au minimum entre 0 et 30° et préférentiellement entre 0 et 180°. L'unité de commande 19 permet de piloter d'une part, le déplacement du support de meules 22 suivant la direction axiale et d'autre part, le déplacement du chariot 31 autour de l'arbre d'articulation 43. Ainsi, cette unité de commande 19 coordonne le déplacement relatif du support de lentille par rapport au train de meules. Par ailleurs, cette unité de commande est munie de moyens de synchronisation (non représentés) permettant de commander simultanément le déplacement axial du support de meules 22 et le déplacement du chariot 31 autour de l'arbre d'articulation, suivant une loi de commande prédéfinie. On décrira maintenant comme exemple une opération de meulage, suivie d'une opération de perçage d'une ébauche de lentille ophtalmique par l'appareil de meulage des Figures 1 à 5.These actuating means 79 rotate the support 71 around the pivot axis on an angular displacement of at least 30 °, and preferably 180 °. Consequently, during this rotational movement, the angle formed between the third axis CC and the first axis AA 'or the second axis BB' varies at least between 0 and 30 ° and preferably between 0 and 180 °. The control unit 19 makes it possible to control, on the one hand, the movement of the grinding wheel support 22 in the axial direction and, on the other hand, the movement of the carriage 31 around the articulation shaft 43. Thus, this unit control 19 coordinates the relative movement of the lens support relative to the train of grinding wheels. Furthermore, this control unit is provided with synchronization means (not shown) making it possible to simultaneously control the axial movement of the grinding wheel support 22 and the movement of the carriage 31 around the articulation shaft, according to a predefined control law . A grinding operation will now be described as an example, followed by an operation for drilling an ophthalmic lens blank by the grinding apparatus of FIGS. 1 to 5.
Initialement et comme illustré sur la Figure 3, le support 71 est orienté de telle sorte que le bras 73 et l'arbre porte-outil 75 sont dans une position escamotée sous le train de meules 21. Ainsi, l'espace situé au-dessus des meules 21 A à 21 D est totalement dégagé.Initially and as illustrated in FIG. 3, the support 71 is oriented so that the arm 73 and the tool-holder shaft 75 are in a retracted position under the wheel train 21. Thus, the space situated above grinding wheels 21 A to 21 D is completely free.
Comme connu, l'ébauche 35 est calée entre les deux extrémités 47A et 47B des demi-arbres 33A et 33B par un adaptateur convenablement positionné sur l'ébauche. Par suite, le moteur d'entraînement en rotation des meules 21A àAs known, the blank 35 is wedged between the two ends 47A and 47B of the half-shafts 33A and 33B by an adapter suitably positioned on the blank. As a result, the motor for rotating the grinding wheels 21A to
21 D est actionné. Le train de meules 21 est alors entraîné en rotation autour du premier axe A-A' par ce moteur. L'unité de commande 19 pilote les moyens de déplacement axial du support de meules 22 et les moyens de déplacement radial 39 du chariot 31 pour positionner l'ébauche de lentille 35 au contact de la meule d'ébauchage 21A.21 D is activated. The train of grinding wheels 21 is then driven in rotation about the first axis A-A 'by this motor. The control unit 19 controls the axial displacement means of the grinding wheel support 22 and the radial displacement means 39 of the carriage 31 to position the lens blank 35 in contact with the roughing grinding wheel 21A.
Le moteur d'entraînement en rotation 37 de l'ébauche de lentille 35 par rapport au second axe B-B' est alors actionné pour faire tourner cette ébauche 35 autour de ce second axe B-B'.The motor for rotating 37 of the lens blank 35 relative to the second axis B-B 'is then actuated to rotate this blank 35 around this second axis B-B'.
Simultanément, grâce au mécanisme 51 , la distance entre le premier axe A-A' et le second axe B-B' est réglée suivant la position angulaire de l'ébauche 35 autour du second axe B-B', en fonction de la forme de la monture de lunettes sur laquelle la lentille va être montée après son traitement. De la même manière, la lentille est ensuite amenée sur la meule de finition avec biseautage 21 C.Simultaneously, thanks to the mechanism 51, the distance between the first axis AA 'and the second axis BB' is adjusted according to the angular position of the blank 35 around the second axis B-B ', depending on the shape of the mount. glasses on which the lens will be fitted after treatment. In the same way, the lens is then brought to the finishing wheel with beveling 21 C.
L'ébauche a alors son contour définitif. Une opération de perçage est ensuite effectuée. Dans un premier temps, le support de meules 22 est positionné en fin de course axiale. Cette fin de course correspond à une position du support de meules 22 à l'extrême droite de la Figure 1. Simultanément, le chariot 31 est éloigné du train de meules 21 par déplacement de la tige de guidage 53 vers le haut jusqu'à une fin de course radiale. Le moteur d'actionnement 101 de l'ensemble porte-outil 17 est alors activé. La rotation de l'arbre de sortie 103 de ce moteur 101 entraîne en rotation la vis 105 sans fin autour d'un axe parallèle au premier axe A-A'. Cette vis sans fin 105 coopère avec la roue dentée prévue sur le support 71. Le support 71 est alors entraîné en rotation autour de son axe de pivotement D-D'. Ce mouvement de rotation du support 71 entraîne le pivotement de l'arbre porte-outil 75 autour de l'axe de pivotement D-D' dans le plan vertical passant par l'axe A-A', de la position escamotée représentée sur la Figure 3, située sous le train de meules, à une position active représentée sur la Figure 4, située au-dessus du train de meules. Sur la base des données reçues des palpeurs 61 , l'unité de commande 19 détermine l'angle formé par la tangente à la surface externe ou interne de l'ébauche de lentille 35 au niveau du point de perçage de cette ébauche 35 et la direction perpendiculaire au second axe B-B' qui passe par ce point de perçage. Cet angle est désigné par g sur la Figure 5. L'angle α dépend de la courbure de l'ébauche de lentille 35.The blank then has its final outline. A drilling operation is then carried out. Initially, the grinding wheel support 22 is positioned at the end of the axial stroke. This limit switch corresponds to a position of the grinding wheel support 22 at the extreme right of FIG. 1. Simultaneously, the carriage 31 is moved away from the grinding wheel train 21 by displacement of the guide rod 53 upwards until a radial limit switch. The actuating motor 101 of the tool holder assembly 17 is then activated. The rotation of the output shaft 103 of this motor 101 rotates the worm 105 around an axis parallel to the first axis AA ′. This endless screw 105 cooperates with the toothed wheel provided on the support 71. The support 71 is then driven in rotation about its pivot axis D-D '. This rotational movement of the support 71 causes the pivoting of the tool-holder shaft 75 about the pivot axis DD 'in the vertical plane passing through the axis A-A', from the retracted position shown in Figure 3 , located under the wheel train, in an active position shown in Figure 4, located above the wheel train. On the basis of the data received from the probes 61, the control unit 19 determines the angle formed by the tangent to the external or internal surface of the lens blank 35 at the point of drilling of this blank 35 and the direction perpendicular to the second axis BB 'which passes through this drilling point. This angle is designated by g in FIG. 5. The angle α depends on the curvature of the lens blank 35.
Le moteur d'actionnement 101 de l'ensemble porte-outil 17 est désactivé lorsque l'angle formé par le troisième axe C-C et le second axe B- B' est égal à cet angle g.The actuating motor 101 of the tool holder assembly 17 is deactivated when the angle formed by the third axis C-C and the second axis B- B 'is equal to this angle g.
Les moyens de déplacement axial du support 22 et les moyens de déplacement radial 51 du chariot 31 sont alors commandés pour amener l'extrémité du forêt 85 au contact du point de perçage (Figure 4).The means of axial displacement of the support 22 and the means of radial displacement 51 of the carriage 31 are then controlled to bring the end of the forest 85 into contact with the drilling point (Figure 4).
Le forêt 85 est alors perpendiculaire à la surface externe de l'ébauche de lentille 35, quelle que soit la courbure de cette ébauche. Le moteur d'entraînement en rotation 77 de l'arbre porte-outil 75 est ensuite activé. Les moyens de déplacement axial du support et les moyens de déplacement radial 39 du chariot 31 sont alors pilotés par les moyens de synchronisation de l'unité de commande 19 pour déplacer en translation l'arbre porte-outil 75 suivant le troisième axe C-C en maintenant l'inclinaison de ce troisième axe C-C par rapport au second axe B-B' constante et égale à α, pendant toute l'opération de perçage. Plus précisément, pendant le perçage, le support 22 se déplace vers la gauche et le chariot 31 se déplace vers le bas afin que le point de perçage se déplace exactement suivant l'axe C-C.The forest 85 is then perpendicular to the external surface of the lens blank 35, whatever the curvature of this blank. The rotary drive motor 77 of the tool holder shaft 75 is then activated. The means of axial displacement of the support and the means of radial displacement 39 of the carriage 31 are then controlled by the synchronization means of the control unit 19 to move in translation the tool-holder shaft 75 along the third axis CC while maintaining the inclination of this third axis CC relative to the second axis BB 'constant and equal to α, during the entire drilling operation. More precisely, during drilling, the support 22 moves to the left and the carriage 31 moves downwards so that the drilling point moves exactly along the axis CC.
En variante, l'angle formé par le troisième axe C-C et le deuxième axe B-B' est commandé avant une opération de contre-biseautage pour que l'angle d'attaque entre la surface de la meule de contre-biseautage 81 et l'arête vive à usiner de l'ébauche de lentille 35 soit égal à une valeur prédéterminée quelle que soit la courbure de cette ébauche.As a variant, the angle formed by the third axis CC and the second axis BB 'is controlled before a counter-bevel operation so that the angle of attack between the surface of the counter-bevel grinding wheel 81 and the edge quick to machine the lens blank 35 is equal to a predetermined value regardless of the curvature of this blank.
Dans une autre variante, l'angle d'inclinaison du troisième axe C-C par rapport au deuxième axe B-B' est commandé avant une opération de rainage pour que le plan médian P de la meule de rainage 85 soit par exemple parallèle à la tangente à la surface convexe de l'ébauche de lentille au niveau de l'arête vive, ou bien parallèle à une direction intermédiaire entre les tangentes des surfaces convexe et concave.In another variant, the angle of inclination of the third axis CC relative to the second axis BB 'is controlled before a creasing operation so that the median plane P of the creasing wheel 85 is for example parallel to the tangent to the convex surface of the lens blank at the sharp edge, or parallel to a direction intermediate between the tangents of the convex and concave surfaces.
Ceci permet d'obtenir une homogénéité élevée de la largeur de la rainure sur tout le pourtour de la lentille quelle que soit la forme de celle-ci (courbures et profil périphérique). Grâce à l'invention qui vient d'être décrite, il est possible de disposer d'une machine permettant à la fois le meulage, le contre-biseautage, le rainage, et le perçage d'ébauches de lentille ophtalmique de courbures différentes, en maintenant la qualité de ces opérations quelle que soit la courbure de l'ébauche de lentille. Cette machine permet de réaliser l'ensemble de ces opérations de façon économique et efficace. This makes it possible to obtain a high homogeneity of the width of the groove over the entire periphery of the lens whatever the shape of the latter (curvatures and peripheral profile). Thanks to the invention which has just been described, it is possible to have a machine allowing at the same time the grinding, the counter-beveling, the creasing, and the drilling of blanks of ophthalmic lens of different curvatures, maintaining the quality of these operations regardless of the curvature of the lens blank. This machine allows all of these operations to be carried out economically and efficiently.

Claims

REVENDICATIONS
1. Machine de meulage de verres optiques, du type comprenant :1. Optical lens grinding machine, of the type comprising:
- un train de meules (21) monté rotatif autour d'un premier axe (A-A') ;- a train of grinding wheels (21) rotatably mounted around a first axis (A-A ');
- un support de lentille (15) muni de moyens (37) d'entraînement en rotation (35) de la lentille autour d'un deuxième axe (B-B') qui, au moins en cours de meulage, est sensiblement parallèle audit premier axe (A-A') ;- a lens support (15) provided with means (37) for driving in rotation (35) the lens around a second axis (B-B ') which, at least during grinding, is substantially parallel to said first axis (A-A ');
- des moyens (13, 39) de positionnement relatif axial et radial du support de lentille (15) par rapport au train de meules (21) ;- Means (13, 39) for axial and radial relative positioning of the lens support (15) relative to the wheel train (21);
- un ensemble porte-outil (17) comprenant au moins un outil (81 ; 83 ; 85) monté solidaire d'un arbre porte-outil (75) rotatif autour d'un troisième axe (C-C), des moyens (79) d'actionnement de l'arbre porte-outil (75) adaptés pour déplacer l'outil (81 ; 83 ; 85) entre une position escamotée et une position active au voisinage dudit deuxième axe (B-B'), le troisième axe (C-C) ayant une inclinaison variable par rapport au deuxième axe (B-B'), l'ensemble porte-outil (17) comprenant en outre des moyens (79) de commande, sur une valeur dépendant de la valeur de la courbure de la lentille, de l'angle d'inclinaison (α) du troisième axe (C-C) par rapport au deuxième axe (B-B') lorsque l'outil (81 ; 83 ; 85) est espacé de la lentille (35), caractérisée en ce que les moyens de commande (79) sont adaptés pour escamoter l'arbre porte-outil (75) par la commande dudit angle d'inclinaison (α).- a tool holder assembly (17) comprising at least one tool (81; 83; 85) mounted integral with a tool holder shaft (75) rotating around a third axis (CC), means (79) d actuation of the tool-holder shaft (75) adapted to move the tool (81; 83; 85) between a retracted position and an active position in the vicinity of said second axis (B-B '), the third axis (CC ) having a variable inclination relative to the second axis (B-B '), the tool holder assembly (17) further comprising control means (79), on a value depending on the value of the curvature of the lens , the angle of inclination (α) of the third axis (CC) relative to the second axis (B-B ') when the tool (81; 83; 85) is spaced from the lens (35), characterized in that the control means (79) are adapted to retract the tool-holder shaft (75) by controlling said angle of inclination (α).
2. Machine de meulage selon la revendication 1 , caractérisée en ce qu'elle comprend des moyens (13, 39) de déplacement relatif de l'arbre porte-outil (75) par rapport au support de lentille (15) en translation suivant le troisième axe (C-C) lorsque l'outil (81 ; 83 ; 85) est en position active.2. Grinding machine according to claim 1, characterized in that it comprises means (13, 39) for relative displacement of the tool-holder shaft (75) relative to the lens support (15) in translation along the third axis (CC) when the tool (81; 83; 85) is in the active position.
3. Machine de meulage selon la revendication 2, caractérisée en ce que lesdits moyens de déplacement (13, 39) relatifs comprennent des moyens (13) de translation relative de l'arbre porte-outil (75) par rapport au deuxième axe (B-B') suivant une première direction, notamment suivant une direction parallèle au deuxième axe (B-B'), des moyens (53) de pseudotranslation relative de l'arbre porte-outil (75) par rapport au deuxième axe (B-B') suivant une seconde direction distincte de la première direction, notamment une direction perpendiculaire au deuxième axe (B-B'), et des moyens de synchronisation (19) desdits moyens de translation et de pseudo-translation (39).3. Grinding machine according to claim 2, characterized in that said relative displacement means (13, 39) comprise means (13) for relative translation of the tool-holder shaft (75) relative to the second axis (B -B ') in a first direction, in particular in a direction parallel to the second axis (B-B'), means (53) for relative pseudotranslation of the tool-holder shaft (75) relative to the second axis (B- B ') in a second direction distinct from the first direction, in particular a direction perpendicular to the second axis (B-B '), and synchronization means (19) of said translation and pseudo-translation means (39).
4. Machine de meulage selon l'une des revendications 2 ou 3, caractérisée en ce que le train de meules (21) comporte un support de meules (22) muni de moyens (27, 29) de translation axiale, et en ce que l'ensemble porte-outil (17) est lié en translation audit support de meules (22).4. Grinding machine according to one of claims 2 or 3, characterized in that the grinding wheel train (21) comprises a grinding wheel support (22) provided with means (27, 29) of axial translation, and in that the tool holder assembly (17) is linked in translation to said grinding wheel support (22).
5. Machine de meulage selon l'une des revendications 2 à 4, caractérisée en ce que le support de lentille (15) est muni de moyens (39) de pseudo-translation radiale.5. Grinding machine according to one of claims 2 to 4, characterized in that the lens support (15) is provided with means (39) of radial pseudo-translation.
6. Machine de meulage selon l'une des revendications 1 à 5, caractérisée en ce que l'ensemble porte-outil (17) est monté rotatif sur le support de meules (22) autour d'un axe (D-D') perpendiculaire audit premier axe (A-A).6. Grinding machine according to one of claims 1 to 5, characterized in that the tool holder assembly (17) is rotatably mounted on the grinding wheel support (22) around an axis (D-D ') perpendicular to said first axis (AA).
7. Machine de meulage selon l'une quelconque des revendications précédentes, caractérisée en ce que lesdits moyens de commande (79) commandent l'angle (α) d'inclinaison du troisième axe (C-C) par rapport au deuxième axe (B-B') entre 0 et 30° dans la position active dudit arbre (75). 7. Grinding machine according to any one of the preceding claims, characterized in that said control means (79) control the angle (α) of inclination of the third axis (CC) relative to the second axis (B-B ') between 0 and 30 ° in the active position of said shaft (75).
8. Machine de meulage selon l'une quelconque des revendications précédentes, caractérisée en ce que lesdits moyens de commande (79) sont adaptés pour escamoter ledit arbre (75) sous le train de meules (21) en le faisant passer devant ce dernier.8. Grinding machine according to any one of the preceding claims, characterized in that said control means (79) are adapted to retract said shaft (75) under the wheel train (21) by passing it past the latter.
9. Machine de meulage selon l'une quelconque des revendications 1 à 8, caractérisée en ce qu'au moins un outil est une meule additionnelle de contre-biseautage (81).9. Grinding machine according to any one of claims 1 to 8, characterized in that at least one tool is an additional grinding wheel against beveling (81).
10. Machine de meulage selon l'une quelconque des revendications précédentes, caractérisée en ce qu'au moins un outil est une meule de rainage (83). 10. Grinding machine according to any one of the preceding claims, characterized in that at least one tool is a creasing wheel (83).
11. Machine de meulage selon l'une quelconque des revendications précédentes, caractérisée en ce qu'au moins un outil est un outil de perçage (85). 11. Grinding machine according to any one of the preceding claims, characterized in that at least one tool is a drilling tool (85).
12. Machine de meulage selon l'une des revendications 1 à 11 , caractérisée en ce qu'elle comprend des moyens (13, 39) de déplacement relatif de l'arbre porte-outil (75) par rapport au support de lentille (15) en translation suivant le troisième axe (C-C) lorsque l'outil (81 ; 83 ; 85) est en position active, et en ce que lesdits moyens de déplacement relatifs (13, 39) comprennent des moyens (13) de translation relative de l'arbre porte-outil (75) par rapport au deuxième axe (B-B') suivant une première direction, parallèle au deuxième axe (B-B'), des moyens de pseudo-translation du support de lentilles (15) par rapport au deuxième axe (B-B') suivant une seconde direction perpendiculaire au deuxième axe (B-B'), et des moyens (19) de synchronisation desdits moyens de translation (13) et de pseudotranslation (39). 12. Grinding machine according to one of claims 1 to 11, characterized in that it comprises means (13, 39) for relative movement of the tool-holder shaft (75) relative to the lens support (15 ) in translation along the third axis (CC) when the tool (81; 83; 85) is in the active position, and in that said relative displacement means (13, 39) comprise means (13) for relative translation of the tool-holder shaft (75) relative to the second axis (B-B ') in a first direction, parallel to the second axis (B-B'), means of pseudo-translation of the lens support (15) by relative to the second axis (B-B ') in a second direction perpendicular to the second axis (B-B'), and means (19) for synchronizing said means of translation (13) and pseudotranslation (39).
EP04742359A 2003-03-27 2004-03-25 Machine for grinding optical lenses Expired - Lifetime EP1606079B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0303792A FR2852878B1 (en) 2003-03-27 2003-03-27 GRINDING MACHINE OF OPTICAL LENSES.
FR0303792 2003-03-27
PCT/FR2004/000754 WO2004087374A1 (en) 2003-03-27 2004-03-25 Machine for grinding optical lenses

Publications (2)

Publication Number Publication Date
EP1606079A1 true EP1606079A1 (en) 2005-12-21
EP1606079B1 EP1606079B1 (en) 2011-12-21

Family

ID=32947220

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04742359A Expired - Lifetime EP1606079B1 (en) 2003-03-27 2004-03-25 Machine for grinding optical lenses

Country Status (5)

Country Link
US (1) US7281967B2 (en)
EP (1) EP1606079B1 (en)
CN (1) CN100519070C (en)
FR (1) FR2852878B1 (en)
WO (1) WO2004087374A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8556678B2 (en) * 2000-01-18 2013-10-15 Ncrx Optical Solutions, Inc. System and method pre-blocking ophthalmic lens for processing including articulation edging
FR2870471B1 (en) * 2004-05-18 2006-08-25 Briot Internat Sa METHOD OF GROOVING OR CONTRABESAUTING THE PERIPHERY OF AN OPHTHALMIC LENS
EP1786608A1 (en) * 2004-09-08 2007-05-23 National Optronics, Inc. Lens drilling apparatus and method
FR2876936B1 (en) * 2004-10-21 2008-06-13 Briot Internat Sa OPTICAL GLASS DRILLING MACHINE AND METHOD THEREOF
FR2884163B1 (en) * 2005-04-07 2007-07-06 Briot Internat Sa OPTICAL GLASS GRINDING MACHINE WITH INCLINED FINISHING WHEEL AND CORRESPONDING OPTICAL GLASS
FR2885545B1 (en) * 2005-05-13 2007-08-10 Briot Internat Sa CALIBRATION TOOL AND GRINDING MACHINE COMPRISING SUCH A TOOL
JP2007181889A (en) * 2006-01-05 2007-07-19 Nidek Co Ltd Glass lens working system
FR2900853B1 (en) * 2006-05-10 2009-01-23 Essilor Int METHOD AND DEVICE FOR QUENCHING A SLIDING LENS BY CUTTING THE LENS
FR2904703B1 (en) 2006-08-04 2008-12-12 Essilor Int PAIR OF OPHTHALMIC GLASSES AND METHOD OF FORMING A PERIPHERAL RIB OF EMBOITEMENT ON THE SINGING OF A LENS
FR2906746B1 (en) 2006-10-10 2009-05-22 Essilor Int DEVICE FOR MACHINING OPHTHALMIC LENSES COMPRISING A PLURALITY OF MACHINING TOOLS PLACED ON AN ORIENTABLE MODULE
FR2912335B1 (en) * 2007-02-13 2009-04-17 Essilor Int MACHINE FOR DETOURING A LENS OF GLASSES, PROVIDED WITH A ROTATING TOOL HOLDER ON WHICH ARE MADE SEVERAL WORKING TOOLS
KR101079037B1 (en) * 2008-09-30 2011-11-02 주식회사 휴비츠 Apparatus for processing eyeglass lens having drilling apparatus
JP5372628B2 (en) * 2009-07-08 2013-12-18 株式会社ニデック Eyeglass lens processing apparatus and beveling tool used in the apparatus
FR2962676B1 (en) * 2010-07-13 2012-08-03 Essilor Int METHOD FOR DETOURING AN OPHTHALMIC LENS OF LENSES COMPRISING A COATING FILM
JP5976270B2 (en) * 2010-09-30 2016-08-23 株式会社ニデック Eyeglass lens processing equipment
FR2972382B1 (en) * 2011-03-10 2013-04-26 Briot Int OPTICAL GLASS GRINDING MACHINE AND ASSOCIATED GRINDING METHOD
FR3002871B1 (en) * 2013-03-08 2015-03-13 Essilor Int DEVICE FOR DISRUPTING OPHTHALMIC LENSES
BE1020915B1 (en) * 2013-07-02 2019-09-16 Optidrive Nv METHOD AND INSTALLATION FOR CORNER BEAMING.
FR3008914B1 (en) * 2013-07-26 2015-09-04 Essilor Int METHOD AND MACHINE FOR ETCHING OPTICAL LENSES
WO2016144759A1 (en) * 2015-03-06 2016-09-15 Hg LAUNDRY SYSTEMS, LLC Washing machine with air/water jets
EP3075508B1 (en) * 2015-03-31 2019-07-31 Nidek co., Ltd. Eyeglass lens processing apparatus, eyeglass lens processing control data acquisition apparatus and eyeglass lens processing method
US10576600B2 (en) * 2016-12-20 2020-03-03 Huvitz Co., Ltd. Apparatus for processing edge of eyeglass lens
JP6998159B2 (en) * 2017-09-07 2022-01-18 株式会社ディスコ Cutting blade feeder
CN108356644B (en) * 2018-01-19 2024-06-18 维达力实业(深圳)有限公司 Polishing cutter for protecting lens
CN109759604B (en) * 2019-02-27 2020-09-15 丹阳市雷登智能科技有限公司 Lens edge cutting method
CN110480509B (en) * 2019-09-07 2020-10-09 广州瞳鑫邈视光电有限公司 Head driving mechanism
CN112936001A (en) * 2019-12-10 2021-06-11 苏州阿奎睿思机器人科技有限公司 Optical precision machining unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8816182D0 (en) * 1988-07-07 1988-08-10 Berkshire Ophthalmic Lab Ltd Method & apparatus for grinding lenses
FR2725047B1 (en) * 1994-09-27 1997-01-31 Essilor Int METHOD AND DEVICE FOR OBTAINING FRAGILITY OF THE EDGES OF AN OPHTHALMIC LENS, AND CORRESPONDING OPHTHALMIC LENS
DE10013649A1 (en) * 2000-03-18 2001-09-27 Wernicke & Co Gmbh Auxiliary grinding tool for spectacles finishing machine is mounted on swivel holder to move from rest position into work position in area of grinding disc packet especially for grinding groove in lens periphery
JP2001277086A (en) * 2000-03-31 2001-10-09 Topcon Corp Lens circumferential rim machining device
JP2003011057A (en) * 2001-07-02 2003-01-15 Toshiba Mach Co Ltd Nc machine tool having turning shaft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004087374A1 *

Also Published As

Publication number Publication date
CN100519070C (en) 2009-07-29
WO2004087374A1 (en) 2004-10-14
CN1764517A (en) 2006-04-26
FR2852878A1 (en) 2004-10-01
FR2852878B1 (en) 2006-09-29
EP1606079B1 (en) 2011-12-21
US7281967B2 (en) 2007-10-16
US20060217036A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
EP1606079B1 (en) Machine for grinding optical lenses
FR2808464A1 (en) GRINDING MACHINE AND METHOD FOR SHARPENING BLADES
EP0820837B1 (en) Optical glasses grinding machine
FR2689794A1 (en) Machine to machine the edge of a spectacle lens.
EP0456590B1 (en) Valve head grinding device, particularly for an internal combustion engine
CH638711A5 (en) SURFACING APPARATUS FOR LENS.
FR2972382A1 (en) OPTICAL GLASS GRINDING MACHINE AND ASSOCIATED GRINDING METHOD
FR2893524A1 (en) Ophthalmic lens trimming method for spectacle frame, involves dynamically moving two axes of rotation relative to each other so that tangent to curve of machining portion of grinding wheel edge is parallel to tangent to curve of lens bevel
FR2562829A1 (en) CONTROL DEVICE FOR LIFTING AND TRANSLATING THE TROLLEY OF AN OVERFLOWING AND BEVELING GLASSES OF GLASSES
FR2528745A1 (en) Three-plane movement controller for machine tool - uses processor to determine displacement and angle data from cartesian coordinates to reference point
FR2794397A1 (en) Manufacturing bench for artificially aging slab of stone has conveyor with milling machine, sanding machine, tarnishing machine, and mechanisms animating milling machine with oscillating movement
FR2752760A1 (en) MACHINING UNIT WITH ROTATING HEAD
FR2575101A1 (en) Tool for machining optical surfaces and machine using such a tool
FR2476059A1 (en) Glass sheet shaping machine - is controlled by a data processing unit instead of a cam
FR2614227A1 (en) Improved grinding machine for opthalmic lenses
WO2006106200A1 (en) Optical lens grinding machine provided with an inclined finishing grinding wheel and a corresponding optical lens
BE1007603A5 (en) Machine for rough-cutting diamonds
WO2006053981A1 (en) Method and machine for scoring the periphery of an ophthalmic lens
FR2568809A1 (en) Machining edges of non-circular ceramic workpieces
CH527031A (en) Device for holding in place and for rotating a workpiece to be ground on a grinding machine
FR2562456A1 (en) Process and device for surface treatment of a glass bar
FR2832947A1 (en) Counter-beveling and scoring machine for optical glass has supplementary, freely-rotating grinder mounted on support, and device for moving the supplementary grinder from a retracted position to an active position
EP1773542A1 (en) Method of grooving or counter-bevelling the periphery of an ophthalmic lens
FR2847841A1 (en) Grindwheel cutting device for centerless grinding machine, has cutting tool driven by canon according to radial cutting axis, longitudinal cutting axis and rotational axis, which passes through cutting extremity
FR2865674A1 (en) Doctor blade grinding machine, has stoppers with arc of circle shape and with centre that is situated at immediate proximity of grinding line and is in mean plane of grinding stones in cutting position

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SROKA, LAURENT

Inventor name: MEUNIER, JEAN-MARC

17Q First examination report despatched

Effective date: 20110221

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004035762

Country of ref document: DE

Effective date: 20120223

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LUNEAU TECHNOLOGY OPERATIONS

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120924

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004035762

Country of ref document: DE

Effective date: 20120924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130311

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004035762

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004035762

Country of ref document: DE

Effective date: 20141001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141001

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230209

Year of fee payment: 20