EP1602617B1 - LIfting apparatus with load measuring device and method to determine the load on a lifting apparatus - Google Patents

LIfting apparatus with load measuring device and method to determine the load on a lifting apparatus Download PDF

Info

Publication number
EP1602617B1
EP1602617B1 EP05011161A EP05011161A EP1602617B1 EP 1602617 B1 EP1602617 B1 EP 1602617B1 EP 05011161 A EP05011161 A EP 05011161A EP 05011161 A EP05011161 A EP 05011161A EP 1602617 B1 EP1602617 B1 EP 1602617B1
Authority
EP
European Patent Office
Prior art keywords
sensor
shaft
rope
load
chain hoist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05011161A
Other languages
German (de)
French (fr)
Other versions
EP1602617A1 (en
Inventor
Thomas Kohlenberg
Franz Schulte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Demag Cranes and Components GmbH
Original Assignee
Demag Cranes and Components GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Demag Cranes and Components GmbH filed Critical Demag Cranes and Components GmbH
Publication of EP1602617A1 publication Critical patent/EP1602617A1/en
Application granted granted Critical
Publication of EP1602617B1 publication Critical patent/EP1602617B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/48Control devices automatic
    • B66D1/50Control devices automatic for maintaining predetermined rope, cable, or chain tension, e.g. in ropes or cables for towing craft, in chains for anchors; Warping or mooring winch-cable tension control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices

Definitions

  • the invention relates to a cable or chain hoist, with a lifting gear having at least one rotating shaft and with a Hublastmess adopted, and a method for determining the lifting load of such a cable or chain hoist.
  • a cable or process is off EP 0 841 298 known.
  • Hoists such as rope or chain hoists have a specified life, which is dependent on the load and the load frequency distribution.
  • an economic use of the hoists requires a high utilization. In order to determine the remaining service life each year, at least the operating hours and the load frequency distribution are therefore required as data.
  • the monitoring data are automatically detected according to these methods and with these devices, possibly stored and displayed via displays, both the devices themselves and the displays are usually located in the hoist. For this purpose, it is known to either make a manual, optical reading of the display or to read out the data electronically by means of the provided interface and corresponding reading device.
  • the lifting load measurement also serves for safety, as the hoists are designed for a maximum lifting load, which must not be exceeded.
  • hoist load measuring devices with measuring elements such as strain gauges are therefore often used, which permit the actual hoisting load to be determined by means of the stretching of the measuring strips. These are usually combined with limit switches.
  • the usual devices have a number of disadvantages. They are complicated and expensive.
  • the strain gauges are usually not directly charged with the full lifting load, but this is mechanically reduced, z. B. via suitable levers. However, this requires an increase in size, in particular the height.
  • only the force acting on the cable strand (or chain) is determined, but this is dependent on the reeving of the rope, so that it must be taken into account in the absolute determination of the lifting load. Also, no measurement without shearing is possible with these devices, as measured in the load line. Overall, therefore, a relatively complex evaluation of the signals and circumstances of the lifting load measurement must be carried out, which requires special electronics for evaluation in order to obtain the desired accuracy.
  • the load cell essentially has a longitudinally extending axle body on a first section designated as a force introduction zone for supporting the cable pulley.
  • Two force measuring zones which have a smaller diameter than the force introduction zone and the bearing zones adjoining the force measuring zones, adjoin each of these laterally on this first force introduction section. In the area of the storage zones, the axle is stored in appropriately trained cheeks.
  • the strain gauges are provided transversely to the longitudinal extent of the axis aligned blind holes, are arranged in the strain gauges. These blind holes are each hermetically welded to the outside with a lid, so that the force measuring system is protected from environmental influences. For reasons of redundancy, in each case a blind bore with strain gauges are arranged in the force measuring zones opposite the cable pulley.
  • the strain gauges can be used to measure the stresses, strains and shears of the material of the axle body in the area of the force measuring zone. The determined measurement signals can then provide information about the load on the pulley.
  • the load on the cable winch is also measured via torque sensors.
  • This winch is characterized essentially by a one-sided cup-shaped bearing support, which serves to receive a hydraulic motor and protrudes into a cable drum of the winch.
  • the output shaft of the hydraulic motor acts via a gear on the cable drum of the winch.
  • torque sensors are arranged in the form of strain gauges, via which the load of the winch in dependence on the deformation of the bearing support can be measured.
  • a torque sensor for a steering shaft or a transmission shaft of a motor vehicle known.
  • the shaft is made of a ferromagnetic material or a non-ferromagnetic material coated with a film of ferromagnetic material.
  • the torque sensor measures contactless torque applied to the shaft by sensing the magnetic permeability of the shaft.
  • the torque sensor has an exciter winding unit with two excitation coils and a sensor winding unit with two sensor coils. Since the magnetic fluxes of the AC excitation coils pass through the shaft, the electrical signals generated in the sensor coils are dependent on the magnetic permeability of the shaft and thus on the torque applied to the shaft.
  • the US 4,766,977 discloses a device for determining the load of an elevator in the event that the elevator is unevenly loaded by the passengers.
  • the torsion on a driven shaft of a cable drum is roofed, which is generated by the difference of the load of the elevator and the counterweight.
  • a sensor operating on the magnetostrictive principle is provided on the shaft of the cable drum outside the drive gear.
  • the EP 08 412 98 A2 discloses a drive and control system for a hoist having a load handler in which a sensor including a force measuring device that measures an axial force on an axle within a reduction gear between the drive motor and the cable drum is used.
  • the object of the invention is therefore to provide a cable or chain hoist with Hublastmess worn and a method for determining the lifting load of rope or Kettenzugen in which the determination of the lifting load is as accurate and structurally simple.
  • the lifting load measuring device should be reliable and inexpensive. Furthermore, a measurement without reeving or regardless of the reeving should be possible.
  • the lifting load measuring device has at least one sensor for detecting the deformation caused by the lifting load of the shaft within the lifting gear and the detected deformation as a size for determining the lifting load, the lifting load can be determined very accurately.
  • the shaft in the region opposite the sensor has first and second zones annularly disposed about the shaft axis, the second zone being positioned radially inward of the first zone, one of the zones having a permanent magnetization is longitudinally oriented in the direction of the shaft axis and the other zone provides a flow return path for the flow generated by the one zone, wherein the one zone is a magnetic field external of the region having a magnetic field component in a circumferential direction with respect to the shaft axis.
  • the shaft of the transmission with the smallest diameter is used for the measurement.
  • the transmission is particularly suitable because the waves there have a low material thickness, which increases the accuracy and speed of the measurement.
  • no additional space is required for the measuring device by the measurement within the transmission and this is also protected.
  • Hublastmess acquired a measurement directly with the hook on the rope ie without reeving possible because the measurement does not have to be located at the rope fixed point.
  • the invention allows a cost-effective production of the measuring device by eliminating the usual lever mechanism.
  • the device is wear-free, since no contact of the components must take place with the moving components.
  • the invention allows far-reaching insights into the statics and kinematics of the hoist by interpreting the measuring signal and enables extensive possibilities for monitoring the hoist.
  • the torsion of the shaft is measured because this type of deformation occurs when the shaft is loaded with the lifting load as the main component.
  • the invention is based on the recognition that the shaft in the loaded state tends to deform, ie to twist or twist substantially. This angular deviation about the longitudinal or axial axis of the shaft can be determined and used as a measure of the applied force.
  • the torque transmitted by the individual transmission shafts depends not only on the fixed geometric variables but also on the load hanging on the hook. However, this only applies to the static or the uniformly moving case. In contrast, in the accelerated movement, this must be taken into account when generating the torque on the cable drum. Likewise, the efficiencies based on friction (for example, rope stiffness and bearing friction) be taken into account in the different directions of rotation each with a corresponding sign.
  • the transmitted torque deforms the shaft according to its geometry and material properties.
  • the deformation of the shaft and here in particular the torsion therefore corresponds to the torque which is transmitted.
  • the sensors determine the torque of the shaft, as these are known and available in large numbers. From the torque, the angular deviation occurring during the torsion can be calculated.
  • the sensors work magnetostrictively.
  • the region of the shaft detected by the sensor is provided with a permanent magnetization of specific orientation.
  • the alignment is advantageously carried out in the longitudinal direction of the shaft.
  • This magnetic field is detected by the sensor designed as a magnetic field sensor. If the shaft is deformed or twisted under load, the magnetic field of the shaft changes as a result of its deformation and / or torsion. This effect is called magnetostriction. This change can be detected by the sensor and the lifting load thus determined via the detected deformation.
  • the shaft has at least one zone of permanent magnetization in the region opposite the sensor, the magnetization being oriented essentially longitudinally in the direction of the shaft axis and generating a magnetic field externally of the region having a magnetic field component in the circumferential direction with respect to the shaft axis is detected by the sensor.
  • the permanent magnetization in the wave is created artificially.
  • Corresponding magnetized waves are z. B. from the EP 1 203 209 B1 known.
  • the above-described deformation of the shaft by the load to be lifted or lowered causes a change due to magnetostrictive effects the magnetic properties or change in the shape of the magnetic field introduced into the shaft proportional to the deformation.
  • This change in the magnetic properties or change in the shape of the magnetic field introduced into the shaft can be detected by means of a sensor which, for. B. has one or more coaxial and symmetrically mounted at the same distance special coils. The change in the magnetic properties is thus detected by the sensor or coil and converted into an electrical signal.
  • An appropriate electronics prepares the signal and evaluates it.
  • the sensor may also comprise other suitable magnetic field-sensitive detectors, such as Hall effect semiconductor sensors, resistance sensors, Wiegand and pulse wires, or reed switches.
  • the sensors operate without contact so that signs of wear and disturbances due to contamination are minimized.
  • the shaft is at least partially encompassing holder provided in one embodiment.
  • z. B. two magnetic field sensitive detectors or coils are arranged on opposite sides of the shaft, so that two measurement signals are obtained, by means of which a more accurate measurement and possibly correction of the signals of environmental influences is possible.
  • the holder may be fixed inside and / or on the transmission housing.
  • a signal processing device For processing the raw signals of the sensors, a signal processing device is provided. This can be a separate device. Preferably, however, it is the present in the control electronics of the hoist electronics such. B. microprocessor, etc. to use for the evaluation. As a result, additional parts are saved, which for reasons of maintenance, the simplification of the structure and construction and the reduction of the susceptibility to errors is desired.
  • FIG. 1 shows a designated as a whole with 10 monorail trolley with a frame 11 and an attached hoist 1.
  • the monorail trolley 10 For moving on the lower flange of a rail, not shown, the monorail trolley 10 four rollers 12, which are each pairwise opposite and one of which via a motor 13 is driven.
  • the hoist 1 comprises a cable drum 6 which is driven by a motor 5 via a gear 4, wherein the gear 4 is arranged on one side of the cable drum 6 and on the opposite side a control electronics 8.
  • the transmission 4 comprises at one of its intermediate transmission shafts a sensor 9 for lifting load measurement.
  • a rope 7 is wound, which runs over a guide roller 14 and a lower block 2 with hooks 3.
  • a hanging on the hook 3 load is raised or lowered by winding or unwinding of the rope 7 on the cable drum 6 by appropriate control of the motor 5.
  • the load hanging on the hook 3 generates a torque on the cable drum 6.
  • This torque is transmitted to the motor 5 by the transmission 4 with the corresponding ratios of the intermediate shafts. If the motor 5 generates the same moment, the load is held. If the engine generates a higher torque, the load is lifted. If the motor generates a smaller torque, the load is reduced accordingly.
  • FIG. 2 shows the gear 4 of the hoist 1 in an enlarged view with the housing 15 open.
  • the motor 5 drives via a corresponding motor pinion 16, an intermediate shaft 17 and a further following intermediate shaft 18, an output shaft 19 and above the cable drum 6 at.
  • the respective shafts 17, 18 and 19 each have a bearing designated by the additional letter “A” and a gear designated by the additional letter “B".
  • the gears are used to transmit the rotational movement of a shaft to each subsequent.
  • the sensor 9 is arranged.
  • the sensor 9 comprises a circular attachment 20, followed by a developed arm 21, which merges into an attitude 22.
  • the U-shaped support 22 partially surrounds the intermediate shaft 17, which in this region 17C has a longitudinal magnetization oriented longitudinally in the direction of the shaft axis.
  • sensor coils are arranged as magnetic field sensitive detectors.
  • the intermediate shaft 17 with the sensor 9 goes out FIG. 3 in more detail.
  • the holder 22 of the sensor 9 comprises coils 23. These coils 23 are the actual magnetic field detectors and each arranged in the holder 22, which surrounds the area of permanent magnetization 17 C of the intermediate shaft 17. In the illustrated embodiment, eight coils 23 are provided, wherein on each side of the region 17C four coils are arranged, which are in turn divided into two pairs. The coils 23 are each redundantly wired together and their signals are routed via a line 24 to a signal conditioning and processing unit 25. This can, for. B. accommodated or integrated in the hoist electronic 8.
  • the permanent magnetization of the region 17C of the intermediate shaft 17 or its magnetic field or the change in their orientation can be with outside of the shaft measure these special high-sensitivity coils 23 and the corresponding circuit.
  • the torque transmitted by the individual transmission shafts depends, in addition to the fixed geometric variables, only on the load hanging on the hook 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

Hoist (1), especially a cable or chain hoist, has at least a lifting gear (4) with at least a shaft (17) and a lifted load measuring arrangement. The load measuring arrangement has at least a sensor (9) for measuring the shaft deformation. The measured deformation is used as an input value for determining the lifted load. The invention also relates to a corresponding method for determining the load lifted by a hoist.

Description

Die Erfindung betrifft einen Seil- oder Kettenzug, mit einem mindestens eine drehende Welle aufweisenden Hubgetriebe und mit einer Hublastmesseinrichtung, und ein Verfahren zur Bestimmung der Hublast eines solchen Seil- oder Kettenzugs. Ein solcher Seilzug bzw. Verfahren ist aus EP 0 841 298 bekannt.The invention relates to a cable or chain hoist, with a lifting gear having at least one rotating shaft and with a Hublastmesseinrichtung, and a method for determining the lifting load of such a cable or chain hoist. Such a cable or process is off EP 0 841 298 known.

Hebezeuge, wie Seil- oder Kettenzüge haben eine vorgegebene Lebensdauer, die abhängig von der Belastung und der Lasthäufigkeitsverteilung ist. Zudem verlangt eine wirtschaftliche Verwendung der Hebezeuge eine hohe Auslastung. Um jährlich die Restlebensdauer zu ermitteln, werden daher als Daten zumindest die Betriebsstunden und die Lasthäufigkeitsverteilung benötigt.Hoists, such as rope or chain hoists have a specified life, which is dependent on the load and the load frequency distribution. In addition, an economic use of the hoists requires a high utilization. In order to determine the remaining service life each year, at least the operating hours and the load frequency distribution are therefore required as data.

Früher wurden die zur Ermittlung der Betriebsstunden und Lasthäufigkeitsverteilung benötigten Daten manuell erfasst bzw. geschätzt. Dies ist jedoch aufwendig und ungenau. Daher sind Verfahren und Vorrichtungen entwickelt wurden, um die Betriebsstunden automatisch zu zählen, so genannte Betriebstundenzähler. Entsprechende Verfahren und Vorrichtungen zur Überwachung der Hebezeuge sind beispielsweise aus der DE 195 14 050 C2 , DE 196 17 105 C2 , DE 199 23 824 C2 , DE 199 56 265 A1 und DE 40 38 981 A1 bekannt.Previously, the data needed to determine operating hours and load frequency distribution was manually recorded or estimated. However, this is expensive and inaccurate. Therefore, methods and devices have been developed to automatically count the operating hours, so-called hour meters. Corresponding methods and devices for monitoring the hoists are, for example, from DE 195 14 050 C2 . DE 196 17 105 C2 . DE 199 23 824 C2 . DE 199 56 265 A1 and DE 40 38 981 A1 known.

Die Überwachungsdaten werden nach diesen Verfahren und mit diesen Vorrichtungen automatisch erfasst, ggf. gespeichert und über Anzeigen wiedergegeben, wobei sowohl die Vorrichtungen an sich als auch die Anzeigen meist im Hebezeug angeordnet sind. Dazu ist es bekannt, entweder eine manuelle, optische Ablesung der Anzeige vorzunehmen oder mittels vorgesehener Schnittstelle und entsprechendem Lesegerät die Daten elektronisch auszulesen.The monitoring data are automatically detected according to these methods and with these devices, possibly stored and displayed via displays, both the devices themselves and the displays are usually located in the hoist. For this purpose, it is known to either make a manual, optical reading of the display or to read out the data electronically by means of the provided interface and corresponding reading device.

Neben den Betriebsstunden werden auch die Lasthäufigkeitsverteilungen protokolliert. Hierzu muss die Hublast bestimmt werden.In addition to the operating hours and the load frequency distributions are logged. For this, the lifting load must be determined.

Die Hublastmessung dient aber auch der Sicherheit, da die Hebezeuge für eine maximale Hublast ausgelegt sind, die nicht überschritten werden darf.However, the lifting load measurement also serves for safety, as the hoists are designed for a maximum lifting load, which must not be exceeded.

Zur Vermeidung einer solchen Überlastung des Hebezeugs ist es beispielsweise aus der DE 34 42 868 A1 bekannt, Endschalter einzusetzen, die nach Überschreiten einer vorgegebenen Federkraft, die der maximalen Last entspricht, das Hebezeug abschalten. Hierbei wird zwar die Sicherheit des Hebezeugs im Betrieb sichergestellt, jedoch ist keine direkte Messung der eigentlichen Hublast möglich.To avoid such overloading of the hoist, it is for example from the DE 34 42 868 A1 It is known to use limit switches which, after exceeding a predetermined spring force corresponding to the maximum load, switch off the hoist. Although the safety of the hoist is ensured during operation, no direct measurement of the actual hoisting load is possible.

Zur eigentlichen Messung der Hublast werden daher oft Hublastmesseinrichtungen mit Messelementen wie Dehnungsmessstreifen verwendet, die über die Dehnung der Messstreifen die Bestimmung der eigentlichen Hublast erlauben. Diese werden zudem meist noch mit Endschaltern kombiniert.For the actual measurement of the hoisting load, hoist load measuring devices with measuring elements such as strain gauges are therefore often used, which permit the actual hoisting load to be determined by means of the stretching of the measuring strips. These are usually combined with limit switches.

Die üblichen Vorrichtungen weisen jedoch eine Reihe von Nachteilen auf. Sie sind aufwendig und teuer. Die Dehnungsmessstreifen werden meist nicht direkt mit der vollen Hublast belastet, sondern diese wird mechanisch reduziert, z. B. über geeignete Hebel. Dies bedingt aber eine Vergrößerung der Baugröße, insbesondere der Bauhöhe. Ferner wird nur die auf den Seilstrang (oder Kette) wirkende Kraft bestimmt, die aber von der Einscherung des Seils abhängig ist, so dass diese bei der absoluten Bestimmung der Hublast berücksichtigt werden muss. Auch ist bei diesen Vorrichtungen keine Messung ohne Einscherung möglich, da im Laststrang gemessen wird. Insgesamt muss daher eine relativ aufwendige Auswertung der Signale und Umstände der Hublastmessung erfolgen, was eine spezielle Elektronik zur Auswertung erfordert, um die gewünschte Genauigkeit zu erhalten.The usual devices, however, have a number of disadvantages. They are complicated and expensive. The strain gauges are usually not directly charged with the full lifting load, but this is mechanically reduced, z. B. via suitable levers. However, this requires an increase in size, in particular the height. Furthermore, only the force acting on the cable strand (or chain) is determined, but this is dependent on the reeving of the rope, so that it must be taken into account in the absolute determination of the lifting load. Also, no measurement without shearing is possible with these devices, as measured in the load line. Overall, therefore, a relatively complex evaluation of the signals and circumstances of the lifting load measurement must be carried out, which requires special electronics for evaluation in order to obtain the desired accuracy.

Aus dem deutschen Gebrauchsmuster DE 203 00 942 U1 ist ein Kraftaufnehmer zum Messen von Achskräften, die im Wesentlichen quer auf eine Achse wirken, bekannt. Ein derartiger Kraftaufnehmer kann beispielsweise zum Messen der auf eine Seilrolle einwirkenden Kräfte dienen, um eine Überlastung der Seilrolle beziehungsweise der zugeordneten Vorrichtung zu verhindern. Der Kraftaufnehmer weist im Wesentlichen einen sich längs erstreckenden Achskörper auf eine den als Krafteinleitungszone bezeichneten ersten Abschnitt zur Lagerung der Seilrolle. An diesen ersten Krafteinleitungsabschnitt schließen sich jeweils seitlich zwei Kraftmesszonen an, die einen geringeren Durchmesser als die Krafteinleitungszone sowie die sich an die Kraftmesszonen anschließenden Lagerzonen aufweisen. Im Bereich der Lagerzonen wird die Achse in entsprechend ausgebildeten Wangen gelagert. Innerhalb der Kraftmesszonen sind quer zur Längserstreckung der Achse ausgerichtete Sacklochbohrungen vorgesehen, in der Dehnungsmessstreifen angeordnet sind. Diese Sacklochbohrungen werden jeweils nach außen hin mit einem Deckel hermetisch verschweißt, damit das Kraftmesssystem vor Umwelteinflüssen geschützt ist. Aus Redundanzgründen sind in den in Bezug auf die Seilrolle gegenüberliegenden Kraftmesszonen jeweils eine Sacklochbohrung mit Dehnungsmessstreifen angeordnet. Über die Dehnungsmessstreifen können Spannungen, Dehnungen und Scherungen des Materials des Achskörpers im Bereich der Kraftmesszone gemessen werden. Die ermittelten Messsignale können dann Aufschluss über die Belastung der Seilrolle geben.From the German utility model DE 203 00 942 U1 is a force transducer for measuring axle forces that act substantially transversely to an axis known. Such a force transducer can be used, for example, for measuring the forces acting on a cable pulley in order to prevent overloading of the cable pulley or the associated device. The load cell essentially has a longitudinally extending axle body on a first section designated as a force introduction zone for supporting the cable pulley. Two force measuring zones, which have a smaller diameter than the force introduction zone and the bearing zones adjoining the force measuring zones, adjoin each of these laterally on this first force introduction section. In the area of the storage zones, the axle is stored in appropriately trained cheeks. Within the Force measuring zones are provided transversely to the longitudinal extent of the axis aligned blind holes, are arranged in the strain gauges. These blind holes are each hermetically welded to the outside with a lid, so that the force measuring system is protected from environmental influences. For reasons of redundancy, in each case a blind bore with strain gauges are arranged in the force measuring zones opposite the cable pulley. The strain gauges can be used to measure the stresses, strains and shears of the material of the axle body in the area of the force measuring zone. The determined measurement signals can then provide information about the load on the pulley.

Des Weiteren ist aus dem deutschen Patent DE 195 12 103 C2 eine Seilwinde mit einer Betriebsdatenerfassung bekannt. Neben einer Drehzahl-/ sowie Drehrichtungsbestimmung wird über Drehmomentsensoren auch die Belastung der Seilwinde gemessen. Diese Seilwinde zeichnet sich im Wesentlichen durch eine einseitige topfförmige Lagerstütze auf, die zur Aufnahme eines Hydraulikmotors dient und in eine Seiltrommel der Seilwinde hineinragt. Die Ausgangswelle des Hydraulikmotors wirkt über ein Getriebe auf die Seiltrommel der Seilwinde. Auf den Außenumfang der feststehenden topfförmigen Lagerstütze sind Drehmomentsensoren in Form von Dehnungsmessstreifen angeordnet, über die die Belastung der Seilwinde in Abhängigkeit von der Verformung der Lagerstütze gemessen werden kann.Furthermore, from the German patent DE 195 12 103 C2 a winch with an operational data acquisition known. In addition to a determination of speed and direction of rotation, the load on the cable winch is also measured via torque sensors. This winch is characterized essentially by a one-sided cup-shaped bearing support, which serves to receive a hydraulic motor and protrudes into a cable drum of the winch. The output shaft of the hydraulic motor acts via a gear on the cable drum of the winch. On the outer circumference of the fixed pot-shaped bearing support torque sensors are arranged in the form of strain gauges, via which the load of the winch in dependence on the deformation of the bearing support can be measured.

Ferner ist aus dem deutschen Patent DE 35 17 849 ein Drehmomentsensor für eine Lenkwelle oder eine Getriebewelle eines Kraftfahrzeuges bekannt. Die Welle besteht aus einem ferromagnetischen Material oder einem nicht ferromagnetischen Material, das mit einem Film aus ferromagnetischen Material überzogen ist. Der Drehmomentsensor misst berührungslos das auf die Welle ausgeübte Drehmoment, in dem er die magnetische Permeabilität der Welle abtastet. Der Drehmomentsensor weist hierzu eine Erreger-Wicklungseinheit mit zwei Erregerspulen und eine Sensor-Wicklungseinheit mit zwei Sensorspulen auf. Da die magnetischen Flüsse der mit Wechselstrom betriebenen Erregerspulen die Welle durchsetzen, sind die in den Sensorspulen erzeugten elektrischen Signale von der magnetischen Permeabilität der Welle und somit von dem auf die Welle ausgeübten Drehmoment abhängig.Furthermore, from the German patent DE 35 17 849 a torque sensor for a steering shaft or a transmission shaft of a motor vehicle known. The shaft is made of a ferromagnetic material or a non-ferromagnetic material coated with a film of ferromagnetic material. The torque sensor measures contactless torque applied to the shaft by sensing the magnetic permeability of the shaft. For this purpose, the torque sensor has an exciter winding unit with two excitation coils and a sensor winding unit with two sensor coils. Since the magnetic fluxes of the AC excitation coils pass through the shaft, the electrical signals generated in the sensor coils are dependent on the magnetic permeability of the shaft and thus on the torque applied to the shaft.

Die US 4,766,977 offenbart eine Vorrichtung zur Bestimmung der Last eines Fahrstuhls für den Fall, dass der Fahrstuhl ungleichmäßig durch die Passagiere belastet ist. Dazu wird die Torsion an einer angetriebenen Welle einer Seiltrommel überdacht, die durch den Unterschied der Belastung des Fahrstuhls und des Gegengewichtes erzeugt wird. Zur Bestimmung der Torsion ist ein nach dem magnetostriktiven Prinzip arbeitender Sensor an der Welle der Seiltrommel außerhalb des Antriebsgetriebes vorgesehen.The US 4,766,977 discloses a device for determining the load of an elevator in the event that the elevator is unevenly loaded by the passengers. For this purpose, the torsion on a driven shaft of a cable drum is roofed, which is generated by the difference of the load of the elevator and the counterweight. To determine the torsion, a sensor operating on the magnetostrictive principle is provided on the shaft of the cable drum outside the drive gear.

Die EP 08 412 98 A2 offenbart ein Antriebs- und Steuersystem für ein ein Lastaufnahmemittel aufweisendes Hebezeug, bei dem ein Sensor, der eine Kraftmesseinrichtung umfasst, die eine Axialkraft an einer Achse innerhalb eines Untersetzungsgetriebes zwischen dem Antriebsmotor und der Seiltrommel misst, einzusetzen.The EP 08 412 98 A2 discloses a drive and control system for a hoist having a load handler in which a sensor including a force measuring device that measures an axial force on an axle within a reduction gear between the drive motor and the cable drum is used.

Aufgabe der Erfindung ist es daher, einen Seil- oder Kettenzug mit Hublastmesseinrichtung und ein Verfahren zur Bestimmung der Hublast von Seil- oder Kettenzugen bereitzustellen, bei dem die Bestimmung der Hublast möglichst genau und konstruktiv einfach erfolgt. Zudem soll die konstruktive Ausgestaltung keinen oder möglichst wenig Platz benötigen. Auch sollte die Hublastmesseinrichtung zuverlässig und kostengünstig sein. Ferner sollte eine Messung ohne Einscherung bzw. unabhängig von der Einscherung möglich sein.The object of the invention is therefore to provide a cable or chain hoist with Hublastmesseinrichtung and a method for determining the lifting load of rope or Kettenzugen in which the determination of the lifting load is as accurate and structurally simple. In addition, the structural design of the need for little or no space. Also, the lifting load measuring device should be reliable and inexpensive. Furthermore, a measurement without reeving or regardless of the reeving should be possible.

Diese Aufgabe wird durch die in Anspruch 1 wiedergegebene Vorrichtung und das in Anspruch 12 angegebene Verfahren gelöst.This object is achieved by the device reproduced in claim 1 and the method specified in claim 12.

Dadurch, dass die Hublastmesseinrichtung mindestens einen Sensor zur Erfassung der von der Hublast hervorgerufenen Verformung der Welle innerhalb des Hubgetriebes aufweist und die erfasste Verformung als Größe zur Bestimmung der Hublast einfließt, kann die Hublast besonders genau bestimmt werden. Bei diesen Sensoren weist die Welle in dem dem Sensor gegenüberliegenden Bereich erste und zweite Zonen auf, die um die Wellenachse ringförmig angeordnet sind, wobei die zweite Zone von der ersten Zone radial nach innen positioniert ist, wobei eine der Zonen eine permanente Magnetisierung aufweist, die longitudinal in der Richtung der Wellenachse orientiert ist und die andere Zone einen Flussrückleitungsweg für den von der einen Zone generierten Fluss bereitstellt, wobei die eine Zone ein Magnetfeld extern des Bereichs generiert, das eine Magnetfeldkomponente in einer Umfangsrichtung in Bezug auf die Wellenachse aufweist. Die Welle des Getriebes mit dem geringsten Durchmesser wird für die Messung verwendet. Allerdings bietet sich das Getriebe besonders an, da die Wellen dort eine geringe Materialstärke aufweisen, was die Genauigkeit und Schnelligkeit der Messung erhöht. Zudem wird durch die Messung innerhalb des Getriebes kein zusätzlicher Raumbedarf für die Messeinrichtung benötigt und diese ist zudem geschützt. Ferner ist mit der erfindungsgemäßen Hublastmesseinrichtung eine Messung direkt mit dem Haken am Seil d. h. ohne Einscherung möglich, da die Messung nicht am Seilfestpunkt angeordnet sein muss.The fact that the lifting load measuring device has at least one sensor for detecting the deformation caused by the lifting load of the shaft within the lifting gear and the detected deformation as a size for determining the lifting load, the lifting load can be determined very accurately. In these sensors, the shaft in the region opposite the sensor has first and second zones annularly disposed about the shaft axis, the second zone being positioned radially inward of the first zone, one of the zones having a permanent magnetization is longitudinally oriented in the direction of the shaft axis and the other zone provides a flow return path for the flow generated by the one zone, wherein the one zone is a magnetic field external of the region having a magnetic field component in a circumferential direction with respect to the shaft axis. The shaft of the transmission with the smallest diameter is used for the measurement. However, the transmission is particularly suitable because the waves there have a low material thickness, which increases the accuracy and speed of the measurement. In addition, no additional space is required for the measuring device by the measurement within the transmission and this is also protected. Further, with the invention Hublastmesseinrichtung a measurement directly with the hook on the rope ie without reeving possible because the measurement does not have to be located at the rope fixed point.

Ferner erlaubt die Erfindung eine kostengünstige Herstellung der Messeinrichtung durch Wegfall des sonst üblichen Hebelmechanismus. Zudem ist die Einrichtung verschleißfrei, da keine Berührung der Komponenten mit den sich bewegenden Bauteilen stattfinden muss. Nicht zuletzt ermöglicht die Erfindung weit reichende Einblicke in die Statik und Kinematik des Hebezeugs durch Interpretation des Messsignals und ermöglicht weit reichende Möglichkeiten zur Überwachung des Hebezeugs.Furthermore, the invention allows a cost-effective production of the measuring device by eliminating the usual lever mechanism. In addition, the device is wear-free, since no contact of the components must take place with the moving components. Last but not least, the invention allows far-reaching insights into the statics and kinematics of the hoist by interpreting the measuring signal and enables extensive possibilities for monitoring the hoist.

Als Verformung wird die Torsion der Welle gemessen, da diese Art der Verformung bei der Belastung der Welle mit der Hublast als Hauptkomponente auftritt.As deformation, the torsion of the shaft is measured because this type of deformation occurs when the shaft is loaded with the lifting load as the main component.

Die Erfindung beruht auf der Erkenntnis, dass die Welle im belasteten Zustand dazu neigt sich zu Verformen, also im wesentlichen zu verdrehen bzw. zu tordieren. Diese Winkelabweichung um die Längs- bzw. Axialachse der Welle lässt sich bestimmen und als Maß für die einwirkende Kraft verwenden.The invention is based on the recognition that the shaft in the loaded state tends to deform, ie to twist or twist substantially. This angular deviation about the longitudinal or axial axis of the shaft can be determined and used as a measure of the applied force.

Idealerweise hängt das von den einzelnen Getriebewellen übertragene Drehmoment neben den festen geometrischen Größen nur von der am Haken hängenden Last ab. Dies gilt jedoch nur für den statischen oder den gleichförmig bewegten Fall. Im Unterschied dazu muss bei der beschleunigten Bewegung diese beim Erzeugen des Drehmoments an der Seiltrommel berücksichtigt werden. Ebenso müssen die durch Reibung begründeten Wirkungsgrade (zum Beispiel Seilsteifigkeit und Lagerreibung) in den unterschiedlichen Drehrichtungen jeweils mit entsprechendem Vorzeichen berücksichtigt werden.Ideally, the torque transmitted by the individual transmission shafts depends not only on the fixed geometric variables but also on the load hanging on the hook. However, this only applies to the static or the uniformly moving case. In contrast, in the accelerated movement, this must be taken into account when generating the torque on the cable drum. Likewise, the efficiencies based on friction (for example, rope stiffness and bearing friction) be taken into account in the different directions of rotation each with a corresponding sign.

Das übertragene Drehmoment verformt die Welle entsprechend ihrer Geometrie und den Materialeigenschaften. Die Verformung der Welle und hier im Speziellen die Torsion entspricht daher dem Drehmoment, welches übertragen wird.The transmitted torque deforms the shaft according to its geometry and material properties. The deformation of the shaft and here in particular the torsion therefore corresponds to the torque which is transmitted.

Die Sensoren bestimmen das Drehmoment der Welle, da diese bekannt und in großer Zahl verfügbar sind. Aus dem Drehmoment lässt sich die bei der Torsion auftretende Winkelabweichung berechnen.The sensors determine the torque of the shaft, as these are known and available in large numbers. From the torque, the angular deviation occurring during the torsion can be calculated.

Günstigerweise arbeiten die Sensoren magnetostriktiv. Hierzu wird der vom Sensor erfasste Bereich der Welle mit einer permanenten Magnetisierung bestimmter Ausrichtung versehen. Die Ausrichtung erfolgt vorteilhafterweise in longitudinaler Richtung der Welle. Dieses Magnetfeld wird von dem als Magnetfeldsensor ausgebildeten Sensor erfasst. Wird nun die Welle unter Belastung verformt bzw. tordiert, so ändert sich das Magnetfeld der Welle durch deren Verformung und/oder Torsion. Dieser Effekt wird als Magnetostriktion bezeichnet. Diese Änderung lässt sich vom Sensor erfassen und so über die erfasste Verformung die Hublast bestimmt.Conveniently, the sensors work magnetostrictively. For this purpose, the region of the shaft detected by the sensor is provided with a permanent magnetization of specific orientation. The alignment is advantageously carried out in the longitudinal direction of the shaft. This magnetic field is detected by the sensor designed as a magnetic field sensor. If the shaft is deformed or twisted under load, the magnetic field of the shaft changes as a result of its deformation and / or torsion. This effect is called magnetostriction. This change can be detected by the sensor and the lifting load thus determined via the detected deformation.

Die Welle weist dazu in dem dem Sensor gegenüberliegenden Bereich mindestens eine Zone permanenter Magnetisierung auf, wobei die Magnetisierung im wesentlichen longitudinal in der Richtung der Wellenachse orientiert ist und ein Magnetfeld extern des Bereichs generiert, das eine Magnetfeldkomponente in Umfangsrichtung in Bezug auf die Wellenachse aufweist und von dem Sensor erfasst wird. Die permanente Magnetisierung in der Welle wird künstlich erzeugt.For this purpose, the shaft has at least one zone of permanent magnetization in the region opposite the sensor, the magnetization being oriented essentially longitudinally in the direction of the shaft axis and generating a magnetic field externally of the region having a magnetic field component in the circumferential direction with respect to the shaft axis is detected by the sensor. The permanent magnetization in the wave is created artificially.

Entsprechend magnetisierte Wellen sind z. B. aus der EP 1 203 209 B1 bekannt.Corresponding magnetized waves are z. B. from the EP 1 203 209 B1 known.

Die oben beschriebene Verformung der Welle durch die zu hebende oder zu senkende Last wiederum bewirkt auf Grund magnetostriktiver Effekte eine Änderung der magnetischen Eigenschaften bzw. Veränderung der Gestalt des in die Welle eingebrachten Magnetfeldes proportional zur Verformung. Diese Änderung der magnetischen Eigenschaften bzw. Veränderung der Gestalt des in die Welle eingebrachten Magnetfeldes kann mittels eines Sensors detektiert werden, der z. B. eine oder mehrere koaxial und symmetrisch im gleichen Abstand angebrachte spezielle Spulen aufweist. Die Änderung der magnetischen Eigenschaften wird somit vom Sensor bzw. Spule erfasst und in ein elektrisches Signal umgewandelt. Eine entsprechende Elektronik bereitet das Signal auf und wertet es aus. Der Sensor kann an Stelle von Spulen auch andere geeignete magnetfeldsensible Detektoren wie Halbleitersensoren nach dem Halleffektprinzip, Widerstands-Sensoren, Wiegand- und Impulsdrähte oder Reed-Schalter aufweisen.The above-described deformation of the shaft by the load to be lifted or lowered in turn causes a change due to magnetostrictive effects the magnetic properties or change in the shape of the magnetic field introduced into the shaft proportional to the deformation. This change in the magnetic properties or change in the shape of the magnetic field introduced into the shaft can be detected by means of a sensor which, for. B. has one or more coaxial and symmetrically mounted at the same distance special coils. The change in the magnetic properties is thus detected by the sensor or coil and converted into an electrical signal. An appropriate electronics prepares the signal and evaluates it. Instead of coils, the sensor may also comprise other suitable magnetic field-sensitive detectors, such as Hall effect semiconductor sensors, resistance sensors, Wiegand and pulse wires, or reed switches.

Vorteilhafterweise arbeiten die Sensoren berührungslos, so dass Verschleißerscheinungen und Störungen durch Verunreinigungen minimiert werden.Advantageously, the sensors operate without contact so that signs of wear and disturbances due to contamination are minimized.

Zur optimalen Anordnung des Sensors an der Welle ist in einer Ausführungsform eine die Welle zumindest teilweise umgreifende Halterung vorgesehen. Somit können z. B. zwei magnetfeldsensible Detektoren bzw. Spulen an gegenüberliegenden Seiten der Welle angeordnet werden, so dass zwei Messsignale erhalten werden, mittels derer eine genauere Messung und ggf. Korrektur der Signale von Umgebungseinflüssen möglich ist.For optimum arrangement of the sensor on the shaft, the shaft is at least partially encompassing holder provided in one embodiment. Thus, z. B. two magnetic field sensitive detectors or coils are arranged on opposite sides of the shaft, so that two measurement signals are obtained, by means of which a more accurate measurement and possibly correction of the signals of environmental influences is possible.

Besonders genaue und zuverlässige Ergebnisse werden erhalten, wenn jeweils 2 bis 8, insbesondere 2, 4 oder 8 magnetfeldsensible Detektoren oder Spulen pro Bereich vorgesehen sind, die gleichmäßig um den Bereich angeordnet sind. Dann kann insbesondere auch eine redundante Verschaltung des Sensors oder der Spulen bzw. Auswertung deren Signale vorgenommen werden.Particularly accurate and reliable results are obtained if in each case 2 to 8, in particular 2, 4 or 8 magnetic field-sensitive detectors or coils per area are provided, which are arranged uniformly around the area. Then, in particular, a redundant connection of the sensor or the coils or evaluation of their signals can be made.

Die Halterung kann innerhalb und/oder am Getriebegehäuse festgelegt sein.The holder may be fixed inside and / or on the transmission housing.

Zur Verarbeitung der Rohsignale der Sensoren ist eine Signalverarbeitungseinrichtung vorgesehen. Hierbei kann es sich um eine gesonderte Einrichtung handeln. Bevorzugt ist es allerdings die in der Steuerelektronik des Hebezeugs vorhandene Elektronik, wie z. B. Mikroprozessor usw. für die Auswertung zu verwenden. Hierdurch werden zusätzliche Teile eingespart, welches aus Gründen der Wartung, der Vereinfachung des Aufbaus und der Konstruktion sowie der Verringerung der Fehleranfälligkeit erwünscht ist.For processing the raw signals of the sensors, a signal processing device is provided. This can be a separate device. Preferably, however, it is the present in the control electronics of the hoist electronics such. B. microprocessor, etc. to use for the evaluation. As a result, additional parts are saved, which for reasons of maintenance, the simplification of the structure and construction and the reduction of the susceptibility to errors is desired.

Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung der Zeichnung. Es zeigen:

Fig. 1
eine Einschienenlaufkatze mit Hubwerk und Lasthaken bei geöffnetem Getriebegehäuse;
Fig. 2
eine vergrößerte Ansicht des Getriebes aus Fig. 1 bei geöffnetem Gehäuse und
Fig. 3
eine Getriebezwischenwelle mit Drehmomentsensor aus Fig. 2.
Further features, advantages and details of the invention will become apparent from the following description of the drawing. Show it:
Fig. 1
a monorail trolley with hoist and load hook with the gearbox housing open;
Fig. 2
an enlarged view of the transmission Fig. 1 with the housing open and
Fig. 3
a transmission intermediate shaft with torque sensor Fig. 2 ,

Figur 1 zeigt eine als Ganzes mit 10 bezeichnete Einschienenlaufkatze mit einem Gestell 11 und einem daran befestigten Hubwerk 1. Zum Verfahren auf dem Unterflansch einer nicht dargestellten Schiene weist die Einschienenlaufkatze 10 vier Laufrollen 12 auf, die sich jeweils paarweise gegenüber liegen und von denen eine über einen Motor 13 angetriebenen ist. FIG. 1 shows a designated as a whole with 10 monorail trolley with a frame 11 and an attached hoist 1. For moving on the lower flange of a rail, not shown, the monorail trolley 10 four rollers 12, which are each pairwise opposite and one of which via a motor 13 is driven.

Das Hubwerk 1 umfasst eine Seiltrommel 6 die von einem Motor 5 über ein Getriebe 4 angetrieben wird, wobei das Getriebe 4 auf der einen Seite der Seiltrommel 6 und auf der gegenüberliegenden Seite eine Steuerungselektronik 8 angeordnet ist. Das Getriebe 4 umfasst an einer seiner Getriebezwischenwellen einen Sensor 9 zur Hublastmessung.The hoist 1 comprises a cable drum 6 which is driven by a motor 5 via a gear 4, wherein the gear 4 is arranged on one side of the cable drum 6 and on the opposite side a control electronics 8. The transmission 4 comprises at one of its intermediate transmission shafts a sensor 9 for lifting load measurement.

Um die Seiltrommel 6 ist ein Seil 7 gewickelt, welches über eine Umlenkrolle 14 und eine Unterflasche 2 mit Haken 3 verläuft. Eine am Haken 3 hängende Last wird durch Auf- bzw. Abwickeln des Seiles 7 auf der Seiltrommel 6 durch entsprechende Steuerung des Motors 5 gehoben bzw. abgesenkt.To the cable drum 6, a rope 7 is wound, which runs over a guide roller 14 and a lower block 2 with hooks 3. A hanging on the hook 3 load is raised or lowered by winding or unwinding of the rope 7 on the cable drum 6 by appropriate control of the motor 5.

Die am Haken 3 hängende Last erzeugt also abhängig von den jeweiligen statischen und kinematischen Verhältnissen und der eingesetzten Einscherung sowie den geometrischen Abmessungen ein Drehmoment an der Seiltrommel 6. Dieses Drehmoment wird durch das Getriebe 4 mit den entsprechenden Übersetzungen der Zwischenwellen an den Motor 5 übertragen. Erzeugt der Motor 5 das gleiche Moment, wird die Last gehalten. Erzeugt der Motor ein höheres Moment wird Last gehoben. Erzeugt der Motor ein kleineres Moment wird die Last entsprechend gesenkt.Thus, depending on the respective static and kinematic conditions and the inserted shearing and the geometrical dimensions, the load hanging on the hook 3 generates a torque on the cable drum 6. This torque is transmitted to the motor 5 by the transmission 4 with the corresponding ratios of the intermediate shafts. If the motor 5 generates the same moment, the load is held. If the engine generates a higher torque, the load is lifted. If the motor generates a smaller torque, the load is reduced accordingly.

Figur 2 zeigt das Getriebe 4 des Hubwerks 1 in einer vergrößerten Ansicht bei geöffnetem Gehäuse 15. Der Motor 5 treibt über ein entsprechendes Motorritzel 16, einer Zwischenwelle 17 und einer weiteren folgenden Zwischenwelle 18 eine Abtriebswelle 19 und darüber die Seiltrommel 6 an. Die jeweiligen Wellen 17, 18 und 19 weisen jeweils ein mit dem Zusatz-Buchstaben "A" bezeichnete Lagerung sowie einen mit dem Zusatz-Buchstaben "B" bezeichnetes Zahnrad auf. Die Zahnräder dienen zur Übertragung der Drehbewegung von einer Welle auf die jeweils nachfolgende. FIG. 2 shows the gear 4 of the hoist 1 in an enlarged view with the housing 15 open. The motor 5 drives via a corresponding motor pinion 16, an intermediate shaft 17 and a further following intermediate shaft 18, an output shaft 19 and above the cable drum 6 at. The respective shafts 17, 18 and 19 each have a bearing designated by the additional letter "A" and a gear designated by the additional letter "B". The gears are used to transmit the rotational movement of a shaft to each subsequent.

An der Zwischenwelle 17 ist der Sensor 9 angeordnet. Der Sensor 9 umfasst eine kreisförmige Befestigung 20, an die sich ein abgewickelter Arm 21 anschließt, der in eine Haltung 22 übergeht. Über die Befestigung 20 wird der Sensor 9 an dem nicht abgebildeten Gehäusedeckel befestigt.
Die U-förmige Halterung 22 umgibt teilweise die Zwischenwelle 17, die in diesem Bereich 17C eine longitudinal in Richtung der Wellenachse ausgerichtete permanente Magnetisierung aufweist. In der die Zwischenwelle 17 teilweise umgebenden Halterung 22 des Sensors 9 sind Sensorspulen als magnetfeldsensible Detektoren angeordnet.
At the intermediate shaft 17, the sensor 9 is arranged. The sensor 9 comprises a circular attachment 20, followed by a developed arm 21, which merges into an attitude 22. About the attachment 20, the sensor 9 is attached to the housing cover, not shown.
The U-shaped support 22 partially surrounds the intermediate shaft 17, which in this region 17C has a longitudinal magnetization oriented longitudinally in the direction of the shaft axis. In the intermediate shaft 17 partially surrounding bracket 22 of the sensor 9 sensor coils are arranged as magnetic field sensitive detectors.

Die Zwischenwelle 17 mit dem Sensor 9 geht aus Figur 3 genauer hervor. Die Halterung 22 des Sensors 9 umfasst Spulen 23. Diese Spulen 23 sind die eigentlichen Magnetfeld-Detektoren und jeweils in der Halterung 22 angeordnet, die den Bereich permanenter Magnetisierung 17C der Zwischenwelle 17 umgibt. Im dargestellten Ausführungsbeispiel sind acht Spulen 23 vorgesehen, wobei auf jeder Seite des Bereichs 17C jeweils vier Spulen angeordnet sind, die widerrum in je zwei Paare aufgeteilt sind. Die Spulen 23 sind jeweils redundant miteinander verdrahtet und ihre Signale werden über eine Leitung 24 zu einer Signalaufbereitungs- und Verarbeitungseinheit 25 geführt. Diese kann z. B. in der Hubwerkselektronik 8 untergebracht bzw. integriert sein.The intermediate shaft 17 with the sensor 9 goes out FIG. 3 in more detail. The holder 22 of the sensor 9 comprises coils 23. These coils 23 are the actual magnetic field detectors and each arranged in the holder 22, which surrounds the area of permanent magnetization 17 C of the intermediate shaft 17. In the illustrated embodiment, eight coils 23 are provided, wherein on each side of the region 17C four coils are arranged, which are in turn divided into two pairs. The coils 23 are each redundantly wired together and their signals are routed via a line 24 to a signal conditioning and processing unit 25. This can, for. B. accommodated or integrated in the hoist electronic 8.

Die permanente Magnetisierung des Bereichs 17C der Zwischenwelle 17 bzw. deren Magnetfeld oder die Änderung deren Ausrichtung lässt sich außerhalb der Welle mit diesen speziellen hochempfindlichen Spulen 23 und der entsprechenden Schaltung messen.The permanent magnetization of the region 17C of the intermediate shaft 17 or its magnetic field or the change in their orientation can be with outside of the shaft measure these special high-sensitivity coils 23 and the corresponding circuit.

Idealerweise hängt das von den einzelnen Getriebewellen übertragene Drehmoment neben den festen geometrischen Größen nur von der am Haken 3 hängenden Last ab.Ideally, the torque transmitted by the individual transmission shafts depends, in addition to the fixed geometric variables, only on the load hanging on the hook 3.

Dies gilt jedoch nur für den statischen oder den gleichförmig bewegten Fall. Im Unterschied dazu muss bei der beschleunigten Bewegung diese beim Erzeugen des Drehmoments an der Seiltrommel 6 berücksichtigt werden. Ebenso müssen die durch Reibung begründeten Wirkungsgrade (zum Beispiel Seilsteifigkeit und Lagerreibung) in den unterschiedlichen Drehrichtungen jeweils mit entsprechendem Vorzeichen berücksichtigt werden. Je nach gewünschter Genauigkeit und den Gegebenheiten werden diese Parameter in der Signalaufbereitungseinheit 25 berücksichtigt.However, this only applies to the static or the uniformly moving case. In contrast, in the accelerated movement, this must be taken into account when generating the torque on the cable drum 6. Likewise, the efficiencies based on friction (for example, rope rigidity and bearing friction) must be taken into account in the different directions of rotation, each with the corresponding sign. Depending on the desired accuracy and the circumstances, these parameters are taken into account in the signal conditioning unit 25.

So können bei der Bestimmung der Hublast durch Verformung der Getriebezwischenwelle 17 unter Last deren Torsion, Biegung und Zug-Druck-Verformung berücksichtigt werden. Hierbei können die Anzahl, Anordnung und Verschaltung sowie die Auswertungsart der Sensoren bzw. Spulen 23 Eingang finden. Bei der Bestimmung der Torsion der Welle 17 werden das Material (E-Modul, Schubmodul und Querkontraktion) und die Geometrie der Welle berücksichtigt. Bei der Bestimmung des übertragenen Drehmoments werden ferner die Übersetzung und der Wirkungsgrad unter Berücksichtigung der Reibung in Lagern und Dichtungen und Verzahnung sowie der Ölviskosität im Getriebe 4 in der Auswertung der Signale einbezogen. In die Bestimmung des Drehmoments an der Seiltrommel 6 selbst fließt zusätzlich noch die Reibung z. B. an den Lagern der Seiltrommel 6 sowie der Trommeldurchmesser in die Auswertung ein. Um letztendlich die Hublast zu berechnen, fließen noch weitere Parameter, wie Seilzugkraft, Einscherung, Seilgeometrie, Statik, Kinematik und Wirkungsgrade (z. B. Reibungsverluste der Seilrollen) sowie die Erdbeschleunigung ein.Thus, in the determination of the lifting load by deformation of the intermediate gear shaft 17 under load their torsion, bending and tensile-pressure deformation can be considered. Here, the number, arrangement and interconnection and the evaluation of the sensors or coils 23 find input. When determining the torsion of the shaft 17, the material (modulus of elasticity, shear modulus and transverse contraction) and the geometry of the shaft are taken into account. In the determination of the transmitted torque, the translation and the efficiency are also included, taking into account the friction in bearings and seals and teeth and the viscosity of the oil in the transmission 4 in the evaluation of the signals. In the determination of the torque on the cable drum 6 itself, the friction z flows additionally. B. at the bearings of the cable drum 6 and the drum diameter in the evaluation. Finally, to calculate the lifting load, further parameters such as traction, shearing, rope geometry, statics, kinematics and efficiencies (eg friction losses of the rope pulleys) as well as the gravitational acceleration are incorporated.

Auf die Berücksichtigung einiger Parameter kann je nach gewünschter Genauigkeit verzichtet werden. Insbesondere sind dies die Biegung und Zug-Druck-Verformung, die Reibung in Lagern und Dichtungen und Verzahnung und auch die Veränderung der Ölviskosität im Getriebe bei Temperaturveränderungen.The consideration of some parameters can be omitted depending on the desired accuracy. In particular, these are the bending and tension-compression deformation, the friction in bearings and seals and gearing and also the change in oil viscosity in the gearbox with temperature changes.

Claims (15)

  1. A rope or chain hoist (1), comprising a hoisting gear mechanism (4), which has at least one rotating shaft (17), and a hoisting load measuring device (9, 17, 23, 24, 25),
    characterised in that the hoisting load measuring device has at least one sensor (9, 23) for detecting the deformation of the shaft (17) caused by the hoisting load within the hoisting gear mechanism (4) and the detected deformation is included as a variable for determining the hoisting load, and
    the sensor (9) determines the torsion of the shaft (17),
    the sensor (9, 23) for detecting the deformation of the shaft (17) determines the torque, the shaft (17) in the region (17C) situated opposite the sensor (9, 23) has at least one zone of permanent magnetisation, the magnetisation being oriented substantially longitudinally in the direction of the shaft axis and generating a magnetic field externally of the region which has a magnetic field component in a circumferential direction in relation to the shaft axis and is detected by the sensor (9, 23), and the shaft (17) is the shaft of the gear mechanism (4) with the smallest diameter.
  2. A rope or chain hoist according to Claim 1, characterised in that the sensor (9, 23) is a magnetic field sensor.
  3. A rope or chain hoist according to Claim 2, characterised in that the sensor (9, 23) operates in a magnetostrictive manner.
  4. A rope or chain hoist according to any one of Claims 1 to 3, characterised in that the sensor (9, 23) detects the deformation contactlessly.
  5. A rope or chain hoist according to Claim 4, characterised in that the shaft has in the region (17C) situated opposite the sensor first and second zones which are arranged in a ring shape around the shaft axis, the second zone being positioned radially inwardly of the first zone, one of the zones having permanent magnetisation which is oriented longitudinally in the direction of the shaft axis and the other zone provides a flux return path for the flux generated by the one zone, the one zone generating a magnetic field externally of the region which has a magnetic field component in a circumferential direction in relation to the shaft axis and is detected by the sensor (9, 23).
  6. A rope or chain hoist according to any one of Claims 1 to 5, characterised in that a mounting (22) is provided for the arrangement of the sensor (9, 23) on the shaft (17), the said mounting at least partly embracing the said shaft.
  7. A rope or chain hoist according to Claim 6, characterised in that the mounting (22) is fixed within and/or on the gear mechanism housing.
  8. A rope or chain hoist according to any one of the preceding Claims, characterised in that 2 to 8 magnetic field-sensitive detectors, in particular coils (23), are respectively provided for each region in the sensor (9), which coils are arranged in particular uniformly around the region.
  9. A rope or chain hoist according to any one of the preceding Claims, characterised in that the sensor (9, 23) is wired up in a redundant manner.
  10. A rope or chain hoist according to any one of the preceding Claims, characterised in that a signal processing device (25) is provided for processing the signals from the sensor or sensors (9, 23).
  11. A rope or chain hoist according to Claim 10, characterised in that the signal processing device (25) is provided in the control electronics (8) of the hoist (1).
  12. A method for determining the hoisting load of rope or chain hoists according to any one of Claims 1 to 11, wherein the torsion of a rotating shaft (17) of the hoisting gear mechanism (4) caused by the hoisting load is detected in a hoisting load measuring device (9, 17, 23, 24, 25) of the hoist (1) and the torsion is used as a variable for determining the hoisting load.
  13. A method according to Claim 12, characterised in that the torsion is detected by way of a contactlessly operating sensor (9, 23).
  14. A method according to Claim 12 or 13, characterised in that the torsion is detected by means of magnetostrictive effects.
  15. A method according to any one of Claims 12 to 14, characterised in that the torsion is detected by way of the torque.
EP05011161A 2004-06-03 2005-05-24 LIfting apparatus with load measuring device and method to determine the load on a lifting apparatus Not-in-force EP1602617B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004027106 2004-06-03
DE102004027106A DE102004027106A1 (en) 2004-06-03 2004-06-03 Hoist with lifting load measuring device

Publications (2)

Publication Number Publication Date
EP1602617A1 EP1602617A1 (en) 2005-12-07
EP1602617B1 true EP1602617B1 (en) 2008-09-10

Family

ID=34936845

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05011161A Not-in-force EP1602617B1 (en) 2004-06-03 2005-05-24 LIfting apparatus with load measuring device and method to determine the load on a lifting apparatus

Country Status (6)

Country Link
US (1) US7234684B2 (en)
EP (1) EP1602617B1 (en)
CN (1) CN100526195C (en)
AT (1) ATE407908T1 (en)
DE (2) DE102004027106A1 (en)
ES (1) ES2313150T3 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2339961T3 (en) * 2006-08-31 2010-05-27 ROTZLER GMBH & CO. KG CABLE LATHE.
US8403302B2 (en) * 2008-09-04 2013-03-26 Videolarm, Inc. Elevated support system
DE102009036480A1 (en) * 2009-08-07 2011-02-17 Demag Cranes & Components Gmbh Arrangement for measuring at least one operating characteristic of a hoist
DE102009041662A1 (en) * 2009-09-16 2011-03-24 Liebherr-Werk Nenzing Gmbh, Nenzing System for detecting the load mass of a hanging on a hoist rope of a crane load
CN102060235B (en) * 2010-12-09 2013-01-23 江苏省特种设备安全监督检验研究院 Braking glide quality tester for crane
EP2520534B1 (en) * 2011-05-02 2014-06-25 Hoffmann Foerdertechnik GmbH Load detection device for lifting devices and electric chain hoists
CN102285591B (en) * 2011-07-13 2013-11-06 祝凤金 Braking glide quantity detector for crane
DE102012004914A1 (en) * 2012-03-09 2013-09-12 Liebherr-Werk Nenzing Gmbh Crane control with rope power mode
FI126620B (en) 2012-04-26 2017-03-15 Konecranes Global Oy Apparatus and method for collecting energy in the articulation of a articulated hoist
US9182270B2 (en) 2012-05-14 2015-11-10 Magnetek, Inc. Method and apparatus for measuring a load in a material handling system
US20170217726A1 (en) * 2014-08-07 2017-08-03 Otis Elevator Company Braking system for hoisted structure and method for braking
US10207905B2 (en) * 2015-02-05 2019-02-19 Schlumberger Technology Corporation Control system for winch and capstan
DE102015102140A1 (en) 2015-02-13 2016-08-18 Terex MHPS IP Management GmbH Arrangement of an electric drive motor, a transmission and a rotary encoder, in particular for a cable pull
DE102015213902A1 (en) * 2015-07-23 2017-01-26 Robert Bosch Gmbh Measuring arrangement for measuring the torque on a shaft, crank mechanism and vehicle
DE102016201455B3 (en) * 2016-02-01 2017-06-01 Schaeffler Technologies AG & Co. KG Measuring device and method for determining operating parameters on shafts
US9950908B2 (en) 2016-03-10 2018-04-24 Magnetek, Inc. System and method for determining a load in a material handling system
CN106644229B (en) * 2017-01-20 2022-09-20 华中科技大学 In-service cable force detection device and method
CN107381355B (en) * 2017-05-26 2019-05-03 苏行 Monitoring system and its loop wheel machine control method and device
CN109165419B (en) * 2018-07-31 2022-07-15 哈尔滨工程大学 Variable quality simulation device and method for motion operation
RU2730596C2 (en) * 2019-01-25 2020-08-24 Иванов Михаил Владимирович Portable device for tension control
KR102220458B1 (en) * 2019-04-01 2021-02-26 (주)엔키아 Wire diagnostics apparatus for lifting device
CN113200459B (en) * 2021-06-01 2023-02-03 中铁四局集团有限公司 Lifting appliance with adjustable mounting stress state of top plate of assembled subway station and application of lifting appliance
CN114955865B (en) * 2022-05-30 2023-06-27 武汉理工大学 Device for preventing lifting rope from flying disorder during deck mechanical operation

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3610342A (en) * 1969-12-18 1971-10-05 Otis Elevator Co Load weighing apparatus for elevators
US3867678A (en) * 1973-02-15 1975-02-18 Bucyrus Erie Co Method and means for measuring the torque delivered by an electric motor
US3965407A (en) * 1973-02-15 1976-06-22 Bucyrus-Erie Company Method and means for measuring the torque delivered by an electric motor
US4048547A (en) * 1973-05-30 1977-09-13 Brissonneau Et Lotz Torque responsive device
US4636962A (en) * 1983-05-24 1987-01-13 Columbus Mckinnon Corporation Microprocessor-controlled hoist system
JPS60244828A (en) * 1984-05-21 1985-12-04 Nissan Motor Co Ltd Magnetostriction type torque detecting device
JPS6288792A (en) * 1985-10-15 1987-04-23 三菱電機株式会社 Load detector for elevator
DE19512103C2 (en) * 1995-04-03 1997-06-05 Rotzler Gmbh Co Cable winch with operating data acquisition
DE19645812C1 (en) * 1996-11-07 1998-02-26 Stahl R Foerdertech Gmbh Electric hoist with microprocessor control system
US6048276A (en) * 1998-06-26 2000-04-11 K-2 Corporation Piezoelectric golf club shaft
GB9919065D0 (en) * 1999-08-12 1999-10-13 Fast Technology Gmbh Transducer Element
US6527130B2 (en) * 2001-02-16 2003-03-04 General Electric Co. Method and system for load measurement in a crane hoist
DE10124899B4 (en) * 2001-05-22 2013-09-05 Crystal Growing Systems Gmbh Crystal pulling machine with a lifting device
DE10126791A1 (en) * 2001-06-01 2003-01-09 Zf Lenksysteme Gmbh Method for fastening a torque measuring device
JP4107858B2 (en) * 2002-03-22 2008-06-25 東芝エレベータ株式会社 Double deck elevator
US6758105B2 (en) * 2002-11-22 2004-07-06 Visteon Global Technologies, Inc. Magnetoelastic torque sensor assembly
DE20300942U1 (en) * 2003-01-16 2003-03-20 Ebm Brosa Messgeraete Gmbh & C Axle force sensor for cable cars has recess to reduce hysteresis
US8373078B2 (en) * 2003-08-15 2013-02-12 Siemens Industry, Inc. System and method for load measuring by motor torque

Also Published As

Publication number Publication date
US7234684B2 (en) 2007-06-26
DE102004027106A1 (en) 2005-12-29
ES2313150T3 (en) 2009-03-01
ATE407908T1 (en) 2008-09-15
DE502005005307D1 (en) 2008-10-23
CN100526195C (en) 2009-08-12
CN1704327A (en) 2005-12-07
US20050279976A1 (en) 2005-12-22
EP1602617A1 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
EP1602617B1 (en) LIfting apparatus with load measuring device and method to determine the load on a lifting apparatus
EP2459978B1 (en) Gear mechanism for industrial applications or wind power plants
DE102006057539A1 (en) Method for mounting a detector mechanism of a planetary gear device
EP2745008B1 (en) Gearbox for industrial applications or wind power plants
WO2014079467A1 (en) Worm gear mechanism
DE19956265B4 (en) Device for monitoring the operation of hoisting winches
DE3019385A1 (en) CRANE WITH DATA PROCESSING SYSTEM
DE19512103C2 (en) Cable winch with operating data acquisition
EP0563836B1 (en) Method to measure the driving capability of a transporting device
EP2607856A2 (en) Device for measuring torque, direction and rotation speed of a shaft of a gear unit, in particular of a drive shaft of an azimuth gear drive of a wind turbine
DE102015201577A1 (en) Sensor arrangement for the indirect detection of a torque of a rotatably mounted shaft
DE102009060855B4 (en) Electromechanical level measuring device and a method for level measurement based on the principle of displacement measurement
EP0749934A2 (en) Method and apparatus for the determination of the dynamic stresses in parts, equipments and machines
EP1472175A1 (en) Device for detecting the load on a hoisting gear
EP2436949B1 (en) Planetary gear for a wind power system or industrial applications
WO2011015527A1 (en) Arrangement for measuring at least one operating characteristic parameter of a lifting gear
DE102019216027A1 (en) EXPANSION TORQUE MEASURING SYSTEM
DE102019124857A1 (en) Sensor arrangement for detecting a torque and a rotational angle position of a rotatable shaft
DE19923824C5 (en) Method and device for determining load data of a transmission driven by a hydraulic motor
EP1931890B1 (en) Life usage tracking system
EP1778580B1 (en) Hoist comprising a strain sensor
EP3837517B1 (en) Actuator system, in particular for a vehicle
EP1611660A2 (en) Electric motor and/ or transmission
DE4413717C2 (en) Hoist
DE102009042310A1 (en) Arrangement for determining torque of driving shaft of e.g. wind turbine, of cement mill, has evaluation unit determining predetermined torque acting on shaft under observation of predetermined torsion rigidity of shaft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060103

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060317

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005005307

Country of ref document: DE

Date of ref document: 20081023

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2313150

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090210

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

26N No opposition filed

Effective date: 20090611

BERE Be: lapsed

Owner name: DEMAG CRANES & COMPONENTS G.M.B.H.

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140521

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140528

Year of fee payment: 10

Ref country code: DE

Payment date: 20140521

Year of fee payment: 10

Ref country code: IT

Payment date: 20140529

Year of fee payment: 10

Ref country code: FR

Payment date: 20140527

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005005307

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150524

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150524

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150525