EP1602144B1 - Hochfrequenz-verbindung bzw. hochfrequenz-verteilnetzwerk - Google Patents

Hochfrequenz-verbindung bzw. hochfrequenz-verteilnetzwerk Download PDF

Info

Publication number
EP1602144B1
EP1602144B1 EP04712537A EP04712537A EP1602144B1 EP 1602144 B1 EP1602144 B1 EP 1602144B1 EP 04712537 A EP04712537 A EP 04712537A EP 04712537 A EP04712537 A EP 04712537A EP 1602144 B1 EP1602144 B1 EP 1602144B1
Authority
EP
European Patent Office
Prior art keywords
network
base
coupling surface
module
signal coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04712537A
Other languages
English (en)
French (fr)
Other versions
EP1602144A1 (de
Inventor
Roland Gabriel
Jürgen RUMOLD
Stefan Berger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Publication of EP1602144A1 publication Critical patent/EP1602144A1/de
Application granted granted Critical
Publication of EP1602144B1 publication Critical patent/EP1602144B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • H01P1/047Strip line joints

Definitions

  • the invention relates to a high-frequency or network connection according to the preamble of claim 1.
  • a generic high-frequency connection is from the US 5 986 519 A , as the closest prior art, become known. It is an arrangement for transmitting high frequency microwave signals between a cable and a printed microstrip circuit feed network disposed on a dielectric substrate in a microwave antenna structure. So there is a solid structure in the manner of a triplate structure that includes two parallel ground planes.
  • this multilayer structure also has at least one so-called transition printed circuit board, on which a connecting line structure is formed which ends in so-called coupling surfaces.
  • a connecting line structure is formed which ends in so-called coupling surfaces.
  • a divided dielectric is arranged, on each of which a coupling surface is formed, which is connected to a line structure.
  • These coupling surfaces come parallel and adjacent to the interconnected on the transition board coupling surfaces to lie.
  • the coupling surfaces on the transition printed circuit board can also be formed from the metallized line itself, said electrical line is at least indirectly electrically-galvanically connected to the inner conductor of a coaxial cable.
  • This two-layered structure with a printed circuit board structure and a dielectric that builds up thereon is sandwiched between a lower so-called first ground plane and an upper so-called second ground plane, wherein the lower ground plane is electrically-galvanically connected to the outer conductor of the coaxial cable and the second ground plane is reactively coupled to the first ground plane is.
  • Such a triplate design thus comprises a microstrip circuit arrangement on a first dielectric substrate and a second microstrip circuit formed on an intermediate dielectric substrate, whereby all microwave signals from a coaxial cable connection via the printed interposer circuit to the microstrip circuit on the first coupled dielectric substrate.
  • a PCMCIA signal connector as it is usually used in notebooks, is basically from the U.S. Patent 5,936,841 known.
  • the PCMCIA plug-in card usually has on its one end face a connector strip, which interacts with a built-in notebook power strip when the corresponding PCMCIA card is inserted into a receiving slot in the notebook.
  • On one of the large side surfaces is then parallel to this side surface a first electrically provided conductive layer, which represents one half of the RF coupling device.
  • the second parallel electrically conductive layer is housed with lateral offset in the interior of the device.
  • an air gap generated by the side clearance between PCMCIA card and adjacent inner boundary surface of the insertion slot of the electrical device, for example in the form of the notebook
  • a dielectric interlayer the part of the wall of the Notbooks is.
  • the object of the present invention is therefore to provide a high-frequency connection and in particular a high-frequency distribution network, which can be used as needed on a designated interface, with intermodulation should be largely avoided or excluded.
  • an RF network is coupled to a base module in such a way that at least one first signal path from the base module leads to the network and at least one second signal path originates from the network to the base module, in such a way that not only a capacitive coupling between the ground potential areas, but above all between the signal coupling surfaces of the base module and the network module is formed both in the at least first as well as the at least second signal path.
  • This also offers the possibility of inserting such a network module, for example into slot openings in an antenna, so that the corresponding capacitive signal paths are provided in the finally inserted position.
  • the construction is such that an intermodulation-free modular connection, for example an RF network to a base module, is made possible by the production of a potential-free, ie a capacitive high-frequency connection at a corresponding interface.
  • a potential-free, ie a capacitive high-frequency connection at a corresponding interface.
  • not only the signal leading signal lines, but also the outer conductor or grounds are coupled to avoid potential galvanic contact floating to each other at the corresponding contact devices.
  • the type of interface in the form of capacitive coupling via an interface with contacts has the significant advantage of low intermodulation, which is just of great importance in mobile phone applications such as mobile radio antennas. If very high intermodulation products in the transmission frequency range, whose frequency in the reception frequency range rich, could be received at these reception frequencies no weak signals from mobile devices such as mobile phones more.
  • the geometry of the coupling surfaces determines the electrical parameters of the signal transmission, such as the adaptation to the characteristic impedance (VSWR), the insertion loss and the broadband frequency range.
  • VSWR characteristic impedance
  • extension surfaces are provided. These flags or extension surfaces cause parallel to the coupling between the coupling surfaces an additional low coupling between the coupling surfaces on a circuit board and a mass surface.
  • the network module which can be coupled to a base module, furthermore has capacitively coupled mass areas in addition to the coupling surfaces effecting a capacitive RF coupling in order to suppress the intermodulation-free modular connection.
  • the metal structure covering this circuit board is formed on the side on which the corresponding electrical mass areas of the base module lie.
  • an insulating film with a predefined thickness is preferably used for the isolation between the two mass coupling causing electrical ground surfaces.
  • the coupling surfaces of the electrical ground planes effecting the signal transmission which are sometimes also referred to as coupling fingers, are preferably formed on the opposite side of the board of the network module, so that the substrate of the board is insulated from the corresponding signal coupling surface at the base. Module works.
  • At least one signal path from a base module is fed back via the capacitive coupling to a network module and from this network module via at least one further signal path to the antenna or, for example, the base module.
  • This can be done by plugging different network cards a closed signal path can be realized via the network card, wherein at the input and the output of the network card, the signal path is designed capacitively.
  • the high-frequency network can be embodied on the mentioned circuit board, for example in stripline technology (microstrip).
  • FIG. 1 is a schematic excerpt perspective view of a mobile radio antenna 1, a base station shown.
  • the housing cover of the antenna device namely the so-called radome 3, can be seen in part.
  • the antenna is held and positioned overall via an antenna mast 5.
  • network modules 11 specific, formed for example in stripline technology network components and network circuits are provided so that by using a correspondingly adapted network module 11, a specific beam characteristic of the antenna is generated.
  • the explained network modules 11 thus serve to generate a specific beam characteristic a so-called smart antenna, such as in the US Pat. No. 6,463,303 B1 or in the PCT publication WO 01/59 876 A1 is described. Accordingly, in an antenna therefore also several base and associated network modules can be provided.
  • FIG. 2 Based on FIG. 2 the schematic structure with respect to a cooperating module pair is shown, with a base module 9 and a network module 11. Only with reference to two signal lines 13 and two ground lines 15 is shown that the respective network module 11 completely potential-free via a corresponding HF connection 17 is coupled to the relevant base module 9.
  • the respective ground potential GND1 lies only on the base module 9 and the ground potential GND2 is applied only to the network module. In this case, corresponding potential-free connections between the base module 9 and the network module 11 via one or more signal paths 14 and 16 are provided.
  • the base module 9 comprises an electrically shielded base plate or base 21, which is generally made entirely of metal.
  • base plate 21 is frequently used.
  • This electrically conductive base or base plate 21 is provided with recesses or windows 23, in which electrically conductive base signal coupling surfaces 25 are formed. These base signal coupling surfaces 25 are separated from the electrically conductive base 21 by a respective circumferential gap 26 or other insulation, which forms a base mass coupling surface 27 adjacent to the base signal coupling surface 25.
  • a respective circumferential gap 26 or other insulation which forms a base mass coupling surface 27 adjacent to the base signal coupling surface 25.
  • connection points 29 are shown at the base, to each of which a coaxial conductor 31 leads, wherein the inner conductor 31a of each coaxial conductor 31 is soldered to the base signal coupling surface 25 and to a stripped outer peripheral region of the associated outer conductor 31b via a corresponding solder joint 31c with the base Mass coupling surface 27 is electrically connected.
  • the corresponding network module 11 has a circuit board 35 with associated substrate 35 'on which connection points 129 on the base module corresponding to the connection points 29 are formed on the network module 11. Often it is spoken by a network board 35 instead of board 35.
  • connection points 129 on the network module 11 comprise network signal coupling surfaces 125 which, in the exemplary embodiment shown, are also rectangular in shape from the basic shape, ie comparable to the respective shape of the base signal coupling surfaces 25.
  • each stripline 37 is the network signal coupling surface 125 with an in FIG. 3 only schematically indicated network 39 is connected, which represents an RF module.
  • This is preferably provided and formed on the upper side 35a of the circuit board 35, that is to say on the side of the circuit board 35 which is opposite to the cooperating base, that is to say the so-called network board 35.
  • the network module 11 also includes a large-area designed mass coupling surface, namely a network mass coupling surface 127, which in the embodiment shown but not on the same side of the board 35, on which the connection points 129 are provided, but on the bottom is formed ,
  • the electrically conductive network mass surface 127 is at least approximately rectangular in shape and extends with its peripheral boundary line 129 'to the immediate vicinity of the connection points 129.
  • the board 35 is moved to the base and positioned according to the arrow 41, namely with the interposition of an electrically insulating intermediate layer, preferably in the form of an insulating film 43, the size and shape of which corresponds to the network mass coupling surface 127 or is slightly larger.
  • FIG. 4 Based on FIG. 4 is shown in a schematic plan view corresponding to the layers of the mass coupling surfaces and the insulating film and the network mass coupling surface 127 in relation to the underlying base mass coupling surface 27. It can also be seen that the base mass coupling surface 27 can be dimensioned larger, for example, in the longitudinal as well as in the transverse direction than in the network mass coupling surface 127. For fine tuning, it is further provided that the network coupling surfaces 127 project laterally Flag or extension sections 127 'may be provided, resulting in the embodiment shown, a cross structure, but this is not absolutely necessary.
  • FIG. 5 is merely shown that, for example instead of a sliding mechanism (which includes, for example, two laterally opposite groove receiving, in which the board 35 can be inserted) may also be provided a kind of tilting mechanism.
  • a sliding mechanism which includes, for example, two laterally opposite groove receiving, in which the board 35 can be inserted
  • a kind of tilting mechanism in the embodiment according to FIG. 5 is a schematically designed as a U-shaped recess tilt bracket 45 is used, in which the one boundary edge 35 "of the board 35 inserted and then the board 35 can be pivoted about the tilting axis formed on the base 21 until the board 35 with intermediate positioning of said Insulating film 43 rests on the base 21.
  • the base 21 is formed in cross-sectional view in the form of a low-height U-shaped electrically conductive sheet, which is provided with laterally opposite flanges 21 '.
  • a plurality of coaxial cables 31 are supplied to the base module 9 from each side, wherein the individual coaxial conductor sections or coaxial conductors 31, as already explained, are led to the base signal coupling surfaces 25.
  • the outer conductor 31b of the respective coaxial conductor 31 is contacted on the side legs of the U-shaped base 21, for example, by an electrical solder connection electrically to the electrically conductive base 21, said through these side portions 21 ", the inner conductor 31a of the coaxial 31 are passed and soldered via an electrical solder connection to the respective base signal coupling surfaces 25.
  • These basic signal coupling surfaces 25 are electrically insulated from the base mass coupling surface 27 by a circumferential insulating gap 26.
  • the base signal coupling surfaces 25 lie in a corresponding larger-dimensioned window 23, so that the insulating gap 26 is formed between the base signal coupling surfaces 25 and the base mass coupling surfaces 27.
  • a shielding wall 49 is ultimately provided to produce a total shielding.
  • Another Schirmungswand 50 is placed from above on the base module 9 thus formed as part of this base module 9 and can then be screwed together by using screws to holes 51.
  • the upper Schirmungswand 50 is also formed in cross section U-shaped with outboard flange portions 50 'and side legs 50 ", wherein in the region of the supplied coaxial cables and coaxial 31 corresponding slot recesses 52 are incorporated in the vertical leg portion 50'.
  • the explained base module 9 thus serves to accommodate a network module 11, which in FIG. 6 is shown in exploded view.
  • the network module 11 comprises, in addition to the already explained board 35 and the network 39 thereon, a surrounding housing 53, which is seated with its wall sections 53 'on the outer circumference of the board 35 or connected thereto is, to form an interior space 55, in which, as explained on the board 35, the corresponding assemblies and lines for generating the network 39 are formed and provided.
  • the network signal coupling surfaces 125 come to lie directly above the base signal coupling surfaces 25, wherein the material of the printed circuit board, ie the substrate 35 'forms the insulation between the network signal coupling surface 125 and the base signal coupling surface 25.
  • the base signal coupling surfaces 25 are electrically conductively connected via a downwardly extending connection section 25 'to the inner conductor 31a of an associated coaxial conductor 31 projecting thereon, for example via a solder connection.
  • FIGS. 7 and 8th reproduced electrically insulating support 59 provided in the form of a spacer, on which on the one hand, the electrical ground, ie the base-mass coupling surface 27 and on the other hand, the base signal coupling surface 25 rests. Since the signal coupling surface 25 has a thinner material cross-section than the base-mass coupling surface 27, therefore, the aforementioned spacer 59 is formed stepped.
  • recesses or, for example, bores 61 are immediately offset inwardly lying to the boundary edge of the window-shaped recesses or the Isolierspaltes 26 is provided, in which the spacer 59 with a slightly further upwardly projecting portion 59 'in this recess or bore 61 protrudes.
  • a network module 11 formed in this way can thus be pushed without problems into the associated base module 9, for example, with the network module 11 at an asymmetrical location, for example at the.,
  • the network module 11 (housing cover 50) Has an elevation 163, which cooperates with a corresponding elevation or recess - 63 on the inside of the housing cover of the base module 9 ( FIG. 6 ).

Landscapes

  • Transceivers (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Waveguide Connection Structure (AREA)
  • Microwave Amplifiers (AREA)
  • Combinations Of Printed Boards (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Aerials With Secondary Devices (AREA)
  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)

Description

  • Die Erfindung betrifft eine Hochfrequenz- oder Netzwerk-Verbindung nach dem Oberbegriff des Anspruches 1.
  • Insbesondere in der Antennentechnik - aber nicht nur dort - stellt es sich teilweise als schwierig heraus, intermodulationsfreie Anbindungen oder Verbindungen zu schaffen. Dieses Problem stellt sich vor allem an Schnittstellen, an denen bei Bedarf unterschiedliche Baugruppen eingesetzt werden sollen.
  • Hochfrequenzverbindungen zwischen zwei Hochfrequenz-Baugruppen, wie z.B. zwischen einer Hochfrequenz-Platine und einer drahtlosen Übertragungseinrichtung wie z.B. Antennen, werden normalerweise mittels koaxialer Verbindungstechniken realisiert. Aber auch hier können nachteilige und unerwünschte Intermodulationen auftreten. Verbesserungen zur Vermeidung bzw. Verringerung passiver Intermodulationen bei der Verwendung koaxialer Steckverbindungen sind beispielsweise in der US 6 414 636 B1 vorgeschlagen worden. Soll aber beispielsweise bei einer sogenannten Smart-Antenne, wie sie grundsätzlich aus der US 6 463 303 B1 bekannt ist, ein bestimmtes Verteil-Netzwerk zugeschaltet werden, um eine bestimmte Strahlcharakteristik bezüglich der in Rede stehenden Antenne zu erzeugen, so können zudem auch die Kosten für ein derartig zuschaltbares Modul beachtlich anwachsen, wenn alle eingangs- und ausgangsseitigen Anschlussverbindungen in Form von koaxialen Steckverbindungen ausgeführt werden.
  • Von daher könnte grundsätzlich auch daran gedacht werden, anstelle von koaxialen Steckverbindungen kapazitive Verbindungen vorzusehen.
  • Eine gattungsbildende Hochfrequenz-Verbindung ist aus der US 5 986 519 A , als nächstliegender Stand der Technik, bekannt geworden. Es handelt sich dabei um eine Anordnung zur Übertragung von Hochfrequenz-Mikrowellensignalen zwischen einem Kabel und einem gedruckten Mikrostreifen-Schaltungs-Speisenetz, das auf einem dielektrischen Substrat in einer Mikrowellen-Antennenstruktur angeordnet ist. Es liegt also ein fester Aufbau nach Art einer Triplate-Struktur vor, die zwei parallele Masseflächen umfasst.
  • Dieser mehrschichtige Aufbau weist dabei ferner zumindest eine sogenannte Übergangs-Leiterplatte auf, auf welcher eine verbundende Leitungsstruktur ausgebildet ist, die in sogenannten Koppelflächen endet. Parallel und oberhalb zu dieser Übergangs-Leiterplatte ist ein geteiltes Dielektrikum angeordnet, auf dem jeweils eine Koppelfläche ausgebildet ist, die mit einer Leitungsstruktur verbunden ist. Diese Koppelflächen kommen parallel und benachbart zu den auf der Übergangs-Leiterplatte verbundenden Koppelflächen zu liegen. Die Koppelflächen auf der Übergangs-Leiterplatte können dabei auch aus der metallisierten Leitung selbst gebildet sein, wobei diese elektrische Leitung mit dem Innenleiter eines Koaxialkabels zumindest mittelbar elektrisch-galvanisch verbunden ist.
  • Dieser zweischichtige Aufbau mit einer Leiterplattenstruktur und einem darauf aufbauenden Dielektrikum ist sandwichartig zwischen einer unteren sogenannten ersten Massefläche und einer oberen sogenannten zweiten Massefläche angeordnet, wobei die untere Massefläche mit dem Außenleiter des Koaxialkabels elektrisch-galvanisch verbunden und die zweite Massefläche mit der ersten Massefläche reaktiv gekoppelt ist.
  • Ein derartiger Triplate-Aufbau umfasst also eine Mikrostreifen-Schaltungs-Anordnung auf einem ersten dielektrischen Substrat und eine auf einem dielektrischen Zwischen-Substrat ausgebildete zweite Mikrostreifen-Schaltung, worüber alle Mikrowellensignale von einem Koaxialkabelanschluss über die gedruckte Zwischenschaltung auf die Mikrostreifen-Schaltung auf dem ersten dielektrischen Substrat gekoppelt werden.
  • Ein PCMCIA-Signalverbinder, wie er üblicherweise bei Notebooks zum Einsatz kommt, ist grundsätzlich aus dem US-Patent 5 936 841 bekannt geworden. Die PCMCIA-Steckkarte weist üblicherweise an ihrer einen Stirnseite eine Steckerleiste auf, die mit einer im Notebook integrierten Steckerleiste zusammenwirkt, wenn die entsprechende PCMCIA-Karte in einen Aufnahmeschlitz im Notebook eingesteckt wird. An einer der großen Seitenflächen ist dann parallel zu dieser Seitenfläche eine erste elektrisch leitende Schicht vorgesehen, die eine Hälfte der HF-Kopplungseinrichtung darstellt. Die zweite dazu parallele elektrisch leitende Schicht ist mit Seitenversatz im Inneren der Vorrichtung untergebracht. Zwischen beiden parallel zueinander liegenden leitenden Schichten der HF-Kopplungsstruktur befindet sich ein Luftspalt (erzeugt durch den Seitenabstand zwischen PCMCIA-Karte und angrenzender inneren Begrenzungsfläche des Einsteckschachtes der elektrischen Vorrichtung, beispielsweise in Form des Notebookes) und eine dielektrische Zwischenschicht, die Teil der Wandung des Notbooks ist.
  • Aber auch bei einer derartigen PCMCIA-Karte mit einer kapazitiven HF-Verbindung lassen sich die unerwünschten Intermodulationen nicht vermeiden.
  • Aufgabe der vorliegenden Erfindung ist es von daher, eine Hochfrequenz-Verbindung und insbesondere ein Hochfrequenz-Verteilnetzwerk zu schaffen, welches je nach Bedarf an einer vorgesehenen Schnittstelle eingesetzt werden kann, wobei Intermodulationen weitgehend vermieden oder ausgeschlossen werden sollen.
  • Die Aufgabe wird erfindungsgemäß entsprechend den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Es ist nunmehr vorgesehen, dass ein HF-Netzwerk mit einem Basis-Modul so gekoppelt ist, dass zumindest ein vom Basis-Modul ausgehender erster Signalweg zum Netzwerk und zumindest ein vom Netzwerk ausgehender zweiter Signalweg zum Basis-Modul führt, und zwar derart, dass sowohl bei dem zumindest ersten wie auch bei dem zumindest zweiten Signalweg nicht nur eine kapazitive Kopplung zwischen den Massenpotentialflächen, sondern vor allem auch zwischen den Signal-Koppelflächen des Basis-Moduls und des Netzwerk-Moduls ausgebildet ist.
  • Dies bietet auch die Möglichkeit, ein derartiges Netzwerk-Modul beispielsweise in Schlitzöffnungen in eine Antenne einzuschieben, so dass in der endgültig eingeschobenen Position die entsprechenden kapazitiven Signalwege vorgesehen sind.
  • Dabei ist der Aufbau derart, dass durch die Herstellung einer potential freien, also eine kapazitive Hochfrequenz-Verbindung an einer entsprechenden Schnittstelle eine intermodulationsfreie modulare Anbindung, beispielsweise eines HF-Netzwerkes an einem Basis-Modul, ermöglicht wird. Dabei werden an den entsprechenden Kontakteinrichtungen nicht nur die das Signal führenden Signalleitungen, sondern auch die Außenleiter oder -massen unter Vermeidung eines galvanischen Kontaktes potentialfrei zueinander gekoppelt. Die Art der Schnittstelle in Form der kapazitiven Kopplung über eine Schnittstelle mit Kontakten, besitzt den wesentlichen Vorteil einer geringen Intermodulation, was gerade von großer Wichtigkeit bei Mobilfunkänwendungen wie beispielsweise bei Mobilfunkantennen ist. Treten im Sendefrequenzbereich sehr hohe Intermodulationsprodukte auf, deren Frequenz in den Empfangsfrequenzbereich reichen, könnten bei diesen Empfangsfrequenzen keine schwachen Signale von mobilen Geräten wie Handys mehr empfangen werden.
  • Dass sich auf diesem Prinzip basierend eine intermodulationsfreie modulare Anbindung eines HF-Netzwerkes mit mehreren, insbesondere mit mehr als zwei Anschlüssen oder Verbindungsstellen zu einer HF-Einrichtung, wie beispielsweise einer Mobilfunkantenne realisieren lässt, ist dabei aus mehreren Gesichtspunkten überraschend. Denn es wäre an sich zu vermuten gewesen, dass bei Ausbildung von entsprechenden parallel zueinander verlaufenden Koppelflächen, an denen das jeweilige HF-Signal übertragen werden soll, wie aber auch zur Herstellung der potentialfreien Massenverbindung, sich weitere Einflüsse bemerkbar machen, die es verhindern, dass eine stets eindeutig reproduzierbare HF-Koppelverbindung herstellbar ist. Denn gerade auch beim Einsatz von Mobilfunkantennen bzw. Sendeantennen ist es zwingend erforderlich, ein metallisches Gehäuse zur Schirmung zu verwenden. Metallische Gehäuse haben aber grundsätzlich Auswirkungen auf die elektrischen Bedingungen und Eigenschaften, wenn im Inneren des geschirmten Gehäuses kapazitive Koppeleinrichtungen verwendet werden. Denn der Abstand zwischen Koppelflächen und Schirmgehäuse bewirkt unter Umständen eine zusätzliche parasitäre Parallelkapazität zwischen den Koppelflächen und der elektrischen Masse.
  • Durch den erfindungsgemäßen Aufbau der HF-Verbindungseinrichtung lassen sich jedoch auch diese Effekte und Wirkungen minimieren.
  • Die Geometrie der Koppelflächen bestimmt die elektrischen Parameter der Signalübertragung, wie z.B. die Anpassung an den Wellenwiderstand (VSWR), der Einfügungsdämpfung sowie die Breitbandigkeit des Frequenzbereiches. Zur weiteren Verbesserung einer Feinabstimmung ist in einer bevorzugten Weiterbildung der Erfindung ferner vorgesehen, dass beispielsweise die Koppelfläche auf einer verwendeten Platine mit seitlich überstehenden "Fähnchen" oder sogenannten "Erweiterungsflächen" versehen ist. Diese Fähnchen oder Erweiterungsflächen bewirken parallel zur Kopplung zwischen den Koppelflächen eine zusätzliche geringe Kopplung zwischen den Koppelflächen auf einer Platine und einer Massenfläche.
  • Das Netzwerk-Modul, welches mit einem Basis-Modul koppelbar ist, weist zur Unterdrückung der intermodulationsfreien modularen Anbindung ferner neben den eine kapazitive HF-Kopplung bewirkenden Koppelflächen kapazitiv gekoppelte Massenflächen auf. Die diese Platine überdeckende Metallstruktur ist auf der Seite ausgebildet, auf der die entsprechenden elektrischen Massenflächen des Basis-Moduls liegen. In diesem Falle wird bevorzugt zur Isolierung zwischen beiden die Massekopplung bewirkenden elektrischen Masseflächen eine Isolierfolie mit vordefinierter Dicke verwendet. Die Koppelflächen der die Signalübertragung bewirkenden elektrischen Masseflächen, die nachfolgend teilweise auch als Koppelfinger bezeichnet werden, sind demgegenüber bevorzugt auf der gegenüberliegenden Seite der Platine des Netzwerk-Moduls ausgebildet, so dass das Substrat der Platine als Isolierung gegenüber der entsprechenden Signal-Koppelfläche am Basis-Modul wirkt.
  • Zumindest ein Signalweg von einem Basismodul ist über die kapazitive Kopplung zu einem Netzwerkmodul und von diesem Netzwerkmodul über zumindest einen weiteren Signalweg wiederum zur Antenne oder beispielsweise dem Basismodul zurückgeführt. Dadurch kann durch Einstecken unterschiedlicher Netzwerkkarten ein geschlossener Signalweg über die Netzwerkkarte realisiert werden, wobei am Eingang und am Ausgang der Netzwerkkarte der Signalweg kapazitiv gestaltet ist.
  • Das Hochfrequenz-Netzwerk kann auf der erwähnten Platine beispielsweise in Streifenleitungstechnologie (Microstrip) ausgeführt sein.
  • Weitere Vorteile, Einzelheiten und Merkmale der Erfindung ergeben sich aus dem nachfolgend anhand von Zeichnungen erläuterten Ausführungsbeispiel. Dabei zeigen im Einzelnen:
  • Figur 1:
    eine schematische perspektivische Teilansicht einer Mobilfunkantenne mit zwei an der Unterseite einsteck- und ausziehbaren Basis-Moduleinrichtungen, die jeweils zur Aufnahme eines Netzwerk-Moduls geeignet sind;
    Figur 2:
    eine schematische Darstellung des Grundaufbaus des Basis-Moduls und des Netzwerk-Moduls unter Erzeugung einer potentialfreien HF-Verbindung;
    Figur 3:
    eine schematische perspektivische Darstellung des Basis-Moduls und des Netzwerk-Moduls zur Erläuterung der potentialfreien HF-Kopplung;
    Figur 4:
    eine schematische auszugsweise Draufsicht auf zusammenwirkende Koppelflächen des Basis- und des Netzwerk-Moduls.
    Figur 5:
    eine zu Figur 3 entsprechende Darstellung zur Erläuterung eines anderen Verbindungsmechanismus zwischen beiden Modulen;
    Figur 6:
    eine schematische auszugsweise perspektivische Darstellung eines Basis- und eines Netzwerk-Moduls in Explosionsdarstellung;
    Figur 7:
    eine schematische Querschnittsdarstellung durch das Ausführungsbeispiel gemäß Figur 5 im zusammengebauten Zustand;
    Figur 8:
    eine vergrößerte Detaildarstellung aus der Querschnittsdarstellung gemäß Figur 6.
  • In Figur 1 ist eine schematische auszugsweise perspektivische Darstellung einer Mobilfunkantenne 1, einer Basisstation gezeigt. Zu sehen ist auszugsweise die Gehäuseabdeckung der Antenneneinrichtung, nämlich das sogenannte Radom 3. Die Antenne ist insgesamt über einen Antennenmast 5 gehalten und positioniert. An der Unterseite 7 der Gehäuseabdeckung 3 ist eine Schlitzöffnung vorgesehen, in welchem parallel und unabhängig voneinander zwei Basis-Module 9 eingeschoben werden können, die jeweils mit zwei auswechselbaren Netzwerk-Modulen 11 zusammenwirken.
  • Auf den Netzwerk-Modulen 11 sind spezifische, beispielsweise in Stripline-Technik ausgebildete Netzwerkkomponenten und Netzwerkschaltungen vorgesehen, so dass durch Verwendung eines entsprechend angepassten Netzwerk-Moduls 11 eine bestimmte Strahlcharakteristik der Antenne erzeugt wird. Die erläuterten Netzwerk-Module 11 dienen somit also zur Erzeugung einer bestimmten Strahlcharakteristik an einer sogenannten Smart-Antenne, wie sie beispielsweise in dem US-Patent US 6 463 303 B1 oder in der PCT-Veröffentlichung WO 01/59 876 A1 beschrieben ist. Entsprechend den können in einer Antenne von daher auch noch mehrere Basis- und zugehörige Netzwerkmodule vorgesehen sein.
  • Anhand von Figur 2 ist der schematische Aufbau bezüglich eines zusammenwirkenden Modulpaares gezeigt, und zwar mit einem Basis-Modul 9 und einem Netzwerk-Modul 11. Lediglich anhand zweier Signalleitungen 13 und zweier Masseleitungen 15 ist dabei gezeigt, dass das jeweilige Netzwerk-Modul 11 völlig potentialfrei über eine entsprechende HF-Verbindung 17 mit dem betreffenden Basis-Modul 9 gekoppelt ist.
  • Das jeweilige Massepotential GND1 liegt dabei lediglich an dem Basis-Modul 9 und das Masselpotential GND2 liegt lediglich an dem Netzwerk-Modul an. Dabei sind entsprechende potentialfreie Verbindungen zwischen dem Basis-Modul 9 und dem Netzwerk-Modul 11 über einen oder mehrere Signalwege 14 bzw. 16 vorgesehen.
  • Anhand von Figur 3 und Figur 4 ist nunmehr ein schematischer Grundaufbau der beiden Module in größerem Detail wiedergegeben.
  • Das Basismodul 9 umfasst vom Prinzip her eine elektrisch geschirmte, in der Regel voll aus Metall bestehende Grundplatte oder Basis 21. Im folgenden wird hierbei häufig von Basisplatte 21 gesprochen. Diese elektrisch leitende Basis oder Basisplatte 21 ist mit Ausnehmungen oder Fenstern 23 versehen, in welchen elektrisch leitende Basis-Signalkoppelflächen 25 gebildet sind. Diese Basis-Signalkoppelflächen 25 sind durch je einen umlaufenden Spalt 26 oder eine sonstige Isolierung von der elektrisch leitenden Basis 21 getrennt, die benachbart zur Basis-Signalkoppelfläche 25 eine Basis-Massenkoppelfläche 27 bildet. Im gezeigten Ausführungsbeispiel nach Figur 3 sind an der Basis drei Anschlussstellen 29 gezeigt, zu denen jeweils ein Koaxialleiter 31 führt, wobei der Innenleiter 31a eines jeden Koaxialleiters 31 mit der Basis-Signalkoppelfläche 25 verlötet ist und an einem abisoliertem Außenumfangsbereich der zugehörige Außenleiter 31b über eine entsprechende Lötverbindung 31c mit der Basis-Massenkoppelfläche 27 elektrisch leitend verbunden ist.
  • Das entsprechende Netzwerk-Modul 11 weist eine Platine 35 mit zugehörigem Substrat 35' auf, an welcher über den Anschlussstellen 29 der Basis entsprechende Anschlussstellen 129 am Netzwerk-Modul 11 gebildet sind. Häufig wird dabei anstelle von Platine 35 auch von einer Netzwerkplatine 35 gesprochen.
  • Die Anschlussstellen 129 am Netzwerk-Modul 11 umfassen Netzwerk-Signalkoppelflächen 125, die im gezeigten Ausführungsbeispiel ebenfalls von der Grundformgebung her rechteckförmig gestaltet sind, also vergleichbar der jeweiligen Form der Basis-Signalkoppelflächen 25.
  • Über jeweils eine Streifenleitung 37 ist die Netzwerk-Signalkoppelfläche 125 mit einem in Figur 3 nur schematisch angedeutetem Netzwerk 39 verbunden, welches eine HF-Baugruppe darstellt. Diese ist bevorzugt auf der Oberseite 35a der Platine 35 vorgesehen und ausgebildet, also auf der so zusammenwirkenden Basis gegenüberliegenden Seite der Platine 35, also der sogenannten Netzwerkplatine 35.
  • Ferner umfasst auch das Netzwerk-Modul 11 eine großflächig gestaltete Massenkoppelfläche, nämlich eine Netzwerk-Massenkoppelfläche 127, die im gezeigten Ausführungsbeispiel aber nicht auf der gleichen Seite der Platine 35, auf der auch die Anschlussstellen 129 vorgesehen sind, sondern auf der Unterseite dazu ausgebildet ist. Im gezeigten Ausführungsbeispiel ist die elektrisch leitende Netzwerkmassenfläche 127 zumindest näherungsweise rechteckförmig gestaltet und reicht mit ihrer umlaufenden Begrenzungslinie 129' bis an die unmittelbare Nähe der Anschlussstellen 129. Im Betriebszustand wird entsprechend der Pfeildarstellung 41 die Platine 35 auf die Basis zu bewegt und positioniert, und zwar unter Zwischenfügung einer elektrisch isolierenden Zwischenschicht bevorzugt in Form einer Isolierfolie 43, deren Größe und Formgebung der Netzwerk-Massenkoppelfläche 127 entspricht oder geringfügig größer ist. Dadurch wird verhindert, dass die Netzwerk-Massenkoppelfläche 127 mit der Basis-Massenkoppelfläche 27 unter Erzeugung einer galvanisch elektrischen Verbindung kontaktieren kann. Durch Verwendung einer Isolierfolie 43 mit vorgegebener Dicke wird auch ein eindeutig definierter Abstand zwischen der Basis-Massenkoppelfläche 27 und der Netzwerk-Massenkoppelfläche 127 realisiert, wodurch eindeutig reproduzierbare elektrische Verhältnisse erzeugbar sind.
  • Anhand von Figur 4 ist in schematischer Draufsicht die entsprechend den Lagen der Massenkoppelflächen und der Isolierfolie sowie der Netzwerk-Massenkoppelfläche 127 im Verhältnis zu der darunter befindlichen Basis-Massenkoppelfläche 27 gezeigt. Daraus ist auch ersichtlich, dass die Basis-Massenkoppelfläche 27 sowohl in Längs- wie aber auch in Querrichtung beispielsweise größer dimensioniert sein kann als die in der Netzwerk-Massenkoppelfläche 127. Zur Feinabstimmung ist dabei ferner vorgesehen, dass die Netzwerk-Koppelflächen 127 mit seitlich überstehenden Fähnchen oder Erweiterungsabschnitten 127' versehen sein können, wobei sich im gezeigten Ausführungsbeispiel eine Kreuzstruktur ergibt, was aber nicht zwingend notwendig ist. Diese Fähnchen oder Erweiterungsabschnitte 125' bewirken parallel zur Kopplung zwischen den Koppelflächen 25, 125 eine zusätzliche geringe Kopplung zwischen den Koppelflächen 125 auf der Platine 35 und der Basis-Massenkoppelfläche 27. Der Grund hierfür liegt in einem geringen Abstand dieser Fähnchen oder Erweiterungsabschnitte 127' zur Basis-Massenkoppelfläche 27 verglichen mit dem Abstand der Netzwerk-Signalkoppelfläche 125 gegenüber der Basis-Massenkoppelfläche 27.
  • In zusammengefügter Position, in welcher wie erläutert die Platine 35 auf der Basis 21 aufliegt, werden die gewünschten eindeutigen Verhältnisse reproduziert. Dies kann beispielsweise durch einen Schiebemechanismus erzeugt werden, der es ermöglicht, das Netzwerk-Modul 11 mit der Platine 35 in die gewünschte eindeutige Relativlage zum Basis-Modul 9 zu bringen und in dieser Position zu halten und zu fixieren.
  • Anhand von Figur 5 ist lediglich gezeigt, dass beispielsweise anstelle eines Schiebemechanismus (der beispielsweise zwei seitlich gegenüberliegende Nutaufnahmen umfasst, in die die Platine 35 eingeschoben werden kann) auch eine Art Kippmechanismus vorgesehen sein kann. Bei dem Ausführungsbeispiel gemäß Figur 5 wird eine schematisch als U-förmige Ausnehmung gestaltete Kipphalterung 45 verwendet, in der die eine Begrenzungskante 35" der Platine 35 eingeschoben und dann die Platine 35 um die so gebildete Kippachse auf die Basis 21 zugeschwenkt werden kann, bis die Platine 35 unter Zwischenpositionierung der erwähnten Isolierfolie 43 auf der Basis 21 aufliegt.
  • Anhand der Figuren 6 bis 8 wird nunmehr ein möglicher Aufbau des Basis- und des Netzwerk-Moduls 9, 11 mit weiteren Details erläutert, wobei das Grundprinzip unverändert bleibt.
  • Bei dem Ausführungsbeispiel gemäß den Figuren 6 bis 8 ist die Basis 21 in Querschnittsdarstellung in Form eines mit geringer Höhe ausgebildeten U-förmigen elektrisch leitenden Bleches gebildet, welches mit seitlich gegenüberliegenden Flanschen 21' versehen ist.
  • Im Bereich der Flanschabschnitte 21' werden von jeder Seite her mehrere Koaxialkabel 31 dem Basis-Modul 9 zugeführt, wobei die einzelnen Koaxialleiter-Abschnitte oder Koaxialleiter 31, wie bereits erläutert, zur Basis-Signalkoppelflächen 25 hingeführt werden. Der Außenleiter 31b der jeweiligen Koaxialleiter 31 ist dabei an dem die Seitenschenkel der U-förmig gebildeten Basis 21 beispielsweise durch eine elektrische Lötverbindung elektrisch mit der elektrisch leitenden Basis 21 kontaktiert, wobei durch diese Seitenabschnitte 21" die Innenleiter 31a der Koaxialleiter 31 hindurchgeführt und über eine elektrische Lötverbindung an den jeweiligen Basis-Signalkoppelflächen 25 angelötet sind.
  • Diese Basis-Signalkoppelflächen 25 sind durch einen umlaufenden Isolierspalt 26 von der Basis-Massenkoppelfläche 27 elektrisch isoliert. Mit anderen Worten liegen die Basis-Signalkoppelflächen 25 in entsprechendem größer dimensionierten Fenster 23, so dass zwischen Basis-Signalkoppelflächen 25 und Basis-Massenkoppelflächen 27 der Isolierspalt 26 ausgebildet ist.
  • Auf der Unterseite der Basis 21 ist letztlich zur Erzeugung einer Gesamtschirmung eine Schirmungswand 49 vorgesehen. Eine weitere Schirmungswand 50 wird von oben her auf das so gebildete Basis-Modul 9 als Teil dieses Basis-Moduls 9 aufgesetzt und kann dann durch Verwendung von Schrauben an Bohrungen 51 miteinander verschraubt werden. Die obere Schirmungswand 50 ist dabei ebenfalls im Querschnitt U-förmig mit ausliegenden Flanschabschnitten 50' und Seitenschenkeln 50" gebildet, wobei im Bereich der zugeführten Koaxialkabeln sowie Koaxialleiter 31 entsprechende Schlitzausnehmungen 52 in den vertikalen Schenkelabschnitt 50' eingearbeitet sind.
  • Das erläuterte Basis-Modul 9 dient also zur Aufnahme eines Netzwerk-Moduls 11, welches in Figur 6 in Explosionsdarstellung wiedergegeben ist.
  • Auch das Netzwerk-Modul 11 umfasst neben der bereits erläuterten Platine 35 und dem darauf befindlichen Netzwerk 39 ein Umgehäuse 53, welches mit seinen Wandabschnitten 53' am Außenumfang der Platine 35 aufsitzt bzw. damit verbunden ist, und zwar unter Erzeugung eines Innenraumes 55, in welchem wie erläutert auf der Platine 35 die entsprechenden Baugruppen und Leitungen zur Erzeugung des Netzwerkes 39 ausgebildet und vorgesehen sind.
  • Aus der Querschnittsdarstellung ist ersichtlich, dass die Netzwerk-Signalkoppelflächen 125 direkt oberhalb der Basis-Signalkoppelflächen 25 zu liegen kommen, wobei das Material der Leiterplatine, also das Substrat 35' die Isolierung zwischen der Netzwerk-Signalkoppelfläche 125 und der Basis-Signalkoppelfläche 25 bildet. Die Basis-Signalkoppelflächen 25 sind dabei über einen nach unten verlaufenden Anschlussabschnitt 25' mit dem auf sie zuragenden Innenleiter 31a eines zugehörigen Koaxialleiters 31, beispielswiese über eine Lötverbindung elektrisch leitend verbunden.
  • Wie aus der Querschnittsdarstellung auch zu ersehen ist, ist ferner eine in den Figuren 7 und 8 wiedergegebene elektrisch isolierender Abstützung 59 in Form eines Abstandshalters vorgesehen, auf welchem zum einen die elektrische Masse, d.h. die Basis-Massekoppelfläche 27 und zum anderen auch die Basis-Signalkoppelfläche 25 aufliegt. Da die Signal-Koppelfläche 25 einen dünneren Materialquerschnitt aufweist als die Basis-Massekoppelfläche 27, ist von daher der erwähnte Abstandshalter 59 abgestuft ausgebildet. Um einen eindeutigen Justiersitz zu gewährleisten, sind Ausnehmungen oder beispielsweise Bohrungen 61 unmittelbar nach innen versetzt liegend zum Begrenzungsrand der fensterförmigen Ausnehmungen bzw. des Isolierspaltes 26 vorgesehen, in welchen der Abstandshalter 59 mit einem geringfügig weiter nach oben überstehenden Abschnitt 59' in diese Ausnehmung oder Bohrung 61 hineinragt.
  • Ein so gebildetes Netzwerk-Modul 11 kann somit also problemlos beispielsweise stirnseitig in das zugehörige Basis-Modul 9 eingeschoben werden, wobei zur lagerichtigen Einführung des Netzwerk-Moduls 11 (Gehäuseabdeckung 50) sowohl das Netzwerk-Modul 11 an einer asymmetrischen Stelle, beispielsweise an der Oberseite, eine Erhebung 163 aufweist, die mit einer entsprechenden Erhebung bzw. Ausnehmung - 63 an der Innenseite der Gehäuseabdeckung des Basis-Moduls 9 zusammenwirkt (Figur 6).

Claims (18)

  1. Hochfrequenz(HF)- oder Netzwerk-Verbindung mit den folgenden Merkmalen:
    - es ist ein Basismodul (9) vorgesehen,
    - das Basis-Modul (9) weist mehrere Basis-Signalkoppelflächen (25) auf einer Seite einer zugehörigen Basisplatte (21) auf,
    - es ist ein Netzwerk-Modul (11) vorgesehen,
    - das Netzwerk-Modul (11) weist mehrere Netzwerk-Signalkoppelflächen (125) auf einer Seite einer zugehörigen Netzwerkplatine (35) auf, die mit den dazugehörigen Basis-Signalkoppelflächen (25) kapazitiv gekoppelt sind,
    - das Basis-Modul (9) weist eine Basis-Massenkoppelfläche (27) auf,
    - das Netzwerk-Modul (11) weist eine Netzwerk-Massenkoppelfläche (127) auf,
    - im Betriebszustand ist die Basis-Massenkoppelfläche (27) in paralleler Ausrichtung zur Netzwerk-Massenkoppelfläche (127) kapazitiv gekoppelt,
    - das Netzwerk-Modul (11) ist in oder an dem Basis-Modul (9) so positionierbar oder positioniert, dass über die zumindest eine Netzwerk-Signalkoppelfläche (125) und der parallel zur Netzwerk-Signalkoppelfläche (125) positionierten Basis-Signalkoppelfläche (25) eine kapazitive HF-Signalverbindung hergestellt ist,
    gekennzeichnet durch die folgenden weiteren Merkmale:
    - über zumindest eine erste Basis-Signalkoppelfläche (25) und eine damit zusammenwirkende Netzwerk-Signalkoppelfläche (125) ist vom Basis-Modul (9) zum Netzwerk-Modul (11) zumindest ein erster Signalweg (14) und über zumindest eine weitere Netzwerk-Signalkoppelfläche (125) und eine damit zusammenwirkende weitere Basis-Signalkoppelfläche (25) zumindest ein zweiter Signalweg (16) vom Netzwerk-Modul (11) zum Basis-Modul (9) realisiert,
    - die mehreren Basis-Signalkoppelflächen (25) des Basis-Moduls (9) sind mit jeweils einem zugehörigen Kabel (31) verbunden,
    - die Basis-Signalkoppelflächen (25) und die Basis-Massenkoppelfläche (27) sind auf der gleichen Seite der Basisplatte (21) vorgesehen,
    - das Netzwerkmodul (11) weist auf der den Basis-Signalkoppelflächen (25) abgewandt liegenden Seite der Netzwerkplatine (35) die mehreren Netzwerk-Signalkoppelflächen (125) auf, und
    - die Netzwerk-Massenkoppelfläche (127) ist auf der zu den Netzwerk-Signalkoppelflächen (125) gegenüberliegenden Seite der Netzwerkplatine (35) des Netzwerkmoduls (11) vorgesehen.
  2. HF- oder Netzwerk-Verbindung nach Anspruch 1, dadurch gekennzeichnet, dass bei im Basis-Modul (9) ein- oder aufgesetztem Netzwerk-Modul (11) die Netzwerk-Massenkoppelfläche (127) unmittelbar benachbart auf der Basis-Massenkoppelfläche (27) aufliegt, und zwar unter Zwischenschaltung einer Isolierung oder Isolierfolie (43).
  3. HF- oder Netzwerk-Verbindung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Basis-Signalkoppelflächen (25) in einem Fenster oder einer Ausnehmung (23) in einer elektrisch leitenden Basisplatte (21) angeordnet sind, wobei die Fenster oder Ausnehmungen (23) zumindest geringfügig größer dimensioniert sind als die darin befindlichen Basis-Signalkoppelflächen (25), die somit durch einen umlaufenden Isolierspalt (26) von der Basis-Massenkoppelfläche (27) isoliert ist.
  4. HF- oder Netzwerk-Verbindung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Basis-Signalkoppelflächen (25) jeweils mit einem Innenleiter (31a) eines Koaxialleiters (31), vorzugsweise über eine Lötverbindung (31c), elektrisch verbunden sind.
  5. HF- oder Netzwerk-Verbindung nach Anspruch 4, dadurch gekennzeichnet, dass die Basis-Signalkoppelflächen (25) einen auf eine untere Ebene führenden Anschlussabschnitt (25') aufweisen, der zumindest bis in Höhe eines axial von einem Koaxialleiter (31) vorstehenden Innenleiter (31a) unter Herstellung einer Lötverbindung reicht.
  6. HF- oder Netzwerk-Verbindung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Netzwerk-Koppelfläche (127) kleiner dimensioniert ist als die damit zusammenwirkende Basis-Massenkoppelfläche (27), wobei der Begrenzungsrand (129') der Netzwerk-Massenkoppelfläche (127) versetzt zu den Netzwerk-Signalkoppelflächen (125) verläuft.
  7. HF- oder Netzwerk-Verbindung nach Anspruch 6, dadurch gekennzeichnet, dass die Netzwerk-Signalkoppelflächen (125) über eine Streifenleitung (37) mit dem auf der Netzwerkplatine (35) vorgesehenen Netzwerk (39) verbunden sind.
  8. HF- oder Netzwerk-Verbindung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in Draufsicht die Grundstruktur der Basis-Signalkoppelfläche (25) und der Netzwerk-Signalkoppelfläche (125) derart ist, dass die Basis-Signalkoppelfläche (25) länger und breiter als die Netzwerk-Signalkoppelfläche (125) gestaltet ist und in Draufsicht die Netzwerk-Signalkoppelfläche (125) in überlappender Position zu liegen kommt.
  9. HF- oder Netzwerk-Verbindung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zumindest die Netzwerk-Signalkoppelflächen (125) mit seitlich weiter vorstehenden Fähnchen oder Erweiterungsabschnitten (125') versehen sind, wodurch eine Feinabstimmung der Koppelwirkung bzw. Anpassung erzielbar ist.
  10. HF- oder Netzwerk-Verbindung nach Anspruch 9, dadurch gekennzeichnet, dass die Fähnchen oder Erweiterungsabschnitte (125') seitlich von den Netzwerk-Signalkoppelflächen (125) soweit vorstehen, dass darüber eine Koppelwirkung zu der Basis-Massenkoppelfläche (27) erzeugbar ist.
  11. HF- oder Netzwerk-Verbindung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Basisplatte (21) des Basis-Moduls (9) auf einer Abstützung oder einem Abstandshalter (59) aufliegt, der bevorzugt zumindest im Bereich der Basis-Signalkoppelflächen (25) vorgesehen ist.
  12. HF- oder Netzwerk-Verbindung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Basisplatte (21) im Querschnitt zumindest näherungsweise U-förmig ausgebildet ist, und zwar unter Ausbildung von seitlich weg stehenden Flansche (21'), die zur Ebene der Basisplatte (21) versetzt liegen, und dass die Basisplatte (21) mit den Flanschen (21') mit quer zur Basisplatte (21) verlaufenden Verbindungsschenkeln (21") verbunden sind, in denen Ausnehmungen oder Bohrungen (52) ausgebracht sind, durch die hindurch ein Innenleiter (31a) gegenüber dem Verbindungsschenkel (21") isoliert hindurchgeführt ist, und wobei der Außenleiter (31b) eines anzuschließenden Koaxialleiters (31) mit dem Flansch (21') und/oder dem Verbindungsschenkel (21") elektrisch-galvanisch verbunden ist.
  13. HF- oder Netzwerk-Verbindung nach einem der Ansprüche 11 bis 12, dadurch gekennzeichnet, dass die Basis-Signalkoppelfläche (25) und die Basis-Massenkoppelfläche (27) auf gleichem Höhenniveau liegen.
  14. HF- oder Netzwerk-Verbindung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Materialdicke der Basis-Signalkoppelflächen (25) geringer ist als die Materialdicke der Basis-Massenkoppelfläche (27).
  15. HF- oder Netzwerk-Verbindung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass eine Positioniereinrichtung in Form von ineinander greifenden Ausnehmungen und Vorsprüngen (61, 63) vorgesehen ist, worüber die Abstützung bzw. der Abstützhalter (59) in exakter Relativlage zur Basis-Signalkoppelfläche (25) bzw. der Basis-Massenkoppelfläche (27) positionierbar ist.
  16. HF- oder Netzwerk-Verbindung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass das Basis-Modul (9) neben einer unteren isolierenden Abdeckung (49) eine sich darüber im Abstand erhebende Gehäuseabdeckung (50) umfasst, die bevorzugt mit zwei gegenüberliegenden Flanschabschnitten (50') versehen ist, wobei die Abdeckung (49) an ihrem Rand und die Gehäuseabdeckung (50) im Bereich ihrer Flanschabschnitte (50') miteinander verbindbar sind, vorzugsweise unter Aufnahme eines dazwischen befindlichen Flanschabschnittes (21') der Basisplatte (21).
  17. HF- oder Netzwerk-Verbindung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass das Netzwerk-Modul (11) ein Umgehäuse oder eine Umgehäuse-Abdeckung (53) umfasst, welche unter Bildung eines Innenraumes vorzugsweise am Rand der Netzwerkplatine (35) aufsitzt bzw. mit dieser verbunden ist.
  18. HF- oder Netzwerk-Verbindung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass das Netzwerk-Modul (11) in einem entsprechenden Aufnahmeraum des Basis-Moduls (9) einführbar ist, wobei der Aufnahmeraum im Basis- Modul (9) sowie der Querschnitt des einführbaren Netzwerk-Moduls (11) asymmetrisch ist, so dass eine Einführung des Netzwerk-Moduls (11) in das Basis-Modul (9) nur in einer vordefinierten Relativlage möglich ist.
EP04712537A 2003-03-13 2004-02-19 Hochfrequenz-verbindung bzw. hochfrequenz-verteilnetzwerk Expired - Lifetime EP1602144B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10311041 2003-03-13
DE10311041A DE10311041A1 (de) 2003-03-13 2003-03-13 Hochfrequenz-Verbindung bzw. Hochfrequenz-Verteilnetzwerk
PCT/EP2004/001613 WO2004082062A1 (de) 2003-03-13 2004-02-19 Hochfrequenz-verbindung bzw. hochfrequenz-verteilnetzwerk

Publications (2)

Publication Number Publication Date
EP1602144A1 EP1602144A1 (de) 2005-12-07
EP1602144B1 true EP1602144B1 (de) 2008-03-12

Family

ID=32945882

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04712537A Expired - Lifetime EP1602144B1 (de) 2003-03-13 2004-02-19 Hochfrequenz-verbindung bzw. hochfrequenz-verteilnetzwerk

Country Status (6)

Country Link
US (1) US6917253B2 (de)
EP (1) EP1602144B1 (de)
CN (1) CN2672961Y (de)
AT (1) ATE389244T1 (de)
DE (2) DE10311041A1 (de)
WO (1) WO2004082062A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA200710068B (en) * 2007-11-08 2009-09-30 Triasx Pty Ltd Passive intermodulation test apparatus
CN103915987B (zh) * 2013-01-09 2016-09-07 永济新时速电机电器有限责任公司 保护隔离装置和igbt功率模块
DE102014226888B4 (de) * 2014-12-22 2024-05-08 Leoni Kabel Gmbh Koppelvorrichtung zur kontaktfreien Übertragung von Datensignalen sowie Verfahren zur Übertragung von Datensignalen

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931806A (en) * 1988-05-16 1990-06-05 The Antenna Company Window mounted antenna for a cellular mobile telephone
US5138436A (en) * 1990-11-16 1992-08-11 Ball Corporation Interconnect package having means for waveguide transmission of rf signals
JPH04234203A (ja) 1990-12-28 1992-08-21 Fujitsu General Ltd 平面アンテナとbsコンバータの接続装置
NL9302007A (nl) * 1993-11-19 1995-06-16 Framatome Connectors Belgium Connector voor afgeschermde kabels.
DE59505908D1 (de) * 1994-12-22 1999-06-17 Siemens Matsushita Components Streifenleitungsfilter
US5757246A (en) * 1995-02-27 1998-05-26 Ems Technologies, Inc. Method and apparatus for suppressing passive intermodulation
GB9506878D0 (en) * 1995-04-03 1995-05-24 Northern Telecom Ltd A coxial transaction arrangement
US5742258A (en) * 1995-08-22 1998-04-21 Hazeltine Corporation Low intermodulation electromagnetic feed cellular antennas
KR19990076937A (ko) * 1996-01-02 1999-10-25 포만 제프리 엘 피시엠시아이에이 무선 주파수 커넥터
US6519478B1 (en) 1997-09-15 2003-02-11 Metawave Communications Corporation Compact dual-polarized adaptive antenna array communication method and apparatus
US6250936B1 (en) * 1998-08-05 2001-06-26 Cisco Technology, Inc. Single-port connection and circuitry accepting both balanced and unbalanced data signals
JP2000068007A (ja) * 1998-08-20 2000-03-03 Fujitsu Takamisawa Component Ltd ケーブル付き平衡伝送用コネクタ
DE19852175A1 (de) 1998-11-12 2000-05-18 Bosch Gmbh Robert Hochfrequenz-Verbindung und -Baugruppe
US6414636B1 (en) * 1999-08-26 2002-07-02 Ball Aerospace & Technologies Corp. Radio frequency connector for reducing passive inter-modulation effects
JP2001102817A (ja) * 1999-09-29 2001-04-13 Nec Corp 高周波回路及び該高周波回路を用いたシールディドループ型磁界検出器
US6463303B1 (en) * 2000-01-11 2002-10-08 Metawave Communications Corporation Beam forming and switching architecture

Also Published As

Publication number Publication date
EP1602144A1 (de) 2005-12-07
US20040178860A1 (en) 2004-09-16
DE10311041A1 (de) 2004-10-07
DE502004006492D1 (de) 2008-04-24
US6917253B2 (en) 2005-07-12
CN2672961Y (zh) 2005-01-19
WO2004082062A1 (de) 2004-09-23
ATE389244T1 (de) 2008-03-15

Similar Documents

Publication Publication Date Title
EP3635814B1 (de) Dual-polarisierter kreuzdipol und antennenanordnung mit zwei solchen dual-polarisierten kreuzdipolen
DE3853135T2 (de) Übergang zwischen zwei Streifenleitungen.
DE102005060648B4 (de) Antennenvorrichtung mit für Ultrabreitband-Kommunikation geeigneten Strahlungseigenschaften
DE69433150T2 (de) Antennenvorrichtung
DE4306056C2 (de) Antennenvorrichtung
DE60128843T2 (de) Mikrostreifenleiter und damit versehene Mikrowellenvorrichtung
DE102007056258A1 (de) Chipantenne sowie mobiles Telekommunikationsendgerät, welches diese aufweist
DE112020003999B4 (de) Antennenmodul, Kommunikationsvorrichtung, die mit demselben befestigt ist, und Schaltungsplatine
EP3244483B1 (de) Schirmgehäuse für hf-anwendungen
DE60128700T2 (de) Drahtloses funkgerät
DE102014011514A1 (de) Kapazitiv geschmiertes Gehäuse, insbesondere kapazitiv geschmiertes Komponenten-Gehäuse für eine Antenneneinrichtung
EP1086509B1 (de) Antennenanordnung und funkgerät
EP3346546B1 (de) Antennenvorrichtung mit bonddrähten
DE19629277C2 (de) Anordnung zum Auskoppeln von zwei orthogonal linear polarisierten Wellen aus einem Wellenleiter für eine Antenne zum Enpfangen von Satellitenrundfunksignalen
EP2489095B1 (de) Antennenkoppler
DE60313588T2 (de) Mikrowellenantenne
EP1561257A1 (de) Verbindungseinrichtung zum anschluss zumindest zweier versetzt zueinander angeordneter strahlereinrichtungen einer antennenanordnung
EP1370886B1 (de) Antenne mit koplanarem speisenetzwerk zum senden und/oder empfangen von radarstrahlen
EP1602144B1 (de) Hochfrequenz-verbindung bzw. hochfrequenz-verteilnetzwerk
EP1606853B1 (de) Antennenkoppler und halterung für mobilfunkendgeräte
DE69935615T2 (de) Breitbaniger übergang von einem hohlleiter auf eine mikrostreifenleitung
EP1033821B1 (de) DECT-Funkmodul
EP3449528A1 (de) Leiterplattenanordnung zur signalversorgung eines strahlers
DE202019101043U1 (de) Phasenschiebermodulanordnung zum Einsatz in einer Mobilfunkantenne
DE19909071C2 (de) DECT-Funkmodul

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20051229

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004006492

Country of ref document: DE

Date of ref document: 20080424

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080818

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080623

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

26N No opposition filed

Effective date: 20081215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080612

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

BERE Be: lapsed

Owner name: KATHREIN-WERKE K.G.

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150223

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160218

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160222

Year of fee payment: 13

Ref country code: FI

Payment date: 20160218

Year of fee payment: 13

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004006492

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170219

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228