EP1592766A2 - Procede pour renforcer la puissance de nettoyage de produits de lavage au moyen d'une combinaison de derives de cellulose - Google Patents

Procede pour renforcer la puissance de nettoyage de produits de lavage au moyen d'une combinaison de derives de cellulose

Info

Publication number
EP1592766A2
EP1592766A2 EP04707143A EP04707143A EP1592766A2 EP 1592766 A2 EP1592766 A2 EP 1592766A2 EP 04707143 A EP04707143 A EP 04707143A EP 04707143 A EP04707143 A EP 04707143A EP 1592766 A2 EP1592766 A2 EP 1592766A2
Authority
EP
European Patent Office
Prior art keywords
weight
dirt
acid
cellulose
releasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04707143A
Other languages
German (de)
English (en)
Other versions
EP1592766B1 (fr
Inventor
Josef Penninger
Thorsten Bastigkeit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32851848&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1592766(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1592766A2 publication Critical patent/EP1592766A2/fr
Application granted granted Critical
Publication of EP1592766B1 publication Critical patent/EP1592766B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/05Cellulose or derivatives thereof
    • D06M15/09Cellulose ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0026Low foaming or foam regulating compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/225Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin etherified, e.g. CMC
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/12Soft surfaces, e.g. textile
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material

Definitions

  • the present patent application relates to the enhancement of the cleaning performance of detergents when washing textiles through the use of a combination of a certain nonionic soil release cellulose derivative and carboxymethyl cellulose.
  • detergents In addition to the ingredients that are indispensable for the washing process, such as surfactants and builder materials, detergents generally contain other ingredients, which can be summarized under the term washing aids and which include such different active ingredient groups as foam regulators, graying inhibitors, bleaching agents, bleach activators and color transfer inhibitors.
  • auxiliary substances also include substances which impart dirt-repellent properties to the laundry fiber and which, if present during the washing process, support the dirt-removing ability of the other washing-agent components.
  • soil release agents are often referred to as "soil release” active ingredients or because of their ability to make the treated surface, for example the fiber, dirt repellent, "soil repellents".
  • the surfactant component in Essentially consists of C 10 to C 13 alkyl sulfate and has up to 5% by weight of C 1 alkyl sulfate and less than 5% by weight of alkyl sulfate with alkyl radicals of C15 and higher.
  • the US Pat. No. 4,174,305 discloses detergents which contain 0.1% by weight to 3% by weight of alkyl cellulose, hydroxyalkyl cellulose or alkyl-hydroxyalkyl cellulose and 5% by weight to 50% by weight.
  • % Containing surfactant the surfactant component consisting essentially of C 10 -C 14 -alkylbenzenesulfonate and having less than 5% by weight of alkylbenzenesulfonate with alkyl radicals of C 13 and higher.
  • European patent application EP 0 634481 relates to a detergent which contains alkali percarbonate and one or more nonionic cellulose derivatives.
  • the European patent EP 0 271 312 (P&G) relates to dirt-releasing active ingredients, among them Ceüulosealkylether and cellulose hydroxyalkyl ether (with DS 1.5 to 2.7 and molecular weights from 2000 to 100000) such as methyl cellulose and ethyl cellulose, with peroxygen bleach in a weight ratio (based on the active oxygen content of the bleach) from 10: 1 to 1:10 can be used.
  • Ceüulosealkylether and cellulose hydroxyalkyl ether with DS 1.5 to 2.7 and molecular weights from 2000 to 100000
  • peroxygen bleach in a weight ratio (based on the active oxygen content of the bleach) from 10: 1 to 1:10
  • a detergent in liquid or granular form is known from European patent EP 0 948 591 Bl, which gives fabrics and textiles that are washed with them, textile appearance advantages such as flushing / lint reduction, anti-color fading, improved abrasion resistance and / or increased softness and the 1 to Contains 80 wt .-% surfactant, 1 to 80 wt .-% organic or inorganic builder, 0.1 to 80 wt .-% of a hydrophobically modified nonionic Ceüuloseether with a molecular weight of 10,000 to 2,000,000, the modification in the the presence of optionally oügomerriosgrad up to 20) ethyleneoxy or propyleneoxy 2- ether units and is C8 24 alkyl substituent and the alkyl substituents in amounts of 0.1-5 wt .-%, based on the cellulose ether material present have to be.
  • German Offenlegungsschrift DT 16 17 141 describes a washing process using polyethylene terephthalate-polyoxyethylene glycol copolymers.
  • German laid-open specification DT 22 00 911 relates to detergents which contain nonionic surfactant and a copolymer of polyoxyethylene glycol and polyethylene terephthalate.
  • German laid-open specification DT 22 53 063 mentions acidic textile finishing agents which contain a copolymer of a dibasic carboxylic acid and an alkylene or cycloalkylene polyglycol and, optionally, an alkylene or cycloalkylene glycol.
  • Polymers with a molecular weight of 15,000 to 50,000 made of ethylene terephthalate and polyethylene oxide terephthalate, the polyethylene glycol units having molecular weights of 1000 to 10,000 and the molar ratio of ethylene terephthalate to polyethylene oxide terephthalate being 2: 1 to 6: 1, can be according to the German published patent application DE 33 24258 can be used in detergents.
  • European patent EP 066944 relates to texturizing agents which contain a copolyester of ethylene glycol, polyethylene glycol, aromatic dicarboxylic acid and sulfonated aromatic dicarboxylic acid in certain molar ratios.
  • European or European patent EP 185 427 discloses methyl or ethyl end-capped polyesters with ethylene and propylene terephthalate and polyethylene oxide terephthalate units and detergents which contain such a soil release polymer.
  • European patent EP 241 984 relates to a polyester which, in addition to oxyethylene groups and terephthalic acid units, also contains substituted ethylene units and glycerol units. From the European patent EP 241 985 polyesters are known which, in addition to oxyethylene groups and terephthalic acid units, contain 1,2-propylene, 1,2-butylene and / or 3-methoxy-1,2-propylene groups and glycerol units and are combined with Ci until C -alkyl groups are end group-capped.
  • the European patent EP 253 567 relates to so-release polymers with a molecular weight of 900 to 9000 made of ethylene terephthalate and poly- ethylene oxide terephthalate, the polyethylene glycol units having molecular weights of 300 to 3000 and the molar ratio of ethylene terephthalate to polyethylene oxide terephthalate being 0.6 to 0.95.
  • European patent application EP 272 033 discloses polyesters with poly-propylene terephthalate and polyoxyethylene terephthalate units which are end group capped by CM alkyl or acyl radicals.
  • European patent EP 274 907 describes sulfoethyl end-capped terephthalate-containing soil-release polyesters.
  • the invention therefore relates to the use of a combination of dirt-releasing cellulose derivative which is obtainable by alkylation and hydroxyalkylation of cellulose, and carboxy-methylated cellulose to enhance the cleaning performance of detergents when washing textiles.
  • the cellulose derivative is mentioned below, it is always the dirt-releasing cellulose derivative which is obtainable by alkylation and hydroxyalkylation of cellulose.
  • carboxymethyl cellulose although also a derivative of Ceüulose is given under this name or under "carboxymethylated Ceüulose”.
  • the washing performance-enhancing effect of the combination of the abovementioned dirt-releasing ceululose derivative and carboxymethylated ceululose to be used according to the invention is particularly pronounced in the case of repeated use, that is to say in particular for removing stains from corresponding textiles which have already been washed in the presence of the cellulose derivative, if appropriate with the simultaneous presence of the carboxymethylated ceulose and / or had been treated before they were soiled.
  • the described positive aspect can also be realized if the textile after the actual washing process, which in this case can also have been carried out with hooves of a detergent without a ceululose derivative mentioned, with a posttreatment agent, for example in the course of a fabric softening step which contains a combination to be used according to the invention.
  • a posttreatment agent for example in the course of a fabric softening step which contains a combination to be used according to the invention.
  • the washing performance-enhancing effect of the combination to be used according to the invention occurs during the next washing operation, even if again no detergent with a cellulose derivative mentioned is used.
  • Preferred dirt-releasing cellulose derivatives are those which are alkylated with C ⁇ - to C 10 - groups, in particular Ci to C 3 groups and additionally carry C 2 - to C 10 - hydroxyalkyl groups, in particular C 2 - to C 3 -hydroxyalkyl groups.
  • These can be obtained in a known manner by reacting Ceüulose with appropriate alkylating agents, for example alkyl halides or alkyl sulfates, and then reacting with corresponding alkylene oxides, such as, for example, ethylene oxide and / or propylene oxide.
  • the cellulose derivative contains on average 0.5 to 2.5, in particular 1 to 2, alkyl groups and 0.02 to 0.5, in particular 0.05 to 0.3, hydroxyalkyl groups per anhydroglycosomer monomer unit.
  • the middle Molecular weight of the Ceululose derivatives used according to the invention is preferably in the range from 10,000 D to 150,000 D, in particular from 40,000 D to 120,000 D and particularly preferably in the range from 80,000 D to 110,000 D.
  • the determination of the degree of polymerization or the molecular weight of the dirt detachment - Wealthy cellulose derivative is based on the determination of the intrinsic viscosity of adequately diluted aqueous solutions using an Ubbelohde capillary viscometer (capillary 0c). Using a constant [H. Staudinger and F. Reinecke, "About molecular weight determination on Ceüuloseethern", Liebigs Annalen der Chemie 535, 47 (1938)] and a correction factor [F. Rodriguez and L.
  • carboxymethyl cellulose which can be prepared in a known manner by reacting, for example, chloroacetic acid with cellulose. It preferably contains 0.4 to 0.8, in particular 0.5 to 0.7, carboxymethyl groups per anhydroglycosomer monomer unit.
  • the Ceululose derivatives used according to the invention are easy to manufacture and ecologically and toxicologically harmless.
  • they lead to a significantly better detachment of, in particular, grease and cosmetic stains on cotton or cotton-containing tissues than is the case when using compounds previously known for this purpose.
  • significant amounts of surfactants can be saved while maintaining the ability to remove fat.
  • the use according to the invention can be carried out in the course of a washing process in such a way that the Ceululose derivative and carboxymethyl cellulose are added separately to a detergent liquor, or the Ceululose derivative and / or carboxymethylceululose is introduced into the liquor as constituent of the detergent, it being particularly preferred if both a certain amount of Cellulose derivative as well as the carboxymethylceulose constituent of the detergent.
  • Another object of the invention is therefore a detergent, the dirt-releasing cellulose derivative which is obtainable by alkylation and hydroxyalkylation of cellulose and carboxymethylated cellulose in a weight ratio in the range from 1: 1.6 to 1: 5, in particular 1: 1.8 to 1: 3.
  • the use according to the invention in the context of a laundry aftertreatment process can accordingly take place in such a way that the Ceululose derivative and / or carboxymethyl cellulose is added to the washing liquor separately or both or at least one of the two is introduced as a constituent of the laundry aftertreatment agent, in particular a fabric softener.
  • Detergents which contain a combination to be used according to the invention can also contain other common components of such compositions which do not undesirably interact with the components of the combination according to the invention.
  • the cellulose derivative is preferably incorporated into detergent in amounts of 0.1% by weight to 5% by weight, in particular 0.5% by weight to 2.5% by weight.
  • Another aspect of the invention relates to the enhancement of the cleaning performance of detergents when washing textiles which consist of cotton or contain cotton.
  • the combination used according to the invention has a positive effect on the action of certain other washing and cleaning ingredients and that, conversely, the action of the combination used according to the invention is enhanced by certain other detergent ingredients.
  • these effects occur in particular in the case of enzymatic active substances, in particular proteases and lipases, in water-insoluble inorganic booths, in water-soluble inorganic and organic booths, in particular based on oxidized carbohydrates, in bleaching agents based on peroxygen, in particular in the case of alkali percarbonate and in the case of synthetic anionic surfactants of the sulfate and sulfonate type, which is why the use of at least one of the further ingredients mentioned together with the combination to be used according to the invention is preferred.
  • such an agent contains nonionic surfactant, selected from fatty alkyl polyglycosides, fatty alkyl polyalkoxylates, in particular ethoxylates and / or propoxylates, fatty acid polyhydroxyamides and / or ethoxylie- Formation and / or propoxylation products of fatty alkylamines, vicinal diols, fatty acid alkyl esters and / or fatty acid amides and mixtures thereof, in particular in an amount in the range from 2% by weight to 25% by weight.
  • nonionic surfactant selected from fatty alkyl polyglycosides, fatty alkyl polyalkoxylates, in particular ethoxylates and / or propoxylates, fatty acid polyhydroxyamides and / or ethoxylie- Formation and / or propoxylation products of fatty alkylamines, vicinal diols, fatty acid alkyl esters and / or fatty acid amides and mixtures thereof
  • a further embodiment of such agents comprises the presence of synthetic anionic surfactants of the sulfate and / or sulfonate type, in particular fatty alkyl sulfate, fatty alkyl ether sulfate, sulfofatty acid esters and / or sulfofatty acid disalts, in particular in an amount in the range from 2% by weight to 25% by weight.
  • the anionic surfactant is preferably selected from the alkyl or alkenyl sulfates and / or the alkyl or alkenyl ether sulfates in which the alkyl or alkenyl group has 8 to 22, in particular 12 to 18, carbon atoms.
  • the nonionic surfactants in question include the alkoxylates, in particular the ethoxylates and / or propoxylates of saturated or mono- to polyunsaturated linear or branched chain alcohols having 10 to 22 carbon atoms, preferably 12 to 18 carbon atoms.
  • the degree of alkoxylation of the alcohols is generally between 1 and 20, preferably between 3 and 10. They can be prepared in a known manner by reacting the corresponding alcohols with the corresponding alkylene oxides.
  • the derivatives of fatty alcohols are particularly suitable, although their branched chain isomers, in particular so-called oxo alcohols, can also be used to prepare alkoxylates which can be used.
  • the alkoxylates in particular the ethoxylates, of primary alcohols with linear, in particular dodecyl, tetradecyl, hexadecyl or octadecyl radicals, and mixtures thereof, can be used.
  • Corresponding alkoxylation products of alkylamines, vicinal diols and carboxamides which correspond to the alcohols mentioned with regard to the alkyl part can also be used.
  • there are the ethylene oxide and / or propylene oxide insertion products of fatty acid alkyl esters as can be prepared in accordance with the process specified in international patent application WO 90/13533, and fatty acid polyhydroxyamides, as in accordance with the processes in US Pat.
  • alkyl polyglycosides suitable for incorporation into the agents according to the invention are compounds of the general formula (G) n -OR 12 in which R 12 is an alkyl or Alkenyl radical with 8 to 22 carbon atoms, G is a glycose unit and n is a number between 1 and 10.
  • R 12 is an alkyl or Alkenyl radical with 8 to 22 carbon atoms
  • G is a glycose unit
  • n is a number between 1 and 10.
  • Such compounds and their production are described, for example, in European patent applications EP 92355, EP 301 298, EP 357 969 and EP 362 671 or US Pat. No. 3,547,828.
  • the glycoside component (G) n is an oligomer or polymer made from naturally occurring aldose or ketose monomers, in particular glucose, mannose, fructose, galactose, talose, gulose, old rose, aose, idose, ribose, Include arabinose, xylose and lyxose.
  • the ougomers consisting of such glycosidically linked monomers are characterized not only by the type of sugar they contain, but also by their number, the so-called degree of oligomerization.
  • the degree of ougomerization n generally takes a fractional value as the quantity to be determined analytically
  • the preferred monomer building block is glucose because of its good availability.
  • the alkyl or alkenyl part R 12 of the glycosides preferably also originates from easily accessible derivatives of renewable raw materials, in particular from fatty alcohols, although their branched chain isomers, in particular so-called oxo alcohols, can also be used to prepare usable glycosides. Accordingly, the primary alcohols with linear octyl, decyl, dodecyl, tetradecyl, hexadecyl or octadecyl radicals and mixtures thereof are particularly useful.
  • Nonionic surfactant is contained in agents which contain a combination used according to the invention, preferably in amounts of 1% by weight to 30% by weight, in particular from 1% by weight to 25% by weight, with amounts in the upper part thereof Range are more likely to be found in liquid detergents and detergent in the form of cloths preferably contain smaller amounts of up to 5% by weight.
  • the agents can contain further surfactants, preferably synthetic anionic surfactants of the sulfate or sulfonate type, such as, for example, alkylbenzenesulfonates, in amounts of preferably not more than 20% by weight, in particular from 0.1% by weight to 18% by weight. %, each based on the total mean.
  • surfactants preferably synthetic anionic surfactants of the sulfate or sulfonate type, such as, for example, alkylbenzenesulfonates, in amounts of preferably not more than 20% by weight, in particular from 0.1% by weight to 18% by weight. %, each based on the total mean.
  • Synthetic anionic surfactants that are particularly suitable for such agents are the alkyl and / or alkenyl sulfates with 8 to 22 carbon atoms, which carry an alkali, ammonium or alkyl or hydroxyalkyl-substituted ammonium ion as counter cation;
  • the derivatives of fatty alcohols with in particular 12 to 18 carbon atoms and their branched-chain analogs, the so-called oxo alcohols, are preferred.
  • the alkyl and alkenyl sulfates can be prepared in a known manner by reacting the corresponding alcohol component with a customary sulfating reagent, in particular sulfur trioxide or chlorosulfonic acid, and then re-rusing with alkali, ammonium or alkyl or hydroxyalkyl-substituted ammonium bases.
  • a customary sulfating reagent in particular sulfur trioxide or chlorosulfonic acid
  • alkali, ammonium or alkyl or hydroxyalkyl-substituted ammonium bases are in the compositions which contain a urethane-based polymer according to the invention, preferably in amounts from 0.1% by weight to 15% by weight, in particular from 0.5% by weight to Contain 10% by weight.
  • the sulfate-type surfactants that can be used also include the sulfated alkoxylation products of the alcohols mentioned, so-called ether sulfates.
  • ether sulfates preferably contain 2 to 30, in particular 4 to 10, ethylene glycol groups per molecule.
  • Suitable anionic surfactants of the sulfonate type include the .alpha.-sulfoesters which can be obtained by reacting fatty acid esters with sulfur trioxide and subsequent neutrausion, in particular those derived from fatty acids with 8 to 22 carbon atoms, preferably 12 to 18 carbon atoms, and linear alcohols with 1 up to 6 carbon atoms, preferably 1 to 4 carbon atoms, derived sulfonation products, and the sulfofatty acids resulting from these by formal saponification.
  • Soaps can be considered as further optional surfactant ingredients, whereby saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid or stearic acid, as well as soaps derived from natural fatty acid mixtures, for example coconut, palm kernel or tallow fatty acids, are suitable.
  • those soap mixtures are preferred which are composed of 50% by weight to 100% by weight of saturated C 12 -C 8 fatty acid soaps and up to 50% by weight of oleic acid soap.
  • Soap is preferably contained in amounts of 0.1% by weight to 5% by weight.
  • the agents can also contain betaines and / or cationic surfactants which - if present - are preferably used in amounts of 0.5% by weight to 7% by weight.
  • the ester quats discussed below are particularly preferred.
  • an agent which contains a combination to be used according to the invention contains water-soluble and / or water-insoluble builders, in particular selected from alkali alumosilicate, crystalline alkali silicate with a modulus above 1, monomeric polycarboxylate, polymeric polycarboxylate and mixtures thereof, in particular in amounts in the range from 2.5% to 60% by weight.
  • An agent which contains a combination to be used according to the invention preferably contains 20% by weight to 55% by weight of water-soluble and / or water-insoluble, organic and / or inorganic builders.
  • the water-soluble organic building substances include, in particular, those from the class of the polycarboxylic acids, in particular citric acid and sugar acids, and also the polymeric (poly) carboxylic acids, in particular the polycarboxylates of the international patent application WO 93/16110 accessible by oxidation of polysaccharides, polymeric acrylic acids, methacrylic acids, maleic acids and copolymers of these, which can also contain small amounts of polymerizable substances in copolymerized form without carboxylic acid functionality.
  • the relative molecular weight of the homopolymers of unsaturated carboxylic acids is generally between 5000 and 200000, that of the copolymers between 2000 and 200000, preferably 50,000 to 120,000, based on free acid.
  • a particularly preferred acrylic acid-maleic acid copolymer has a relative molecular weight of 50,000 to 100,000.
  • Suitable, albeit less preferred, compounds of this class are copolymers of acrylic acid or methacrylic acid with vinyl ethers, such as vinyl methyl ethers, vinyl esters, ethylene, propylene and styrene, in which the acid content is at least 50% by weight.
  • Terpolymers which contain two carboxylic acids and / or their salts as monomers and vinyl alcohol and / or a vinyl alcohol derivative or a carbohydrate as the third monomer can also be used as water-soluble organic builder substances.
  • the first acidic monomer or its salt is derived from a monoethylenically unsaturated Ca-Cg-carboxylic acid and preferably from a C 3 -C monocarboxylic acid, in particular from (meth) acrylic acid.
  • the second acidic monomer or its salt can be a derivative of a C 8 -C 8 dicarboxylic acid, maleic acid being particularly preferred.
  • the third monomeric unit is mixed with vinyl alcohol and / or preferably an esterified vinyl alcohol.
  • vinyl alcohol derivatives are preferred which represent an ester of short-chain carboxylic acids, for example Ci-Gi carboxylic acids, with vinyl alcohol.
  • Preferred terpolymers contain 60% by weight to 95% by weight, in particular 70% by weight to 90% by weight of (meth) acrylic acid or (meth) acrylate, particularly preferably acrylic acid or acrylate, and maleic acid or Maleate and 5% by weight to 40% by weight, preferably 10% by weight to 30% by weight, of vinyl alcohol and / or vinyl acetate.
  • Terpolymers in which the weight ratio (meth) acrylic acid or (meth) acrylate to maleic acid or maleate is between 1: 1 and 4: 1, preferably between 2: 1 and 3: 1 and in particular 2: 1 and 2, are very particularly preferred.
  • the second acidic monomer or its salt can also be a derivative of an AUylsulfonic acid which, in two units, has an alkyl radical, preferably a C 1 -C alkyl radical, or an aromatic radical which is preferably derived from benzene or benzene derivatives. is substituted.
  • Preferred terpolymers contain 40% by weight to 60% by weight, in particular 45 to 55% by weight of (meth) acrylic acid or (meth) acrylate, particularly preferably acrylic acid or acrylate, 10% by weight to 30% by weight.
  • % preferably 15% by weight to 25% by weight of methyl sulfonic acid or methallylsulfonate and as the third monomer 15% by weight to 40% by weight, preferably 20% by weight to 40% by weight of a carbohydrate.
  • This carbohydrate can be, for example, a mono-, di-, ougosaccharide or polysaccharide, mono-, di- or ougosaccharides being preferred, sucrose being particularly preferred.
  • the use of the third monomer presumably incorporates structural breakdowns in the polymer which are responsible for the good biodegradability of the polymer.
  • terpolymers can be prepared in particular by processes which are described in German patent specification DE 4221 381 and German patent application DE 43 00 772 and generally have a relative molecular weight between 1000 and 200000, preferably between 200 and 50000 and in particular between 3000 and 10,000 on. You can, especially for the production of liquid agents, preferably in the form of aqueous solutions be used in the form of 30 to 50 weight percent aqueous solutions. All of the polycarboxylic acids mentioned are generally used in the form of their water-soluble salts, in particular their alkali metal salts.
  • Organic builder substances of this type are preferably present in amounts of up to 40% by weight, in particular up to 25% by weight and particularly preferably from 1% by weight to 5% by weight. Amounts close to the upper limit mentioned are preferably used in paste-like or liquid, in particular water-containing, agents.
  • Crystalline or amorphous alkali alumium silicates in particular in amounts of up to 50% by weight, preferably not more than 40% by weight, and in liquid compositions in particular of 1% by weight to 5% by weight, are used as water-insoluble, water-dispersible inorganic powder materials.
  • the crystalline Alumo silicates in detergent quality in particular zeolite NaA and optionally NaX, are preferred. Amounts close to the upper limit mentioned are preferably used in solid, particle-shaped agents.
  • Suitable aluminum silicates in particular have no tissues with a grain size of more than 30 mm and preferably consist of at least 80% by weight of tissues with a size of less than 10 mm.
  • Suitable substitutes or tea substitutes for the alumosilicate mentioned are crystalline alkali silicates, which can be present in or in a mixture with amorphous suicates.
  • the alkali metal silicates which can be used as builders in the compositions preferably have a molar ratio of alkali oxide to SiO 2 below 0.95, in particular from 1: 1.1 to 1:12, and can be amorphous or crystalline.
  • Preferred alkali silicates are the sodium silicates, in particular the amorphous sodium silicates, with a Na 2 O: SiO 2 molar ratio of 1: 2 to 1: 2.8.
  • Such amorphous Alkaüsüikate are commercially available for example under the name Portü®.
  • Those with a molar Na 2 O: SiO 2 ratio of 1: 1.9 to 1: 2.8 can be prepared by the process of European patent application EP 0425 427. As part of the production process, they are preferably added as a solid and not in the form of a solution.
  • the crystalline silicates which can be present in or in a mixture with amorphous silicates are preferably crystalline layer silicates of the general formula Na 2 Si x O 2x + 1 'yH 2 O, in which x, the so-called modulus, is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • Crystalline layered silicates which fall under this general formula are described, for example, in European patent application EP 0 164 514.
  • Preferred crystalline layered silicates are those in which x in the general formula mentioned assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disuicates are preferred, whereby ⁇ -sodium disuicate can be obtained, for example, by the method described in international patent application WO 91/08171.
  • ⁇ -sodium silicates with a modulus between 1.9 and 3.2 can be prepared according to Japanese patent applications JP 04/238 809 or JP 04/260 610.
  • anhydrous crystal-free alkali silicates of the above general formula in which x denotes a number from 1.9 to 2.1, can be prepared from amorphous alkali silicates, as described in European patent applications EP 0 548 599, EP 0 502325 and EP 0425 428, can be used in compositions which contain a combination used according to the invention.
  • a crystalline layered sodium silicate with a modulus of 2 to 3 is used, as can be made from sand and soda by the process of European patent application EP 0436 835.
  • Crystalline sodium silicates with a modulus in the range from 1.9 to 3.5 are used in a further preferred embodiment of washing or Detergents which contain a combination portion used according to the invention are used.
  • Their alkali silicate content is preferably 1% by weight to 50% by weight and in particular 5% by weight to 35% by weight, based on the anhydrous active substance. If alkali alumosilicate, in particular Zeoüth, is also present as an additional builder substance, the alkali silicate content is preferably 1% by weight to 15% by weight and in particular 2% by weight to 8% by weight, based on anhydrous active substance.
  • the weight ratio of aluminum silicate to sweet, based in each case on anhydrous active substances, is then preferably 4: 1 to 10: 1.
  • the weight ratio of amorphous alkali silicate to crystalline alkali silicate is preferably 1: 2 to 2: 1 and in particular 1: 1 to 2: 1.
  • other water-soluble or water-insoluble inorganic substances can be used in the compositions which contain a combination to be used according to the invention.
  • the alkali carbonates, alkali hydrogen carbonates and alkali sulfates and mixtures thereof are suitable.
  • Such additional inorganic material can be present in amounts up to 70% by weight.
  • the agents can contain other ingredients that are customary in washing and cleaning agents.
  • These optional Bestandteüen include, in particular enzymes, enzyme stabilizers, bleaching agents, bleach activators, complexing agents for heavy metals, for example aminopolycarboxylic acids, Aminohydroxypolycarbonkla- reindeer, polyphosphonic acids and / or aminopolyphosphonic acids, Farbfixierwirkscher, dye transfer inhibitors, for example Polyvinylpyrroüdon or Polyvinylpyrdin- N-oxide, foam inhibitors, for example organopolysiloxanes or paraffins , Solvents, and optical detectors, for example Stehrandteüen.
  • enzymes enzyme stabilizers
  • bleaching agents for bleach activators
  • complexing agents for heavy metals for example aminopolycarboxylic acids, Aminohydroxypolycarbonkladeer, polyphosphonic acids and / or aminopolyphosphonic acids, Farbfixierwirkstoffe
  • dye transfer inhibitors for example Polyvinylpyrroüdon or
  • Agents containing a combination used according to the invention preferably contain up to 1% by weight, in particular 0.01% by weight to 0.5% by weight, of optical brighteners, in particular compounds from the class of the substituted 4,4 ' Bis (2,4,6-triamino-s-tri-azinyl) -st Weg-2,2'-disulfonic acids, up to 5% by weight, in particular 0.1% by weight to 2% by weight
  • Complex binder for heavy metals, in particular aminoalkylenephosphonic acids and their salts up to 3% by weight, in particular 0.5% by weight to 2% by weight, of graying inhibitors and up to 2% by weight, in particular 0.1 %
  • the weight percentages in each case referring to the entire average.
  • solvents which are used in particular in the case of liquid agents are preferably those which are water-miscible. These include the lower alcohols, for example ethanol, propanol, iso-propanol, and the isomeric butanols, glycerol, lower glycols, for example ethylene and propylene glycol, and the ethers which can be derived from the classes of compounds mentioned.
  • the cululose derivatives used according to the invention are usually present in solution or in suspended form.
  • Enzymes which may be present are preferably selected from the group comprising protease, amylase, lipase, cellulase, hemicellulase, oxidase, peroxidase or mixtures thereof.
  • Protease obtained from microorganisms, such as bacteria or puddles, is primarily suitable. It can be obtained in a known manner by fermentation processes from suitable microorganisms, which are described, for example, in German patent applications DE 1940488, DE 2044 161, DE 21 01 803 and DE 21 21 397, US Pat. Nos. 3,623,957 and 4,264 738, European patent application EP 006 638 and international patent application WO 91/02792.
  • Proteases are commercially available, for example, under the names BLAP®, Savinase®, Esperase®, Maxatase®, Optimase®, Alcalase®, Durazym® or Maxapem®.
  • the lipase can be used
  • Humicola lanuginosa as described, for example, in European patent applications EP 258 068, EP 305 216 and EP 341 947, from Baceurus species, as described, for example, in international patent application WO 91/16422 or European patent application EP 384717, from Pseudomonas species, as described for example in the European patent applications EP 468 102, EP 385 401, EP 375 102, EP 334 462, EP 331 376, EP 330 641, EP 214 761, EP 218 272 or EP 204 284 or the international patent application WO 90/10695 , from Fusarium species, as described, for example, in European patent application EP 130 064, from Rhizopus species, as described, for example, in European patent application EP 117 553, or from ⁇ spergülus species, as described, for example, in European patent application EP 167 309, be won.
  • Suitable lipases are commercially available, for example, under the names Lipolase®, Lipozym®, Lipomax®, Lipex®, Amano®-Lipase, Toyo-Jozo®-Li ⁇ ase, Meito®-Lipase and Diosynth®-Lipase.
  • Suitable amylases are commercially available, for example, under the names Maxamyl®, Termamyl®, Duramyl® and Purafect® OxAm.
  • the cellulase which can be used can be an enzyme which can be obtained from bacteria or puddles and which has a pH optimum, preferably in the weakly acidic to weakly alkaline range from 6 to 9.5.
  • Such cellulases are known, for example, from German patent applications DE 31 17250, DE 32 07 825, DE 32 07 847, DE 33 22 950 or European patent applications EP 265 832, EP 269 977, EP 270 974, EP 273 125 and EP 339 550 and known from international patent applications WO 95/02675 and WO 97/14804 and under the names Ceüuzyme®, Carezyme® and Ecostone® commercially available.
  • the usual enzyme stabilizers which may be present, in particular in liquid agents include amino alcohols, for example mono-, di-, triethanol- and propanolamine and mixtures thereof, lower carboxylic acids, as known, for example, from European patent applications EP 376 705 and EP 378 261, Boric acid or alkali borates, boric acid-carboxylic acid combinations, as known, for example, from European patent application EP 451 921, boric acid esters, such as known from international patent application WO 93/11215 or European patent application EP 511 456, boronic acid derivatives, such as from European patent application EP 583 536 known, calcium salts, for example the Ca-formic acid combination known from European patent EP 28 865, magnesium salts, such as known from European patent application EP 378 262, and / or sulfur-containing reducing agents, such as from de European patent applications EP 080 748 or EP 080 223 are known.
  • amino alcohols for example mono-, di-, triethanol- and propanolamine and mixtures thereof
  • Suitable foam inhibitors include long-chain soaps, in particular beech soap, fatty acid amides, paraffins, waxes, microcrystalline waxes, organopolysiloxanes and mixtures thereof, which may also contain microfine, optionally silanized or otherwise hydrophobized silica.
  • foam inhibitors are preferably bound to granular, water-soluble carrier substances, as described, for example, in German patent application DE 3436 194, European patent applications EP 262 588, EP 301 414, EP 309 931 or European patent EP 150 386.
  • a further embodiment of such an agent which contains a cellulose derivative to be used according to the invention, contains bleaching agents based on peroxygen, in particular in amounts in the range from 5% by weight to 70% by weight, and optionally bleach activator, in particular in amounts in the range of 2% by weight .-% to 10 wt .-%.
  • bleaching agents that can be considered are the per compounds that are generally used in detergents, such as hydrogen peroxide, perborate, which can be present as tetra- or monohydrate, percarbonate, perpyrophosphate and persilicate, which are generally present as alkali metal salts, in particular as sodium salts.
  • Such bleaches are in detergents containing a Ceulosiviviv used according to the invention, preferably in amounts up to 25 wt .-%, in particular up to 15 wt .-% and particularly preferably from 5 wt .-% to 15 wt .-%, based on the total Medium, available, in particular percarbonate being used.
  • the optional component of the bleach activators comprises the commonly used N- or O-acyl compounds, for example multiply acylated alkylenediamines, in particular tetiaacetylethylenediamine, acylated glycolurils, in particular tetraacetylglycol uru, N-acylated hydantoins, hydrazides, triazoles, urazoles, diketopamideazines, cyanuryl amide, cyanurate also carboxylic anhydrides, especially phthalic anhydride, carboxylic acid esters, especially sodium isononanoyl phenol sulfonate, and acylated sugar derivatives, especially pentaacetyl glucose, and cationic nitride derivatives such as trimethylammonium acetonitrile salts.
  • N- or O-acyl compounds for example multiply acylated alkylenediamines, in particular tetiaacetylethylenedi
  • the bleach activators can be coated or granulated with casing substances in a known manner in order to avoid the interaction with the per compounds during storage, with the aid of carboxymethyl cellulose granulated tetraacetylethylenediamine with average grain sizes of 0.01 mm to 0.8 mm, as is the case, for example can be prepared according to the process described in European Patent EP 37 026, granulated 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine, as produced according to the process described in German Patent DD 255 884 and / or according to the processes described in international patent applications WO 00/50553, WO 00/50556, WO 02/12425, WO 02/12426 or WO 02/26927, trialkylammonium acetonitrile is particularly preferred.
  • Such bleach activators are preferably contained in detergents in amounts of up to 8% by weight, in particular from 2% by weight to 6% by weight, in each case
  • dirt-releasing polymers which can be used in addition to the cellulose derivative essential to the invention, include copolyesters from dicarboxylic acids, for example adipic acid, phthalic acid or terephthalic acid, diols, for example ethylene glycol or propylene glycol, and polydiols, for example polyethylene glycol or polypropylene glycol.
  • dicarboxylic acids for example adipic acid, phthalic acid or terephthalic acid
  • diols for example ethylene glycol or propylene glycol
  • polydiols for example polyethylene glycol or polypropylene glycol.
  • the preferred dirt-releasing polyesters include those compounds which are formally accessible by esterification of two monomer units, the first monomer being a dicarboxylic acid HOOC-Ph-COOH and the second monomer being a diol HO- (CHR n -) a OH, which is also used as a polymer Diol H- (O- (CHR ⁇ -) a ) bOH can present.
  • Ph represents an o-, m- or p-phenylene radical, which can carry 1 to 4 substituents selected from alkyl radicals having 1 to 22 carbon atoms, sulfonic acid groups, carboxyl groups and mixtures thereof
  • R u is hydrogen, an alkyl radical having 1 to 22 carbon atoms and their mixtures, a a number from 2 to 6 and b a number from 1 to 300.
  • the molar ratio of monomer diol units to polymer diol units is preferably 100: 1 to 1: 100, in particular 10: 1 to 1:10.
  • the degree of polymerization b in the polymer diol units is preferably in the range from 4 to 200, in particular from 12 to 140.
  • the molecular weight or the average molecular weight or the maximum molecular weight distribution of preferred dirt-releasing polyesters is in the range from 250 to 100,000, in particular from 500 to 50,000
  • the acid on which the rest Ph is based is preferably selected from terephthalic acid, isophthalic acid, phthalic acid, trimellitic acid, meüithic acid, the isomers of sulfophthalic acid, sulfoisophthalic acid and sulfoterephthalic acid and mixtures thereof. If their acid groups are not part of the ester bonds in the polymer, they are preferably in salt form, in particular as an alkali or ammonium salt. Among them, the sodium and potassium salts are particularly preferred.
  • small amounts, in particular not more than 10 mol%, based on the amount of Ph with the meaning given above, of other acids which have at least two carboxyl groups can be present in the dirt-releasing polyester.
  • these include, for example, alkylene and alkenylene dicarboxylic acids such as malonic acid, succinic acid, fumaric acid, maleic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid.
  • the preferred diols HO- (CHR ⁇ -) a OH include those in which R 11 is hydrogen and a is a Number is from 2 to 6, and those in which a is 2 and R 11 is selected from hydrogen and the alkyl radicals having 1 to 10, in particular 1 to 3, carbon atoms.
  • R 11 is particularly preferred.
  • diol components are ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,2-decanediol, 1,2-dodecanediol and neopentyl glycol.
  • Particularly preferred among the polymeric diols is polyethylene glycol with an average molecular weight in the range from 1000 to 6000.
  • polyesters composed as described above can also be end-capped, alkyl groups having 1 to 22 carbon atoms as end groups.
  • Atoms and esters of monocarboxylic acids come into question.
  • the end groups bonded via ester bonds can be based on alkyl, alkenyl and aryl monocarboxylic acids having 5 to 32 C atoms, in particular 5 to 18 C atoms.
  • valeric acid caproic acid, oenanthic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, undecenoic acid, lauric acid, lauroleic acid, tridecanoic acid, myristic acid, myristoleic acid, pentadecanoic acid, pahnitic acid, stearic acid, petroseunic acid, petrosediacetic acid, linoleic acid, linoleic acid, linoleic acid, oleolic acid, oleol acid , Arachidic acid, gadoleic acid, arachidonic acid, behenic acid, erucic acid, brassidic acid, clupanodonic acid, lignoceric acid, cerotic acid, melissic acid, benzoic acid, which can carry 1 to 5 substituents with a total of up to 25 C atoms, in particular 1 to 12 C atoms, for example tert.
  • the end groups can also be based on hydroxymonocarboxylic acids having 5 to 22 carbon atoms, which include, for example, hydroxyvaleric acid, hydroxycaproic acid, ricinoleic acid, their hydrogenation product hydroxystearic acid and o-, m- and p-hydroxybenzoic acid.
  • the hydroxy monocarboxylic acids can in turn be connected to one another via a hydroxyl group and their carboxyl group and can thus be present several times in an end group.
  • the number of hydroxymonocarboxylic acid units per end group is preferably in the range from 1 to 50, in particular from 1 to 10.
  • polymers of ethylene terephthalate and polyethylene oxide terephthalate in which the polyethylene glycol units have molecular weights of 750 to 5000 and the molar ratio of ethylene terephthalate to polyethylene oxide terephthalate 50:50 to 90:10 is used together with the combination essential to the invention.
  • the dirt-releasing polymers are preferably water-soluble, the term "water-soluble” being understood to mean a solubility of at least 0.01 g, preferably at least 0.1 g, of the polymer per liter of water at room temperature and pH 8. So preferred polymers have under these conditions however, a solubility of at least 1 g per liter, in particular at least 10 g per liter.
  • Preferred laundry aftertreatment agents which can contain a Ceululose derivative to be used according to the invention and / or can be used in the context of the use according to the invention have a so-called ester quat as the softening active ingredient, that is to say a quaternized ester of carboxylic acid and amino alcohol.
  • ester quat as the softening active ingredient, that is to say a quaternized ester of carboxylic acid and amino alcohol.
  • German patent DE 43 08 794 also discloses a process for the production of solid ester quats, in which the quaternization of triethanolamine esters is carried out in the presence of suitable dispersants, preferably fatty alcohols.
  • suitable dispersants preferably fatty alcohols.
  • Ester quats preferred in the compositions are quaternized fatty acid triethanolamine ester salts which follow the formula (I)
  • R * CO for an acyl radical with 6 to 22 carbon atoms
  • R 2 and R 3 independently of one another for hydrogen or R J CO
  • R 4 for an alkyl radical with 1 to 4 carbon atoms or a (CH2CH2 ⁇ ) q H group
  • m, n and p in total stand for 0 or numbers from 1 to 12
  • q stands for numbers from 1 to 12
  • X stands for a charge-balancing anion such as halide, alkyl sulfate or alkyl phosphate.
  • ester quats which can be used in the context of the invention are products based on caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, isostearic acid, stearic acid, oleic acid, elaidic acid, arachic acid, behenic acid and erucic acid and their technical mixtures, such as they occur, for example, in the pressure splitting of natural fats and oils.
  • industrial C ⁇ be ⁇ '' cocofatty acids and particularly teügehärtete Cioè A p-tallow or palm oil fatty acids and elaidic-rich Cioè / is-fatty acid cuts used.
  • the fatty acids and the triethanolamine can generally be used in a molar ratio of 1.1: 1 to 3: 1 to produce the quaternized esters.
  • an application ratio of 1.2: 1 to 2.2: 1, preferably 1.5: 1 to 1.9: 1 has proven to be particularly advantageous.
  • the preferred esterquats are technical mixtures of mono-, di- and triesters with an average degree of esterification of 1.5 to 1.9 and are derived from technical grade CI ⁇ ⁇ S-tallow or palm fatty acid (iodine number 0 to 40).
  • Quaternized fatty acid triethanolamine ester salts of the formula (I) in which R CO for an acyl radical having 16 to 18 carbon atoms, R 2 for R * CO, R 3 for hydrogen, R 4 for a methyl group, m, n and p for 0 and X for methyl sulfate stands have proven to be particularly advantageous.
  • quaternized ester salts of carboxylic acids with diethanolalkylamines of the formula (II) are also suitable as ester quats,
  • R 4 [R 1 CO- (OCH 2 CH 2 ) m OCH 2 CH 2 -N + -CH 2 CH 2 ⁇ - (CH 2 CH2 ⁇ ) n R 2 ] X (II) in the R * CO for an acyl radical with 6 to 22 carbon atoms, R 2 for hydrogen or R ⁇ O, R 4 and R 5 independently of one another for alkyl radicals with 1 to 4 carbon atoms, m and n in total for 0 or numbers from 1 to 12 and X stands for a charge-balancing anion such as halide, alkyl sulfate or alkyl phosphate.
  • ester quats As a further group of suitable ester quats, the quaternized ester salts of carboxylic acids with 1,2-hydroxypropyl dialkylamines of the formula (HI) should be mentioned,
  • R CO for an acyl radical with 6 to 22 coblene atoms
  • R 2 for hydrogen or R ⁇ O
  • R 4 , R 6 and R 7 independently of one another for alkyl radicals with 1 to 4 carbon atoms
  • m and n in total for 0 or numbers from 1 to 12
  • X represents a charge-balancing anion such as halide, alkyl sulfate or alkyl phosphate.
  • esterquats of the formulas (II) and (ILt).
  • esterquats come in the form of 50 to 90 percent by weight alcoholic solutions, which can also be diluted with water without any problems, ethanol, propanol and isopropanol being the usual alcoholic solvents.
  • Ester quats are preferably used in amounts of 5% by weight to 25% by weight, in particular 8% by weight to 20% by weight, in each case based on the total laundry aftertreatment agent.
  • the laundry aftertreatment agents used according to the invention may additionally contain detergent ingredients listed above, provided that they do not interact unreasonably with the esterquat. It is preferably a liquid, water-containing agent.
  • an agent into which the combination to be used according to the invention is incorporated is liquid and contains 10% by weight to 25% by weight, in particular 12% by weight to 22.5% by weight, of nonionic surfactant , 2% by weight to 10% by weight, in particular 2.5% by weight to 8% by weight of synthetic anionic surfactant, 3% by weight to 15% by weight, in particular 4.5% by weight up to 12.5% by weight of soap, 0.5% by weight to 5% by weight, in particular 1% by weight to 4% by weight of organic builders, in particular polycarboxylate such as citrate, up to 1.5% by weight .-%, in particular 0.1 wt .-% to 1 wt .-% complexing agents for heavy metals, such as phosphonate, and optionally enzyme, enzyme stabilizer, coloring and / or fragrance and water and / or water-miscible solvent.
  • Solid agents are preferably prepared in such a way that a cloth containing the dirt-releasing cellulose derivative and carboxymethyl cellulose is mixed with other solid detergent ingredients.
  • a spray drying step is preferably used to produce the tissue containing the cellulose derivative which is capable of removing dirt.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Textile Engineering (AREA)
  • Detergent Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

L'objectif de la présente invention est d'améliorer le pouvoir détachant de dérivés de cellulose non ioniques. Cet objectif est atteint par une combinaison formée d'un dérivé de cellulose à pouvoir détachant, qui peut être obtenu par alkylation et hydroxyalkylation de cellulose, et de cellulose carboxyméthylée.
EP04707143A 2003-02-10 2004-01-31 Procede pour renforcer la puissance de nettoyage de produits de lavage au moyen d'une combinaison de derives de cellulose Revoked EP1592766B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10305306 2003-02-10
DE10305306 2003-02-10
DE10351321A DE10351321A1 (de) 2003-02-10 2003-10-31 Verstärkung der Reinigungsleistung von Waschmitteln durch eine Kombination von Cellulosderivaten
DE10351321 2003-10-31
PCT/EP2004/000871 WO2004069974A2 (fr) 2003-02-10 2004-01-31 Procede pour renforcer la puissance de nettoyage de produits de lavage au moyen d'une combinaison de derives de cellulose

Publications (2)

Publication Number Publication Date
EP1592766A2 true EP1592766A2 (fr) 2005-11-09
EP1592766B1 EP1592766B1 (fr) 2008-07-09

Family

ID=32851848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04707143A Revoked EP1592766B1 (fr) 2003-02-10 2004-01-31 Procede pour renforcer la puissance de nettoyage de produits de lavage au moyen d'une combinaison de derives de cellulose

Country Status (7)

Country Link
US (1) US20060046951A1 (fr)
EP (1) EP1592766B1 (fr)
JP (1) JP2007517073A (fr)
AT (1) ATE400635T1 (fr)
DE (1) DE10351321A1 (fr)
ES (1) ES2308143T3 (fr)
WO (1) WO2004069974A2 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10351325A1 (de) * 2003-02-10 2004-08-26 Henkel Kgaa Wasch- oder Reinigungsmittel mit wasserlöslichem Buildersystem und schmutzablösevermögendem Cellulosederivat
ATE363525T1 (de) * 2003-02-10 2007-06-15 Henkel Kgaa Verstärkung der reinigungsleistung von waschmitteln durch cellulosederivat und hygroskopisches polymer
ES2285421T3 (es) * 2003-02-10 2007-11-16 Henkel Kommanditgesellschaft Auf Aktien Agente de lavado o de limpieza, que continen un agente de blanqueo, con sistema adyuvante, soluble en agua, y un derivado de la celulosa con capacidad para el desprendimiento de la suciedad.
EP1592763B2 (fr) * 2003-02-10 2011-08-31 Henkel AG & Co. KGaA Detergent contenant un agent de blanchiment et un derive de cellulose facilitant l'elimination des salissures sur les textiles en coton
ATE350447T1 (de) * 2003-02-10 2007-01-15 Henkel Kgaa Erhöhung der wasseraufnahmefähigkeit von textilien
EP1592768A2 (fr) * 2003-02-10 2005-11-09 Henkel Kommanditgesellschaft auf Aktien Utilisation de derives cellulosiques en tant que regulateurs de moussage
DE102005026544A1 (de) * 2005-06-08 2006-12-14 Henkel Kgaa Verstärkung der Reinigungsleistung von Waschmitteln durch Polymer
DE102005026522B4 (de) * 2005-06-08 2007-04-05 Henkel Kgaa Verstärkung der Reinigungsleistung von Waschmitteln durch Polymer
DE102006039873B4 (de) * 2006-08-25 2013-10-31 Henkel Ag & Co. Kgaa Verstärkung der Reinigungsleistung von Waschmitteln durch baumwollaktives schmutzablösevermögendes Cellulosederivat
EP2103676A1 (fr) * 2008-03-18 2009-09-23 The Procter and Gamble Company Composition détergente pour le lavage du linge comprenant un sel de magnésium d'acide diamine-n'n' disuccinique d'éthylène
US9376648B2 (en) 2008-04-07 2016-06-28 The Procter & Gamble Company Foam manipulation compositions containing fine particles
DE102012221197A1 (de) * 2012-11-20 2014-05-22 Henkel Ag & Co. Kgaa Anti-adhäsive Polymere zur mikrobiell-repulsiven Textilausrüstung
CA3060312C (fr) 2017-04-27 2022-07-12 Ecolab Usa Inc. Compositions detergentes de carbonate a liberation controlee de matieres solides
JP7091454B2 (ja) 2017-11-14 2022-06-27 エコラボ ユーエスエー インコーポレイティド 固形制御放出苛性洗剤組成物
DE102018209992A1 (de) * 2018-06-20 2019-12-24 Henkel Ag & Co. Kgaa Pullulanderivate als schmutzablösende Wirkstoffe
EP4007803A1 (fr) 2019-09-27 2022-06-08 Ecolab USA Inc. Détergent et produit de rinçage concentré 2-en-1 pour lave-vaisselle
CN115521383A (zh) * 2022-10-31 2022-12-27 徐州创力纤维有限公司 一种聚阴离子改性纤维素的制备方法

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2016962A (en) * 1932-09-27 1935-10-08 Du Pont Process for producing glucamines and related products
US1985424A (en) * 1933-03-23 1934-12-25 Ici Ltd Alkylene-oxide derivatives of polyhydroxyalkyl-alkylamides
US2703798A (en) * 1950-05-25 1955-03-08 Commercial Solvents Corp Detergents from nu-monoalkyl-glucamines
US2886533A (en) * 1956-07-17 1959-05-12 Wyandotte Chemicals Corp Promoted detergent compositions
NL130828C (fr) * 1959-06-03
BE609040A (fr) * 1960-11-01
GB1005507A (en) * 1963-07-04 1965-09-22 Ici Ltd Improvements in the treatment of synthetic polyamide textile materials
US3523088A (en) * 1966-12-13 1970-08-04 Procter & Gamble Novel antiredeposition agent and built detergent compositions containing said antiredeposition agent
US3547828A (en) * 1968-09-03 1970-12-15 Rohm & Haas Alkyl oligosaccharides and their mixtures with alkyl glucosides and alkanols
BE755886A (fr) * 1969-09-08 1971-03-08 Unilever Nv Enzyme
US3623956A (en) * 1970-01-21 1971-11-30 Rapidase Sa Soc Preparation of microbial alkaline protease by fermentation with bacillus subtilis, variety licheniformis
US3623957A (en) * 1970-01-21 1971-11-30 Baxter Laboratories Inc Preparation of microbial alkaline protease by fermentation with bacillus subtilis, variety licheniformis
BE789801A (fr) * 1971-10-12 1973-04-06 Unilever Nv Compositions detergentes
US3985923A (en) * 1971-10-28 1976-10-12 The Procter & Gamble Company Process for imparting renewable soil release finish to polyester-containing fabrics
CA1037815A (fr) * 1973-06-20 1978-09-05 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Fabrication d'agents solides de lavage ou de nettoyage versables, contenant une certaine quantite de silicate fixateur de calcium
US4174305A (en) * 1975-04-02 1979-11-13 The Procter & Gamble Company Alkyl benzene sulfonate detergent compositions containing cellulose ether soil release agents
US4000093A (en) * 1975-04-02 1976-12-28 The Procter & Gamble Company Alkyl sulfate detergent compositions
US4136038A (en) * 1976-02-02 1979-01-23 The Procter & Gamble Company Fabric conditioning compositions containing methyl cellulose ether
NL191087C (nl) * 1977-06-23 1995-01-16 Procter & Gamble Korrelvormig wasmiddel.
US4127423A (en) * 1977-09-13 1978-11-28 Burton, Parsons And Company, Inc. Contact lens cleaning solution
US4116885A (en) * 1977-09-23 1978-09-26 The Procter & Gamble Company Anionic surfactant-containing detergent compositions having soil-release properties
FR2407980A1 (fr) * 1977-11-02 1979-06-01 Rhone Poulenc Ind Nouvelles compositions anti-salissure et anti-redeposition utilisables en detergence
US4264738A (en) * 1979-08-01 1981-04-28 Stepanov Valentin M Process for purification of proteolytic enzymes
DE3011998C2 (de) * 1980-03-28 1982-06-16 Henkel KGaA, 4000 Düsseldorf Verfahren zur Herstellung eines lagerstabilen, leichtlöslichen Granulates mit einem Gehalt an Bleichaktivatoren
DK187280A (da) * 1980-04-30 1981-10-31 Novo Industri As Ruhedsreducerende middel til et fuldvaskemiddel fuldvaskemiddel og fuldvaskemetode
DE3115644A1 (de) * 1981-04-18 1982-11-04 Henkel KGaA, 4000 Düsseldorf "pulverfoermiger entschaeumer fuer waessrige systeme, verfahren zu seiner herstellung und seine verwendung"
JPS58217599A (ja) * 1982-06-10 1983-12-17 花王株式会社 漂白洗浄剤組成物
JPS591598A (ja) * 1982-06-25 1984-01-06 花王株式会社 洗浄剤組成物
EP0100125B1 (fr) * 1982-07-27 1988-12-07 THE PROCTER & GAMBLE COMPANY Compositions détergentes liquides comprenant un mélange d'alkylcellulose et de carboxyméthylcellulose formant un coacervat et méthode pour les préparer
DE3329400A1 (de) * 1983-08-13 1985-02-28 Henkel KGaA, 4000 Düsseldorf Vergrauungsverhuetender zusatz fuer phosphatfreie und phosphatarme waschmittel
DE3400008A1 (de) * 1984-01-02 1985-07-11 Henkel KGaA, 4000 Düsseldorf Zur verwendung in tensidhaltigen mitteln geeignetes schaumregulierungsmittel
DE3413571A1 (de) * 1984-04-11 1985-10-24 Hoechst Ag, 6230 Frankfurt Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung
DE3417649A1 (de) * 1984-05-12 1985-11-14 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung von kristallinen natriumsilikaten
GB8519046D0 (en) * 1985-07-29 1985-09-04 Unilever Plc Detergent compositions
DE3633519A1 (de) * 1986-10-02 1988-04-14 Henkel Kgaa Verfahren zur herstellung von rieselfaehigen, stabilen schauminhibitor-konzentraten durch kompaktierende granulation
US4770666A (en) * 1986-12-12 1988-09-13 The Procter & Gamble Company Laundry composition containing peroxyacid bleach and soil release agent
GB8708312D0 (en) * 1987-04-07 1987-05-13 Unilever Plc Detergent powder composition
DE3723826A1 (de) * 1987-07-18 1989-01-26 Henkel Kgaa Verfahren zur herstellung von alkylglykosiden
DE3725030A1 (de) * 1987-07-29 1989-02-09 Henkel Kgaa Oberflaechenaktive hydroxysulfonate
DE3732947A1 (de) * 1987-09-30 1989-04-13 Henkel Kgaa Zur verwendung in wasch- und reinigungsmitteln geeignetes schaumregulierungsmittel
US5240851A (en) * 1988-02-22 1993-08-31 Fina Research, S.A. Lipase-producing Pseudomonas aeruginosa strain
DE3827534A1 (de) * 1988-08-13 1990-02-22 Henkel Kgaa Verfahren zur herstellung von alkylglucosidverbindungen aus oligo- und/oder polysacchariden
US5576425A (en) * 1988-10-05 1996-11-19 Henkel Kommanditgesellschaft Auf Aktien Process for the direct production of alkyl glycosides
US5049302A (en) * 1988-10-06 1991-09-17 Basf Corporation Stable liquid detergent compositions with enchanced clay soil detergency and anti-redeposition properties
US5236682A (en) * 1989-10-25 1993-08-17 Hoechst Aktiengesellschaft Process for producing crystalline sodium silicates having a layered structure
YU221490A (sh) * 1989-12-02 1993-10-20 Henkel Kg. Postupak za hidrotermalnu izradu kristalnog natrijum disilikata
DE4000705A1 (de) * 1990-01-12 1991-07-18 Hoechst Ag Verfahren zur herstellung von kristallinen natriumsilikaten
ES2055601T3 (es) * 1990-04-14 1994-08-16 Kali Chemie Ag Lipasas alcalinas de bacillus, secuencias de adn que las codifican, asi como bacilli que producen estas lipasas.
ATE164390T1 (de) * 1990-09-28 1998-04-15 Procter & Gamble Polyhydroxyfettsaureamidtenside in bleichmittelhaltigen waschmittelzusammensetzungen
GB9021761D0 (en) * 1990-10-06 1990-11-21 Procter & Gamble Detergent compositions
US5443750A (en) * 1991-01-16 1995-08-22 The Procter & Gamble Company Detergent compositions with high activity cellulase and softening clays
US5411673A (en) * 1991-02-06 1995-05-02 The Procter & Gamble Company Peroxyacid bleach precursor compositions
DE4107230C2 (de) * 1991-03-07 1995-04-06 Hoechst Ag Verfahren zur Herstellung von Natriumsilikaten
DE4134914A1 (de) * 1991-10-23 1993-04-29 Henkel Kgaa Wasch- und reinigungsmittel mit ausgewaehlten builder-systemen
DE4142711A1 (de) * 1991-12-21 1993-06-24 Hoechst Ag Verfahren zur herstellung von kristallinen natriumdisilikaten
DE4221381C1 (de) * 1992-07-02 1994-02-10 Stockhausen Chem Fab Gmbh Pfropf-Copolymerisate von ungesättigten Monomeren und Zuckern, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4203923A1 (de) * 1992-02-11 1993-08-12 Henkel Kgaa Verfahren zur herstellung von polycarboxylaten auf polysaccharid-basis
US5332518A (en) * 1992-04-23 1994-07-26 Kao Corporation Stable slurry-coated sodium percarbonate, process for producing the same and bleach detergent composition containing the same
DE4300772C2 (de) * 1993-01-14 1997-03-27 Stockhausen Chem Fab Gmbh Wasserlösliche, biologisch abbaubare Copolymere auf Basis von ungesättigten Mono- und Dicarbonsäuren, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4308794C1 (de) * 1993-03-18 1994-04-21 Henkel Kgaa Verfahren zur Herstellung von festen Esterquats mit verbesserter Wasserdispergierbarkeit
US5405412A (en) * 1994-04-13 1995-04-11 The Procter & Gamble Company Bleaching compounds comprising N-acyl caprolactam and alkanoyloxybenzene sulfonate bleach activators
US5902682A (en) * 1993-07-17 1999-05-11 Degussa Aktiengesellschaft Coated sodium percarbonate particles, a process for their preparation and their use
US5705466A (en) * 1993-08-17 1998-01-06 The Procter & Gamble Company High bulk density granular detergents containing a percarbonate bleach and a powdered silicate
US5445755A (en) * 1994-05-31 1995-08-29 The Procter & Gamble Company Detergent compositions containing a peroxidase/accelerator system without linear alkylbenzenesulfonate
US5837666A (en) * 1994-06-30 1998-11-17 The Procter & Gamble Company Detergent compositions comprising methyl cellulose ether
JP2849041B2 (ja) * 1994-06-30 1999-01-20 ザ、プロクター、エンド、ギャンブル、カンパニー 洗剤組成物
US5460747A (en) * 1994-08-31 1995-10-24 The Procter & Gamble Co. Multiple-substituted bleach activators
IT1270000B (it) * 1994-09-22 1997-04-16 Solvay Interox Procedimento per la fabbricazione di particelle di persali
US5786316A (en) * 1994-10-27 1998-07-28 The Procter & Gamble Company Cleaning compositions comprising xylanases
US5948744A (en) * 1994-12-01 1999-09-07 Baillely; Gerard Marcel Detergent composition containing combination of nonionic polysaccharide ether with synthetic oxyalkylene-containing soil release agent
US5919271A (en) * 1994-12-31 1999-07-06 Procter & Gamble Company Detergent composition comprising cellulase enzyme and nonionic cellulose ether
GB2298868A (en) * 1995-03-11 1996-09-18 Procter & Gamble Detergent compositions
US5916481A (en) * 1995-07-25 1999-06-29 The Procter & Gamble Company Low hue photobleaches
US5576282A (en) * 1995-09-11 1996-11-19 The Procter & Gamble Company Color-safe bleach boosters, compositions and laundry methods employing same
DE19636035A1 (de) * 1996-09-05 1998-03-12 Henkel Ecolab Gmbh & Co Ohg Pastenförmiges Wasch- und Reinigungsmittel
US6218351B1 (en) * 1998-03-06 2001-04-17 The Procter & Gamble Compnay Bleach compositions
DE19725508A1 (de) * 1997-06-17 1998-12-24 Clariant Gmbh Wasch- und Reinigungsmittel
US6204234B1 (en) * 1997-07-09 2001-03-20 The Proctor & Gamble Company Cleaning compositions comprising a specific oxygenase
US6380145B1 (en) * 1997-07-09 2002-04-30 Procter & Gamble Cleaning compositions comprising a specific oxygenase
US6444634B1 (en) * 1997-09-11 2002-09-03 The Procter & Gamble Company Bleaching compositions
US6242406B1 (en) * 1997-10-10 2001-06-05 The Procter & Gamble Company Mid-chain branched surfactants with cellulose derivatives
EP1004661A1 (fr) * 1998-11-11 2000-05-31 DALLI-WERKE WÄSCHE- und KÖRPERPFLEGE GmbH & Co. KG Granulé de haute densité, procédé pour sa production, son utilisation en tant que désintégrant pour tablettes
GB9826097D0 (en) * 1998-11-27 1999-01-20 Unilever Plc Detergent compositions
DE19908051A1 (de) * 1999-02-25 2000-08-31 Henkel Kgaa Verfahren zur Herstellung compoundierter Acetonitril-Derivate
US6462008B1 (en) * 1999-03-05 2002-10-08 Case Western Reserve University Detergent compositions comprising photobleaching delivery systems
DE19943470A1 (de) * 1999-09-11 2001-03-15 Clariant Gmbh Kristallines Alkalischichtsilikat
DE10003124A1 (de) * 2000-01-26 2001-08-09 Cognis Deutschland Gmbh Verfahren zur Herstellung von Tensidgranulaten
DE10038832A1 (de) * 2000-08-04 2002-03-28 Henkel Kgaa Umhüllte Bleichaktivatoren
DE10038845A1 (de) * 2000-08-04 2002-02-21 Henkel Kgaa Teilchenförmig konfektionierte Acetonitril-Derivate als Bleichaktivatoren in festen Waschmitteln
DE10038978A1 (de) * 2000-08-10 2002-02-21 Wolff Walsrode Ag Verfahren zur Herstellung von Alkylhydroxyalkylcellulose
US20030166484A1 (en) * 2000-09-28 2003-09-04 Kingma Arend Jouke Coated, granular n-alkylammonium acetonitrile salts and use thereof as bleach activators
BR0207909A (pt) * 2001-03-07 2004-07-27 Procter & Gamble Composição condicionadora de tecido adicionada ao enxágue para uso onde resìduo de detergente estiver presente
DE10351325A1 (de) * 2003-02-10 2004-08-26 Henkel Kgaa Wasch- oder Reinigungsmittel mit wasserlöslichem Buildersystem und schmutzablösevermögendem Cellulosederivat
EP1592763B2 (fr) * 2003-02-10 2011-08-31 Henkel AG & Co. KGaA Detergent contenant un agent de blanchiment et un derive de cellulose facilitant l'elimination des salissures sur les textiles en coton
ES2285421T3 (es) * 2003-02-10 2007-11-16 Henkel Kommanditgesellschaft Auf Aktien Agente de lavado o de limpieza, que continen un agente de blanqueo, con sistema adyuvante, soluble en agua, y un derivado de la celulosa con capacidad para el desprendimiento de la suciedad.
ATE350447T1 (de) * 2003-02-10 2007-01-15 Henkel Kgaa Erhöhung der wasseraufnahmefähigkeit von textilien
ATE363525T1 (de) * 2003-02-10 2007-06-15 Henkel Kgaa Verstärkung der reinigungsleistung von waschmitteln durch cellulosederivat und hygroskopisches polymer
EP1592768A2 (fr) * 2003-02-10 2005-11-09 Henkel Kommanditgesellschaft auf Aktien Utilisation de derives cellulosiques en tant que regulateurs de moussage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004069974A2 *

Also Published As

Publication number Publication date
DE10351321A1 (de) 2004-08-26
ES2308143T3 (es) 2008-12-01
WO2004069974A2 (fr) 2004-08-19
US20060046951A1 (en) 2006-03-02
WO2004069974A3 (fr) 2004-10-28
ATE400635T1 (de) 2008-07-15
JP2007517073A (ja) 2007-06-28
EP1592766B1 (fr) 2008-07-09

Similar Documents

Publication Publication Date Title
EP3810742B1 (fr) Carbamates de xylose utilisés comme agents antisalissures
EP1888733B1 (fr) Renforcement de l'activite nettoyante de lessives par l'intermediaire de polymeres
EP2054495B1 (fr) Détergents contenant un dérivé de cellulose à pouvoir de décollement des salissures, actif sur le coton
EP3049508B1 (fr) Carbamates de cellulose utilisés comme principes actifs ayant la capacité de dissoudre les saletés
WO2019243108A1 (fr) Dérivés de chitosane utilisés comme agents antisalissures
EP4100498A1 (fr) Dérivés de chitosane en tant qu'agents anti-salissures
EP1592766B1 (fr) Procede pour renforcer la puissance de nettoyage de produits de lavage au moyen d'une combinaison de derives de cellulose
EP2836580B1 (fr) Cellulose microfibrillaire en tant que substance active à pouvoir détachant
EP1592763B2 (fr) Detergent contenant un agent de blanchiment et un derive de cellulose facilitant l'elimination des salissures sur les textiles en coton
EP1888732B1 (fr) Renforcement du pouvoir detersif de detergents par l'intermediaire d'un polymere
EP1592765B1 (fr) Augmentation de la puissance de nettoyage de produits de lavage a l'aide d'un derive cellulosique et d'un polymere hygroscopique
EP1592764B1 (fr) Augmentation de la capacite d'absorption d'eau de textiles
EP2917319B1 (fr) Polymères comportant des groupes polaires, servant de substances actives à pouvoir détachant
DE10351322A1 (de) Bleichmittelhaltiges Waschmittel mit baumwollaktivem schmutzablösevermögendem Cellulosederivat
EP3848441A1 (fr) Poly(2-vinylpyridine) carboxyméthylée comme principe actif facilitant l'élimination des saletés
DE102022200882A1 (de) Polymere schmutzablösevermögende Wirkstoffe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050705

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BASTIGKEIT, THORSTEN

Inventor name: PENNINGER, JOSEF

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENKEL AG & CO. KGAA

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004007551

Country of ref document: DE

Date of ref document: 20080821

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2308143

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E003966

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081009

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100121

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20110112

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20110112

Year of fee payment: 8

Ref country code: DE

Payment date: 20110126

Year of fee payment: 8

Ref country code: CZ

Payment date: 20110114

Year of fee payment: 8

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20090408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110126

Year of fee payment: 8

Ref country code: ES

Payment date: 20110216

Year of fee payment: 8

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502004007551

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502004007551

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20111202

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20111202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120202

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 502004007551

Country of ref document: DE

Effective date: 20120503

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 400635

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111202

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 4152

Country of ref document: SK

Effective date: 20120131