EP1587543A1 - Particules et ceramiques de phosphates de calcium pour la transfection in vivo et in vitro - Google Patents

Particules et ceramiques de phosphates de calcium pour la transfection in vivo et in vitro

Info

Publication number
EP1587543A1
EP1587543A1 EP03814492A EP03814492A EP1587543A1 EP 1587543 A1 EP1587543 A1 EP 1587543A1 EP 03814492 A EP03814492 A EP 03814492A EP 03814492 A EP03814492 A EP 03814492A EP 1587543 A1 EP1587543 A1 EP 1587543A1
Authority
EP
European Patent Office
Prior art keywords
cells
calcium
particles
powders
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03814492A
Other languages
German (de)
English (en)
Inventor
Nicole Francine Rouquet
Patrick Pierre Frayssinet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
URODELIA
Original Assignee
URODELIA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by URODELIA filed Critical URODELIA
Publication of EP1587543A1 publication Critical patent/EP1587543A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/52Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/02Surgical adhesives or cements; Adhesives for colostomy devices containing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • C04B14/366Phosphates, e.g. apatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5048Phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30756Cartilage endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4644Preparation of bone graft, bone plugs or bone dowels, e.g. grinding or milling bone material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30079Properties of materials and coating materials magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30677Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30968Sintering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4644Preparation of bone graft, bone plugs or bone dowels, e.g. grinding or milling bone material
    • A61F2002/4648Means for culturing bone graft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/009Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications

Definitions

  • the present invention relates to a method for transfection of DNA attached to the surface of calcium phosphate ceramics with particular characteristics.
  • This method can include a step of preparing the material in a saline solution or a cell culture medium to improve DNA binding and its availability for cell transfection.
  • the invention also relates to the use of powders and ceramics of modified calcium phosphates for the transfection of cells in vitro and in vivo and for the culture of cells transfected in a three-dimensional network.
  • genes into eukaryotic cells is a key step in gene therapy.
  • Several methods can be used with variable yields. They can be used in vitro or in vivo.
  • cells can be transfected in vitro and then reinjected into the body or directly transfected into the organs or tissues in which they reside (Evans, CH, Robbins, PD, Possible orthopaedic applications of gene therapy, J Bone Joint Surg, 77-A, 7: 1103-1 1 14)
  • Non-pathogenic, Expression Only supports stable genes, infects short cells, difficult to produce, poorly dividing, large variety of developed host cells
  • adenovirus virus associated with adenovirus (AAV), retrovirus or physico-chemical formulation
  • AAV adenovirus virus associated with adenovirus
  • retrovirus retrovirus or physico-chemical formulation
  • the duration of expression of therapeutic transgenes is most of the time short, limited to a few weeks, due an immune reaction which causes the preferential elimination of transduced cells, their intrinsic longevity or the extinction of the DNA sequences or promoters which direct the expression of the inserted genes (Orkin, SH, Motulsky, AG, report and recommendations of the panel to assess the NIH investment in research gene therapy.www.nih.gov/news/panelrep.html).
  • polycationic polymer vectors have been developed. These vectors are solids and can adsorb DNA in various forms, in particular, in the form of a plasmid. They have the particularity to transfect the cells which come into contact with them with a variable yield. They have been used in vivo to transfect loose connective tissue cells involved in bone healing to accelerate bone healing (S. Goldstein and J. Bonadio. In vivo gene transfer methods for wound healing. The Regent of the University of Michigan Anonymous, United States: (5,962,427): 1-3, 1999. gene therapy. A61K 48/00. 514/44).
  • Calcium phosphate ceramics are materials obtained by sintering a slip containing suspended particles of calcium phosphate. These are assemblies of grains linked by grain boundaries (Frayssinet, P., Fages, J., Bonel, G., Rouquet, N., Biotechnology, material sciences and bone repair. European Journal of Orthopedic Surgery & Traumatology (1998 ) 8: 17-25).
  • the chemical composition of these ceramics can vary because several salts of orthophosphoric acid can enter their composition, in particular, tricalcium phosphate, hydroxyapatite which is the phase of synthesis closest to the mineral phase of bone tissue, and octocalcium phosphate.
  • These ceramics have another particularity, they have very variable surface properties according to different parameters such as, among others, the mode of synthesis of the powder, the firing temperature, or the presence of various trace elements. These different factors influence in particular the surface charge, the zeta potential and the substitution capacities in the calcium phosphate mesh.
  • Phosphocalcic ceramics also have the particularity of having epitaxial growths of carbonated apatite on their surface once implanted in the organism or immersed in a saline medium of composition comparable to the extracellular liquid (M. Heughebaert, RZ LeGeros, M. Gineste, and A. Guilhem. Hydroxyapatite (HA) ceramics implanted in non-bone-forming sites. Physico-chemical characterization. J Biomed Mat Res 22: 257-268, 1988). It is to these crystal growths that the biocompatibility properties of these materials have been attributed.
  • the protein in solution and the solid have an opposite charge, they attract each other. At least if the charge of the protein and that of the surface of the solid roughly compensate for each other. If the charges do not compensate, this results in an accumulation of charges in the contact region causing a high electrostatic potential, energetically unfavorable for adsorption. A similar situation is observed when the surface of the solid and the organic molecule have the same sign. However, in many cases, adsorption can still be done in some cases thanks to the incorporation of ions of the solution at the interface of the adsorbed layer which prevents charge accumulation.
  • Hydrophobia has an influence on adsorption because it participates in the distribution of charges, in particular in organic molecules which have a tertiary and quaternary structure.
  • the hydrophobicity of a surface can promote adsorption.
  • the distribution of the charges as well as the hydration capacities of the apatites are advantageous properties because they can have a positive or negative surface charge and can be hydrophilic or hydrophobic.
  • the substitutions in the mesh can be numerous, the functional groups on the surface can vary.
  • hydroxyapatite-based calcium phosphate powders capable of fixing DNA in various forms and delivering it to isolated cells or in the body for transfection purposes. These powders can be injected in suspension in a liquid or a gel. They can also be deposited with a curette or else serve as a transfecting vector for cells cultivated in a three-dimensional network. They have particular physicochemical properties in order to possess these transfection properties.
  • the powder is a particularly well adapted form to be able to transfect both isolated cells or tissues both in vitro and in vivo. These powders allow the internalization of DNA as well as its protection from intracytoplasmic nucleases and its transfer into the nucleus.
  • the mechanism involved in the attachment of DNA (organic molecule of negative charge) to the surface of hydroxyapatite particles may be:
  • composition and surface characteristics are also important for the degradation of the material in a biological medium and the emission of transfecting particles.
  • HA ceramics degrade at grain boundaries and that the apatite layer carbonate appearing on the surface of the material by epitaxial growth has a different solubility from the material itself.
  • the present invention relates to a process for creating a mineral-DNA composite characterized in that it comprises a step consisting of an incubation in a saline or culture medium unsaturated with calcium and phosphorus in the presence of the DNA molecule.
  • This method makes it possible to obtain a DNA fixation on the surface of the ceramic by adsorption on a ceramic surface modified by epitaxial growth or else by co-precipitation on the surface of the material.
  • These particles of calcium phosphates are immersed in a saline medium or a culture medium of the type of cell culture media commonly used in biotechnology, in particular DMEM, for approximately a few minutes, for example
  • the aim is to have the formation of a layer of carbonated apatite on the surface before or during contact with the plasmids.
  • the method mentioned above is carried out before contacting with the nucleic acids, in particular plasmids.
  • this step causing epitaxial growth of carbonated apatite to the surface of said powders and ceramics is produced in a medium containing the nucleic acids.
  • the surface modification and the fixation of the nucleic acids are carried out simultaneously.
  • the powders and ceramics are immersed in a DMEM culture medium for 48 hours at 37 ° C. before or simultaneously with the fixation of the nucleic acids.
  • the invention relates to a method for fixing DNA in plasmid form to the surface of powder or ceramic of calcium phosphates, characterized in that it comprises a step a) consisting in hydration of the powder of calcium phosphate or calcium phosphate ceramic in a solution of phosphate buffer unsaturated with calcium and phosphate and a step b) consisting of immersion of the products obtained in step a) in a solution of unsaturated phosphate buffer in calcium and phosphate containing a single or double stranded DNA for variable durations from a few minutes to several hours, c) obtaining particles of calcium phosphates comprising DNA molecules attached to its surface.
  • the solution of step a) and b) comprises a 0.12 M phosphate buffer (pH 6.8).
  • the immersion is carried out for at least 1, 5, 10 or 30 minutes up to approximately 12, 24, or 48 hours at a temperature ranging from 15 to 50 ° C, preferably approximately 37 ° C.
  • the calcium phosphate particles are kept immersed in a culture medium of the cell culture medium type, for about a few minutes to a few days, and at a temperature ranging from 15 to 50 ° C., preferably approximately 37 °. vs.
  • the hydration preferably resides in an immersion of the calcium phosphate powder or the calcium phosphate ceramic in a solution simulating the extracellular fluids intended to produce growth. epitaxial of carbonated apatite on the surface of said powders and ceramics.
  • step b) is carried out by means of a medium simulating extracellular fluids or a medium of the type of cell culture media containing nucleic acids, said medium being non-denaturing for DNA and not saturated with calcium. and phosphate. This medium causes epitaxial growth of carbonated apatite on the surface of said powders and ceramics.
  • Steps a) and b) can be carried out simultaneously or successively.
  • the invention can be implemented with a solution containing a single or double stranded DNA for variable durations from a few minutes to several hours to approximately
  • this method makes it possible to fix the DNA at physiological pH on calcium phosphate particles under conditions which are not denaturing for the DNA molecule.
  • the ceramics can be porous or dense ceramics.
  • the invention in another aspect, relates to a method for transfecting isolated cells, cultured in a monolayer or in three dimensions, consisting in bringing the cells to be transfected into contact with the particles obtained by the method described above for periods of time. a few hours to a few weeks.
  • This method can also be implemented to transfect cells contained in a cultured tissue fragment.
  • the particles obtained mentioned above is particularly useful for the preparation of a medicament for in vivo transfection of cells contained in a tissue or in an organ.
  • the invention in another aspect, relates to powders and ceramics of calcium phosphates capable of being obtained from the process described above, characterized in that they can support an epitaxial growth of apatite carbonated on their surface under non-denaturing conditions, in particular in an unsaturated and non-denaturing saline solution for biological macromolecules.
  • the invention also relates to these powders and ceramics of calcium phosphates further comprising the nucleic acids attached to their surface.
  • the powders and ceramics obtained have at least one of the properties described below before the surface modification:
  • Hydrophobic - particle size between 0-200 ⁇ m, in particular between 80-125 ⁇ m and 0-25 ⁇ m.
  • the products of the invention comprise all of the characteristics described above.
  • powders and ceramics of calcium phosphates mentioned above may comprise a core composed of another polymeric material, ceramic or metallic, preferably magnetic.
  • the invention also relates to the particles formed on the basis of calcium phosphate powders described above, said particles being included in an inorganic or polymeric matrix, in particular in cements of calcium phosphate or sulphate.
  • the invention relates to a ceramic coating of joint prostheses having the characteristics of the ceramic defined above.
  • the invention also relates to the use of said calcium phosphate powders and ceramics loaded with DNA at their surface as a support for cell culture, in particular for the three-dimensional network culture of cells transfected by the support and for the transfection of cells in vitro. and in vivo.
  • Type P15 spherical powder with a specific surface 0.62 m 2 / g. They were calcined at 1180 ° C and their particle size is between 80-125 ⁇ m.
  • Type PI powder of any shape with a specific surface 56.84 m 2 / g, non-calcined (raw) with a particle size between 0-25 ⁇ m.
  • the particle size study of the powders used shows that the spherical powders (PI 5) have a well-defined particle size section whereas those of any shape (PI) have much larger particle size sections with many fine particles.
  • the zero charge pH varies with the calcination temperature of the powders.
  • the zeta potential of the PI powder measured in demineralized water is -27.5 mV and the surface pH is 9.08.
  • the zero charge pH is variable but much lower than the physiological pH. This means that whatever the sintering temperature, the electrokinetic potential of the powders, at neutral pH, is negative.
  • the vector can be used in two different ways:
  • Method A It can be incubated directly with the plasmid in a phosphate buffer solution. It is then kept incubated therein for several hours while its surface is modified by epitaxial growth of carbonated apatite. The fixing can then be done by coprecipitation on the surface of the material.
  • Method B It can also be put in the presence of a saline solution for several days in order to modify the surface. Once this is balanced, the material is then put into the solution containing the plasmid. DNA binding is assumed to take place on the surface of the modified material. Fixation of the plasmid on the surface of the native particles (method A):
  • Double stranded DNA has a marked affinity for HA when dissolved in low concentrations of phosphate buffer. They are eluted in higher concentrations of phosphate buffer. 1 m of powder surface was placed in the Petri dishes, ie 1.61 gr for type A and 0.017 g for type B.
  • the nucleic acid sample is added in 1 ml of 0.12 M phosphate buffer at pH 6.8 at 40 ° C
  • the amount of powder (type B) has always been the same: 10 mg.
  • the cells have a relative contact inhibition, they are almost three-dimensional and rounded. Most of the cells in the three groups are positive. The number of positive cells and the previous growth rate seem to indicate that the plasmids are transmitted from one cell to another or that the release of DNA particles spreads over time, the percentage of positive cells would have been very weak otherwise. It is also possible that the releases of transfecting particles are progressive.
  • the cells preferentially labeled are those in contact with the particles. Percentage of cells labeled according to the lines used:
  • the grains were placed in contact with the cells, either separated from them by a porous membrane (0.2 ⁇ m) made of polycarbonate separating them from the cell mat.
  • Cell labeling with galactosidase is evaluated by histochemistry on D4. Cells in direct contact with the particles are sporadically labeled. Cells that are not in contact with the particles (separated by the membrane) are also labeled. There are therefore transfecting particles smaller than 0.2 ⁇ m in size passing through the pores of the polycarbonate membrane.
  • the cell lines described above are suspended in the culture medium.
  • the bed is placed at the bottom of a culture dish.
  • the suspension is used to seed a bed of microbeads (1.5-2 10 5 cells / 0.05 g of beads) carrying plasmids carrying the galactosidase gene.
  • the bed is placed at the bottom of a culture dish.
  • the cells are cultured for 10 to 15 days.
  • the formation of a three-dimensional cellular layer bridging and agglomerating the beads is obtained. This layer also contains an abundant collagen matrix.
  • the cells form a three-dimensional network bridging the different particles and assembling them. Light microscopy reveals that the cells in the particle cluster are labeled with galactosidase.
  • Type A spherical powder with a specific surface 0.62 m 2 / g. They were calcined at 1180 ° C and their particle size is 80-125 ⁇ m. The amount of powder is a few tens of particles per box (PI 5).
  • the bone fragments come from femurs, tibias and calvaria of 3-day-old newborn rats.
  • the bony parts were cleaned of adjoining soft tissue.
  • the long bones were cut into three pieces: 2 epiphyses and the diaphysis.
  • the calvarias were cut into small fragments of 2 to 3 mm per side. These different fragments were deposited on the surface of a 3% agar gel in DMEM.
  • the culture medium (DMEM + SVF) was then added so that the fragments were exposed at the liquid-air interface.
  • the beads were kept in contact with the tissues for 2 to 30 days, date on which the galactosidase activity of the cells is demonstrated before making histological sections.
  • FIG. 1 represents a macro photograph of a culture of bone tissue in the presence of transfecting powder for 30 days.
  • the bone fragment is completely blue due to transfection of the cells with the galactosidase vector plasmid.
  • reflection optical microscopy it is not possible to see an area which is not marked.
  • the beads are stuck in a matrix marked by the reaction to galactosidase.
  • FIG. 2 is a histological section of the same tissue showing that all the cells have been transfected with galoctosidase X 30).
  • the cells of the hematopoietic lines are not labeled. It should be noted that:
  • the operating area is located on the mandible on the left side behind the mandibular incisors. It should be noted that a preliminary study made it possible to select this site in which the bone is most abundant. Powder type PI 5 was used. DNA was fixed by method A.
  • an intraoral buccal incision is made using a scalpel.
  • a full flap thickness is removed to access the mandibular bone area at the base of the incisors.
  • a 3mm drill bit is used to systematize the bone break-in.
  • the bone defect produced is of the order of 2 mm in depth.
  • the bone flap is removed using a bone chisel.
  • the biomaterial is aspirated using a 5 ml syringe and deposited in the bone defect so that it fills it. Light pressure is used with sterile gauze to hold the biomaterial in place. The repositioned flap is then sutured
  • Histological sections show a spongy bone with few trabeculae, the pores of which are occupied by very loose stromal tissue. There are osteoclastic-looking multinucleated cells on the surface of the trabeculae. These cells are all marked by the reaction to galactosidase. Likewise, all monocytes are also labeled. These are the only cells that are marked. In the sites located:
  • the sections passing through the calcium phosphate beads show that the beads are included in a relatively dense connective tissue with numerous multinucleated cells on their surface. All cells, fibroblastic or multinucleated, are labeled with galactosidase.
  • the fibroblasts of the dental ligaments are marked. There are islets of fibroblast-like cells marked in the tissue stromal pores between trabeculae. In some cases, it even seems that cells of the osteoblastic line are also labeled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Zoology (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Surgery (AREA)
  • Biochemistry (AREA)
  • Civil Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La présente invention se rapporte à un procédé pour modifier la surface des poudres et des céramiques de phosphates de calcium comprenant une maturation dans un milieu de culture entraînant une croissance épitaxique d'apatite carbonatée à la surface desdites poudres et céramiques. L'invention porte également sur l'utilisation desdites poudres et céramiques modifiées pour la transfection de cellules in vitro et in vivo et pour la culture en réseau tridimensionnel.

Description

Particules et céramiques de phosphates de calcium pour la transfection in vivo et in vitro
La présente invention se rapporte à une méthode de transfection d'ADN fixé à surface de céramiques phosphates de calcium de caractéristiques particulières. Cette méthode peut comporter une étape de préparation du matériau dans une solution saline ou un milieu de culture cellulaire pour améliorer la fixation d'ADN et sa disponibilité pour la transfection de cellules. L'invention porte également sur l'utilisation des poudres et céramiques de phosphates de calcium modifiées pour la transfection de cellules in vitro et in vivo et pour la culture de cellules transfectées en réseau tridimensionnel.
La transfection de gènes dans les cellules eucaryotes est une étape clef de la thérapie génique. Plusieurs méthodes sont utilisables avec des rendements variables. Elles sont utilisables in vitro ou in vivo.
A des fins de thérapie géniques, les cellules peuvent être transfectées in vitro puis réinjectées dans l'organisme ou bien transfectées directement dans les organes ou les tissus dans lesquels elles résident (Evans, C.H., Robbins, P.D., Possible orthopaedic applications of gène therapy, J Bone Joint Surg, 77-A, 7 : 1103-1 1 14)
Les différentes méthodes utilisées pour la transfection cellulaire sont résumées dans le tableau ci-dessous :
Méthode Avantages Inconvénients
DEAE-dextran Simple Expression transitoire Phosphate de calcium Simple Inutilisable pour cellules en suspension
Liposomes Simple Relativement non prouvé Micro-injection Efficace Techniquement difficile Electroporation Bon pour les cellules non Pas de co-transfection adhérentes
Fusion de Bon pour les cellules non Résultats variables protoplastes adhérentes Adénovirus Forte infectivité, production in ADN intégrés comme épisome, connue, infecte les cellules ne se toxique, production de divisant pas, grande variété de protéines virales cellules hôtes
Adénovirus associés Non pathogènes, Expression Supporte seulement des gènes stable, infecte les cellules ne se courts, difficile à produire, peu divisant pas, grande variété de développé cellules hôtes
He ès simplex Infecte les cellules ne se divisant Toxique, expression transitoire, pas, supporte des gènes longs, peu développé
Infection par Efficace Type cellulaire réduit par le rétrovirus tropisme, capacité de codage basse,
Solides Simple, transfection localisée Expression transitoire polycationiques
Chromosome satellite Permet de transfecter des gènes Résultats non prouvés longs
Autres : polymers Faibles rendements, résultats sous forme variables, utilisations in vivo d'hydrogel, lipids difficile, biocompatibilité polycationiques, variable polylysine, polyomithine, histones et autres proteins chromosomiques, polymères hydrogénés
Depuis une quinzaine d'années qu'ont débuté les essais cliniques de thérapie génique, les résultats ont été dans l'ensemble décevants pour plusieurs raisons :
Quels que soient les vecteurs utilisés, adénovirus, virus associé à l' adénovirus (AAV), rétrovirus ou formulation physico-chimiques, l'efficacité de transfert des gènes dans les cellules cibles a toujours été très faible (A. Kahn. Dix ans de thérapie génique: déceptions et espoirs. Biofutur 202:16-21, 2000). La durée d'expression des transgènes thérapeutiques est la plupart du temps brève, limitée à quelques semaines, en raison d'une réaction immune qui provoque l'élimination préférentielle des cellules transduites, de la longévité intrinsèque de celles-ci ou de l'extinction des séquences d'ADN ou promoteurs qui dirigent l'expression des gènes insérés (Orkin, S. H., Motulsky, A.G., report and recommendations of the panel to assess the NIH investment in research gène therapy.www.nih.gov/news/panelrep.html).
Enfin certains vecteurs ont manifesté un effet toxique. Des accidents sont survenus lors d'utilisation de vecteurs adénoviraux injectés dans l'organisme ayant entraîné la mort de patients dans des essais de traitement par l'ornithine transcarbamylase (Smaglik,P., Investigators ponders what went wrong after gène therapy death. The Scientist 13 [21] : 1 (1999).
Ainsi, il ressort de l'analyse de tous les essais cliniques de thérapie génique que la stratégie de transfert d'un gène nécessiterait des vecteurs beaucoup plus performant, plus sûrs et capables de transfecter préférentiellement les cellules sur lesquelles un effet thérapeutique est nécessaire (Orkin, S. H., Motulsky, A.G., report and recommendations of the panel to assess the NIH investment in research gène therapy.www.nih.gov/news/panelrep.html).
C'est pour cette raison que des vecteurs polymériques polycationiques ont été développés. Ces vecteurs sont des solides et peuvent adsorber de l'ADN sous différentes formes, en particulier, sous forme de plasmide. Ils ont la particularité de transfecter les cellules qui arrivent à leur contact avec un rendement variable. Ils ont été utilisés in vivo pour transfecter des cellules des tissus conjonctifs lâches intervenant dans la cicatrisation osseuse afin d'accélérer cette dernière (S. Goldstein and J. Bonadio. in vivo gène transfer methods for wound healing. The Régent of the University of Michigan. Anonymous. United States:(5,962,427):l-31, 1999. thérapie génique. A61K 48/00. 514/44). Les coprécipités de phosphates de calcium et d'ADN ont été utilisés depuis de nombreuses années afin de transfecter les cellules in vitro (E. T. Schenbom and V. Goiffon. Calcium phosphate transfection of mammalian cultured cells. edited by M. J. Tymms, Totowa, NJ:Humana Press Inc, 2000, p. 135-144; W. Song and D. K. Lahiri. Efficient transfection of DNA by mixing cells in suspension with calcium phosphate. Nucleic Acid Research 23 (\l):3609-36l l, 1995; Y.-W. Yang and J.-C. Yang. Calcium phosphate as a gène carrier: électron microscopy. Biomaterials 18:213-217, 1997).
Ils sont obtenus en versant une solution de chlorure de calcium dans le milieu afin de le sursaturer en calcium et de précipiter un phosphate de calcium dans lequel sont incluses des molécules d'ADN. Ces particules composites sont ensuite phagocytées par les cellules qui intègrent le plasmide de différentes manières et expriment les gènes qui sont transportés.
Cependant, ces coprécipités ont un inconvénient majeur. Ils sont très difficilement utilisables in vivo car il est difficile d'obtenir une sursaturation en système ouvert. D'autre part, ils ne peuvent permettre des transfections localisées dans l'espace.
Les céramiques de phosphates de calcium sont des matériaux obtenus par frittage d'une barbotine contenant des particules de phosphate de calcium en suspension. Ce sont des assemblages de grains liés par des joints de grains (Frayssinet,P., Fages, J., Bonel,G., Rouquet,N., Biotechnology, material sciences and bone repair. European Journal of Orthopaedic Surgery & Traumatology (1998) 8: 17-25).
Ces matériaux présentent une biocompatibilité particulière avec le tissu osseux, ce qui les rend particulièrement utiles comme matériau de reconstruction osseuse ou bien comme vecteur de cellules ostéogéniques (P., Frayssinet, J.L. Trouillet, N. Rouquet, E. Azimus, A. Autefage (1993), Osseointegration of macroporous calcium phosphate ceramics having a différent chemical composition. Biomaterials, 14, 6: 423-429). Dans le cadre de l'invention, nous avons développé des poudres et des céramiques de phosphate de calcium capables de transfecter des cellules à la fois in vivo et in vitro, notamment des cellules mésenchymateuses. La composition chimique de ces céramiques peut varier car plusieurs sels de l'acide orthophosphorique peuvent rentrer dans leur composition, en particulier, le phosphate tricalcique, l'hydroxyapatite qui est la phase de synthèse la plus proche de la phase minérale du tissu osseux, et le phosphate octocalcique. Ces céramiques ont une autre particularité, elles ont des propriétés de surface très variables en fonction de différents paramètres tels que, parmi d'autres, le mode de synthèse de la poudre, la température de cuisson, ou la présence de divers éléments traces. Ces différents facteurs influent en particulier sur la charge de surface, le potentiel zêta et les capacités de substitution dans la maille du phosphate de calcium. Les céramiques phosphocalcique ont également la particularité de présenter des croissance épitaxiques d'apatite carbonatée à leur surface une fois implantées dans l'organisme ou immergées dans un milieu salin de composition comparable au liquide extracellulaire (M. Heughebaert, R. Z. LeGeros, M. Gineste, and A. Guilhem. Hydroxyapatite (HA) ceramics implanted in non-bone-forming sites. Physico-chemical characterization. J Biomed Mat Res 22:257-268, 1988). C'est à ces croissances cristallines qu'ont été attribuées les propriétés de biocompatibilité de ces matériaux.
Les propriétés d'adsorption des phosphates de calcium vis-à-vis des acides nucléiques ont été mises à profit en chromatographie sur colonnes d'HA pour séparer et purifier l'ADN ou certains ARN. Il est essentiel de comprendre que, à composition chimique égale, toutes les poudres d'hydroxyapatite utilisées en chromatographie n'ont pas le même pouvoir séparateur des acides nucléiques (A. Eon-Duval, Purification of plasmid DNA by hydroxyapatite chromatography, Abstract of 2n conférence on hydroxyapatite. San Francisco March 2001). Les interactions entre les molécules organiques et l'hydroxyapatite dépendent des propriétés de surface de ce minerai (M.J. Gorbunoff, Protein chromatography on hydroxyapatite columns. Methods in Enzymology, vol 182, Académie Press Inc 1985 : 329-339), qui peuvent varier d'un lot à l'autre.
Il a été prouvé que la distribution des charges à la surface du solide et ses capacités d'hydratation ont une influence importante sur l'adsorption des molécules organiques à sa surface (Norde,W., Lyklema, J., (1991) Why proteins prefer interfaces. J Biomed Sci Polymer Edn 2, 183-202 (1991)). De même, la force ionique, et le pH du solvant des molécules organiques doivent être pris en compte.
Si la protéine en solution et le solide ont une charge opposée, ils s'attirent. Au moins si la charge de la protéine et celle de la surface du solide se compensent grossièrement. Si les charges ne se compensent pas, cela résulte en une accumulation de charges dans la région de contact causant une haut potentiel électrostatique, énergétiquement peu favorable à une adsorption. Une situation similaire est observée lorsque la surface du solide et la molécule organique sont de même signe. Néanmoins, dans de nombreux cas, l'adsorption peut se faire tout de même dans certains cas grâce à l'incorporation d'ions de la solution à l'interface de la couche adsorbée qui prévient l'accumulation de charge.
L'hydrophobie a une influence sur l'adsorption car elle participe à la répartition des charges en particulier dans les molécules organiques qui ont une structure tertiaire et quaternaire. L'hydrophobie d'une surface (molécule ou bien solide) peut favoriser l'adsorption.
La répartition des charges ainsi que les capacités d'hydratation des apatites sont des propriétés intéressantes car elles peuvent avoir une charge de surface positive ou négative et peuvent être hydrophiles ou hydrophobes. De plus, les substitutions dans la maille pouvant être nombreuses, les groupes fonctionnels à la surface peuvent varier. Nous avons développé des poudres de phosphates de calcium à base d' hydroxyapatite capables de fixer de l'ADN sous différentes formes et de le délivrer à des cellules isolées ou dans l'organisme à des fins de transfection. Ces poudres peuvent être injectés en suspension dans un liquide ou bien un gel. Elles peuvent également être déposées à la curette ou bien servir de vecteur transfectant à des cellules cultivées en réseau tridimensionnel. Elles ont des propriétés physico-chimiques particulières afin de posséder ces propriétés de transfection. Une série d'expérimentation a été menée permettant de juger la transfection de cellules isolées ou non avec un plasmide porteur du gène de la galactosidase pouvant être mis en évidence par histochimie. La poudre est une mise en forme particulièrement bien adaptée pour pouvoir transfecter à la fois des cellules isolées ou des tissus à la fois in vitro et in vivo. Ces poudres permettent une intemalisation de l'ADN ainsi que sa protection des nucléases intracytoplasmiques et son transfert dans le noyau.
Le mécanisme intervenant dans la fixation d'ADN (molécule organique de charge négative) à la surface de particules d' hydroxyapatite peut-être :
• Une adsorption électrostatique lorsque le matériau est de charge positive
• Une coprécipitation des molécules d'ADN dans la couche d'apatite carbonatée apparaissant par croissance épitaxique à la surface de ces matériau et résultant de processus de dissolution/reprécipitation complexes se déroulant à la surface dans des milieux sursaturés en calcium et phosphore.
• Un échange ionique entre la phase interfaciale et la solution
L'ADN une fois fixé sur le matériau doit pénétrer dans la cellule. La composition et les caractéristiques de surface sont également importants pour la dégradation du matériau en milieu biologique et l'émission de particules transfectantes. On sait que les céramiques d'HA se dégradent aux joints de grains et que la couche d'apatite carbonatée apparaissant à la surface du matériau par croissance épitaxique a une solubilité différente du matériau lui-même.
En revanche, tous les phosphates de calcium ne peuvent transfecter des cellules. Le DCPD par exemple ou bien certaines mises en forme d'HA ou de TCP ont montré leur incapacité à le faire. Leur cytotoxicité est certainement responsable de ceci.
Au contraire, la modification de la surface des poudres et des céramiques par maturation dans un milieu de culture entraînant une croissance épitaxique d'apatite carbonatée améliore le rendement de marquage.
Description
Ainsi, dans un premier aspect, la présente invention se rapporte à un procédé pour créer un composite minéral- ADN caractérisé en ce qu'il comprend une étape consistant en une incubation dans un milieu salin ou de culture non saturé en calcium et phosphore en présence de la molécule d'ADN. Ce procédé permet d'obtenir une fixation d'ADN à la surface de la céramique par adsorption sur une surface de céramique modifiée par croissance épitaxique ou bien par co-précipitation à la surface du matériau. Ces particules de phosphates de calcium sont immergées dans un milieu salin ou un milieu de culture du type des milieux de culture cellulaire couramment employées en biotechnologie, notamment le DMEM, pendant environ quelques minutes, par exemple
1, 5, 10 ou 30 minutes au moins à environ 12, 24, 48 heures, quelques jours ou davantage à une température allant de 15 à 50°C, de préférence environ 37°C. Le but est d'avoir la formation d'une couche d'apatite carbonatée à la surface avant ou pendant la mise en contact avec les plasmides.
Dans un mode de réalisation particulier, le procédé mentionné ci-dessus est réalisé avant la mise en contact avec les acides nucléiques, notamment des plasmides. lternativement, cette étape entraînant une croissance épitaxique d'apatite carbonatée à la surface desdites poudres et céramiques est réalisée dans un milieu contenant les acides nucléiques. Dans ce mode, la modification de surface et la fixation des acides nucléiques sont réalisées simultanément.
De préférence, les poudres et céramiques sont immergées dans un milieu de culture DMEM pendant 48 heures à 37°C avant ou simultanément à la fixation des acides nucléiques.
Dans un aspect complémentaire, l'invention porte sur un procédé pour fixer de l'ADN sous forme plasmidique à la surface de poudre ou céramique de phosphates de calcium caractérisé en ce qu'il comprend une étape a) consistant en une hydratation de la poudre de phosphate de calcium ou de la céramique de phosphate de calcium dans une solution de tampon phosphate non saturée en calcium et phosphate et une étape b) consistant en une immersion des produits obtenus à l'étape a) dans une solution de tampon phosphate non saturée en calcium et phosphate contenant un ADN simple ou double brin pour des durées variables de quelques minutes à plusieurs heures, c) obtention de particules de phosphates de calcium comportant des molécules d'ADN fixées à sa surface.
De préférence, la solution de l'étape a) et b) comprend un tampon phosphate à 0,12 M (pH 6,8). L'immersion est effectuée pendant au moins 1, 5, 10 ou 30 minutes jusqu'à environ 12, 24, ou 48 heures à une température allant de 15 à 50°C, de préférence environ 37°C. En outre, les particules de phosphates de calcium sont maintenues immergées dans un milieu de culture du type des milieux de culture cellulaire, pendant environ quelques minutes à quelques jours, et à une température allant de 15 à 50°C, de préférence environ 37°C.
Ainsi, dans ce procédé, l'hydratation réside de préférence en une immersion de la poudre de phosphate de calcium ou de la céramique de phosphate de calcium dans une solution simulant les fluides extracellulaires destinée à produire une croissance épitaxique d'apatite carbonatée à la surface desdites poudres et céramiques. A ce titre, l'étape b) est réalisée au moyen d'un milieu simulant les fluides extracellulaires ou un milieu du type des milieux de culture cellulaires contenant les acides nucléiques, ledit milieu étant non dénaturant pour l'ADN et non saturé en calcium et phosphate. Ce milieu entraîne une croissance épitaxique d'apatite carbonatée à la surface desdites poudres et céramiques.
Les étapes a) et b) peuvent être effectuées simultanément ou successivement. Ainsi, on peut mettre en œuvre l'invention avec une solution contenant un ADN simple ou double brin pour des durées variables de quelques minutes à plusieurs heures à environ
37°C.
Avantageusement, ce procédé permet de fixer l'ADN à pH physiologique sur des particules de phosphate de calcium dans des conditions qui ne sont pas dénaturantes pour la molécule d'ADN. Les céramiques peuvent être des céramiques poreuses ou denses.
Dans un autre aspect, l'invention porte sur un procédé pour transfecter des cellules isolées, cultivées en monocouche ou en trois dimensions consistant en la mise en contact des cellules à transfecter avec les particules obtenues par le procédé décrit ci- dessus pendant des durées de quelques heures à quelques semaines. Ce procédé peut également être mise en œuvre pour transfecter des cellules contenues dans un fragment tissulaire cultivé. Les particules obtenues mentionné ci-dessus est particulièrement utile pour la préparation d'un médicament pour transfecter in vivo des cellules contenues dans un tissu ou dans un organe.
Dans un autre aspect, l'invention porte sur les poudres et les céramiques de phosphates de calcium susceptibles d'être obtenues à partir du procédé décrit ci-dessus, caractérisées en ce qu'elles peuvent supporter une croissance épitaxique d'apatite carbonatée à leur surface dans des conditions non dénaturantes, notamment dans une solution saline non saturée et non dénaturante pour les macromolécules biologiques. L'invention vise également ces poudres et céramiques de phosphates de calcium comprenant en outre les acides nucléiques fixés à leur surface.
Ces produits sont particulièrement efficaces pour la transfection de cellules in vitro et in vivo.
Avantageusement, les poudres et céramiques obtenues possèdent au moins l'une des propriétés décrites ci-après avant la modification de surface :
- Nature des groupes chargés à la surface : PO4 ", OH", Ca^
- pH de surface basique
- Potentiel électrocinétique négatif
- Hydrophobe - granulométrie comprise entre 0-200 μm, en particulier entre 80-125 μm et 0-25 μm.
De préférence, les produits de l'invention comprennent l'ensemble des caractéristiques décrites ci-dessus.
En outre, les poudres et céramiques de phosphates de calcium mentionnées ci-dessus peuvent comporter un noyau composé d'un autre matériau polymérique, céramique ou métallique, de préférence magnétique.
L'invention vise également les particules formées à base de poudres de phosphates de calcium décrites ci-dessus, lesdites particules étant comprises dans une matrice minérale ou polymérique, en particulier dans des ciments de phosphate ou de sulfate de calcium. Dans un autre aspect, l'invention se rapporte à un revêtement de céramiques de prothèses articulaires ayant les caractéristiques de la céramique définie ci-dessus.
L'invention vise également l'utilisation desdites poudres et céramiques de phosphate de calcium chargée en ADN à leur surface comme support pour la culture cellulaire, notamment pour la culture en réseau tridimensionnel de cellules transfectées par le support et pour la transfection de cellules in vitro et in vivo.
Les exemples suivants sont donnés à titre illustratif. Ils constituent des modes de réalisations préférés de l'invention.
Exemple 1 : Caractéristique des poudres utilisées
Type P15: poudre sphérique de surface spécifique 0,62 m2/g. Elles ont été calcinées à 1 180°C et leur granulométrie est comprise entre 80-125 μm.
Type PI: poudre de forme quelconque de surface spécifique 56,84 m2/g, non calcinée (brute) de granulométrie comprise entre 0-25 μm.
L'étude granulométrique des poudres utilisées montre que les poudres sphériques (PI 5) ont une tranche granulométrique bien définie alors que celles de forme quelconque (PI) a des tranches granulométriques beaucoup plus larges avec beaucoup de particules fines. Le pH de charge nulle varie avec la température de calcination des poudres. Le potentiel zêta de la poudre PI mesuré dans de l'eau déminéralisée est de -27,5 mV et le pH de surface est de 9,08.
En fonction de la température de frittage de la poudre, le pH de charge nul est variable mais largement inférieur au pH physiologique. Ceci signifie que quelque soit la température de frittage, le potentiel électrocinétique des poudres, au pH neutre, est négatif.
L'examen en microscopie à balayage des poudres sphériques montre qu'elles sont constituées par des grains assemblés par des joints de grains. Il existe des irrégularités de surface sur certaines des faces des grains à fort grossissement.
Exemple 2 : Méthode de fixation de l'ADN sur le vecteur
Le vecteur peut être utilisé de deux manières différentes :
Méthode A : Il peut être incubé directement avec le plasmide dans une solution de tampon phosphate. Il est alors maintenu incubé dans celui-ci pendant plusieurs heures alors que sa surface est modifiée par croissance épitaxique d'apatite carbonatée. La fixation peut alors se faire par coprécipitation à la surface du matériau. Méthode B : Il peut également être mis en présence d'une solution saline pendant plusieurs jours afin de modifier la surface. Une fois que celle-ci est équilibrée, le matériau est ensuite mis dans la solution contenant le plasmide. La fixation de l'ADN est supposée se faire alors à la surface de la du matériau modifié. Fixation du plasmide sur la surface des particules natives (méthode A):
L'ADN double brin a une affinité marquée pour l'HA lorsqu'il est dissous dans de faibles concentrations de tampon phosphate. Ils sont élues dans des concentrations supérieures de tampon phosphate. 1 m de surface de poudre a été disposé dans les boîtes de Pétri soit 1,61 gr pour le type A et 0,017 g dans le type B.
• Hydratation de la poudre d'HA (2ml/g) dans 10ml de tampon phosphate 0,12M à pH 6,8. Chauffage 15 à 30 mn à 100°C. • Laisser reposer à température ambiante et sortir le tampon. Resuspendre dans 5 à 10 ml de 0,12 M de tampon phosphate à pH 6,8 à 60°C, décanter et resuspendre dans 5 ml du même tampon à 60°C.
• Ajouter l'échantillon de l'acide nucléique dans 1 ml de tampon phosphate 0,12M à pH 6,8 à 40°C (l'élution des acides nucléiques doubles brins peut se faire en lavant l'HA 8 à 10 fois avec 0,5 ml de tampon phosphate (0,4M)).
Fixation du plasmide à la surface des particules modifiées par croissance épitaxiques (méthode B):
• Les particules ont été incubées à 37°C dans du milieu de culture DMEM pendant 48 heures.
• Elles sont lavées dans une solution de tampon phosphate 0,12M à pH 6,8
• On ajoute l'échantillon de l'acide nucléique dans 1 ml de tampon phosphate 0,12M à pH 6,8 à 40°C
Exemple 3 : Transfection de cellules in vitro
Trois lignées ont été utilisées:
• Cartilage de croissance de lapin • Périoste de lapin
• Cellules de calvaria de rat
Elles sont obtenues en digérant la matrice collagénique dans une solution de collagénase suivie d'une centrifugation.
3.1 Matériau à surface non modifiée
La quantité de poudre (type B) a toujours été la même : 10 mg.
Lors de la transfection les cellules n'étaient pas à confluence. Les cellules ont été transfectées à J0 et la première évaluation par histochimie de l'expression de la galoctosidase a été faite à J4, J21 , J30. A J4:
Toutes les lignées présentent des zones de marquage. Dans les puits transfectés avec des particules, les cellules marquées sont groupés autour des particules bien que certaines en soient néanmoins éloignées. Cet éloignement peut s'expliquer par le fait que les particules émettent des débris avec une surface spécifique élevée. On les voit au microscope au milieu de groupes de cellules marquées. Cellules de cartilage de croissance: en valeur absolue, c'est la série qui a été le plus marquée. A J21 En ce qui concerne les cellules de cartilage, le nombre de cellules transfectées est important. Les cellules des calvarias de rats sont fortement positives. A J30
Les cellules ont une inhibition de contact relative, elles sont quasiment en trois dimensions et arrondies. La plupart des cellules des trois groupes sont positives. Le nombre de cellules positives et le taux de croissance précédent semblent indiquer que les plasmides sont transmis d'une cellule à l'autre ou bien que le relargage de particules d'ADN s'étale dans le temps, le pourcentage de cellules positives aurait été très faible dans le cas contraire. Il est également possible que les relargages de particules transfectantes soient progressifs. Les cellules marquées préférentiellement sont celles au contact des particules. Pourcentage des cellules marquées en fonction des lignées utilisées :
3.2 Matériau à surface modifiée par croissance épitaxique
Dès les premiers temps de la culture, la plupart des cellules sont marquées.
3.2.1 Transfection de part et d'autre d'une membrane hémiperméable
Les grains ont été disposés au contact des cellules soit séparés de celles-ci par une membrane poreuse (0,2μm) en polycarbonate les séparant du tapis cellulaire. Le marquage cellulaire par la galactosidase est évalué par histochimie à J4. Les cellules en contact direct avec les particules sont marquées sporadiquement. Les cellules qui ne sont pas au contact des particules (séparées par la membrane) sont également marquées. Il existe donc des particules transfectantes de taille inférieure à 0,2 μm passant à travers les pores de la membrane en polycarbonate.
3.2.2 Transfection de cellules en réseau tridimensionnel
Les lignées cellulaires précédemment décrites sont mises en suspension dans le milieu de culture. Le lit est disposé au fond d'une boîte de culture. La suspension sert à ensemencer un lit de microbilles (1.5-2 105 cellules/0,05 gr de billes) vectrices de plasmides portant le gène la galactosidase. Le lit est disposé au fond d'une boîte de culture. Les cellules sont cultivées 10 à 15 jours. On obtient la formation d'une couche cellulaire tridimentionnelle pontant et agglomérant les billes. Cette couche contient également une matrice collagénique abondante. A la date d'observation les cellules forment un réseau tridimensionnel pontant les différentes particules et les assemblant. La microscopie optique révèle que les cellules contenues dans l'amas de particules sont marquées par la galactosidase.
3.2.3 Transfection de cellules dans des cultures de tissu
Matériau utilisé pour le marquage: Type A: poudre sphérique de surface spécifique 0,62 m2/g. Elles ont été calcinées à 1180°C et leur granulométrie est 80-125 μm. La quantité de poudre est de quelques dizaines de particules par boites (PI 5).
Quelques billes ont été placées au contact des fragments osseux après avoir été incubées sans pré-immersion (méthode A).
Les fragments osseux proviennent de fémurs, tibias et calvaria de rats nouveaux-nés âgés de 3 jours. Les pièces osseuses ont été nettoyés des tissus mous attenants. Les os longs ont été coupés en trois morceaux: 2 épiphyses et la diaphyse. Les calvarias ont été coupées en petits fragments de 2 à 3 mm de côté. Ces différents fragments ont été déposés à la surface d'un gel à 3% d'agar dans du DMEM. Le milieu de culture (DMEM+SVF) a été ensuite rajouté de façon à ce que les fragments affleurent à l'interface liquide-air.
Les billes ont été maintenues en contact des tissus pendant 2 à 30 jours, date à laquelle l'activité galactosidase des cellules est mise en évidence avant de faire des coupes histologiques.
A 2 jours de mise en contact, des zones de marquage sporadiques sont identifiables. Le marquage se fait à distance et au contact des billes d'HA. Il a lieu également au contact de ces mêmes billes. A 30 jours, la totalité des fragments osseux a viré au bleu macroscopiquement (figure
1).
La figure 1 représente une macrophotographie d'une culture de tissu osseux en présence de poudre transfectante pendant 30 jours. Le fragment osseux est entièrement bleu en raison de la transfection des cellules par le plasmide vecteur de la galactosidase. En microscopie optique par réflexion, il n'est pas possible de voir une zone qui ne soit pas marquée. Les billes sont engluées dans une matrice marquée par la réaction à la galactosidase.
Les coupes des différents échantillons de tissu osseux cultivés 30j montrent que les cellules osseuses (ostéoblastes, chondroblastes, cellules périchondrales, cellules périostées, ostéoclastes) sont marquées (la figure 2 est une coupe histologique du même tissu montrant que toutes les cellules ont été transfectées par la galoctosidase X 30). Les cellules des lignées hématopoïétiques ne sont pas marquées. Il faut noter que:
• Toutes les cellules osseuses sont marquées
• Elles le sont quelle que soit la distance des cellules aux billes.
3.2.4 Transfection in vivo Un groupe de 10 lapins maies NZW âgés de 4 semaines est sélectionné de manière aléatoire. Ces lapins sont divisés en deux groupes : Lot A et Lot B. Un lapin de chaque groupe sert de témoin.
La zone opératoire se situe sur la mandibule coté gauche en arrière des incisives mandibulaires. Il est à noter qu'une étude préliminaire a permis de sélectionner ce site dans lequel l'os est le plus abondant. Le type de poudre PI 5 a été utilisé. L'ADN a été fixé par la méthode A.
Après la pose de champs stériles et la désinfection cutanée et muqueuse une incision vestibulaire intrabuccale est réalisée à l'aide d'un bistouri. Un lambeau de pleine épaisseur est récliné pour accéder à la zone osseuse mandibulaire à la base des incisives. Un trépan de 3mm est utilisé pour systématiser l'effraction osseuse. Le défaut osseux réalisé est de l'ordre de 2 mm de profondeur. Le volet osseux est éliminé à l'aide de ciseau à os. Le biomatériau est aspiré à l'aide d'une seringue de 5 ml et déposé dans le défaut osseux de telle manière qu'il le remplisse. Une légère pression est utilisée avec une gaze stérile pour maintenir en place le biomatériau. Le lambeau repositionné est ensuite suturé
Deux témoins subissent une deuxième opération controlatérale sans dépose de biomatériau. Les lapins ont été sacrifiés à 3 et 6 semaines. Les mandibules ont été prélevées, fixées dans l'éthanol et incluse dans de l'hydroxy-ethylmethacrylate. Des coupes de 5 μm d'épaisseur ont été réalisées et l'activité galactosidase mise en évidence
• A 3 semaines : Dans les sites témoins:
Les coupes histologiques montrent un os spongieux avec peu de trabécules dont les pores sont occupés par un tissu stromal très lâche. Il existe des cellules multinucléées d'allure ostéoclastique à la surface des trabécules. Ces cellules sont toutes marquées par la réaction à la galactosidase. De la même manière, tous les monocytes sont également marqués. Ce sont les seules cellules qui sont marquées. Dans les sites implantés :
Les coupes passant à travers les billes de phosphate de calcium montrent que les billes sont incluses dans un tissu conjonctif relativement dense avec de nombreuses cellules multinucléées à leur surface. Toutes les cellules, fibroblastiques ou multinucléées sont marquées par la galactosidase.
Lorsque les coupes s'éloignent des billes, il existe moins de cellules marquées néanmoins les structures tissulaires n'ayant pas été perturbées par l'acte opératoire donnent des informations intéressantes. Les fibroblastes des ligaments dentaires sont marquées. Il existe des îlots de cellules d'aspect fibroblastique marqués dans le tissu stromal des pores entre les trabécules. Dans certains cas, il semble même que des cellules de la lignée ostéoblastique soient également marquées.
• 6 semaines : Macroscopiquement, il existe un marquage autour des grains d'HA. Les coupes montrent des cellules stromales positives, les cellules des ligaments dentaires ainsi que les odontoblastes expriment le gène.

Claims

REVENDICATIONS
1. Procédé pour fixer de l'ADN sous forme plasmidique à la surface de poudre ou céramique de phosphates de calcium caractérisé en ce qu'il comprend une étape a) consistant en une hydratation de la poudre de phosphate de calcium ou de la céramique de phosphate de calcium dans une solution de tampon phosphate non saturée en calcium et phosphate et une étape b) consistant en une immersion des produits obtenus à l'étape a) dans une solution de tampon phosphate non saturée en calcium et phosphate contenant un ADN simple ou double brin pour des durées variables de quelques minutes à plusieurs heures, c) obtention de particules de phosphates de calcium comportant des molécules d'ADN fixées à sa surface.
2. Procédé selon la revendication 1, caractérisé en ce que la solution de l'étape a) et b) comprend un tampon phosphate à 0,12 M (pH 6,8).
3. Procédé selon la revendication 1, caractérisé en ce que l'immersion est effectuée pendant au moins 1, 5, 10 ou 30 minutes jusqu'à environ 12, 24, ou 48 heures à une température allant de 15 à 50°C, de préférence environ 37°C.
4. Procédé selon la revendication 1, caractérisé en ce que les particules de phosphates de calcium sont maintenues immergées dans un milieu de culture du type des milieux de culture cellulaire.
5. Procédé selon la revendication 4, caractérisé en ce que les particules de phosphates de calcium sont immergées pendant environ quelques minutes à quelques jours.
6. Procédé selon l'une des revendications 4 et 5, caractérisé en ce que les particules de phosphates de calcium sont immergées à une température allant de 15 à 50°C, de préférence environ 37°C.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que l'étape b) est réalisée au moyen d'un milieu simulant les fluides extracellulaires ou un milieu du type des milieux de culture cellulaires contenant les acides nucléiques, ledit milieu étant non dénaturant pour l'ADN et non saturé en calcium et phosphate; entraînant une croissance épitaxique d'apatite carbonatée à la surface desdites poudres et céramiques.
8. Procédé selon l'une des revendications 1 et 7, caractérisé en ce que les étapes a) et b) sont effectuées simultanément ou successivement.
9. Utilisation du procédé selon l'une des revendications 7 et 8 pour de fixer l'ADN dans des conditions de pH physiologique sur des particules de phosphate de calcium.
10. Procédé pour transfecter des cellules isolées, cultivées en monocouche ou en trois dimensions consistant en la mise en contact des cellules à transfecter avec les particules obtenues par le procédé selon l'une des revendications 1 à 8 pendant des durées de quelques heures à quelques semaines.
1 1. Procédé pour transfecter des cellules contenues dans un fragment tissulaire cultivé consistant en la mise en contact des cellules à transfecter avec les particules obtenues par le procédé selon l'une des revendications 1 à 8 pendant des durées de quelques heures à quelques semaines.
12. Utilisation des particules obtenues par le procédé selon l'une des revendications 1 à 8 pour la préparation d'un médicament pour transfecter in vivo des cellules contenues dans un tissu ou dans un organe.
13. Poudres et céramiques de phosphates de calcium susceptibles d'être obtenues à partir du procédé selon l'une des revendications 1 à 8, caractérisées en ce qu'elles supportent une croissance épitaxique d'apatite carbonatée à leur surface dans des conditions non dénaturantes.
14. Poudres et céramiques de phosphates de calcium selon la revendication 13 comprenant en outre les acides nucléiques fixés à leur surface.
15. Poudres et céramiques de phosphates de calcium selon l'une des revendications 13 et 14 caractérisées en ce qu'elles possèdent au moins l'une des propriétés suivantes :
- Nature des groupes chargés à la surface : PO4 "", OH", Ca"1"1"
- pH de surface basique
- Potentiel électrocinétique négatif - Hydrophobe
- granulométrie comprise entre 0-200 μm, en particulier entre 80-125 μm et 0-25 μm.
16. Poudres et céramiques de phosphates de calcium selon l'une des revendications 13 à 15 caractérisées en ce qu'elles comprennent en outre un noyau composé d'un autre matériau polymérique, céramique ou métallique, de préférence magnétique.
17. Particules formées à base de poudres de phosphates de calcium selon l'une des revendications 13 à 16 comprises dans une matrice minérale ou polymérique en particulier dans des ciments de phosphate ou de sulfate de calcium.
18. Utilisation des poudres et céramiques de phosphates de calcium selon l'une des revendications 13 à 16 pour la transfection de cellules in vitro
19. Utilisation des poudres et céramiques de phosphates de calcium selon l'une des revendications 13 à 16 pour la fabrication d'un médicament pour la transfection de cellules in vivo.
20. Utilisation des poudres et céramiques de phosphates de calcium selon l'une des revendications 13 à 16 pour la culture de cellules transfectées en trois dimensions avec formation d'une matrice cellulaire et extracellulaire agrégeant les particules.
EP03814492A 2002-12-27 2003-12-24 Particules et ceramiques de phosphates de calcium pour la transfection in vivo et in vitro Withdrawn EP1587543A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0216785 2002-12-27
FR0216785A FR2849436B1 (fr) 2002-12-27 2002-12-27 Particules et ceramiques de phosphates de calcium pour transfection in vivo et in vitro
PCT/FR2003/003897 WO2004060407A1 (fr) 2002-12-27 2003-12-24 Particules et ceramiques de phosphates de calcium pour la transfection in vivo et in vitro

Publications (1)

Publication Number Publication Date
EP1587543A1 true EP1587543A1 (fr) 2005-10-26

Family

ID=32480241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03814492A Withdrawn EP1587543A1 (fr) 2002-12-27 2003-12-24 Particules et ceramiques de phosphates de calcium pour la transfection in vivo et in vitro

Country Status (8)

Country Link
US (1) US20070048737A1 (fr)
EP (1) EP1587543A1 (fr)
JP (1) JP2006514655A (fr)
AU (1) AU2003303609A1 (fr)
BR (1) BR0317766A (fr)
CA (1) CA2511820A1 (fr)
FR (1) FR2849436B1 (fr)
WO (1) WO2004060407A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2885525B1 (fr) * 2005-05-13 2009-09-18 Urodelia Sa Medicament notamment anti-cancereux, destine a des traitements par immunotherapie, en particulier autologue
JP2008541958A (ja) * 2005-06-09 2008-11-27 ドクトル ハー ツェー ロベルト マティス シュティフツング 造形品
US20090191111A1 (en) * 2008-01-29 2009-07-30 Inha-Industry Partnership Institute Preparation method of calcium phosphate-based ceramic powder and compact thereof
US9493551B2 (en) 2009-02-24 2016-11-15 Alexion Pharmaceuticals, Inc. Antibodies containing therapeutic TPO/EPO mimetic peptides
CN105963694B (zh) 2010-04-30 2019-11-05 阿雷克森制药公司 抗-c5a抗体和使用所述抗体的方法
NZ631007A (en) 2014-03-07 2015-10-30 Alexion Pharma Inc Anti-c5 antibodies having improved pharmacokinetics
CN107428818A (zh) 2015-01-29 2017-12-01 密西根州立大学校董会 隐藏多肽及其用途
EP3294334B1 (fr) 2015-05-11 2020-07-08 The Johns Hopkins University Anticorps auto-immuns destinés à être utilisés pour inhiber la croissance de cellules cancéreuses
WO2017117218A1 (fr) 2015-12-30 2017-07-06 Momenta Pharmaceuticals, Inc. Méthodes associées à des produits biologiques
EP3658184B1 (fr) 2017-07-27 2023-09-06 Alexion Pharmaceuticals, Inc. Formules d'anticorps anti-c5 à haute concentration
US11518971B2 (en) 2018-11-27 2022-12-06 Research Triangle Institute Method and apparatus for spatial control of cellular growth
BR112022021450A2 (pt) 2020-04-24 2022-12-27 Millennium Pharm Inc O cd19 ou fragmento de ligação, método de tratamento de um câncer, composição farmacêutica, ácido nucleico, vetor, e, célula isolada
KR20230069961A (ko) 2020-09-14 2023-05-19 보르 바이오파마 인크. Cd33에 대한 단일 도메인 항체
KR20230121831A (ko) 2020-12-18 2023-08-21 모멘타 파머슈티컬스 인코포레이티드 인테그린 알파 11 베타 1에 대한 항체
CN117425673A (zh) 2021-04-09 2024-01-19 武田药品工业株式会社 靶向补体因子d的抗体和其用途
AU2022266584A1 (en) 2021-04-26 2023-10-12 Millennium Pharmaceuticals, Inc. Anti-clec12a antibodies and uses thereof
BR112023020371A2 (pt) 2021-04-26 2024-02-06 Millennium Pharm Inc Anticorpo anti-adgre2 humanizado ou fragmento de ligação ao antígeno do mesmo, método de tratamento de um câncer, composição farmacêutica, sequência de ácido nucleico, vetor, célula isolada, e, método de tratamento de câncer
WO2023068382A2 (fr) 2021-10-20 2023-04-27 Takeda Pharmaceutical Company Limited Compositions ciblant bcma et leurs procédés d'utilisation
WO2023201238A1 (fr) 2022-04-11 2023-10-19 Vor Biopharma Inc. Agents de liaison et leurs méthodes d'utilisation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506659A (ja) * 1995-06-06 1999-06-15 オステオジェニックス・インコーポレーテッド 生物学的互換ヒドロキシアパタイト製剤及びその使用
US6730324B2 (en) * 2001-04-20 2004-05-04 The University Of British Columbia Biofunctional hydroxyapatite coatings and microspheres for in-situ drug encapsulation

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AKAHANE M. ET AL: "Hydroxyapatite ceramics as a carrier of gene-transduced bone marrow cells", J ORTHOP SCI, vol. 7, 17 December 2002 (2002-12-17), pages 677 - 682 *
ASADA M. ET AL: "Hydroxyapatite chrystal growth on calcium hydroxyapatite ceramics", JOURNAL OF MATERIALS SCIENCE, vol. 23, no. 9, September 1988 (1988-09-01), pages 3202 - 3205 *
FRAYSSINET P AND GUILHEM A: "Cell transfection using calcium phosphate ceramic", BIOPROCESSING JOURNAL, vol. 3, August 2004 (2004-08-01), pages 57 - 59, XP008117911 *
GIOVANNINI R.; FREITAG R.: "Comparison of different types of ceramic hydroxyapatite for the chromotographic separation of plasmid DNA and a recombinant anti-Rhesus D antibody", BIOSEPARATION, vol. 9, 2001, pages 359 - 368, XP009047265, DOI: doi:10.1023/A:1011174905511 *
See also references of WO2004060407A1 *

Also Published As

Publication number Publication date
FR2849436B1 (fr) 2007-01-05
JP2006514655A (ja) 2006-05-11
AU2003303609A1 (en) 2004-07-29
US20070048737A1 (en) 2007-03-01
FR2849436A1 (fr) 2004-07-02
WO2004060407A1 (fr) 2004-07-22
BR0317766A (pt) 2005-11-22
CA2511820A1 (fr) 2004-07-22

Similar Documents

Publication Publication Date Title
EP1587543A1 (fr) Particules et ceramiques de phosphates de calcium pour la transfection in vivo et in vitro
Dan et al. The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets
Zhang et al. A platelet-derived growth factor releasing chitosan/coral composite scaffold for periodontal tissue engineering
ES2693609T3 (es) Lámina de células cultivadas, método para su producción y método para su aplicación
Moshaverinia et al. Encapsulated dental‐derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering
RU2718590C2 (ru) Индукция остеогенеза путем внедрения рнк, кодирующей костный морфогенетический белок (кмб)
Li et al. Surface Immobilization of TiO2 Nanotubes with Bone Morphogenetic Protein‐2 Synergistically Enhances Initial Preosteoblast Adhesion and Osseointegration
Saha et al. A biomimetic self-assembling peptide promotes bone regeneration in vivo: A rat cranial defect study
WO2003088925A2 (fr) Procede de fabrication d'hydroxyapatite et utilisations de celle-ci pour l'administration d'acides nucleiques
Zhao et al. Degradation-kinetics-controllable and tissue-regeneration-matchable photocross-linked alginate hydrogels for bone repair
Wu et al. Chitosan-miRNA functionalized microporous titanium oxide surfaces via a layer-by-layer approach with a sustained release profile for enhanced osteogenic activity
Fan et al. An injectable bioorthogonal dextran hydrogel for enhanced chondrogenesis of primary stem cells
Hassan et al. Self-oxygenation of engineered living tissues orchestrates osteogenic commitment of mesenchymal stem cells
WO2001018174A2 (fr) Substrat de croissance pour des cellules
Li et al. Minimally invasive bone augmentation through subperiosteal injectable hydroxylapatite/laponite/alginate nanocomposite hydrogels
CN111494707A (zh) 一种含外泌体的软骨修复材料的制备方法
Cho et al. In situ-forming collagen/poly-γ-glutamic acid hydrogel system with mesenchymal stem cells and bone morphogenetic protein-2 for bone tissue regeneration in a mouse calvarial bone defect model
KR20160020298A (ko) 골 형성 유도인자가 탑재된 이중 기공구조를 갖는 인산칼슘 입자/지지체의 제조방법
JP7453334B2 (ja) 核酸-リン酸カルシウムナノ粒子複合体及び生物鉱化におけるその使用
Sun et al. Dual mechanism design to enhance bone formation by overexpressed SDF-1 ADSCs in magnesium doped calcium phosphate scaffolds
Chen et al. 3D-printed mesoporous bioactive glass scaffolds for enhancing bone repair via synergetic angiogenesis and osteogenesis
US20100104641A1 (en) Therapeutic composition, and use of a cell-free substance
Li et al. Osteoimmunity-regulating nanosilicate-reinforced hydrogels for enhancing osseointegration
JPH07194373A (ja) 骨髄細胞の培養方法、培養用混合物および硬組織欠損部への移植用材料
Song et al. Structure driven bio-responsive ability of injectable nanocomposite hydrogels for efficient bone regeneration

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080219

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110701