EP1580404B1 - Arrangement for self adjusting the tip clearance in a two or multiple stage turbine - Google Patents

Arrangement for self adjusting the tip clearance in a two or multiple stage turbine Download PDF

Info

Publication number
EP1580404B1
EP1580404B1 EP05090065A EP05090065A EP1580404B1 EP 1580404 B1 EP1580404 B1 EP 1580404B1 EP 05090065 A EP05090065 A EP 05090065A EP 05090065 A EP05090065 A EP 05090065A EP 1580404 B1 EP1580404 B1 EP 1580404B1
Authority
EP
European Patent Office
Prior art keywords
bridge
arrangement
elements
radially
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05090065A
Other languages
German (de)
French (fr)
Other versions
EP1580404A2 (en
EP1580404A3 (en
Inventor
Thomas Wunderlich
Peter Broadhead
Harald Schiebold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP1580404A2 publication Critical patent/EP1580404A2/en
Publication of EP1580404A3 publication Critical patent/EP1580404A3/en
Application granted granted Critical
Publication of EP1580404B1 publication Critical patent/EP1580404B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/16Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means
    • F01D11/18Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means using stator or rotor components with predetermined thermal response, e.g. selective insulation, thermal inertia, differential expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments

Definitions

  • the invention relates to an arrangement for automatic - passive - running gap adjustment in a two- or multi-stage turbine according to the features of the preamble of claim 1.
  • An arrangement of the generic type is from the GB-A-886,626 previously known in a multi-stage turbine.
  • a similar arrangement for setting the top game is off GB-A-2 226 365 already known in turbomachinery.
  • the distance between the blade tips of the rotor and the housing adjacent thereto or any other fixed component should be as small as possible in order to minimize the power and fuel losses in all phases of flight and to ensure high efficiency of the engine.
  • this presents difficulties in that the rotating and static components are subject to different dynamic loads and, in particular in the different phases of flight - start, acceleration, steady state flight or deceleration - different thermal loads and have a correspondingly different expansion and contraction behavior.
  • the distance (running gap, blade gap) between the movable blade tips and the adjacent fixed housing parts must be large enough to to prevent the expansion behavior prevailing under transition conditions from rubbing against the fixed and moving parts. However, this distance is then too large during a steady-state condition to ensure efficient use of the supplied energy.
  • the known "active" solutions for adjusting the size of the running gap include the supply of cold compressor air or hot combustion gases to the housing or to the associated with these liner segments (intermediate layers), on the elongation or contraction of the gap size can be set active or Strain behavior of the stator can be adapted to the thermal and dynamic expansion behavior of the rotor in the various phases of operation.
  • the "active" air gap adjustment systems are disadvantageous in that they involve a loss of compressor work or a reduction in turbine efficiency. In addition, an adequate adjustment of the gap width between blade tips and liner segments is not possible in every operating phase. Finally, the active systems are costly because of the required valve and control devices.
  • the GB-A-2 061 396 for a single-stage turbine a housing provided inside Arrangement for the "passive" automatic clearance adjustment between the blade tips and attached to the inside of the turbine housing liner segments proposed.
  • the liner segments spaced apart over the tips of the rotor blades are supported on one side on the outer platforms of the turbine vanes and on the other on the outer platforms of a subsequent vane, while the inner platforms of the two vanes segments respectively are connected to a ring element (expansion ring) whose reaction to a certain thermal load corresponds to the thermal behavior of the rotor.
  • the ring members connected to the platforms are enlarged or reduced to the same extent as the rotor and the movably supported vane segments are displaced and the liner segments attached to them are adjusted relative to the rotor and correspondingly its expansion and contraction dimensions.
  • the invention has for its object to provide on the basis of the radial adjustment of the liner segments according to the expansion and contraction behavior of the rotor, an arrangement for the passive adjustment of a constant operating gap in different operating gap width for two- or multi-stage turbines.
  • the object is achieved with a trained according to the characterizing features of claim 1 arrangement for automatic running gap adjustment in a two- or multi-stage turbine. Further features and advantageous developments of the invention are listed in the subclaims.
  • the at least two rotors are each assigned at least one expansion ring whose expansion and contraction behavior is matched to the rotors when the thermal load changes.
  • the expansion rings are connected to the turbine immediately upstream and downstream vanes, so that the upstream and downstream vanes are adjusted according to the thermal load.
  • the outer platforms of the upstream and downstream vanes are connected to each other via a bridge which is axially and circumferentially fixed and movably guided in the radial direction.
  • the intermediate vanes are each integrally or separately mounted between the rotors on the movable bridge. The rolling and tilting moments acting on these are absorbed by the axially and in the circumferential direction secured bridge elements and optionally an additional axial attachment on the free blade side. At the thus formed bridge and the separately or integrally formed shroud segments are attached.
  • the bridge comprises a first half-bridge and a second half-bridge, held axially, radially and circumferentially thereof, on which the intermediate guide vanes are integrally formed.
  • the first half-bridge forms a segmented inner casing of circumferentially spaced rigid support segments, which are each firmly connected via a radially angle-free connecting strut with a fixed to the outer housing rigid ring.
  • the first half-bridge can also be guided radially slidably on the outer housing via a system of pin and sleeve.
  • the bridge may consist of full bridge elements on which the intermediate vanes and the shroud segments are kept separate or integrally fixed and the intermediate vanes are held on the free side in a circumferential groove.
  • the full bridge elements are guided radially by means of a guide pin guided in a guide sleeve.
  • the individual full bridge elements are connected via a radially angle-free connecting strut with the outer housing.
  • the connecting struts are either held with a groove on a mounting ring or directly connected to a fixed to the outer housing via a flange rigid ring.
  • a support segment with integrated vane and integrated shroud segment is axially and circumferentially fixed to the bridge elements.
  • the axial bearing of bridge elements, supporting elements or intermediate guide vanes takes place with a piston ring designed in the manner of a mounting ring which engages in a formed on the component to be fixed groove.
  • the bridges or the half-bridge elements (supporting elements) and the full-bridge elements are stiffened by stiffening elements (ribs).
  • FIG. 1 schematically partially reproduced two-stage turbine includes a first rotor 1 and a second rotor 2, each with a blade ring of blades 3 and 4 respectively.
  • the first and the second rotor 1, 2 is respectively a first and second vane ring, respectively first and second Guide vanes 5, 6 upstream.
  • the principle of the radial adjustment of the first and second shroud segments 8a, 8b located at a distance from the blade tips 3a, 4a and forming a first and a second shroud is essentially the same as in FIG GB-A-2 061 396 described construction identical and is therefore not shown here.
  • the expansion ring (not shown) associated with the first rotor 1 is connected to the first vanes 5 movably held on the upstream side of the turbine via the respective outer platform 9 of the turbine radially outer casing 10, while the expansion ring (not shown) to an also radially movably mounted outer platform 11 for a vane ring (not shown) is connected to the downstream side of the turbine.
  • the radial movement of the guide vanes 5 on the inflow side and the downstream vanes 7 on the outflow side is in each case characterized by a double arrow 12 or 13.
  • the bridge 16, which connects the outer platforms 9 of the first (front) vanes 5 with the outer platforms 11 of the rear (downstream) vanes 7, comprises in the present embodiment a first half-bridge 17 and a second half-bridge 18 adjoining thereto Half-bridge 18 is integrally connected to the intermediate vanes 6 and to the second shroud segments 8b.
  • the first shroud segments 8a are made separately in the present embodiment and at the bottom the first half bridge 17 and the outer platforms 9 of the first vanes 5 held.
  • the first half bridge 17 is arranged in the circumferential direction, rigidly formed by stiffening elements 30 support elements 19. Between the support members 19 each have a circumferential gap 20. A provided on the support member 19 carrier 21 serves on the one hand for receiving or holding each of the first shroud segments 8a and on the other to the axial and radial support of the inflow-side end of the second half-bridge 18, each with integrated shroud segments 8b and second vanes 6.
  • radially angle-free connecting struts 22 are connected to the free Transition end in a circumferential, one-piece, rigid ring 23, whose angled mounting flange 23 a with holes 23 b for fixed connection with the outer housing 10 is used.
  • the second half-bridge 18, which consists of half-bridge elements 18a in the circumferential direction, on which the second rotor blades 6 of the turbine arranged upstream of the second rotor 2 and the second shroud segments 8b are fastened, is radially on the outer platforms at the downstream end 11 of the adjoining the second rotor 2 (downstream) vanes (not shown) held.
  • the second half bridge 18 fixes on a web 25 connected to each half bridge element 18a the downstream end of the circumferentially spaced support elements 19 of the half bridge 17 axially with a one-piece, slotted mounting ring 26, radially with a stop piece 27 and in the circumferential direction with retaining pins 28th
  • any thermal expansion of the bridge 16 is absorbed by the circumferential gaps 20 between the support members 19 and the radial gap 24. While the radial angle-free connecting struts 22 compensate for any relative movement between the support members 19 and the mounting ring 23 of the half-bridge 17, the remaining between these radial gap 24 allows thermal compensation.
  • the half bridge 17 accommodates the rolling and tilting moments of the second guide vanes 6 integrated in the half bridge elements 18a of the second half bridge 18, wherein the radially angle-free connecting struts 22 acting on the second (intermediate) blades 6 axial and circumferential forces on the separate from the support member 19 through the radial gap 24 rigid mounting ring 23 into the outer housing 10.
  • Fig. 3 describes another embodiment of an existing two half-bridges 17, 18 bridge 16, with the help of the rotors 1 and 2 of a two-stage turbine immediately upstream and downstream vanes 5, 7 are mounted together, to a passive, to the thermal load of the rotors 1, 2 adapted Laufspaltregelung to ensure.
  • the stiffened support elements 19 of the first half-bridge 17 arranged with the release of circumferential gaps (not shown) are each connected to a separately manufactured first shroud segment 8 a, which is held on the outer platform 9 of the first guide blade 5.
  • the circumferentially juxtaposed half-bridge elements 18a of the second half-bridge 18, each having integrally formed second blades 6 and second shroud segments 8b are held axially and radially on the outer platform 11 of the downstream vanes 7 and the respective support member 19 of the first half-bridge 17.
  • inwardly directed guide pin 31 and an integrally formed on the half-bridge 17 guide sleeve 32 the half bridge 17 and thus the bridge 16 (17, 18) performed a total of radially sliding and also held axially and in the circumferential direction.
  • a retaining ring 34 ( Figure 4 ) prevents rotation of the bridge about the guide pin 31.
  • FIGS. 4, 5 and 6 show embodiments of the mounting of vanes 6 to vanes 5, 7 by means of a connecting the vanes 5, 7 bridge 16, 16a for passive running gap control in a two-stage turbine, in which the circumferentially arranged bridge segments a one-piece bridge 16 (full bridge) form and the individual full bridge elements 16 a - as in the embodiment according to Fig. 3 - Are guided by means of a housing 10 outgoing guide pin 31 and an integrally formed on the full bridge elements 16a guide sleeve 32 in the radial direction.
  • first and second shroud segments 8a, 8b and the second (intermediate) vanes 6 are an integral part of the full bridge member 16a.
  • the full bridge elements 16a are held at the ends in the outer platform 9 of the first guide vanes 5 and the outer platform 11 of the second rotor 2 downstream vanes 7 for receiving the outgoing of the second vanes 6 tilting and rolling moments.
  • the integrated into the full bridge elements 16a second vanes 6 have on its inner platform 6a on a holding web 33 which is received in an annular groove of a circumferential retaining ring 34 to secure the respective second vanes 6 against rotation.
  • Fig. 5 embodiment shown with means of guide pins 31 and guide sleeves 32 radially slidably guided full bridge elements 16a differs from the embodiment according to Fig. 4 in that the respective second guide vanes 6 are not integrally connected to the respective full bridge segment 16a, but with known connection structures and in particular using a fastening ring 26 (see FIG Fig. 1 ) are detachably connected to the full bridge elements 16a for receiving the axial loads acting on the second guide vanes 6.
  • FIGS. 7 and 8th show still other embodiments of the inventive design with guide vanes mounted on vanes 5, 7 6 using a full bridge element 16 a.
  • the full bridge element 16a formed with a separate first shroud segment 8a is held on the outer platform 9 of the first guide blade 5 and on the outer platform 11 of the downstream guide vanes 7.
  • seals 35 are provided between the outer housing 10 and the full bridge elements 16a seals 35.
  • stiffened by means of stiffening elements 29 full bridge elements 16a - as in the embodiment with a half-bridge after Fig. 1 via a radial angle-free connecting strut 22 either by means of a fastening ring 26 (FIG. Fig. 7 ) or - as in the embodiment according to Fig.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung betrifft eine Anordnung zur selbsttätigen - passiven - Laufspalteinstellung bei einer zwei- oder mehrstufigen Turbine gemäß den Merkmalen des Oberbegriffes des Patentanspruches 1.The invention relates to an arrangement for automatic - passive - running gap adjustment in a two- or multi-stage turbine according to the features of the preamble of claim 1.

Eine Anordnung der gattungsgemässen Art ist aus der GB-A-886 626 bei einer mehrstufigen Turbine vorbekannt. Eine ähnliche Anordnung zur Einstellung des Spitzenspiels ist aus GB-A-2 226 365 bei Turbomaschinen vorbekannt. Diesen Anordnungen liegen die nachstehend abgehandelten Nachteile zugrunde.An arrangement of the generic type is from the GB-A-886,626 previously known in a multi-stage turbine. A similar arrangement for setting the top game is off GB-A-2 226 365 already known in turbomachinery. These arrangements are based on the below-discussed disadvantages.

Bei der Turbine von Flugzeugtriebwerken soll der Abstand zwischen den Schaufelspitzen des Rotors und dem diesem benachbarten Gehäuse oder einem sonstigen feststehenden Bauteil möglichst klein sein, um die Leistungs- und Kraftstoffverluste in allen Flugphasen gering zu halten und eine hohe Effizienz des Triebwerks zu gewährleisten. Das bereitet jedoch insofern Schwierigkeiten als die rotierenden und statischen Bauteile unterschiedlichen dynamischen Belastungen und insbesondere in den verschiedenen Flugphasen - Start, Beschleunigung, Dauerflugzustand oder Verzögerung - unterschiedlichen thermischen Belastungen unterworfen sind und ein dementsprechend voneinander abweichendes Ausdehnungs- und Kontraktionsverhalten aufweisen.In the turbine of aircraft engines, the distance between the blade tips of the rotor and the housing adjacent thereto or any other fixed component should be as small as possible in order to minimize the power and fuel losses in all phases of flight and to ensure high efficiency of the engine. However, this presents difficulties in that the rotating and static components are subject to different dynamic loads and, in particular in the different phases of flight - start, acceleration, steady state flight or deceleration - different thermal loads and have a correspondingly different expansion and contraction behavior.

Der Abstand (Laufspalt, Schaufelspalt) zwischen den beweglichen Schaufelspitzen und den diesen benachbarten feststehenden Gehäuseteilen muss groß genug sein, um bei dem unter Übergangsbedingungen herrschenden Dehnungsverhalten ein Aneinanderreiben der festen und beweglichen Teile zu verhindern. Dieser Abstand ist aber dann während eines Dauerbetriebszustandes zu groß, um eine effiziente Nutzung der zugeführten Energie zu gewährleisten.The distance (running gap, blade gap) between the movable blade tips and the adjacent fixed housing parts must be large enough to to prevent the expansion behavior prevailing under transition conditions from rubbing against the fixed and moving parts. However, this distance is then too large during a steady-state condition to ensure efficient use of the supplied energy.

Um den Laufspalt in allen Betriebphasen auf einem möglichst konstanten und geringen Maß zu halten und damit die eingesetzte Energie wirksam zu nutzen, und zwar ohne dass in der Startphase die rotierenden Schaufelspitzen des Rotors den benachbarten feststehenden Bereich des Gehäuses kontaktieren, wurde eine Vielzahl von Lösungsvorschlägen zur Regelung der Laufspaltweite unterbreitet.In order to keep the running gap in all operating phases to a constant and small extent and thus to use the energy used effectively, and without contact in the starting phase, the rotating blade tips of the rotor, the adjacent fixed portion of the housing, a variety of solutions to Control of the running gap width submitted.

Die bekannten "aktiven" Lösungen zur Einstellung der Größe des Laufspaltes umfassen die Zuführung von kalter Kompressorluft oder heißen Verbrennungsgasen zum Gehäuse bzw. zu den mit diesen verbundenen Linersegmenten (Zwischenlagen), über deren Dehnung bzw. Kontraktion die Spaltgröße aktiv eingestellt werden kann bzw. das Dehnungsverhalten des Stators an das thermische und dynamischen Dehnungsverhalten des Rotors in den verschiedenen Betriebsphasen angepasst werden kann.The known "active" solutions for adjusting the size of the running gap include the supply of cold compressor air or hot combustion gases to the housing or to the associated with these liner segments (intermediate layers), on the elongation or contraction of the gap size can be set active or Strain behavior of the stator can be adapted to the thermal and dynamic expansion behavior of the rotor in the various phases of operation.

Die "aktiven" Systeme zur Luftspalteinstellung sind jedoch insofern nachteilig, als damit ein Verlust an Kompressorarbeit bzw. eine Verminderung desTurbinenwirkungsgrades verbunden ist. Außerdem ist nicht in jeder Betriebsphase eine adäquate Einstellung der Spaltweite zwischen Schaufelspitzen und Linersegmenten möglich. Schließlich sind die aktiven Systeme wegen der erforderlichen Ventil- und Steuervorrichtungen kostenaufwendig.However, the "active" air gap adjustment systems are disadvantageous in that they involve a loss of compressor work or a reduction in turbine efficiency. In addition, an adequate adjustment of the gap width between blade tips and liner segments is not possible in every operating phase. Finally, the active systems are costly because of the required valve and control devices.

Zur Behebung der mit der aktiven Spaltgrößenregelung verbundenen Probleme wird in der GB-A-2 061 396 für eine einstufige Turbine eine im Gehäuseinneren vorgesehene Anordnung zur "passiven" automatischen Laufspalteinstellung zwischen den Schaufelspitzen und den an der Innenseite des Turbinengehäuses angebrachten Linersegmenten vorgeschlagen. Bei dieser "passiven" Laufspaltregelung sind die im Abstand über den Spitzen der Rotorschaufeln angeordneten Linersegmente auf einer Seite an den äußeren Plattformen der Leitschaufeln der Turbine und auf der anderen Seite an den äußeren Plattformen einer nachfolgenden Leitschaufel gehalten, während die inneren Plattformen der beiderseitigen Leitschaufelsegmente jeweils mit einem Ringelement (Dehnring) verbunden sind, dessen Reaktion auf eine bestimmte thermische Belastung dem thermischen Verhalten des Rotors entspricht. Dadurch werden bei einer Dehnung oder Kontraktion des Rotors die mit den Plattformen verbundenen Ringelemente in gleichem Maße wie der Rotor vergrößert oder verkleinert und die beweglich gehaltenen Leitschaufelsegmente verschoben sowie die an diesen angebrachten Linersegmente relativ zum Rotor und entsprechend dessen Dehnungs- und Kontraktionsmaß eingestellt.To remedy the problems associated with active gap size control, the GB-A-2 061 396 for a single-stage turbine, a housing provided inside Arrangement for the "passive" automatic clearance adjustment between the blade tips and attached to the inside of the turbine housing liner segments proposed. In this "passive" tread control, the liner segments spaced apart over the tips of the rotor blades are supported on one side on the outer platforms of the turbine vanes and on the other on the outer platforms of a subsequent vane, while the inner platforms of the two vanes segments respectively are connected to a ring element (expansion ring) whose reaction to a certain thermal load corresponds to the thermal behavior of the rotor. As a result, upon expansion or contraction of the rotor, the ring members connected to the platforms are enlarged or reduced to the same extent as the rotor and the movably supported vane segments are displaced and the liner segments attached to them are adjusted relative to the rotor and correspondingly its expansion and contraction dimensions.

Mit dieser Konstruktion, die auch eine spezielle Halterung der Leitschaufeln einschließt, um deren radiale Bewegung zu ermöglichen, ist die Ausbildung eines in jeder Betriebsphase des Triebwerkes gleichbeleibenden Laufspaltes zwischen den Schaufelspitzen und den Linersegmenten gewährleistet. Die zuvor beschriebene Anordnung ist jedoch nicht für zwei- oder mehrstufige Turbinen geeignet.With this design, which also includes a special support of the vanes to allow their radial movement, the formation of a uniform in each phase of the engine operating gap between the blade tips and the liner segments is guaranteed. However, the arrangement described above is not suitable for two- or multi-stage turbines.

Der Erfindung liegt die Aufgabe zugrunde, auf der Grundlage der radialen Verstellung der Linersegmente entsprechend dem Dehnungs- und Kontraktionsverhalten des Rotors eine Anordnung zur passiven Einstellung einer in unterschiedlichen Betriebsphasen konstanten Laufspaltweite für zwei- oder mehrstufige Turbinen anzugeben. Erfindungsgemäß wird die Aufgabe mit einer gemäß den kennzeichnenden Merkmalen des Patentanspruchs 1 ausgebildeten Anordnung zur selbsttätigen Laufspalteinstellung bei einer zwei- oder mehrstufigen Turbine gelöst. Weitere Merkmale und vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen aufgeführt.The invention has for its object to provide on the basis of the radial adjustment of the liner segments according to the expansion and contraction behavior of the rotor, an arrangement for the passive adjustment of a constant operating gap in different operating gap width for two- or multi-stage turbines. According to the invention the object is achieved with a trained according to the characterizing features of claim 1 arrangement for automatic running gap adjustment in a two- or multi-stage turbine. Further features and advantageous developments of the invention are listed in the subclaims.

Ausgehend vom Stand der Technik ist den mindestens zwei Rotoren jeweils mindestens ein Dehnring zugeordnet, dessen Dehnungs- und Kontraktionsverhalten bei Änderung der thermischen Belastung mit dem der Rotoren abgestimmt ist. Die Dehnringe sind mit den der Turbine unmittelbar vorgeschalteten und nachgeschalteten Leitschaufeln verbunden, so dass die vor- und nachgeschalteten Leitschaufeln entsprechend der thermischen Belastung verstellt werden. Die äußeren Plattformen der vor- und nachgeschalteten Leitschaufeln sind über eine Brücke, die axial und in Umfangsrichtung fixiert und in radialer Richtung beweglich geführt ist, miteinander verbunden. Die zwischengeschalteten Leitschaufeln sind jeweils zwischen den Rotoren an der beweglichen Brücke integral oder separat angebracht. Die an diesen wirkenden Roll- und Kippmomente werden von den axial und in Umfangsrichtung gesicherten Brückenelementen und gegebenenfalls eine zusätzliche axiale Befestigung auf der freien Schaufelseite aufgenommen. An der so ausgebildeten Brücke sind auch die separat oder integral ausgebildeten Deckbandsegmente angebracht.Based on the state of the art, the at least two rotors are each assigned at least one expansion ring whose expansion and contraction behavior is matched to the rotors when the thermal load changes. The expansion rings are connected to the turbine immediately upstream and downstream vanes, so that the upstream and downstream vanes are adjusted according to the thermal load. The outer platforms of the upstream and downstream vanes are connected to each other via a bridge which is axially and circumferentially fixed and movably guided in the radial direction. The intermediate vanes are each integrally or separately mounted between the rotors on the movable bridge. The rolling and tilting moments acting on these are absorbed by the axially and in the circumferential direction secured bridge elements and optionally an additional axial attachment on the free blade side. At the thus formed bridge and the separately or integrally formed shroud segments are attached.

Mit dieser Brückenkonstruktion ist auch bei zwei- oder mehrstufigen Turbinen eine passive, für alle Rotorstufen einzeln optimierte Laufspalteinstellung entsprechend der thermischen Rotorbewegung möglich, die zudem kostengünstiger als die bisher bei zweistufigen Turbinen bekannten aktiven Systeme zur Laufspalteinstellung ist.With this bridge construction, even with two- or multi-stage turbines, a passive, individually optimized for all rotor stages running gap adjustment corresponding to the thermal rotor movement is possible, which is also more cost effective than the previously known in two-stage turbines active systems for running gap adjustment.

Gemäß einem wichtigen Merkmal der Erfindung umfasst die Brücke eine erste Halbbrücke und eine an dieser axial, radial und in Umfangsrichtung gehaltene zweite Halbbrücke, an der die zwischengeschalteten Leitschaufeln integral angeformt sind. Die erste Halbbrücke bildet ein segmentiertes Innengehäuse aus am Umfang im Abstand angeordneten biegesteifen Tragsegmenten, die jeweils über eine radial winkelfreie Verbindungsstrebe mit einem am Außengehäuse befestigten starren Ring fest verbunden sind.According to an important feature of the invention, the bridge comprises a first half-bridge and a second half-bridge, held axially, radially and circumferentially thereof, on which the intermediate guide vanes are integrally formed. The first half-bridge forms a segmented inner casing of circumferentially spaced rigid support segments, which are each firmly connected via a radially angle-free connecting strut with a fixed to the outer housing rigid ring.

Die erste Halbbrücke kann jedoch auch über ein System aus Stift und Hülse radial gleitend am Außengehäuse geführt sein.However, the first half-bridge can also be guided radially slidably on the outer housing via a system of pin and sleeve.

In weiterer Ausbildung der Erfindung kann die Brücke aus Vollbrückenelementen bestehen, an denen die zwischengeschalteten Leitschaufeln sowie die Deckbandsegmente separat gehalten oder integral befestigt sind und die zwischengeschalteten Leitschaufeln auf der freien Seite in einer umlaufenden Nut gehalten sind. In einer Ausführungsform sind die Vollbrückenelemente radial mittels einem in einer Führungshülse geführten Führungsstift geführt.In a further embodiment of the invention, the bridge may consist of full bridge elements on which the intermediate vanes and the shroud segments are kept separate or integrally fixed and the intermediate vanes are held on the free side in a circumferential groove. In one embodiment, the full bridge elements are guided radially by means of a guide pin guided in a guide sleeve.

In einer noch anderen Ausführungsform einer Vollbrücke sind die einzelnen Vollbrückenelemente über eine radial winkelfreie Verbindungsstrebe mit dem Außengehäuse verbunden. Die Verbindungsstreben sind entweder mit einer Nut an einem Befestigungsring gehalten oder unmittelbar mit einem am Außengehäuse über einen Flansch befestigten starren Ring verbunden. In dieser Ausführungsvariante ist an den Brückenelementen ein Tragsegment mit integrierter Leitschaufel und integriertem Deckbandsegment axial und in Umfangsrichtung fixiert.In yet another embodiment of a full bridge, the individual full bridge elements are connected via a radially angle-free connecting strut with the outer housing. The connecting struts are either held with a groove on a mounting ring or directly connected to a fixed to the outer housing via a flange rigid ring. In this embodiment, a support segment with integrated vane and integrated shroud segment is axially and circumferentially fixed to the bridge elements.

In weiterer Ausbildung der Erfindung erfolgt die axiale Lagerung von Brückenelementen, Tragelementen oder zwischengeschalteten Leitschaufeln mit einem nach Art eines Kolbenringes ausgebildeten Befestigungsring der in eine an dem zu fixierenden Bauteil ausgebildete Nut eingreift.In a further embodiment of the invention, the axial bearing of bridge elements, supporting elements or intermediate guide vanes takes place with a piston ring designed in the manner of a mounting ring which engages in a formed on the component to be fixed groove.

In weiterer Ausgestaltung der Erfindung sind die Brücken bzw. die Halbbrückenelemente (Tragelemente) und die Vollbrückenelemente durch Versteifungselemente (Rippen) versteift.In a further embodiment of the invention, the bridges or the half-bridge elements (supporting elements) and the full-bridge elements are stiffened by stiffening elements (ribs).

Ausführungsbeispiele der erfindungsgemäßen Anordnung zur selbsttätigen Laufspalteinstellung bei einer zwei- oder mehrstufigen Turbine werden anhand der beigefügten Zeichnungen näher erläutert. Es zeigt:

Fig. 1
eine Teilansicht einer zweistufigen Turbine mit einer sich entsprechend dem Dehnungsverhalten der Rotoren selbsttätig einstellenden zweiteili- gen Brücke und an dieser gehaltenen Deckbandseg- menten sowie einer zwischengeschalteten Leit- schaufel,
Fig. 2
eine isometrische Ansicht einer in Richtung des Pfeils A in Fig. 1 gesehenen, ein segmentiertes Innengehäuse bildenden Halbbrücke der zweiteili- gen Brücke,
Fig. 3
eine andere Ausführungsform einer aus Halbbrü- ckenelementen gebildeten Brücke, die radial gleitend gelagert ist,
Fig. 4
eine aus radial gleitend geführten Vollbrücken- elementen bestehende einstückige Vollbrücke mit in diese integrierten Deckbandsegmenten und zwi- schengeschalten Leitschaufeln,
Fig. 5
eine Vollbrücke nach Fig. 4, jedoch mit separat an dem jeweiligen Vollbrückenelement angebrach- ter Leitschaufel,
Fig. 6
eine Vollbrücke nach Fig. 4, bei der die Deck- bandsegmente der ersten Stufe separat gefertigt und an dem Vollbrückenelement angebracht sind,
Fig. 7
eine Vollbrücke mit an den Vollbrückenelementen separat montierten Tragelementen und in diese integrierter Leitschaufel und Deckbandsegment, wobei die Vollbrückenelemente über einen Befes- tigungsring und mit diesem verbundener radial winkelfreier Verbiridungsstrebe am Außengehäuse gehalten sind; und
Fig. 8
eine Vollbrücke gemäß Fig. 7, bei der die radial winkelfreien Verbindungsstreben mit einem am Außengehäuse befestigten steifen Ring fest verbunden sind.
Embodiments of the inventive arrangement for automatic running gap adjustment in a two- or multi-stage turbine will be explained in more detail with reference to the accompanying drawings. It shows:
Fig. 1
2 shows a partial view of a two-stage turbine with a two-part bridge that automatically adjusts itself according to the expansion behavior of the rotors and with shroud segments held thereon and with an intermediate guide blade,
Fig. 2
an isometric view of one in the direction of arrow A in Fig. 1 seen, a segmented inner housing forming half-bridge of the bipartite bridge,
Fig. 3
another embodiment of a bridge formed from half-bridge elements, which is mounted so as to slide radially,
Fig. 4
a one-piece full bridge consisting of radially slidably guided full bridge elements with shroud segments integrated therein and intermediate guide vanes,
Fig. 5
a full bridge to Fig. 4 , but with separately attached to the respective full bridge element vane,
Fig. 6
a full bridge to Fig. 4 in which the first-stage cover band segments are manufactured separately and attached to the full-bridge element,
Fig. 7
a full bridge with support elements mounted separately on the full bridge elements and in this integrated guide vane and shroud segment, the full bridge elements being held on the outer housing via an attachment ring and a radially angle-free connection strut connected thereto; and
Fig. 8
a full bridge according to Fig. 7 in which the radial angle-free connecting struts are firmly connected to a rigid ring attached to the outer housing.

Die in Fig. 1 schematisch teilweise wiedergegebene zweistufige Turbine umfasst einen ersten Rotor 1 und einen zweiten Rotor 2, jeweils mit einem Schaufelkranz aus Laufschaufeln 3 bzw. 4. Dem ersten und dem zweiten Rotor 1, 2 ist jeweils ein erster bzw. zweiter Leitschaufelkranz mit jeweils ersten bzw. zweiten Leitschaufeln 5, 6 vorgeschaltet. Das Prinzip der radialen Verstellung der im Abstand von den Schaufelspitzen 3a, 4a befindlichen, ein erstes und ein zweites Deckband bildenden ersten und zweiten Deckbandsegmente 8a, 8b ist im wesentlichen mit der in der GB-A-2 061 396 beschriebenen Konstruktion identisch und ist daher hier nicht dargestellt. Es wird nur insoweit erläutert, als den beiden Rotoren 1 und 2 der zweistufigen Turbine jeweils ein einstückiger Dehnungsring (nicht dargestellt) zugeordnet ist, dessen Dehnungsverhalten dem des benachbarten Rotors 1 bzw. 2 entspricht. Der dem ersten Rotor 1 zugeordnete Dehnungsring (nicht dargestellt) ist mit den über die jeweilige äußere Plattform 9 der radial zum Außengehäuse 10 der Turbine beweglich gehaltenen ersten Leitschaufeln 5 auf der Zuströmseite der Turbine verbunden, während der nahe dem zweiten Rotor 2 angeordnete Dehnungsring (nicht dargestellt) an eine ebenfalls radial beweglich gelagerte äußere Plattform 11 für einen Leitschaufelkranz (nicht dargestellt) auf der Abströmseite der Turbine angeschlossen ist. Die Radialbewegung der Leitschaufeln 5 auf der Zuströmseite und der nachgeschalteten Leitschaufeln 7 auf der Abströmseite ist jeweils durch einen Doppelpfeil 12 bzw. 13 gekennzeichnet.In the Fig. 1 schematically partially reproduced two-stage turbine includes a first rotor 1 and a second rotor 2, each with a blade ring of blades 3 and 4 respectively. The first and the second rotor 1, 2 is respectively a first and second vane ring, respectively first and second Guide vanes 5, 6 upstream. The principle of the radial adjustment of the first and second shroud segments 8a, 8b located at a distance from the blade tips 3a, 4a and forming a first and a second shroud is essentially the same as in FIG GB-A-2 061 396 described construction identical and is therefore not shown here. It is explained only insofar as the two rotors 1 and 2 of the two-stage turbine each have a one-piece expansion ring (not shown) is assigned, whose expansion behavior corresponds to that of the adjacent rotor 1 and 2 respectively. The expansion ring (not shown) associated with the first rotor 1 is connected to the first vanes 5 movably held on the upstream side of the turbine via the respective outer platform 9 of the turbine radially outer casing 10, while the expansion ring (not shown) to an also radially movably mounted outer platform 11 for a vane ring (not shown) is connected to the downstream side of the turbine. The radial movement of the guide vanes 5 on the inflow side and the downstream vanes 7 on the outflow side is in each case characterized by a double arrow 12 or 13.

Die unter Freilassung eines ersten und eines zweiten Laufspaltes 14, 15 den Schaufelspitzen 3a, 4a gegenüberliegenden Deckbandsegmente 8a, 8b werden entsprechend der von den Dehnringen (nicht dargestellt) zum einen auf die beweglichen ersten Leitschaufeln 5 und deren äußere Plattform 9 und zum anderen auf die äußeren Plattformen , 11 der nachgeschalteten Leitschaufeln 7 des hinteren Leitschaufelkranzes und von diesen auf eine Brücke 16 übertragenen Bewegung relativ zu den Schaufelspitzen 3a, 4a verstellt. Die Brücke 16, welche die äußeren Plattformen 9 der ersten (vorderen) Leitschaufeln 5 mit den äußeren Plattformen 11 der hinteren (nachgeschalteten) Leitschaufeln 7 verbindet, umfasst in der vorliegenden Ausführungsform eine erste Halbbrücke 17 und eine an diese anschließende zweite Halbbrücke 18. Die zweite Halbbrücke 18 ist integral mit den zwischengeschalteten Leitschaufeln 6 und mit den zweiten Deckbandsegmenten 8b verbunden. Die ersten Deckbandsegmente 8a sind in der vorliegenden Ausführungsform separat gefertigt und an der Unterseite der ersten Halbbrücke 17 und den äußeren Plattformen 9 der ersten Leitschaufeln 5 gehalten.The shroud segments 8a, 8b opposite the blade tips 3a, 4a, corresponding to that of the expansion rings (not shown) on the one hand to the movable first guide vanes 5 and the outer platform 9 and the other on the outer platforms, 11 of the downstream vanes 7 of the rear vane ring and transferred from these on a bridge 16 movement relative to the blade tips 3a, 4a adjusted. The bridge 16, which connects the outer platforms 9 of the first (front) vanes 5 with the outer platforms 11 of the rear (downstream) vanes 7, comprises in the present embodiment a first half-bridge 17 and a second half-bridge 18 adjoining thereto Half-bridge 18 is integrally connected to the intermediate vanes 6 and to the second shroud segments 8b. The first shroud segments 8a are made separately in the present embodiment and at the bottom the first half bridge 17 and the outer platforms 9 of the first vanes 5 held.

Die erste Halbbrücke 17 besteht aus in Umfangsrichtung angeordneten, durch Versteifungselemente 30 biegesteif ausgebildeten Tragelementen 19. Zwischen den Tragelementen 19 verbleibt jeweils ein Umfangsspalt 20. Ein an dem Tragelement 19 vorgesehener Träger 21 dient einerseits zur Aufnahme bzw. Halterung jeweils der ersten Deckbandsegmente 8a und andererseits zur axialen und radialen Halterung des zuströmseitigen Endes der zweiten Halbbrücke 18 mit jeweils integrierten Deckbandsegmenten 8b und zweiten Leitschaufeln 6. Auf der zum Außengehäuse 10 weisenden Seite der in Umfangsrichtung im Abstand angeordneten biegesteifen Tragelemente 19 sind dünne, radial winkelfreie Verbindungsstreben 22 angeschlossen, die am freien Ende in einen umlaufenden, einstückigen, steifen Ring 23 übergehen, dessen abgewinkelter Befestigungsflansch 23a mit Bohrungen 23b zur festen Verbindung mit dem Außengehäuse 10 dient. An der auf der äußeren Plattform 9 der Leitschaufeln 5 abgestützten Seite des Tragelements 19 besteht zwischen dem steifen Tragelement 19 und dem steifen Befestigungsring 23 ein Radialspalt 24, so dass aufgrund der flexiblen Verbindung über die Verbindungsstreben 22 und die Unterbrechung der Tragelemente 19 über die Umfangsspalte 20 eine radiale Bewegung zwischen dem Ring 23 und den Tragelementen 19 möglich ist, aber von den Leitschaufeln 6 der zweiten Turbinenstufe erzeugte Lasten in axialer Richtung und in Umfangsrichtung übertragen werden können.The first half bridge 17 is arranged in the circumferential direction, rigidly formed by stiffening elements 30 support elements 19. Between the support members 19 each have a circumferential gap 20. A provided on the support member 19 carrier 21 serves on the one hand for receiving or holding each of the first shroud segments 8a and on the other to the axial and radial support of the inflow-side end of the second half-bridge 18, each with integrated shroud segments 8b and second vanes 6. On the outer housing 10 facing side of the circumferentially spaced bending resistant support members 19 thin, radially angle-free connecting struts 22 are connected to the free Transition end in a circumferential, one-piece, rigid ring 23, whose angled mounting flange 23 a with holes 23 b for fixed connection with the outer housing 10 is used. At the supported on the outer platform 9 of the vanes 5 side of the support member 19 is between the rigid support member 19 and the rigid mounting ring 23, a radial gap 24, so that due to the flexible connection via the connecting struts 22 and the interruption of the support members 19 via the circumferential gap 20th a radial movement between the ring 23 and the support members 19 is possible, but loads generated by the vanes 6 of the second turbine stage in the axial direction and in the circumferential direction can be transmitted.

Die in Umfangsrichtung aus Halbbrückenelementen 18a bestehende zweite Halbbrücke 18, an der die dem zweiten Rotor 2 vorgeschalteten zweiten Leitschaufeln 6 der Turbine und die zweiten Deckbandsegmente 8b befestigt sind, ist am abströmseitigen Ende radial an den äußeren Plattformen 11 der an den zweiten Rotor 2 anschließenden (nachgeschalteten) Leitschaufeln (nicht dargestellt) gehalten. Die zweite Halbbrücke 18 fixiert an einem mit jedem Halbbrückenelement 18a verbundenen Steg 25 das abströmseitige Ende der in Umfangsrichtung beabstandeten Tragelemente 19 der Halbbrücke 17 axial mit einem einstückigen, geschlitzten Befestigungsring 26, radial mit einem Anschlagstück 27 und in Umfangsrichtung mit Haltestiften 28.The second half-bridge 18, which consists of half-bridge elements 18a in the circumferential direction, on which the second rotor blades 6 of the turbine arranged upstream of the second rotor 2 and the second shroud segments 8b are fastened, is radially on the outer platforms at the downstream end 11 of the adjoining the second rotor 2 (downstream) vanes (not shown) held. The second half bridge 18 fixes on a web 25 connected to each half bridge element 18a the downstream end of the circumferentially spaced support elements 19 of the half bridge 17 axially with a one-piece, slotted mounting ring 26, radially with a stop piece 27 and in the circumferential direction with retaining pins 28th

Mit der anhand der Figuren 1 und 2 beschriebenen Brücke 16, bestehend aus der ersten Halbbrücke 17 und der zweiten Halbbrücke 18, in welche die zweiten Deckbändsegmente 8b und die zweiten Leitschaufeln 6 für die zweite Turbinenstufe integriert sind, ist auch bei mehrstufigen Turbinen eine kontinuierliche, sich selbsttätig an die unterschiedlichen thermischen Ausdehnungen anpassende "passive" Spaltweiteneinstellung möglich. Die Tragelemente 19 der Halbbrücke 17 und die Halbbrückenelemente 18a der zweiten Halbbrücke 18 sind durch Versteifungselemente 30, 29 derart versteift, dass die auf die Leitschaufeln 6 wirkenden Kräfte aufgenommen werden können. Die radiale Position der ersten Halbbrücke 17 und der zweiten Halbbrücke 18 bzw. Halbbrückenelemente 18a ist durch deren Lage an der äußeren Plattform 9 sowie der äußeren Plattform 11 bestimmt. Jegliche thermische Ausdehnung der Brücke 16 wird durch die Umfangsspalte 20 zwischen den Tragelementen 19 und dem Radialspalt 24 aufgenommen. Während die radial winkelfreien Verbindungsstreben 22 jegliche Relativbewegung zwischen den Tragelementen 19 und dem Befestigungsring 23 der Halbbrücke 17 ausgleichen, erlaubt der zwischen diesen verbleibende Radialspalt 24 den thermischen Ausgleich. Die Halbbrücke 17 nimmt die Roll- und Kippmomente der in die Halbbrückenelemente 18a der zweiten Halbbrücke 18 integrierten zweiten Leitschaufeln 6 auf, wobei die radial winkelfreien Verbindungsstreben 22 die an den zweiten (zwischengeschalteten) Laufschaufeln 6 wirkenden Axial- und Umfangskräfte über den vom Tragelement 19 durch den Radialspalt 24 getrennten steifen Befestigungsring 23 in das Außengehäuse 10 leiten.With the basis of the FIGS. 1 and 2 described bridge 16, consisting of the first half-bridge 17 and the second half-bridge 18, in which the second Deckbändsegmente 8b and the second guide vanes 6 are integrated for the second turbine stage, even in multi-stage turbines is a continuous, automatically adapting to the different thermal expansions "passive" gap width adjustment possible. The support elements 19 of the half bridge 17 and the half bridge elements 18a of the second half bridge 18 are stiffened by stiffening elements 30, 29 such that the forces acting on the guide vanes 6 can be absorbed. The radial position of the first half bridge 17 and the second half bridge 18 or half bridge elements 18a is determined by their position on the outer platform 9 and the outer platform 11. Any thermal expansion of the bridge 16 is absorbed by the circumferential gaps 20 between the support members 19 and the radial gap 24. While the radial angle-free connecting struts 22 compensate for any relative movement between the support members 19 and the mounting ring 23 of the half-bridge 17, the remaining between these radial gap 24 allows thermal compensation. The half bridge 17 accommodates the rolling and tilting moments of the second guide vanes 6 integrated in the half bridge elements 18a of the second half bridge 18, wherein the radially angle-free connecting struts 22 acting on the second (intermediate) blades 6 axial and circumferential forces on the separate from the support member 19 through the radial gap 24 rigid mounting ring 23 into the outer housing 10.

Fig. 3 beschreibt eine andere Ausführungsform einer aus zwei Halbbrücken 17, 18 bestehenden Brücke 16, mit deren Hilfe die den Rotoren 1 und 2 einer zweistufigen Turbine unmittelbar vor- und nachgeschalteten Leitschaufeln 5, 7 aneinander montiert sind, um eine passive, an die thermische Belastung der Rotoren 1, 2 angepasste Laufspaltregelung zu gewährleisten. Die unter Freilassung von Umfangsspalten (nicht dargestellt) angeordneten, versteiften Tragelemente 19 der ersten Halbbrücke 17 sind jeweils mit einem separat gefertigten ersten Deckbandsegment 8a verbunden, das an der äußeren Plattform 9 der ersten Leitschaufel 5 gehalten ist. Die in Umfangsrichtung aneinandergereihten Halbbrückenelemente 18a der zweiten Halbbrücke 18, die jeweils integral ausgebildete zweite Laufschaufeln 6 und zweite Deckbandsegmente 8b aufweisen, sind an der äußeren Plattform 11 der nachgeschalteten Leitschaufeln 7 und am jeweiligen Tragelement 19 der ersten Halbbrücke 17 axial und radial gehalten. Über einen vom Außengehäuse 10 ausgehenden, nach innen gerichteten Führungsstift 31 und eine an der Halbbrücke 17 angeformte Führungshülse 32 ist die Halbbrücke 17 und damit die Brücke 16 (17, 18) insgesamt radial gleitend geführt und zusätzlich auch axial und in Umfangsrichtung gehalten. Ein Haltering 34 (Fig.4) verhindert eine Rotation der Brücke um den Führungsstift 31. Fig. 3 describes another embodiment of an existing two half-bridges 17, 18 bridge 16, with the help of the rotors 1 and 2 of a two-stage turbine immediately upstream and downstream vanes 5, 7 are mounted together, to a passive, to the thermal load of the rotors 1, 2 adapted Laufspaltregelung to ensure. The stiffened support elements 19 of the first half-bridge 17 arranged with the release of circumferential gaps (not shown) are each connected to a separately manufactured first shroud segment 8 a, which is held on the outer platform 9 of the first guide blade 5. The circumferentially juxtaposed half-bridge elements 18a of the second half-bridge 18, each having integrally formed second blades 6 and second shroud segments 8b are held axially and radially on the outer platform 11 of the downstream vanes 7 and the respective support member 19 of the first half-bridge 17. About an outgoing from the outer housing 10, inwardly directed guide pin 31 and an integrally formed on the half-bridge 17 guide sleeve 32, the half bridge 17 and thus the bridge 16 (17, 18) performed a total of radially sliding and also held axially and in the circumferential direction. A retaining ring 34 ( Figure 4 ) prevents rotation of the bridge about the guide pin 31.

Die Figuren 4, 5 und 6 zeigen Ausführungsformen der Montage von Leitschaufeln 6 an Leitschaufeln 5, 7 mit Hilfe einer die Leitschaufeln 5, 7 verbindenden Brücke 16, 16a zur passiven Laufspaltkontrolle bei einer zweistufigen Turbine, bei der die in Umfangsrichtung angeordneten Brückensegmente eine einstückige Brücke 16 (Vollbrücke) bilden und die einzelnen Vollbrückenelemente 16a - wie in der Ausführungsform nach Fig. 3 - mittels eines vom Gehäuse 10 ausgehenden Führungsstiftes 31 und einer an den Vollbrückenelementen 16a angeformten Führungshülse 32 in radialer Richtung geführt sind.The FIGS. 4, 5 and 6 show embodiments of the mounting of vanes 6 to vanes 5, 7 by means of a connecting the vanes 5, 7 bridge 16, 16a for passive running gap control in a two-stage turbine, in which the circumferentially arranged bridge segments a one-piece bridge 16 (full bridge) form and the individual full bridge elements 16 a - as in the embodiment according to Fig. 3 - Are guided by means of a housing 10 outgoing guide pin 31 and an integrally formed on the full bridge elements 16a guide sleeve 32 in the radial direction.

In der Ausführungsform nach Fig. 4 sind die ersten und zweiten Deckbandsegmente 8a, 8b und die zweiten (zwischengeschalteten) Leitschaufeln 6 integraler Bestandteil des Vollbrückenelements 16a. Die Vollbrückenelemente 16a sind zur Aufnahme der von den zweiten Leitschaufeln 6 ausgehenden Kipp- und Rollmomente an den Enden in der äußeren Plattform 9 der ersten Leitschaufeln 5 und der äußeren Plattform 11 der dem zweiten Rotor 2 nachgeschalteten Leitschaufeln 7 gehalten. Die in die Vollbrückenelemente 16a integrierten zweiten Leitschaufeln 6 weisen an ihrer inneren Plattform 6a einen Haltesteg 33 auf, der in einer Ringnut eines umlaufenden Halteringes 34 aufgenommen ist, um die jeweils zweiten Leitschaufeln 6 gegen Verdrehen zu sichern.In the embodiment according to Fig. 4 For example, the first and second shroud segments 8a, 8b and the second (intermediate) vanes 6 are an integral part of the full bridge member 16a. The full bridge elements 16a are held at the ends in the outer platform 9 of the first guide vanes 5 and the outer platform 11 of the second rotor 2 downstream vanes 7 for receiving the outgoing of the second vanes 6 tilting and rolling moments. The integrated into the full bridge elements 16a second vanes 6 have on its inner platform 6a on a holding web 33 which is received in an annular groove of a circumferential retaining ring 34 to secure the respective second vanes 6 against rotation.

Die in Fig. 5 gezeigte Ausführungsform mit mittels Führungsstiften 31 und Führungshülsen 32 radial gleitend geführten Vollbrückenelementen 16a unterscheidet sich insofern von der Ausführungsform nach Fig. 4, als die jeweiligen zweiten Leitschaufeln 6 nicht integral mit dem betreffenden Vollbrückensegment 16a verbunden sind, sondern mit bekannten Verbindungsstrukturen und insbesondere unter Verwendung eines Befestigungsringes 26 (siehe Fig. 1) zur Aufnahme der auf die zweiten Leitschaufeln 6 wirkenden Axiallasten lösbar an die Vollbrückenelemente 16a angeschlossen sind.In the Fig. 5 embodiment shown with means of guide pins 31 and guide sleeves 32 radially slidably guided full bridge elements 16a differs from the embodiment according to Fig. 4 in that the respective second guide vanes 6 are not integrally connected to the respective full bridge segment 16a, but with known connection structures and in particular using a fastening ring 26 (see FIG Fig. 1 ) are detachably connected to the full bridge elements 16a for receiving the axial loads acting on the second guide vanes 6.

Bei den radial gleitend geführten Vollbrückenelementen 16a nach Fig. 6 sind - im Unterschied zu den Ausführungsformen nach Fig. 4 und 5 - sowohl die jeweilige zweite Leitschaufel 6 als auch die ersten und zweiten Deckbandsegmente 8a, 8b als separate Bauteile ausgebildet.In the case of the radially slidably guided full bridge elements 16a Fig. 6 are - unlike the embodiments to 4 and 5 - Both the respective second vane 6 and the first and second shroud segments 8a, 8b formed as separate components.

Die Figuren 7 und 8 zeigen noch andere Ausführungsformen der erfindungsgemäßen Bauart mit an Leitschaufeln 5, 7 montierten Leitschaufeln 6 unter Verwendung eines Vollbrückenelements 16a. Dabei ist das mit einem separaten ersten Deckbandsegment 8a ausgebildete Vollbrückenelement 16a an der äußeren Plattform 9 der ersten Leitschaufel 5 und an der äußeren Plattform 11 der abströmseitigen Leitschaufeln 7 gehalten. Zwischen dem Außengehäuse 10 und den Vollbrückenelementen 16a sind Dichtungen 35 vorgesehen. Außerdem sind die mit Hilfe von Versteifungselementen 29 biegesteif ausgeführten Vollbrückenelemente 16a - wie in der Ausführungsform mit einer Halbbrücke nach Fig. 1 - über eine radial winkelfreie Verbindungsstrebe 22 entweder mittels eines Befestigungsringes 26 (Fig. 7) oder - wie in der Ausführungsform nach Fig. 1 - eines am Außengehäuse 10 befestigten steifen Ringes 23 (Fig. 8) gehalten. Im Fall der axialen Anbringung über den Befestigungsring 26 ist für die Ableitung der Brückenumfangslast auf das Gehäuse 10 ein Übertragungselement 37 vorgesehen. Die zweite Leitschaufel 6 und das zweite Deckbandsegment 8b bilden ein einstückiges - im Verbindungsbereich 36a zwischen Leitschaufel und Deckbandsegment flexibles Bauteil 36, das an dem Brückenelement 16a axial, radial und in Umfangsrichtung fixiert ist und außerdem an der äußeren Plattform 11 axial gehalten ist.The FIGS. 7 and 8th show still other embodiments of the inventive design with guide vanes mounted on vanes 5, 7 6 using a full bridge element 16 a. In this case, the full bridge element 16a formed with a separate first shroud segment 8a is held on the outer platform 9 of the first guide blade 5 and on the outer platform 11 of the downstream guide vanes 7. Between the outer housing 10 and the full bridge elements 16a seals 35 are provided. In addition, the stiffened by means of stiffening elements 29 full bridge elements 16a - as in the embodiment with a half-bridge after Fig. 1 via a radial angle-free connecting strut 22 either by means of a fastening ring 26 (FIG. Fig. 7 ) or - as in the embodiment according to Fig. 1 - A fixed to the outer housing 10 rigid ring 23 ( Fig. 8 ) held. In the case of the axial attachment via the fastening ring 26, a transmission element 37 is provided for the derivation of the bridge peripheral load on the housing 10. The second vane 6 and the second shroud segment 8b form an integral - in the connection region 36a between the vane and shroud segment flexible member 36 which is fixed to the bridge member 16a axially, radially and in the circumferential direction and is also held axially on the outer platform 11.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
erster Rotorfirst rotor
22
zweiter Rotorsecond rotor
33
Laufschaufelblade
3a3a
Schaufelspitzeblade tip
44
Laufschaufelblade
4a4a
Schaufelspitzeblade tip
55
erste Leitschaufel (vorgeschaltet)first vane (upstream)
66
zweite Leitschaufel (zwischengeschaltet)second vane (interposed)
6a6a
Innenplattforminside platform
77
Leitschaufel (nachgeschaltet)Vane (downstream)
8a, 8b8a, 8b
erstes/zweites Deckbandsegmentfirst / second shroud segment
88th
äußere Plattformouter platform
99
Außengehäuseouter casing
1010
äußere Plattformouter platform
1111
Doppelpfeil (Radialbewegung)Double arrow (radial movement)
1212
Doppelpfeil (Radialbewegung)Double arrow (radial movement)
1313
erster Laufspaltfirst run gap
1414
zweiter Laufspaltsecond run gap
1515
Brückebridge
16a16a
VollbrückenelementFull bridge element
1616
erste Halbbrückefirst half bridge
1717
zweite Halbbrückesecond half bridge
17a, 18a17a, 18a
HalbbrückenelementHalf bridge element
1818
Tragelementesupporting elements
1919
Umfangsspaltcircumferential gap
2020
Trägercarrier
2121
radial winkelfreie Verbindungsstreberadially angle-free connecting strut
2222
steifer Ringstiff ring
23a23a
Befestigungsflanschmounting flange
23b23b
Bohrungdrilling
2424
Radialspaltradial gap
2525
Stegweb
2626
Befestigungsringfixing ring
2727
Anschlagstückstop piece
2828
Haltestiftretaining pin
2929
Versteifungselementstiffener
3030
Versteifungselementstiffener
3131
Führungsstiftguide pin
3232
Führungshülseguide sleeve
3333
Haltestegholding web
3434
Halteringretaining ring
3535
Dichtungpoetry
3636
einstückiges Bauteil (Tragelement)one-piece component (support element)
36a36a
flexibler Verbindungsbereichflexible connection area
3737
Übertragungselementtransmission element

Claims (11)

  1. Arrangement for automatic running gap control on a two or multi-stage turbine, with the arrangement including an outer casing (10) and a bridge (16) with shroud segments (8a, 8b) and with the arrangement comprising at least first and second rotors (1, 2) provided with rotor blades (3, 4) within the outer casing (10), with stator vanes (5, 6, 7) arranged upstream, between and downstream of these rotors (1, 2) with an expansion ring being associated to each of the rotors (1, 2) which is connected to the radially moveable, upstream stator vanes (5) and to the radially moveable, downstream stator vanes (7) and whose thermal expansion behaviour agrees with that of the rotors (1, 2), with the upstream and downstream stator vanes (5, 7) being connected, at their outer platforms (9, 11), by means of the bridge (16) which is axially and circumferentially fixed and located radially and angle-free at the outer casing (10) of the turbine and to which the intermediate stator vanes (6) and the shroud segments (8a, 8b) arranged above the rotors (1, 2) are attached, characterized in that the bridge (16) includes a first half bridge (17) and a second half bridge (18) which is axially, radially and circumferentially held on the first half bridge (17), that the intermediate second stator vanes (6) are integrally connected to the second half bridge (18), and that the first half bridge (17) includes a multitude of bending-resistant, circumferentially arranged supporting elements (19), with a circumferential gap (20) left between each of them, and a stiff ring (23) attached to the outer casing of the turbine to which the supporting elements (19) are connected via radially angle-free braces (22), with a radial gap (24) remaining between the free ends of the ring (23) and the supporting elements (19).
  2. Arrangement in accordance with Claim 1, characterized in that the first half bridge (17) and the second half bridge (18) consist of a multitude of circumferentially arranged half-bridge elements (17a, 18a), and the first half-bridge elements (17a) are located slideably in the radial direction by means of a guiding sleeve (32) attached to each of them and a guiding pin (31) extending from the outer casing (10) or a tongue-groove connection.
  3. Arrangement in accordance with Claim 1, characterized in that the bridge (16) consists of a multitude of circumferentially arranged full-bridge elements (16a) which locate, at the free ends, in the outer platforms (9, 11) of the upstream and the downstream stator vanes (5, 7).
  4. Arrangement in accordance with Claim 2, characterized in that the intermediate stator vanes (6) are integrally connected to the full-bridge elements (16a).
  5. Arrangement in accordance with Claim 3, characterized in that the intermediate stator vanes (6) are separately manufactured and axially, radially and circumferentially fixed to the full-bridge elements (16a).
  6. Arrangement in accordance with Claim 4 or 5, characterized in that the full-bridge elements (16a) feature a guiding sleeve (32) and are located slideably in the radial direction on a guiding pin (31) provided on the outer casing (10), and that each of the intermediate stator vanes (6) features a locating web (33) which engages a circumferential groove of a retaining ring (34).
  7. Arrangement in accordance with Claim 3, characterized in that the full-bridge elements (16a) are each located on the outer casing (10) by means of radially angle-free braces (22) which form a segmented inner casing, with a separate supporting element (36), which is radially, axially and circumferentially fixed on each full-bridge element (16a), being integrally connected to the respective intermediate stator vane (6) and the second shroud segment (8b).
  8. Arrangement in accordance with Claim 7, characterized in that the radially angle-free braces (22) are held at the outer casing (10) by means of a groove provided at their free end via a fixing ring (26), and the full-bridge elements (16a) are circumferentially held on the outer casing (10).
  9. Arrangement in accordance with Claim 7, characterized in that the radially angle-free braces (22) are firmly connected to a stiff ring (23) attached to the outer casing (10).
  10. Arrangement in accordance with Claim 7, characterized in that the supporting element (36) for the intermediate stator vane (7) and the shroud segment (8a) features a flexible connecting area (36a).
  11. Arrangement in accordance with one of the preceding Claims, characterized in that the supporting elements (19), the half-bridge elements (17a, 18a) and the full-bridge elements (16a) are reinforced by stiffening elements (29, 30).
EP05090065A 2004-03-26 2005-03-16 Arrangement for self adjusting the tip clearance in a two or multiple stage turbine Expired - Fee Related EP1580404B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004016222A DE102004016222A1 (en) 2004-03-26 2004-03-26 Arrangement for automatic running gap adjustment in a two-stage or multi-stage turbine
DE102004016222 2004-03-26

Publications (3)

Publication Number Publication Date
EP1580404A2 EP1580404A2 (en) 2005-09-28
EP1580404A3 EP1580404A3 (en) 2008-10-01
EP1580404B1 true EP1580404B1 (en) 2011-10-05

Family

ID=34854112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05090065A Expired - Fee Related EP1580404B1 (en) 2004-03-26 2005-03-16 Arrangement for self adjusting the tip clearance in a two or multiple stage turbine

Country Status (3)

Country Link
US (2) US7524164B2 (en)
EP (1) EP1580404B1 (en)
DE (1) DE102004016222A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887939B1 (en) 2005-06-29 2016-09-30 Soc Nat D'etude Et De Construction De Moteurs D'aviation Snecma TURBOMACHINE MULTI-STAGE COMPRESSOR
EP1890011A1 (en) * 2006-08-07 2008-02-20 ABB Turbo Systems AG Axial flow turbine with slotted shroud
DE102007031711A1 (en) 2007-07-06 2009-01-08 Rolls-Royce Deutschland Ltd & Co Kg Housing shroud segment suspension
EP2184445A1 (en) * 2008-11-05 2010-05-12 Siemens Aktiengesellschaft Axial segmented vane support for a gas turbine
DE102008060706A1 (en) * 2008-12-05 2010-06-10 Man Turbo Ag Nozzle segment for a steam turbine
US8876458B2 (en) * 2011-01-25 2014-11-04 United Technologies Corporation Blade outer air seal assembly and support
JP5665724B2 (en) * 2011-12-12 2015-02-04 株式会社東芝 Stator blade cascade, method of assembling stator blade cascade, and steam turbine
US9500095B2 (en) * 2013-03-13 2016-11-22 Pratt & Whitney Canada Corp. Turbine shroud segment sealing
EP2853685A1 (en) * 2013-09-25 2015-04-01 Siemens Aktiengesellschaft Insert element and gas turbine
US9266618B2 (en) 2013-11-18 2016-02-23 Honeywell International Inc. Gas turbine engine turbine blade tip active clearance control system and method
GB201507647D0 (en) * 2015-05-05 2015-06-17 Rolls Royce Plc Casing assembly
FR3045717B1 (en) * 2015-12-22 2020-07-03 Safran Aircraft Engines DEVICE FOR DRIVING A TURBINE ROTATING BLADE TOP
DE102016213810A1 (en) 2016-07-27 2018-02-01 MTU Aero Engines AG Cladding element for a turbine intermediate housing
US10641129B2 (en) * 2017-11-08 2020-05-05 United Technologies Corporation Support rail truss for gas turbine engines
US11174742B2 (en) 2019-07-19 2021-11-16 Rolls-Royce Plc Turbine section of a gas turbine engine with ceramic matrix composite vanes

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2634090A (en) * 1950-07-28 1953-04-07 Westinghouse Electric Corp Turbine apparatus
US2955800A (en) * 1957-05-28 1960-10-11 Gen Motors Corp Turbomachine stator assembly
GB886626A (en) * 1958-09-04 1962-01-10 Bristol Siddeley Engines Ltd Improvements in or relating to axial flow turbines or compressors
US3446481A (en) * 1967-03-24 1969-05-27 Gen Electric Liquid cooled turbine rotor
BE786674A (en) * 1971-07-26 1973-01-25 Westinghouse Electric Corp MULTI-ENCLOSURE TURBINE
US4076451A (en) * 1976-03-05 1978-02-28 United Technologies Corporation Ceramic turbine stator
US4242042A (en) * 1978-05-16 1980-12-30 United Technologies Corporation Temperature control of engine case for clearance control
GB2061396B (en) * 1979-10-24 1983-05-18 Rolls Royce Turbine blade tip clearance control
FR2548733B1 (en) * 1983-07-07 1987-07-10 Snecma DEVICE FOR SEALING MOBILE BLADES OF A TURBOMACHINE
GB2226365B (en) * 1988-12-22 1993-03-10 Rolls Royce Plc Turbomachine clearance control
US5181826A (en) * 1990-11-23 1993-01-26 General Electric Company Attenuating shroud support
US5228828A (en) * 1991-02-15 1993-07-20 General Electric Company Gas turbine engine clearance control apparatus
US5165850A (en) * 1991-07-15 1992-11-24 General Electric Company Compressor discharge flowpath
US5412939A (en) * 1993-12-20 1995-05-09 Alliedsignal Inc. Seal compression tool for gas turbine engine
US5462403A (en) * 1994-03-21 1995-10-31 United Technologies Corporation Compressor stator vane assembly
DE19807247C2 (en) * 1998-02-20 2000-04-20 Mtu Muenchen Gmbh Turbomachine with rotor and stator
FR2794816B1 (en) * 1999-06-10 2001-07-06 Snecma HIGH PRESSURE COMPRESSOR STATOR
US6340285B1 (en) * 2000-06-08 2002-01-22 General Electric Company End rail cooling for combined high and low pressure turbine shroud
FR2835563B1 (en) * 2002-02-07 2004-04-02 Snecma Moteurs ARRANGEMENT FOR HANGING SECTORS IN A CIRCLE OF A CIRCLE OF A BLADE-BEARING DISTRIBUTOR
GB2388407B (en) * 2002-05-10 2005-10-26 Rolls Royce Plc Gas turbine blade tip clearance control structure
US20040219011A1 (en) * 2003-05-02 2004-11-04 General Electric Company High pressure turbine elastic clearance control system and method

Also Published As

Publication number Publication date
US7524164B2 (en) 2009-04-28
EP1580404A2 (en) 2005-09-28
EP1580404A3 (en) 2008-10-01
US20050254939A1 (en) 2005-11-17
US20090269190A1 (en) 2009-10-29
DE102004016222A1 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
EP1580404B1 (en) Arrangement for self adjusting the tip clearance in a two or multiple stage turbine
DE3446389C2 (en) Stator structure for an axial gas turbine
DE10210866C5 (en) Guide vane mounting in a flow channel of an aircraft gas turbine
EP1712744B1 (en) Arrangement in a high pressure turbine for passive tip clearance control
DE60120279T2 (en) vane platforms
EP3152407B1 (en) Vane ring, inner ring, and turbomachine
DE102007025006A1 (en) Double shaft gas turbine, has bars arranged along circumference of bearing housing and extend via circular intermediate channel into space between outer circumference surface of housing and inner circumference surface of housing wall
EP1413831A1 (en) Annular combustor for a gas turbine and gas turbine
EP2342425B1 (en) Gas turbine with securing plate between blade base and disk
DE4110244A1 (en) INTERMEDIATE SEALING ARRANGEMENT FOR BLADE LEVELS OF CONTINUOUS TURBINE ENGINE ROTORS
EP1947293A1 (en) Guide vane for a gas turbine
EP1653049B1 (en) Vane ring assembly for gas turbines and method to modify the same
CH697747A2 (en) Scheme for holding the outer side wall for a singlet nozzle of the first stage.
EP2344723B1 (en) Gas turbine with seal plates on the turbine disk
DE3540463A1 (en) GAS TURBINE ENGINE
DE3039869C2 (en) Arrangement and fastening of an engine nacelle on an aircraft
DE102016223867A1 (en) Turbomachinery sealing arrangement
EP3287611B1 (en) Gas turbine
EP1462616B1 (en) Assembly for the axial and radial fastening of a guide vane ring in a casing of a turbine engine
EP3176386B1 (en) Inner shroud assembly, corresponding inner shroud, inner casing and turbomachine
EP3309359B1 (en) Blade assembly for a gas turbine engine
EP3390784B1 (en) Continuous flow machine having multiple guide vane stages and method for partially disassembling a continuous flow machine of this type
DE102013210168A1 (en) Structural assembly for a turbomachine
WO2011088819A2 (en) Housing system for an axial turbomachine
EP2955336A1 (en) Intermediate housing for a gas turbine and gas turbine with such an intermediate housing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20081127

17Q First examination report despatched

Effective date: 20090305

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005011954

Country of ref document: DE

Effective date: 20111201

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120706

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005011954

Country of ref document: DE

Effective date: 20120706

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200327

Year of fee payment: 16

Ref country code: DE

Payment date: 20200327

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200325

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005011954

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210316

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001