EP1559913B1 - Progressive cavity pump - Google Patents

Progressive cavity pump Download PDF

Info

Publication number
EP1559913B1
EP1559913B1 EP05290100.6A EP05290100A EP1559913B1 EP 1559913 B1 EP1559913 B1 EP 1559913B1 EP 05290100 A EP05290100 A EP 05290100A EP 1559913 B1 EP1559913 B1 EP 1559913B1
Authority
EP
European Patent Office
Prior art keywords
pump
rotor
cavities
stator
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05290100.6A
Other languages
German (de)
French (fr)
Other versions
EP1559913A1 (en
Inventor
Christian Bratu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1559913A1 publication Critical patent/EP1559913A1/en
Application granted granted Critical
Publication of EP1559913B1 publication Critical patent/EP1559913B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
    • F04C2/1075Construction of the stationary member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/007Venting; Gas and vapour separation during pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/086Carter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/24Fluid mixed, e.g. two-phase fluid

Definitions

  • the present invention relates to improvements made to volumetric pumps of the progressive cavity type, also called Moineau pump, and more specifically it relates to an improved progressive cavity type volumetric pump, for pumping monophasic or multiphase mixtures or effluents, having any viscosity, especially compressible multiphase mixtures or effluents and viscous to very viscous fluids.
  • the pump according to the present invention allows a fortiori to pump a single phase or a liquid phase loaded with solid particles, with varying viscosities.
  • PCP - The pump with progressive cavities - hereinafter also referred to by the abbreviation PCP - was invented by René Moineau in 1930 and the liquid operation of the industrial pumps currently used corresponds to the basic principles.
  • FIG. 1 of the accompanying drawing gives, in (A), a schematic representation partially in longitudinal axial section of a conventional PCP pump, with also in (B) a representation of the distribution of pressures along the pump in the case of pumping of liquid (curve L) and in the case of pumping a multiphase liquid-gas mixture (curve P).
  • the architecture of the PCP pump 1 consists of a helical metal rotor 2 rotating inside a compressible stator 3, generally made of elastomer, of helical inner shape.
  • the contact between the rotor 2 and the stator 3 is made by the compression, to a greater or lesser extent, of the stator 3.
  • the rotor 2 has a diameter D ( Figure 2 (B) ) above the stator channel 3 ( Figure 2 (C) ), which generates a compression contact of the stator 3 by the rotor 2 (contact clamping), while ensuring a certain degree of tightness ( Figure 2 (A) ).
  • the geometry of the rotor 2 and the stator 3 of the PCP pump 1 leads to a set of isolated cavities 4, defined between the rotor 2 and the stator 3, also called cells, of constant volume, which the rotor 2 moves from the suction or inlet 5 (low suction pressure p A ) to the discharge or outlet 6 (high delivery pressure p R ).
  • the PCP pump is a positive displacement pump.
  • the term “floor” is sometimes used instead of the term “cavity”; the term “stage” means the volume between the stator and the rotor corresponding to a cavity at a given moment. These two terms are sometimes used interchangeably.
  • the cavity 4 moves from the low pressure of the suction 5 towards the high delivery pressure 6 and the presence of the gas in the pumped effluent leads to a process of compression of the gas with development of temperature, because the cavity is of constant volume.
  • the thermodynamic law of gas shows that if the volume in which the gas is compressed remains constant, the temperature rises considerably.
  • the leakage rate through the annular contact rotor 2 / stator 3 fills two functions: it partially compensates the volume of compressed gas and realizes the differential pressure between the cavities 4.
  • the annular leakage rate between the rotor 2 and the stator 3 of the pump PCP 1 is adapted to the operation in liquid (incompressible fluid ), for lubrication purposes with low flow rates; it is not sufficient to compensate for gas compression. Since the leakage flow rate is low, the last cavities 4 are only partially compensated and the compression occurs on the last stages of the pump, as can be seen in FIG. Figure 1 (B) , p A denoting, as already indicated, the suction pressure and p R designating the discharge pressure. This compression is accompanied by a high temperature. The concentration of the pressures at the outlet of the pump and the strong increase in temperature leads to the risk of mechanical damage: stator degradation, mechanical expansion and vibrations.
  • the PCP pump achieves a pressure of 4 MPa (40 bar) on the last four stages, with a high pressure gradient that develops high temperatures; on thirteen floors, there are only four that compress the mixture.
  • variable pitch rotor whose cavity volume is decreasing towards the discharge.
  • the leakage flow between the rotor and the stator carries the flow required for the pressure and volume compensation of the cavities located downstream of the pump. It is a global leakage rate; he first compensates for the last cavity, to move on to the next, and so on.
  • the pump In viscous fluid, the pump can not avoid the appearance of cavitation.
  • this solution can only have limited use and it uses a complex architecture without ensuring good reliability.
  • the document SU 1 772 423 A1 which is considered as describing the closest state of the art and these known features are placed in the preamble of claim 1, relates to a screw pump which is specifically intended for pumping liquids, and which is not suitable for pump compressible multiphase mixtures including a gaseous phase.
  • the documents FR-A-1,361,840 and DE 23 16 127 relate to screw pumps for pumping difficult incompressible products such as viscous fluids with solid suspensions, viscous pastes, dry materials, agglomerates, abrasive products, etc. These pumps are equipped with a lubrication system connected to all the cavities of the pump, so that all the cavities are interconnected. A pump thus arranged is structurally incapable of displacing compressible multiphase mixtures including a gaseous phase.
  • the document JP-03.149 377 relates to a screw pump having a clearance between the rotor and the stator, so that such a pump is unusable for moving compressible multiphase mixtures including a gaseous phase.
  • the present invention aims to provide an improved pump so as to overcome the aforementioned drawbacks of the prior art.
  • a progressive cavity pump according to the preamble of claim 1 is characterized, being arranged according to the invention, by the provisions set forth in the characterizing part of claim 1.
  • Internal recirculation means the recirculation between two cavities of a mixing volume pumped as opposed to recirculation external to the cavities which is done by the annular contact between the rotor and the stator and which generates a leakage flow.
  • the pressure distribution is obtained by a rebalancing of the local pressures due to the recirculation flow of the hydraulic regulators.
  • the leak rates between the stator and the rotor are a function of the pressure gradient. Control of pressure leads to the control of leak rates.
  • the role of the hydraulic control means is therefore to control the behavior of the pump, depending on the production characteristics.
  • Pressure control and compensation of the volume of compressed gas stabilize the temperatures, in multiphase pumping (liquid, gas, solid particles).
  • the internal regulation of the pressure by the hydraulic control system of the present invention leads to the stabilization of the thermal and hydraulic regime along the pump, and thus improves the overall mechanical behavior and reliability.
  • hydro-thermomechanical behavior ensures better hydraulic performance (pumped flow, discharge pressure) and economic (maintenance, service life).
  • Controlling the contact between the rotor and the stator means that one can have a superficial contact without a strong compression between stator and rotor, while keeping a low leakage rate. This is a new operating mode compared to the traditional PCP pump.
  • At least one channel is advantageously provided between at least two adjacent cavities, whereby the hydraulic regulator is adapted to ensure internal recirculation of the pumped fluid between at least two adjacent cavities.
  • at least one channel is advantageously provided between at least two cavities located in the region of the pump close to the discharge, thanks to which this hydraulic regulator is able to ensure internal recirculation of the fluid pumped between at least two cavities located in the region of the pump close to the discharge.
  • channels can be provided between all the cavities of the pump, whereby the hydraulic regulator is able to ensure internal recirculation of the fluid pumped between all the cavities of the pump.
  • the at least one channel is received at least in part by the rotor.
  • a set of hydraulic regulators whose dimensioning and density along the pump uniformly provide the hydraulic control consisting of the control of pressures, leakage flow rates. and temperatures, and the compensation of compressed volumes.
  • the rotation of the rotor moves the cavities along the pump with a speed dependent on the speed of rotation and the pitch of the rotor; each time a cavity passes a hydraulic regulator, the recirculation flow compensates for the compressed volume, rebalances the pressures and stabilizes the temperatures.
  • the density of the hydraulic regulators ensures the continuity of the regulation process along the pump; this density is a function of the performance of the pump (flow, pressure distribution).
  • the dimensioning of the hydraulic regulators corresponds to the recirculation flow rate necessary for the cavity for the compensation of the compressed volume and the rebalancing of the pressures.
  • the at least one channel connecting two cavities is made in the rotor, the hydraulic control being performed mechanically using a regulator disposed within said channel or by pressure drop.
  • the at least one example not covered by the invention two cavities is received by the rotor, with loss of pressure regulation.
  • the at least one channel connecting two cavities is an internal channel accommodated by the stator, with loss of pressure regulation.
  • the three particular embodiments can be used simultaneously on the same pump.
  • the contact between the rotor and the stator can be loosened with respect to a progressive cavity pump not comprising the hydraulic control means as defined above. Under these conditions, the rotational speed and the pumped flow can be increased without damaging the stator.
  • the present invention also relates to the application of the pump as defined above to the pumping of compressible multiphase mixtures and to the pumping of viscous fluids.
  • the industrial applications of the pump according to the present invention cover a wider range than existing PCP pumps.
  • the Figures 3 and 4 illustrate the operation of the hydraulic control device (RH) of the invention installed inside the pump.
  • the total flow rate Q accesses the cavity 1 and the volume of gas is compressed at the pressure p l . Because of the pressure difference (p m - p 1 ), the flow rate q m of the hydraulic control system compensates the compressed volume in the cavity 1 and rebalances the pressures p m and p l .
  • the local operation of the hydraulic control system of the invention is the opposite of the systems currently used by the industry: it is a controlled internal regulation, in contrast with the uncontrolled external regulation of current systems.
  • Performance control is achieved by the architecture of the hydraulic control system: dimensions, transfer function, arrangement along the pump.
  • the design of the hydraulic control system is done according to the methods of compressible fluid mechanics and thermodynamics.
  • the dimensions and the recirculation flow rate are a function of the gas and liquid flow rate, the differential pressure, and the hydraulic characteristics of the RH (pressure drop, transfer function):
  • q not f Q BOY WUT Q
  • the hydraulic control systems are installed inside the pump by adapting the rotor, without completely changing the overall initial architecture of the PCP pump and its manufacture. Maintaining the initial configuration of the PCP pump means that the overall architecture (the rotor and the stator) is not modified, the transport of the mixture by the displacement of the cavities, the motorization.
  • the RH 7 hydraulic control system is constituted by a hydraulic channel 8 which is formed inside the rotor 2 between two cavities 4 and in which is installed a device 9 for regulating the recirculation flow.
  • FIG. 9 A practical embodiment of the device 9 is shown schematically on the figure 6 , where it can be seen that this device is based on a valve opening gradually at a given differential pressure, which leads to the regulation of the recirculation flow q ( Figure 4 (A) ).
  • the RH 7 hydraulic control system consists of a hydraulic channel 8 made inside the rotor 2 between two cavities 4.
  • the RH 7 hydraulic control system consists of two hydraulic channels 10, one being made between the cavities 1 and m, and the other inside the cavity 1. These two tandem channels, arranged so offset, represent the simplest structure. The fact that several channels are made decreases their diameter and the offset ensures a better circulation, especially when passing from the opening of the channel in contact with the stator.
  • FIGS. Figures 7A, 7B present a variant in which a flow control device 9, such as that shown in FIG. figure 6 , is installed in each of the channels 10 of the tandem, and the Figures 9A-9C a variant according to which, in each channel 10 of the tandem, the hydraulic control is effected by the pressure drop, as illustrated in FIGS. Figures 7A, 7B .
  • the hydraulic control system RH 7 is produced by a hydraulic channel peripheral to the rotor 2, between two cavities 4.
  • the hydraulic control system RH 7 ensures the recirculation between the two cavities 4 and the differential pressure is given by the pressure drop of the flow . Its dimensions correspond to the necessary recirculation flow.
  • the Figures 10A, 10B present a variant comprising a circuit with a single peripheral hydraulic channel 11, and the Figures 11A-11C a variant comprising two circuits 12 in tandem shifted.
  • the RH 7 hydraulic control system comprises a hydraulic channel 13 inner peripheral to the stator 3, made between two cavities 4.
  • the differential pressure is given by the pressure drop, and its dimensions correspond to the recirculation flow.
  • This test is based on a prototype PCP traditional pump carrying a multiphase mixture (water and air).
  • a PCP pump comprising thirteen stages (cavities) transports a multiphase mixture whose flow rates are 50% water and 50% air, with a suction pressure of 0.1 MPa (1 bar) and a pressure in the discharge pipe of 4 MPa (40 bar), which amounts to a gas compression ratio of 40/1. Due to the high compression ratio and the fact that the leakage rate (between the rotor and the stator) is unable to compensate for the volume of compressed gas, the discharge pressure is carried out on the last four stages (cavities), which amounts to at a high pressure gain of 1 MPa (10 bar) / stage. All the work of the pump is done by the last four stages, the remaining nine stages of the pump not contributing to the compression of the mixture. This strong compression located on the last floors is accompanied by a strong rise in temperature: the input temperature is multiplied by two.
  • the high temperature and the concentration of the pressures at the outlet of the pump are detrimental to the mechanical strength of the assembly, in particular the elastomer of the stator and the rotor.
  • the pump according to the present invention has a completely different behavior; thanks to the hydraulic controllers RH installed in the rotor, the pressure distribution is standardized and the temperature stabilized. On the last four floors, the density of RH hydraulic controllers is two hydraulic controllers per stage and therefore the pressure gain is very low (about 0.1 MPa / stage). On the remaining nine stages of the pump, RH hydraulic controllers are distributed at the rate of one RH controller per stage. Under these conditions, the pressure distribution is standardized, which amounts to a pressure gain of about 0.3 MPa (3 bar) / stage.
  • the uniformity of the distribution of pressures along the pump leads to a low pressure gain of each stage and the stabilization of temperatures along the pump.
  • the density variation of the RH hydraulic regulators contributes to the hydro-thermo-mechanical rebalancing of the pump; all floors contribute to the compression of the mixture.
  • This test is based on a prototype PCP pump carrying a liquid (water).
  • the same PCP pump carries water with a low inlet pressure (0.1 MPa (1 bar)) and a pressure of about 0.5 MPa in the discharge pipe. Due to the dynamic behavior of the contact between the rotor and the stator, the pump develops very low pressures on stages 7-11 with risk of cavitation.
  • the pump according to the present invention controls the distribution of pressures and, therefore, the pressures are positive and uniformly distributed, without risk of cavitation. From the discharge at 0.5 MPa (5 bar), the pressures uniformly vary up to the suction pressure 0.1 MPa (1 bar), without locally reaching low cavitation pressures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

La présente invention porte sur des perfectionnements apportés aux pompes volumétriques du type à cavités progressives, dites aussi pompe Moineau, et plus spécifiquement elle porte sur une pompe volumétrique de type à cavités progressives, perfectionnée, permettant de pomper des mélanges ou effluents monophasiques ou polyphasiques, ayant n'importe quelle viscosité, en particulier des mélanges ou effluents polyphasiques compressibles et des fluides visqueux à très visqueux.The present invention relates to improvements made to volumetric pumps of the progressive cavity type, also called Moineau pump, and more specifically it relates to an improved progressive cavity type volumetric pump, for pumping monophasic or multiphase mixtures or effluents, having any viscosity, especially compressible multiphase mixtures or effluents and viscous to very viscous fluids.

Par « mélange ou effluent polyphasique compressible », on entend un effluent composé d'un mélange de :

  1. (a) une phase gazeuse formée d'au moins un gaz libre ; et
  2. (b) une phase liquide formée d'au moins un liquide et/ou
  3. (c) une phase solide formée par des particules d'au moins un solide en suspension dans (a) et, si la phase (b) est présente, dans (a) et/ou (b).
"Compressible multiphase mixture or effluent" means an effluent composed of a mixture of:
  1. (a) a gaseous phase formed of at least one free gas; and
  2. (b) a liquid phase formed of at least one liquid and / or
  3. (c) a solid phase formed by particles of at least one solid suspended in (a) and, if phase (b) is present, in (a) and / or (b).

Toutefois, comme indiqué ci-dessus, la pompe selon la présente invention permet a fortiori de pomper une seule phase ou une phase liquide chargée en particules solides, avec des viscosités variables.However, as indicated above, the pump according to the present invention allows a fortiori to pump a single phase or a liquid phase loaded with solid particles, with varying viscosities.

La pompe à cavités progressives - désignée également ci-après par l'abréviation PCP - a été inventée par René Moineau en 1930 et le fonctionnement en liquide des pompes industrielles utilisées actuellement correspond aux principes de base.The pump with progressive cavities - hereinafter also referred to by the abbreviation PCP - was invented by René Moineau in 1930 and the liquid operation of the industrial pumps currently used corresponds to the basic principles.

La figure 1 du dessin annexé donne, en (A), une représentation schématique partiellement en coupe longitudinale axiale d'une pompe PCP classique, avec également en (B) une représentation de la distribution des pressions le long de la pompe dans le cas du pompage d'un liquide (courbe L) et dans le cas du pompage d'un mélange polyphasique liquide-gaz (courbe P).The figure 1 of the accompanying drawing gives, in (A), a schematic representation partially in longitudinal axial section of a conventional PCP pump, with also in (B) a representation of the distribution of pressures along the pump in the case of pumping of liquid (curve L) and in the case of pumping a multiphase liquid-gas mixture (curve P).

L'architecture de la pompe PCP 1 est constituée d'un rotor métallique hélicoïdal 2 tournant à l'intérieur d'un stator compressible 3, généralement en élastomère, de forme intérieure hélicoïdale. Le contact entre le rotor 2 et le stator 3 se fait par la compression, plus ou moins forte, du stator 3. Pour ce faire, le rotor 2 a un diamètre D (figure 2(B)) supérieur au canal du stator 3 (figure 2(C)), ce qui engendre un contact par compression du stator 3 par le rotor 2 (serrage de contact), en assurant une certaine étanchéité (figure 2(A)).The architecture of the PCP pump 1 consists of a helical metal rotor 2 rotating inside a compressible stator 3, generally made of elastomer, of helical inner shape. The contact between the rotor 2 and the stator 3 is made by the compression, to a greater or lesser extent, of the stator 3. To do this, the rotor 2 has a diameter D ( Figure 2 (B) ) above the stator channel 3 ( Figure 2 (C) ), which generates a compression contact of the stator 3 by the rotor 2 (contact clamping), while ensuring a certain degree of tightness ( Figure 2 (A) ).

Comme visible aux figures 1(A) et 2(A), la géométrie du rotor 2 et du stator 3 de la pompe PCP 1 conduit à un ensemble de cavités isolées 4, définies entre le rotor 2 et le stator 3, également appelées alvéoles, de volume constant, que le rotor 2 déplace de l'aspiration ou entrée 5 (basse pression d'aspiration pA) vers le refoulement ou sortie 6 (haute pression de refoulement pR). En ce sens, la pompe PCP est une pompe volumétrique.As visible to Figures 1 (A) and 2 (A) the geometry of the rotor 2 and the stator 3 of the PCP pump 1 leads to a set of isolated cavities 4, defined between the rotor 2 and the stator 3, also called cells, of constant volume, which the rotor 2 moves from the suction or inlet 5 (low suction pressure p A ) to the discharge or outlet 6 (high delivery pressure p R ). In this sense, the PCP pump is a positive displacement pump.

Dans ce qui suit, on utilise parfois le terme « étage » à la place du terme « cavité » ; on entend par « étage » le volume entre le stator et le rotor correspondant à une cavité à un moment donné. Ces deux termes sont parfois utilisés indifféremment.In what follows, the term "floor" is sometimes used instead of the term "cavity"; the term "stage" means the volume between the stator and the rotor corresponding to a cavity at a given moment. These two terms are sometimes used interchangeably.

La figure 2 du dessin annexé représente une pompe PCP connue 1 montrée en (A) à l'état assemblé et présentant un rotor 2 à simple hélice montré seul en (B) et un stator 3 à double hélice montré seul en (C). L'axe du stator est désigné par as et l'axe du rotor par ar. Dans ces conditions :

  • le pas (PS) du stator 3 est le double du pas (Pr) du rotor 2 ; et
  • la longueur L d'une cavité 4 est égale au pas (Ps) du stator 3, et par conséquent, elle est le double du pas (Pr) du rotor 2.
The figure 2 of the accompanying drawing shows a known PCP pump 1 shown in (A) in the assembled state and having a single helical rotor 2 shown alone in (B) and a double helical stator 3 shown alone in (C). The axis of the stator is designated by s and the axis of the rotor by r . In these conditions :
  • the pitch (P S ) of the stator 3 is twice the pitch (P r ) of the rotor 2; and
  • the length L of a cavity 4 is equal to the pitch (P s ) of the stator 3, and therefore it is twice the pitch (P r ) of the rotor 2.

La distribution des pressions (figure 1(B)) au long de la pompe 1 du refoulement 6 vers l'aspiration 5, et la lubrification du contact rotor 2/stator 3 sont dues à l'écoulement des fuites entre le rotor 2 et le stator 3. Une cavité 4 à haute pression débite vers la cavité 4 adjacente à une pression inférieure en raison des fuites car le contact rotor 2/stator 3 n'est pas entièrement étanche, et les pertes de charge génèrent la pression différentielle entre les cavités 4. Par conséquent, le débit de fuite dépend du serrage de contact entre le rotor 2 et le stator 3, des conditions dynamiques de leur contact (vitesse de rotation, vibrations), de la viscosité du fluide et de la différence des pressions locales. En pratique, il est difficile de maîtriser l'écoulement de fuite et la distribution des pressions qu'il engendre.The distribution of pressures ( Figure 1 (B) ) along the pump 1 of the discharge 6 to the suction 5, and the lubrication of the rotor contact 2 / stator 3 are due to the flow of leaks between the rotor 2 and the stator 3. A cavity 4 high pressure discharges to the cavity 4 adjacent to a lower pressure due to leakage because the rotor contact 2 / stator 3 is not fully sealed, and the pressure losses generate the differential pressure between the cavities 4. Therefore, the leakage rate depends contact clamping between the rotor 2 and the stator 3, dynamic conditions of their contact (rotation speed, vibrations), the viscosity of the fluid and the difference in local pressures. In practice, it is difficult to control the leakage flow and the distribution of the pressures it generates.

En d'autres termes, le fonctionnement hydraulique de la pompe PCP est soumis à une régulation externe aux cavités, due aux fuites entre le rotor 2 et le stator 3, cette régulation n'étant pas maîtrisée.In other words, the hydraulic operation of the PCP pump is subject to regulation external to the cavities, due to leakage between the rotor 2 and the stator 3, this control is not controlled.

Dans le cas où la pompe PCP 1 est utilisée pour le pompage d'un mélange polyphasique comportant une phase gazeuse, la cavité 4 se déplace de la basse pression de l'aspiration 5 vers la haute pression de refoulement 6 et la présence du gaz dans l'effluent pompé conduit à un processus de compression du gaz avec développement de température, car la cavité est de volume constant. La loi thermodynamique du gaz montre que, si le volume dans lequel on comprime le gaz reste constant, la température monte considérablement. Ainsi, le débit de fuite par le contact annulaire rotor 2/stator 3 remplit deux fonctions : il compense partiellement le volume de gaz comprimé et il réalise la pression différentielle entre les cavités 4. Cependant, le débit de fuite annulaire entre le rotor 2 et le stator 3 de la pompe PCP 1 est adapté au fonctionnement en liquide (fluide incompressible), dans un but de lubrification avec des faibles débits ; il n'est pas suffisant pour faire la compensation de la compression du gaz. Comme le débit de fuite est faible, on ne compense que partiellement les dernières cavités 4 et la compression se produit sur les derniers étages de la pompe, comme on peut le voir sur la figure 1(B), pA désignant, comme déjà indiqué, la pression à l'aspiration et pR désignant la pression au refoulement. Cette compression s'accompagne d'une forte température. La concentration des pressions à la sortie de la pompe et la forte augmentation de la température conduit au risque de dommages mécaniques : dégradation du stator, dilatation mécanique et vibrations.In the case where the PCP pump 1 is used for pumping a multiphase mixture comprising a gaseous phase, the cavity 4 moves from the low pressure of the suction 5 towards the high delivery pressure 6 and the presence of the gas in the pumped effluent leads to a process of compression of the gas with development of temperature, because the cavity is of constant volume. The thermodynamic law of gas shows that if the volume in which the gas is compressed remains constant, the temperature rises considerably. Thus, the leakage rate through the annular contact rotor 2 / stator 3 fills two functions: it partially compensates the volume of compressed gas and realizes the differential pressure between the cavities 4. However, the annular leakage rate between the rotor 2 and the stator 3 of the pump PCP 1 is adapted to the operation in liquid (incompressible fluid ), for lubrication purposes with low flow rates; it is not sufficient to compensate for gas compression. Since the leakage flow rate is low, the last cavities 4 are only partially compensated and the compression occurs on the last stages of the pump, as can be seen in FIG. Figure 1 (B) , p A denoting, as already indicated, the suction pressure and p R designating the discharge pressure. This compression is accompanied by a high temperature. The concentration of the pressures at the outlet of the pump and the strong increase in temperature leads to the risk of mechanical damage: stator degradation, mechanical expansion and vibrations.

Par conséquent, le concept de fuite par le contact rotor/stator, propre à la pompe PCP, est inadapté au pompage d'un mélange polyphasique compressible.Therefore, the concept of leakage by the rotor / stator contact, specific to the PCP pump, is unsuitable for pumping a compressible multiphase mixture.

Pratiquement, en présence du gaz, la pompe PCP réalise une pression de 4 MPa (40 bars) sur les quatre derniers étages, avec un fort gradient de pression qui développe des températures élevées ; sur treize étages, il n'y en a que quatre qui compriment le mélange.Practically, in the presence of gas, the PCP pump achieves a pressure of 4 MPa (40 bar) on the last four stages, with a high pressure gradient that develops high temperatures; on thirteen floors, there are only four that compress the mixture.

En général, la distribution irrégulière des pressions au long de la pompe PCP conduit au développement des températures excessives mettant en cause la fiabilité de la pompe : dégradation de l'élastomère du stator, instabilité dynamique du rotor, déformations et efforts thermiques de la structure. Dans ces conditions, il faut limiter la pression de refoulement et réduire la vitesse de rotation de la pompe, ce qui conduit à une dégradation des débits pompés.In general, the irregular distribution of pressures along the PCP pump leads to the development of excessive temperatures involving the reliability of the pump: degradation of the stator elastomer, dynamic instability of the rotor, deformations and thermal stresses of the structure. Under these conditions, it is necessary to limit the discharge pressure and to reduce the speed of rotation of the pump, which leads to a degradation of the pumped flows.

L'expérience montre aussi que le contact rotor/stator quasi-étanche peut conduire au développement de la cavitation quand la pompe PCP transporte du liquide visqueux, notamment pour les grands débits de pompage ou quand la pression à l'entrée est faible. L'apparition de la cavitation est fort dommageable à la résistance du stator en élastomère et du rotor, donc à la fiabilité du système.Experience also shows that the quasi-sealed rotor / stator contact can lead to the development of cavitation when the PCP pump conveys viscous liquid, especially for large pumping rates or when the inlet pressure is low. The appearance of cavitation is very damaging to the resistance of the elastomer stator and the rotor, so to the reliability of the system.

Plusieurs solutions techniques d'uniformisation des pressions au long d'une pompe PCP ont été proposées :

  • Il a ainsi été proposé de réaliser un couple rotor/stator dont le volume des cavités diminue de l'aspiration vers le refoulement.
Several technical solutions to standardize the pressures along a PCP pump have been proposed:
  • It has thus been proposed to provide a rotor / stator torque whose cavity volume decreases from suction to discharge.

C'est ainsi que le document US 2 765 114 propose un système rotor/stator tronconique, avec les diamètres décroissants.This is how the document US 2,765,114 proposes a frustoconical rotor / stator system with decreasing diameters.

Dans le même sens, on peut imaginer un rotor à pas variable dont le volume des cavités est décroissant vers le refoulement.In the same sense, one can imagine a variable pitch rotor whose cavity volume is decreasing towards the discharge.

Ces solutions ne sont efficaces que pour un taux de gaz fixe et elles pénalisent le fonctionnement en liquide. Par ailleurs, cette solution ne peut pas éviter l'apparition de la cavitation.These solutions are only effective for a fixed gas rate and they penalize the operation in liquid. Moreover, this solution can not avoid the appearance of cavitation.

Aussi, la modification de l'architecture de la pompe conduit à un processus de fabrication complexe sans en assurer une bonne fiabilité.

  • Il a aussi été proposé de réaliser un contact entre rotor et stator qui est variable au long de la pompe.
Also, the modification of the architecture of the pump leads to a complex manufacturing process without ensuring good reliability.
  • It has also been proposed to make a contact between rotor and stator which is variable along the pump.

En effet, si l'on réalise un contact entre rotor et stator tel que l'écoulement de fuite annulaire (entre le rotor et le stator) soit plus fort vers le refoulement et plus faible du côté de l'aspiration, la compensation du volume de gaz comprimé se fait dans des conditions plus favorables et la distribution des pressions s'améliore.Indeed, if contact is made between the rotor and the stator such as the annular leakage flow (between the rotor and the stator) are stronger towards the discharge and weaker on the suction side, the compensation of the volume of compressed gas is done under more favorable conditions and the distribution of the pressures improves.

C'est ainsi que le document US 5 722 820 propose un contact rotor/stator variable décroissant du refoulement vers l'aspiration.This is how the document US 5,722,820 proposes a decreasing variable rotor / stator contact from the discharge to the suction.

Pour réaliser ce système, plusieurs moyens sont proposés : une variation faiblement tronconique du rotor, ou un stator tronconique, ou une combinaison des deux.To achieve this system, several means are proposed: a slightly frustoconical rotor variation, or a frustoconical stator, or a combination of both.

Dans ces conditions, l'écoulement de fuite entre le rotor et le stator transporte le débit nécessaire à la compensation en pression et volume des cavités se trouvant à l'aval de la pompe. C'est un débit de fuite global ; il compense d'abord la dernière cavité, pour passer à la suivante et ainsi de suite.Under these conditions, the leakage flow between the rotor and the stator carries the flow required for the pressure and volume compensation of the cavities located downstream of the pump. It is a global leakage rate; he first compensates for the last cavity, to move on to the next, and so on.

Pour alimenter plusieurs cavités, dont le taux de compression est grand, il faut un grand débit de fuite, ce qui demande un très faible contact entre le rotor et le stator. Cependant, le fonctionnement mécanique et hydraulique de la pompe PCP requiert un contact entre rotor et stator pour assurer la stabilité dynamique et le rendement hydraulique.To feed several cavities, whose compression ratio is large, a large leakage flow is required, which requires a very low contact between the rotor and the stator. However, the mechanical and hydraulic operation of the PCP pump requires contact between rotor and stator to ensure dynamic stability and hydraulic efficiency.

Cette solution ne peut donc être qu'un compromis entre le fonctionnement en liquide, comme PCP, et le transport du gaz ; c'est pour cette raison que l'utilisation pratique est limitée aux faibles débits de gaz.This solution can therefore be only a compromise between liquid operation, like PCP, and the transport of gas; it is for this reason that the practical use is limited to low gas flows.

Par ailleurs, le serrage du contact entre le rotor et le stator n'est valable que pour un taux de gaz fixe et pénalise le rendement en liquide.Furthermore, the clamping of the contact between the rotor and the stator is only valid for a fixed gas rate and penalizes the liquid yield.

En fluide visqueux, la pompe ne peut pas éviter l'apparition de la cavitation.In viscous fluid, the pump can not avoid the appearance of cavitation.

Aussi, cette solution modifie l'architecture de la pompe et complique le processus de fabrication.Also, this solution modifies the architecture of the pump and complicates the manufacturing process.

Par conséquent, cette solution ne peut avoir qu'une utilisation limitée et elle fait appel à une architecture complexe sans assurer une bonne fiabilité.Therefore, this solution can only have limited use and it uses a complex architecture without ensuring good reliability.

Le document SU 1 772 423 A1 qui est considéré comme décrivant l'état de la technique le plus proche et ces caractéristiques connues sont placées dans le préambule de la revendication 1, concerne une pompe à vis qui est spécifiquement destinée au pompage de liquides, et qui n'est pas apte à pomper des mélanges polyphasiques compressibles incluant une phase gazeuse.The document SU 1 772 423 A1 which is considered as describing the closest state of the art and these known features are placed in the preamble of claim 1, relates to a screw pump which is specifically intended for pumping liquids, and which is not suitable for pump compressible multiphase mixtures including a gaseous phase.

Les documents FR-A-1 361 840 et DE 23 16 127 concernent des pompes à vis pour le pompage de produits incompressibles difficiles tels que fluides visqueux avec des suspensions solides, des pâtes visqueuses, des matières sèches, des agglomérés, des produits abrasifs, etc. Ces pompes sont équipées d'un système de lubrification raccordé à toutes les cavités de la pompe, de sorte que toutes les cavités se trouvent interconnectées. Une pompe ainsi agencée est structurellement incapable de déplacer des mélanges polyphasiques compressibles incluant une phase gazeuse.The documents FR-A-1,361,840 and DE 23 16 127 relate to screw pumps for pumping difficult incompressible products such as viscous fluids with solid suspensions, viscous pastes, dry materials, agglomerates, abrasive products, etc. These pumps are equipped with a lubrication system connected to all the cavities of the pump, so that all the cavities are interconnected. A pump thus arranged is structurally incapable of displacing compressible multiphase mixtures including a gaseous phase.

Le document JP-03.149 377 concerne une pompe à vis présentant un jeu entre rotor et stator, de sorte qu'une telle pompe est inutilisable pour déplacer des mélanges polyphasiques compressibles incluant une phase gazeuse.The document JP-03.149 377 relates to a screw pump having a clearance between the rotor and the stator, so that such a pump is unusable for moving compressible multiphase mixtures including a gaseous phase.

La présente invention a pour objectif de proposer une pompe perfectionnée de manière à écarter les inconvénients précités de l'état antérieur de la technique.The present invention aims to provide an improved pump so as to overcome the aforementioned drawbacks of the prior art.

A ces fins, une pompe à cavités progressives selon le préambule de la revendication 1 est caractérisée, étant agencée conformément à l'invention, par les dispositions énoncées dans la partie caractérisante de la revendication 1.For these purposes, a progressive cavity pump according to the preamble of claim 1 is characterized, being arranged according to the invention, by the provisions set forth in the characterizing part of claim 1.

Par recirculation interne, on entend la recirculation entre deux cavités d'un volume de mélange pompé par opposition à une recirculation externe aux cavités qui se fait par le contact annulaire entre le rotor et le stator et qui génère un débit de fuite.Internal recirculation means the recirculation between two cavities of a mixing volume pumped as opposed to recirculation external to the cavities which is done by the annular contact between the rotor and the stator and which generates a leakage flow.

La distribution des pressions s'obtient par un rééquilibrage des pressions locales dû au débit de recirculation des régulateurs hydrauliques.The pressure distribution is obtained by a rebalancing of the local pressures due to the recirculation flow of the hydraulic regulators.

Les débits de fuite entre le stator et le rotor sont fonction du gradient de pression. La maîtrise des pressions conduit au contrôle des débits de fuite.The leak rates between the stator and the rotor are a function of the pressure gradient. Control of pressure leads to the control of leak rates.

La compensation des volumes comprimés est assurée par le débit de recirculation des régulateurs hydrauliques.Compensation for compressed volumes is ensured by the recirculation flow rate of the hydraulic regulators.

Le rôle des moyens de régulation hydraulique est donc de contrôler le comportement de la pompe, en fonction des caractéristiques de production.The role of the hydraulic control means is therefore to control the behavior of the pump, depending on the production characteristics.

Le contrôle des pressions et la compensation du volume de gaz comprimé stabilisent les températures, en pompage polyphasique (liquide, gaz, particules solides).Pressure control and compensation of the volume of compressed gas stabilize the temperatures, in multiphase pumping (liquid, gas, solid particles).

Par le contrôle des pressions, on évite l'apparition de la cavitation, source de dommages mécaniques (élastomère du stator, métal du rotor) ; et l'équilibrage des pressions et le contrôle du débit de fuite conduisent à la maîtrise du contact entre le stator et rotor.By the control of the pressures, one avoids the appearance of the cavitation, source of mechanical damages (elastomer of the stator, metal of the rotor); and the balancing of the pressures and the control of the leakage flow lead to the control of the contact between the stator and the rotor.

En effet, la régulation interne de la pression par le système de régulation hydraulique de la présente invention conduit à la stabilisation du régime thermique et hydraulique au long de la pompe, et permet d'améliorer ainsi le comportement mécanique et la fiabilité d'ensemble.Indeed, the internal regulation of the pressure by the hydraulic control system of the present invention leads to the stabilization of the thermal and hydraulic regime along the pump, and thus improves the overall mechanical behavior and reliability.

Dans ces conditions, le contrôle du comportement hydro-thermo-mécanique assure une meilleure performance hydraulique (débit pompé, pression de refoulement) et économique (maintenance, durée de vie).Under these conditions, the control of hydro-thermomechanical behavior ensures better hydraulic performance (pumped flow, discharge pressure) and economic (maintenance, service life).

La maîtrise du contact entre rotor et stator signifie qu'on peut avoir un contact superficiel sans une forte compression entre stator et rotor, tout en gardant un faible débit de fuite. Il s'agit d'un mode de fonctionnement nouveau par rapport à la pompe PCP traditionnelle.Controlling the contact between the rotor and the stator means that one can have a superficial contact without a strong compression between stator and rotor, while keeping a low leakage rate. This is a new operating mode compared to the traditional PCP pump.

Dans ces conditions :

  • la fiabilité du système est améliorée ;
  • on peut utiliser des matériaux plus rigides (plus résistants) pour le stator afin d'augmenter la vitesse de rotation et le débit de la pompe.
In these conditions :
  • the reliability of the system is improved;
  • stiffer (more resistant) materials can be used for the stator to increase the rotational speed and pump flow.

Ainsi le principe de fonctionnement de la pompe selon la présente invention est nouveau et très différent par rapport aux systèmes existants :

  • la pompe PCP avec un contact rotor/stator tronconique utilisée actuellement est un système global de régulation externe, dont le débit de fuite limité ne compense que les cavités situées près du refoulement de la pompe ;
  • la pompe selon la présente invention comporte des moyens de régulation hydraulique interne assurant un écoulement local de recirculation, entre deux cavités, pour compenser la pression différentielle locale, le débit de fuite et la compression du gaz contenu dans la cavité ;
  • le débit de recirculation est auto-régulé par le taux de gaz et la pression différentielle.
Thus the operating principle of the pump according to the present invention is new and very different compared to existing systems:
  • the PCP pump with a frustoconical rotor / stator contact currently used is a global external control system, whose limited leakage rate only compensates for the cavities located near the discharge of the pump;
  • the pump according to the present invention comprises internal hydraulic control means ensuring a recirculation local flow, between two cavities, to compensate the local differential pressure, the leakage rate and the compression of the gas contained in the cavity;
  • the recirculation flow rate is self-regulated by the gas ratio and the differential pressure.

Au moins un canal est avantageusement prévu entre au moins deux cavités adjacentes, ce grâce à quoi le régulateur hydraulique est propre à assurer une recirculation interne du fluide pompé entre au moins deux cavités adjacentes. En particulier, au moins un canal est avantageusement prévu entre au moins deux cavités situées dans la région de la pompe voisine du refoulement, ce grâce à quoi ce régulateur hydraulique est propre à assurer une recirculation interne du fluide pompé entre au moins deux cavités situées dans la région de la pompe voisine du refoulement. Egalement, des canaux peuvent être prévus entre toutes les cavités de la pompe, ce grâce à quoi le régulateur hydraulique est propre à assurer une recirculation interne du fluide pompé entre toutes les cavités de la pompe.At least one channel is advantageously provided between at least two adjacent cavities, whereby the hydraulic regulator is adapted to ensure internal recirculation of the pumped fluid between at least two adjacent cavities. In particular, at least one channel is advantageously provided between at least two cavities located in the region of the pump close to the discharge, thanks to which this hydraulic regulator is able to ensure internal recirculation of the fluid pumped between at least two cavities located in the region of the pump close to the discharge. Also, channels can be provided between all the cavities of the pump, whereby the hydraulic regulator is able to ensure internal recirculation of the fluid pumped between all the cavities of the pump.

Le au moins un canal est accueilli au moins en partie par le rotor.The at least one channel is received at least in part by the rotor.

A cet effet, on installe avantageusement à l'intérieur de la pompe un ensemble de régulateurs hydrauliques dont le dimensionnement et la densité au long de la pompe assurent d'une façon uniforme la régulation hydraulique consistant en le contrôle des pressions, des débits de fuite et des températures, et la compensation de volumes comprimés. La rotation du rotor déplace les cavités au long de la pompe avec une vitesse dépendant de la vitesse de rotation et du pas du rotor ; chaque fois qu'une cavité passe devant un régulateur hydraulique, le débit de recirculation compense le volume comprimé, rééquilibre les pressions et stabilise les températures.For this purpose, it is advantageous to install inside the pump a set of hydraulic regulators whose dimensioning and density along the pump uniformly provide the hydraulic control consisting of the control of pressures, leakage flow rates. and temperatures, and the compensation of compressed volumes. The rotation of the rotor moves the cavities along the pump with a speed dependent on the speed of rotation and the pitch of the rotor; each time a cavity passes a hydraulic regulator, the recirculation flow compensates for the compressed volume, rebalances the pressures and stabilizes the temperatures.

Par conséquent, la densité des régulateurs hydrauliques assure la continuité du processus de régulation au long de la pompe ; cette densité est fonction des performances de la pompe (débit, distribution des pressions).Therefore, the density of the hydraulic regulators ensures the continuity of the regulation process along the pump; this density is a function of the performance of the pump (flow, pressure distribution).

En même temps, le dimensionnement des régulateurs hydrauliques correspond au débit de recirculation nécessaire à la cavité pour la compensation du volume comprimé et le rééquilibrage des pressions.At the same time, the dimensioning of the hydraulic regulators corresponds to the recirculation flow rate necessary for the cavity for the compensation of the compressed volume and the rebalancing of the pressures.

Dans ces conditions, le fonctionnement des régulateurs hydrauliques est auto-régulé ; le débit de recirculation dépend de la pression et réciproquement.Under these conditions, the operation of the hydraulic regulators is self-regulated; the recirculation flow rate depends on the pressure and vice versa.

Conformément à un premier mode de réalisation particulier, le au moins un canal reliant deux cavités est pratiqué dans le rotor, la régulation hydraulique étant effectuée mécaniquement à l'aide d'un régulateur disposé à l'intérieur dudit canal ou par perte de charge.According to a first particular embodiment, the at least one channel connecting two cavities is made in the rotor, the hydraulic control being performed mechanically using a regulator disposed within said channel or by pressure drop.

Conformément à un second mode de réalisation , le au moins un example non couvert par l'invention deux cavités est accueilli par le rotor, avec régulation par perte de charge.According to a second embodiment, the at least one example not covered by the invention two cavities is received by the rotor, with loss of pressure regulation.

Conformément à un troisième mode de réalisation particulier, le au moins un canal reliant deux cavités est un canal intérieur accueilli par le stator, avec régulation par perte de charge.According to a third particular embodiment, the at least one channel connecting two cavities is an internal channel accommodated by the stator, with loss of pressure regulation.

Les trois modes de réalisation particuliers peuvent être utilisés simultanément sur la même pompe.The three particular embodiments can be used simultaneously on the same pump.

Conformément à une caractéristique intéressante de la présente invention, le contact entre le rotor et le stator peut être desserré par rapport à une pompe à cavités progressives ne comportant pas les moyens de régulation hydraulique tels que définis ci-dessus. Dans ces conditions, on peut augmenter la vitesse de rotation et le débit pompé sans endommager le stator.According to an advantageous feature of the present invention, the contact between the rotor and the stator can be loosened with respect to a progressive cavity pump not comprising the hydraulic control means as defined above. Under these conditions, the rotational speed and the pumped flow can be increased without damaging the stator.

La présente invention porte également sur l'application de la pompe telle que définie ci-dessus au pompage de mélanges polyphasiques compressibles et au pompage de fluides visqueux.The present invention also relates to the application of the pump as defined above to the pumping of compressible multiphase mixtures and to the pumping of viscous fluids.

Les applications industrielles de la pompe selon la présente invention couvrent un domaine plus large que celui des pompes PCP existantes.The industrial applications of the pump according to the present invention cover a wider range than existing PCP pumps.

En dehors des applications du transport des mélanges polyphasiques précités qui sont du domaine de la chimie et du pétrole, on peut citer le pompage à grands débits (domaine du pétrole par exemple...) et le pompage avec une faible pression à l'entrée (puits pétroliers horizontaux).Apart from the transport applications of the above-mentioned multiphase mixtures which are in the field of chemistry and petroleum, mention may be made of pumping at high flow rates (oil field for example) and pumping with a low pressure at the inlet. (horizontal oil wells).

Pour mieux illustrer l'objet de la présente invention, on va en décrire ci-après plusieurs modes de réalisation particuliers donnés uniquement à titre d'exemples non limitatifs, avec référence aux dessins annexés sur lesquels :

  • la figure 1 représente une pompe PCP traditionnelle, comme cela a été décrit ci-dessus, avec une représentation des distributions des pressions en pompage du liquide et du mélange polyphasique liquide-gaz ;
  • la figure 2 représente la composition d'une pompe PCP avec un rotor à simple hélice et un stator à double hélice ;
  • la figure 3 est une vue analogue à la figure 1, donnant en (A) une représentation d'une pompe à cavités progressives selon la présente invention, avec représentation schématique des régulateurs hydrauliques (RH), et donnant en (B) une représentation de la distribution des pressions en pompage polyphasique uniforme le long de la pompe ;
  • la figure 4 est, à plus grande échelle, une vue analogue à la figure 3, donnant en (A) une représentation d'une section de la pompe de l'invention, permettant de décrire le mécanisme de recirculation locale pour la compensation des volumes comprimés et le rééquilibrage des pressions locales, dans trois cavités successives de la pompe respectivement 1, m et n, et donnant en (B) une représentation de la distribution des pressions le long de la pompe ;
  • la figure 5A est, encore à plus grande échelle, une vue analogue à la figure 4, d'une section de pompe de l'invention, montrant le régulateur hydraulique (RH) comportant un canal pratiqué dans le rotor pour assurer la recirculation du fluide pompé entre deux cavités adjacentes 1, m, avec régulation mécanique ;
  • la figure 5B est une coupe selon la ligne A-A de la figure 5A ;
  • la figure 6 montre, encore à plus grande échelle, le régulateur mécanique de la figure 5 ;
  • la figure 7A est une vue analogue à la figure 5, mais avec régulation hydraulique par perte de charge ;
  • la figure 7B est une coupe selon la ligne A-A de la figure 7A ;
  • la figure 8A est une vue d'une section de pompe de l'invention, montrant le régulateur hydraulique (RH) comportant deux canaux parallèles pratiqués dans le rotor pour assurer la recirculation du fluide pompé entre deux cavités adjacentes, 1, m, avec régulation mécanique ;
  • les figures 8B et 8C sont des vues en coupe respectivement selon les lignes A-A et B-B de la figure 8A ;
  • la figure 9A est une vue analogue à la figure 8, mais avec régulation par perte de charge ;
  • les figures 9B et 9C sont des vues en coupe respectivement selon les lignes A-A et B-B de la figure 9A ;
  • la figure 10A est la vue d'une section de pompe de l'invention, montrant le régulateur hydraulique (RH) comportant un canal hydraulique périphérique au rotor pour assurer la recirculation du fluide pompé entre deux cavités adjacentes, 1, m ;
  • la figure 10B est une vue en coupe selon la ligne A-A de la figure 10A ;
  • la figure 11A est une vue d'une section de pompe de l'invention, montrant le régulateur hydraulique (RH) comportant deux canaux périphériques au rotor, décalés de 180° et d'un 1/2 de pas du rotor, pour assurer la recirculation du fluide pompé entre deux cavités adjacentes, 1, m ;
  • les figures 11B et 11C sont des vues en coupe respectivement selon les lignes A-A et B-B de la figure 11A ;
  • la figure 12A correspond à l'example non couvert par l'invention et est la vue d'une section de pompe montrant le régulateur hydraulique (RH) comportant un canal hydraulique périphérique à l'intérieur du stator, permettant d'assurer la recirculation du fluide pompé entre les deux cavités adjacentes, 1, m ; et
  • la figure 12B est une vue en coupe selon la ligne A-A de la figure 12A.
To better illustrate the subject of the present invention, a number of particular embodiments given solely by way of nonlimiting examples will be described below, with reference to the appended drawings in which:
  • the figure 1 represents a conventional PCP pump, as described above, with a representation of the pump pressure distributions of the liquid and the multiphase liquid-gas mixture;
  • the figure 2 represents the composition of a PCP pump with a single helix rotor and a double helix stator;
  • the figure 3 is a view similar to the figure 1 , giving in (A) a representation of a progressive cavity pump according to the present invention, with schematic representation of the hydraulic regulators (RH), and giving in (B) a representation of the uniform multiphase pump pressure distribution along the the pump ;
  • the figure 4 is, on a larger scale, a similar view to the figure 3 , giving in (A) a representation of a section of the pump of the invention, making it possible to describe the local recirculation mechanism for the compensation of the compressed volumes and the rebalancing of the local pressures, in three successive cavities of the pump respectively 1 , m and n, and giving in (B) a representation of the distribution of pressures along the pump;
  • the Figure 5A is, on a larger scale, a similar view to the figure 4 of a pump section of the invention, showing the hydraulic regulator (RH) comprising a channel made in the rotor for recirculating the pumped fluid between two adjacent cavities 1, m, with mechanical regulation;
  • the Figure 5B is a cut along line AA of the Figure 5A ;
  • the figure 6 shows, even on a larger scale, the mechanical regulator of figure 5 ;
  • the Figure 7A is a view similar to the figure 5 , but with hydraulic control by pressure drop;
  • the Figure 7B is a cut along line AA of the Figure 7A ;
  • the figure 8A is a view of a pump section of the invention, showing the hydraulic regulator (RH) having two parallel channels in the rotor for recirculating the fluid pumped between two adjacent cavities, 1, m, with mechanical regulation;
  • the Figures 8B and 8C are sectional views respectively along the lines AA and BB of the figure 8A ;
  • the Figure 9A is a view similar to the figure 8 , but with pressure loss regulation;
  • the Figures 9B and 9C are sectional views respectively along the lines AA and BB of the Figure 9A ;
  • the figure 10A is the view of a pump section of the invention, showing the hydraulic regulator (RH) having a peripheral hydraulic channel to the rotor for ensure the recirculation of the pumped fluid between two adjacent cavities, 1, m;
  • the figure 10B is a sectional view along line AA of the figure 10A ;
  • the figure 11A is a view of a pump section of the invention, showing the hydraulic regulator (RH) having two peripheral channels to the rotor, offset by 180 ° and a 1/2 of pitch of the rotor, to ensure the recirculation of the fluid pumped between two adjacent cavities, 1, m;
  • the Figures 11B and 11C are sectional views respectively along the lines AA and BB of the figure 11A ;
  • the figure 12A corresponds to the example not covered by the invention and is the view of a pump section showing the hydraulic regulator (RH) comprising a peripheral hydraulic channel inside the stator, to ensure the recirculation of the fluid pumped between the two adjacent cavities, 1, m; and
  • the figure 12B is a sectional view along line AA of the figure 12A .

Les figures 3 et 4 illustrent le fonctionnement du dispositif de régulation hydraulique (RH) de l'invention installés à l'intérieur de la pompe.The Figures 3 and 4 illustrate the operation of the hydraulic control device (RH) of the invention installed inside the pump.

On note :

Q = QL + QG
: le débit total du mélange de liquide (L) et de gaz (G) ;
Q
: débit de recirculation entre les cavités ; par exemple, qm est le débit du dispositif de régulation hydraulique de la cavité m vers la cavité 1 ;
P
: pression locale, dans les cavités (l, m, n) ;
ζ
: coefficient de perte de charge du dispositif de régulation hydraulique ;
S
: section d'écoulement du dispositif de régulation hydraulique ;
γ
: coefficient de transformation adiabatique.
We notice :
Q = Q L + Q G
: the total flow rate of the mixture of liquid (L) and gas (G);
Q
: recirculation flow between the cavities; for example, q m is the flow rate of the hydraulic control device from cavity m to cavity 1;
P
: local pressure, in the cavities (l, m, n);
ζ
: load loss coefficient of the hydraulic control device;
S
: flow section of the hydraulic control device;
γ
: adiabatic transformation coefficient.

Le débit total Q accède dans la cavité 1 et le volume de gaz est comprimé à la pression pl. A cause de la différence des pressions (pm - p1), le débit qm du système de régulation hydraulique compense le volume comprimé dans la cavité 1 et rééquilibre les pressions pm et pl.The total flow rate Q accesses the cavity 1 and the volume of gas is compressed at the pressure p l . Because of the pressure difference (p m - p 1 ), the flow rate q m of the hydraulic control system compensates the compressed volume in the cavity 1 and rebalances the pressures p m and p l .

Le débit total (Q + qm), comprimé à la pression pl, passe dans la cavité m ;

  • le débit de recirculation qm revient dans le circuit de régulation hydraulique vers la cavité 1 ;
  • le débit Q avance dans la cavité m, poussé par le rotor ;
  • à cause de la pression pm, supérieure à la pression précédente pl, le volume de gaz est comprimé ;
  • la différence de pression (pn - pm) génère un débit qn dans le système de régulation hydraulique, de la cavité n vers la cavité m, pour compenser le volume comprimé dans la cavité m et rééquilibrer les pressions pn et pm ;
  • le débit total (Q + qn) avance dans la cavité n ; le débit de recirculation qn revient dans la régulation hydraulique (RH) vers la cavité m ;
  • le débit Q de la pompe est comprimé, le système de régulation hydraulique débite pour compenser la compression et rééquilibrer les pressions.
The total flow rate (Q + q m ), compressed at the pressure p l , passes into the cavity m;
  • the recirculation flow q m returns in the hydraulic control circuit to the cavity 1;
  • the flow rate Q advances in the cavity m, pushed by the rotor;
  • because of the pressure p m , greater than the preceding pressure p l , the volume of gas is compressed;
  • the pressure difference (p n - p m ) generates a flow q n in the hydraulic control system, from the cavity n to the cavity m, to compensate for the compressed volume in the cavity m and to rebalance the pressures p n and p m ;
  • the total flow (Q + q n ) advances in the cavity n; the recirculation flow q n returns in the hydraulic control (RH) to the cavity m;
  • the flow rate Q of the pump is compressed, the hydraulic control system delivers to compensate the compression and rebalance the pressures.

Le processus se répète pour chaque cavité, vers le refoulement.The process is repeated for each cavity, towards the repression.

Par conséquent, la recirculation locale par le système de régulation hydraulique (RH) assure une régulation interne, entre les cavités :

  • rééquilibre localement les pressions entre deux cavités, ce qui conduit à la régularisation de la distribution des pressions au long de la pompe ;
  • compense les volumes comprimés, ce qui évite la remontée de la température ;
  • le débit pompé Q se conserve ; la recirculation selon l'invention se fait sans perte de débit ;
  • par le rééquilibrage des pressions on maîtrise les débits de fuite et le contact entre rotor et stator.
Therefore, local recirculation by the hydraulic control system (RH) ensures internal regulation, between the cavities:
  • locally rebalances the pressures between two cavities, which leads to the regularization of the distribution of pressures along the pump;
  • compensates compressed volumes, which prevents the rise of temperature;
  • the pumped flow rate Q is conserved; recirculation according to the invention is without loss of flow;
  • by the rebalancing of the pressures one controls the flow rates of leakage and the contact between rotor and stator.

Le fonctionnement local du système de régulation hydraulique de l'invention est à l'opposé des systèmes utilisés actuellement par l'industrie : c'est une régulation interne maîtrisée, par contraste avec la régulation externe non maîtrisée des systèmes actuels.The local operation of the hydraulic control system of the invention is the opposite of the systems currently used by the industry: it is a controlled internal regulation, in contrast with the uncontrolled external regulation of current systems.

La maîtrise des performances se fait par l'architecture du système de régulation hydraulique : dimensions, fonction de transfert, dispositions au long de la pompe.Performance control is achieved by the architecture of the hydraulic control system: dimensions, transfer function, arrangement along the pump.

Compte tenu du fonctionnement local, le dimensionnement du système de régulation hydraulique se fait suivant les méthodes de la mécanique des fluides compressibles et de la thermodynamique.Given the local operation, the design of the hydraulic control system is done according to the methods of compressible fluid mechanics and thermodynamics.

Ainsi les dimensions et le débit de recirculation sont fonction du débit de gaz et de liquide, de la pression différentielle, et des caractéristiques hydrauliques du RH (pertes de charge, fonction de transfert) : q n = f Q G Q L p m / p n 1 / γ p n p m S ς

Figure imgb0001
Thus, the dimensions and the recirculation flow rate are a function of the gas and liquid flow rate, the differential pressure, and the hydraulic characteristics of the RH (pressure drop, transfer function): q not = f Q BOY WUT Q The p m / p not 1 / γ p not p m S ς
Figure imgb0001

Du point de vue thermodynamique, les pressions locales et le débit de recirculation (q) sont reliés par la relation [2] : p n / p m 1 / γ = 1 + q n / Q G

Figure imgb0002
From a thermodynamic point of view, the local pressures and the recirculation flow (q) are connected by the relation [2]: p not / p m 1 / γ = 1 + q not / Q BOY WUT
Figure imgb0002

Par conséquent, l'évolution de la pression locale [2] dépend du débit de recirculation et réciproquement [1], le débit de recirculation dépend des pressions locales.Consequently, the evolution of the local pressure [2] depends on the recirculation flow rate and vice versa [1], the recirculation flow rate depends on the local pressures.

A l'équilibre, la distribution de la pression locale résulte des pertes de charge du système de régulation hydraulique, qui détermine les dimensions du système de régulation hydraulique [1].At equilibrium, the distribution of the local pressure results from the pressure drops of the hydraulic control system, which determines the dimensions of the hydraulic control system [1].

Du point de vue pratique, on se donne le gradient de pression au long de la pompe à atteindre en conditions polyphasiques, ensuite on détermine le débit de recirculation [2] et les dimensions du système de régulation hydraulique [1] qui correspond à la distribution des pressions demandée.From the practical point of view, we give the pressure gradient along the pump to achieve in multiphase conditions, then we determine the recirculation flow [2] and the dimensions of the hydraulic control system [1] which corresponds to the distribution requested pressures.

En pompage liquide, le système de régulation hydraulique régule par l'intérieur la distribution des pressions et le débit de fuite, ce qui correspond à la maîtrise du fonctionnement hydraulique de la pompe, visant à :

  • éviter l'apparition de la cavitation, avec les dommages qu'elle engendre sur le stator et le rotor ;
  • contrôler le contact entre rotor et stator : débit de fuite, lubrification du contact rotor/stator ;
  • obtenir une meilleure fiabilité et augmentation du rendement hydraulique : débit, pression de refoulement, durée de vie, maintenance.
In liquid pumping, the hydraulic control system regulates from inside the pressure distribution and the leakage flow, which corresponds to the control of the hydraulic operation of the pump, aiming at:
  • avoid the appearance of cavitation, with the damage it causes on the stator and the rotor;
  • check the contact between rotor and stator: leakage flow, lubrication of the rotor / stator contact;
  • to obtain better reliability and increased hydraulic efficiency: flow, discharge pressure, service life, maintenance.

C'est à l'opposé de la pompe PCP actuelle : le fonctionnement hydraulique par la régulation externe des pressions et fuites n'est pas maîtrisé.This is the opposite of the current PCP pump: the hydraulic operation by external regulation of pressures and leaks is not controlled.

Dans ces conditions, les systèmes de régulation hydraulique sont installés à l'intérieur de la pompe par l'adaptation du rotor, sans changer complètement l'architecture initiale d'ensemble de la pompe PCP et sa fabrication. Le maintien de la configuration initiale de la pompe PCP signifie qu'on ne modifie pas l'architecture globale (le rotor et le stator), le transport du mélange par le déplacement des cavités, la motorisation.Under these conditions, the hydraulic control systems are installed inside the pump by adapting the rotor, without completely changing the overall initial architecture of the PCP pump and its manufacture. Maintaining the initial configuration of the PCP pump means that the overall architecture (the rotor and the stator) is not modified, the transport of the mixture by the displacement of the cavities, the motorization.

Les résultats obtenus sur une pompe de l'invention en conditions de production diphasique (gaz et liquide) démontrent l'efficacité du système ; le contrôle de la distribution des pressions au long de la pompe (distribution uniformisée) et du régime thermique (stabilisé). En liquide, le contrôle du fonctionnement hydraulique sans cavitation est confirmé.The results obtained on a pump of the invention under two-phase production conditions (gas and liquid) demonstrate the effectiveness of the system; the control of the distribution of the pressures along the pump (uniform distribution) and the thermal regime (stabilized). In liquid, the control of hydraulic operation without cavitation is confirmed.

Les figures 5 à 11 montrent des réalisations particulières de la pompe selon l'invention.The Figures 5 to 11 show particular embodiments of the pump according to the invention.

Aux figures 5A et 5B, le système de régulation hydraulique RH 7 est constitué par un canal hydraulique 8 qui est pratiqué à l'intérieur du rotor 2 entre deux cavités 4 et dans lequel est installé un dispositif de régulation 9 du débit de recirculation.To the Figures 5A and 5B the RH 7 hydraulic control system is constituted by a hydraulic channel 8 which is formed inside the rotor 2 between two cavities 4 and in which is installed a device 9 for regulating the recirculation flow.

Un mode de réalisation pratique du dispositif 9 est représenté schématiquement sur la figure 6, où l'on peut voir que ce dispositif est basé sur une soupape s'ouvrant graduellement à une pression différentielle donnée, ce qui conduit à la régulation du débit de recirculation q (figure 4(A)).A practical embodiment of the device 9 is shown schematically on the figure 6 , where it can be seen that this device is based on a valve opening gradually at a given differential pressure, which leads to the regulation of the recirculation flow q ( Figure 4 (A) ).

Aux figures 7A et 7B, le système de régulation hydraulique RH 7 est constitué d'un canal hydraulique 8 pratiqué à l'intérieur du rotor 2 entre deux cavités 4.To the Figures 7A and 7B , the RH 7 hydraulic control system consists of a hydraulic channel 8 made inside the rotor 2 between two cavities 4.

Les pertes de charges à l'entrée, le long et à la sortie du canal 8 régulent le débit et la pression différentielle.The pressure drops at the inlet, along and at the outlet of the channel 8 regulate the flow rate and the differential pressure.

Aux figures 8A-8C et 9A-9C, le système de régulation hydraulique RH 7 est constitué de deux canaux hydrauliques 10, l'un étant pratiqué entre les cavités 1 et m, et l'autre à l'intérieur de la cavité 1. Ces deux canaux en tandem, disposés de façon décalée, représentent la structure la plus simple. Le fait qu'on réalise plusieurs canaux diminue leur diamètre et le décalage assure une meilleure circulation, notamment au passage de l'ouverture du canal au contact avec le stator.To the Figures 8A-8C and 9A-9C , the RH 7 hydraulic control system consists of two hydraulic channels 10, one being made between the cavities 1 and m, and the other inside the cavity 1. These two tandem channels, arranged so offset, represent the simplest structure. The fact that several channels are made decreases their diameter and the offset ensures a better circulation, especially when passing from the opening of the channel in contact with the stator.

Les figures 8A-8C présentent une variante dans laquelle un dispositif de régulation du débit 9, tel que celui représenté sur la figure 6, est installé dans chacun des canaux 10 du tandem, et les figures 9A-9C une variante suivant laquelle, dans chaque canal 10 du tandem, la régulation hydraulique s'effectue par la perte de charge, comme illustré aux figures 7A, 7B.The Figures 8A-8C present a variant in which a flow control device 9, such as that shown in FIG. figure 6 , is installed in each of the channels 10 of the tandem, and the Figures 9A-9C a variant according to which, in each channel 10 of the tandem, the hydraulic control is effected by the pressure drop, as illustrated in FIGS. Figures 7A, 7B .

Aux figures 10A, 10B et 11A-11C, le système de régulation hydraulique RH 7 est réalisé par un canal hydraulique périphérique au rotor 2, entre deux cavités 4. Ainsi, il assure la recirculation entre les deux cavités 4 et la pression différentielle est donnée par la perte de charge de l'écoulement. Ses dimensions correspondent au débit de recirculation nécessaire.To the Figures 10A, 10B and 11A-11C , the hydraulic control system RH 7 is produced by a hydraulic channel peripheral to the rotor 2, between two cavities 4. Thus, it ensures the recirculation between the two cavities 4 and the differential pressure is given by the pressure drop of the flow . Its dimensions correspond to the necessary recirculation flow.

Les figures 10A, 10B présentent une variante comportant un circuit à un seul canal hydraulique périphérique 11, et les figures 11A-11C une variante comportant deux circuits 12 en tandem décalé.The Figures 10A, 10B present a variant comprising a circuit with a single peripheral hydraulic channel 11, and the Figures 11A-11C a variant comprising two circuits 12 in tandem shifted.

Aux figures 12A, 12B, le système de régulation hydraulique RH 7 comporte un canal hydraulique 13 périphérique intérieur au stator 3, pratiqué entre deux cavités 4.To the Figures 12A, 12B , the RH 7 hydraulic control system comprises a hydraulic channel 13 inner peripheral to the stator 3, made between two cavities 4.

Comme dans le cas précédent, il assure la recirculation entre deux cavités, la pression différentielle est donnée par la perte de charge, et ses dimensions correspondent au débit de recirculation.As in the previous case, it ensures the recirculation between two cavities, the differential pressure is given by the pressure drop, and its dimensions correspond to the recirculation flow.

Les exemples suivants illustrent des résultats obtenus avec la pompe selon l'invention sans toutefois limiter la portée de cette dernière.The following examples illustrate results obtained with the pump according to the invention without however limiting the scope of the latter.

Exemple 1Example 1

Cet essai porte sur un prototype de pompe PCP traditionnelle transportant un mélange polyphasique (eau et air).This test is based on a prototype PCP traditional pump carrying a multiphase mixture (water and air).

Une pompe PCP comportant treize étages (cavités) transporte un mélange polyphasique dont les débits sont de 50% eau et 50% air, avec une pression d'aspiration de 0,1 MPa (1 bar) et une pression dans le conduit de refoulement de 4 MPa (40 bars), ce qui revient à un taux de compression du gaz de 40 /1. En raison du fort taux de compression et du fait que le débit de fuite (entre le rotor et stator) est incapable de compenser le volume de gaz comprimé, la pression de refoulement est réalisée sur les quatre derniers étages (cavités), ce qui revient à un fort gain de pression de 1 MPa (10 bars)/étage. Tout le travail de la pompe est réalisé par les quatre derniers étages, les neuf étages restants de la pompe ne contribuant pas à la compression du mélange. Cette forte compression localisée sur les derniers étages est accompagnée d'une forte remontée de la température : la température d'entrée est multipliée par deux.A PCP pump comprising thirteen stages (cavities) transports a multiphase mixture whose flow rates are 50% water and 50% air, with a suction pressure of 0.1 MPa (1 bar) and a pressure in the discharge pipe of 4 MPa (40 bar), which amounts to a gas compression ratio of 40/1. Due to the high compression ratio and the fact that the leakage rate (between the rotor and the stator) is unable to compensate for the volume of compressed gas, the discharge pressure is carried out on the last four stages (cavities), which amounts to at a high pressure gain of 1 MPa (10 bar) / stage. All the work of the pump is done by the last four stages, the remaining nine stages of the pump not contributing to the compression of the mixture. This strong compression located on the last floors is accompanied by a strong rise in temperature: the input temperature is multiplied by two.

La forte température et la concentration des pressions à la sortie de la pompe sont dommageables pour la tenue mécanique de l'ensemble, notamment l'élastomère du stator et le rotor.The high temperature and the concentration of the pressures at the outlet of the pump are detrimental to the mechanical strength of the assembly, in particular the elastomer of the stator and the rotor.

Exemple 2Example 2

Cet essai porte sur un prototype de pompe PCP perfectionnée avec les Régulateurs Hydrauliques (RH), transportant un mélange polyphasique (eau et air).This test focuses on a PCP pump prototype developed with Hydraulic Regulators (RH), carrying a multiphase mixture (water and air).

La pompe selon la présente invention a un comportement tout à fait différent ; grâce aux régulateurs hydrauliques RH installés dans le rotor, la distribution des pressions est uniformisée et la température, stabilisée. Sur les quatre derniers étages, la densité des régulateurs hydrauliques RH est de deux régulateurs hydrauliques par étage et par conséquent le gain de pression est très faible (environ 0,1 MPa/étage). Sur les neuf étages restants de la pompe, les régulateurs hydrauliques RH sont distribués à raison d'un régulateur RH par étage. Dans ces conditions, la distribution des pressions est uniformisée, ce qui revient à un gain de pression d'environ 0,3 MPa (3 bars)/étage.The pump according to the present invention has a completely different behavior; thanks to the hydraulic controllers RH installed in the rotor, the pressure distribution is standardized and the temperature stabilized. On the last four floors, the density of RH hydraulic controllers is two hydraulic controllers per stage and therefore the pressure gain is very low (about 0.1 MPa / stage). On the remaining nine stages of the pump, RH hydraulic controllers are distributed at the rate of one RH controller per stage. Under these conditions, the pressure distribution is standardized, which amounts to a pressure gain of about 0.3 MPa (3 bar) / stage.

Par conséquent, l'uniformisation de la distribution des pressions au long de la pompe conduit à un faible gain de pression de chaque étage et à la stabilisation des températures au long de la pompe.Therefore, the uniformity of the distribution of pressures along the pump leads to a low pressure gain of each stage and the stabilization of temperatures along the pump.

La variation de densité des régulateurs hydrauliques RH contribue au rééquilibrage hydro-thermo-mécanique de la pompe ; tous les étages contribuent à la compression du mélange.The density variation of the RH hydraulic regulators contributes to the hydro-thermo-mechanical rebalancing of the pump; all floors contribute to the compression of the mixture.

Exemple 3Example 3

Cet essai porte sur un prototype de pompe PCP traditionnelle transportant un liquide (eau).This test is based on a prototype PCP pump carrying a liquid (water).

La même pompe PCP transporte de l'eau avec une faible pression à l'entrée (0,1 MPa (1 bar)) et une pression d'environ 0,5 MPa dans le conduit de refoulement. A cause du comportement dynamique du contact entre le rotor et le stator, la pompe développe des pressions très faibles sur les étages 7-11 avec risque de cavitation.The same PCP pump carries water with a low inlet pressure (0.1 MPa (1 bar)) and a pressure of about 0.5 MPa in the discharge pipe. Due to the dynamic behavior of the contact between the rotor and the stator, the pump develops very low pressures on stages 7-11 with risk of cavitation.

Par conséquent, l'apparition de la cavitation conduit aux dommages des matériaux, notamment l'élastomère du stator et le métal du rotor.Therefore, the appearance of cavitation leads to material damage, including stator elastomer and rotor metal.

Exemple 4Example 4

Cet essai porte sur un prototype de pompe PCP perfectionnée avec les Régulateurs Hydrauliques (RH) transportant un liquide (eau).This test focuses on a PCP pump prototype developed with Hydraulic Regulators (RH) carrying a liquid (water).

Grâce aux régulateurs hydrauliques RH, la pompe selon la présente invention contrôle la distribution des pressions et, par conséquent, les pressions sont positives et uniformément distribuées, sans risque de cavitation. Du refoulement à 0,5 MPa (5 bars), les pressions varient uniformément jusqu'à la pression d'aspiration 0,1 Mpa (1 bar), sans jamais atteindre localement des faibles pressions de cavitation.With hydraulic controllers RH, the pump according to the present invention controls the distribution of pressures and, therefore, the pressures are positive and uniformly distributed, without risk of cavitation. From the discharge at 0.5 MPa (5 bar), the pressures uniformly vary up to the suction pressure 0.1 MPa (1 bar), without locally reaching low cavitation pressures.

Claims (8)

  1. Progressing cavity pump suitable for pumping a compressible multi-phase mixture, comprising a metal helical rotor (2) rotating inside said helical stator (3), said stator (3) and said rotor (2) being disposed such that the cavities (4) formed between said rotor (2) and said stator (3) move from the inlet (5) towards the outlet (6),
    characterised in that it has at least one hydraulic regulator (HR) suitable for creating an internal recirculation of the pumped multi-phase mixture between at least two of said cavities (4), said hydraulic regulator (HR) has at least one passage (8, 11) which is at least partially accommodated by the rotor and which connects at least two of these cavities (4), said hydraulic regulator (HR) performing at least one function selected from achieving the desired pressure distribution along the pump, stabilising the temperatures, controlling the leakage flow rates and compensating for the volumes of compressed gas.
  2. Pump as claimed in claim 1, characterised in that said at least one passage (8, 11) is disposed between at least two adjacent cavities (4) in order to obtain an internal recirculation of the pumped multi-phase mixture between said at least two adjacent cavities (4).
  3. Pump as claimed in claim 1 or 2, characterised in that said at least one passage (8, 11) is disposed between at least two cavities (4) situated in the region of the pump in the vicinity of the outlet in order to obtain an internal recirculation of the pumped multi-phase mixture between said at least two cavities (4) situated in the region of the pump (1) in the vicinity of the outlet (6).
  4. Pump as claimed in claim 1 or 2, characterised in that passages (8, 11) are provided between the pairs of cavities (4) of the pump to obtain an internal recirculation of the pumped multi-phase mixture between several pairs of said cavities (4) of the pump (1).
  5. Pump as claimed in claim 1, characterised in that the hydraulic regulation is effected on the basis of differential pressure.
  6. Pump as claimed in claim 1, characterised in that the hydraulic regulation is effected on a mechanical basis with the aid of a regulator (9) disposed inside said passage (8).
  7. Pump as claimed in claim 1, characterised in that the at least one peripheral passage (11) connecting two cavities (4) is accommodated by the rotor (2), with regulation by differential pressure.
  8. Use of the pump as defined in any one of claims 1 to 7 for pumping compressible multi-phase mixtures.
EP05290100.6A 2004-01-30 2005-01-17 Progressive cavity pump Active EP1559913B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0400927A FR2865781B1 (en) 2004-01-30 2004-01-30 PROGRESSIVE CAVITY PUMP
FR0400927 2004-01-30

Publications (2)

Publication Number Publication Date
EP1559913A1 EP1559913A1 (en) 2005-08-03
EP1559913B1 true EP1559913B1 (en) 2013-11-06

Family

ID=34639817

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05290100.6A Active EP1559913B1 (en) 2004-01-30 2005-01-17 Progressive cavity pump

Country Status (6)

Country Link
US (1) US7413416B2 (en)
EP (1) EP1559913B1 (en)
CN (1) CN1654823B (en)
BR (1) BRPI0500316B1 (en)
CA (1) CA2494444C (en)
FR (1) FR2865781B1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7668415B2 (en) 2004-09-27 2010-02-23 Qualcomm Mems Technologies, Inc. Method and device for providing electronic circuitry on a backplate
US7793683B2 (en) 2006-10-11 2010-09-14 Weatherford/Lamb, Inc. Active intake pressure control of downhole pump assemblies
JP2008175199A (en) * 2006-12-20 2008-07-31 Heishin Engineering & Equipment Co Ltd Uniaxial eccentric screw pump
US7797142B2 (en) * 2006-12-21 2010-09-14 Caterpillar Inc Simulating cavitation damage
US9051780B2 (en) * 2007-01-09 2015-06-09 Schlumberger Technology Corporation Progressive cavity hydraulic machine
NO327505B1 (en) 2007-09-11 2009-07-27 Agr Subsea As Eccentric screw pump adapted for pumping of compressible fluids
NO327503B1 (en) 2007-09-20 2009-07-27 Agr Subsea As Eccentric screw pump with multiple pump sections
US8444901B2 (en) * 2007-12-31 2013-05-21 Schlumberger Technology Corporation Method of fabricating a high temperature progressive cavity motor or pump component
NO329713B1 (en) 2008-08-21 2010-12-06 Agr Subsea As Eccentric screw pump with an inner and an outer rotor
NO329714B1 (en) 2008-08-21 2010-12-06 Agr Subsea As External rotor in eccentric screw pump with an inner and an outer rotor
US8523545B2 (en) * 2009-12-21 2013-09-03 Baker Hughes Incorporated Stator to housing lock in a progressing cavity pump
US8083508B2 (en) * 2010-01-15 2011-12-27 Blue Helix, Llc Progressive cavity compressor having check valves on the discharge endplate
US8974205B2 (en) * 2011-05-06 2015-03-10 NETZSCH-Mohopumpen GmbH Progressing cavity gas pump and progressing cavity gas pumping method
WO2013182922A1 (en) 2012-06-04 2013-12-12 Indian Institute Of Technology Madras Progressive cavity pump
BR112015010754A2 (en) 2012-11-20 2017-07-11 Halliburton Energy Services Inc appliance, system and method implemented by processor
US10184333B2 (en) 2012-11-20 2019-01-22 Halliburton Energy Services, Inc. Dynamic agitation control apparatus, systems, and methods
FR3010153B1 (en) * 2013-08-30 2018-01-05 Pcm Technologies HELICOIDAL ROTOR, PROGRESSIVE CAVITY PUMP AND PUMPING DEVICE
CN103883522B (en) * 2014-03-17 2016-03-02 北京工业大学 A kind of curved surface forming method of Conic thread rod-lining pair
JP5802914B1 (en) * 2014-11-14 2015-11-04 兵神装備株式会社 Fluid transfer device
CN106996764B (en) * 2016-01-25 2019-05-14 中联重科股份有限公司 The stator of screw pump and the determination methods, devices and systems of rotor size
CN109737070B (en) * 2019-02-21 2021-02-19 安徽佳先功能助剂股份有限公司 Multi-cavity delivery pump of stearoylbenzoylmethane production usefulness
WO2020257033A1 (en) * 2019-06-17 2020-12-24 Nov Process & Flow Technologies Us, Inc. Progressive cavity pump or motor rotor
US11268385B2 (en) 2019-10-07 2022-03-08 Nov Canada Ulc Hybrid core progressive cavity pump
US11813580B2 (en) 2020-09-02 2023-11-14 Nov Canada Ulc Static mixer suitable for additive manufacturing

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR695539A (en) * 1930-05-13 1930-12-17 Pump
US2765114A (en) * 1953-06-15 1956-10-02 Robbins & Myers Cone type compressor
FR1361840A (en) * 1963-07-10 1964-05-22 Eccentric worm pump
US4424013A (en) * 1981-01-19 1984-01-03 Bauman Richard H Energized-fluid machine
JP2866969B2 (en) * 1989-11-02 1999-03-08 京セラ株式会社 Single shaft eccentric screw pump
RU1772423C (en) * 1990-11-29 1992-10-30 Институт проблем надежности и долговечности машин АН БССР Pump
FR2743113B1 (en) * 1995-12-28 1998-01-23 Inst Francais Du Petrole DEVICE FOR PUMPING OR COMPRESSING A TANDEM BLADED POLYPHASTIC FLUID
US5722820A (en) * 1996-05-28 1998-03-03 Robbins & Myers, Inc. Progressing cavity pump having less compressive fit near the discharge
FR2775028B1 (en) * 1998-02-18 2000-04-21 Christian Bratu PUMPING CELL FOR A POLYPHASIC EFFLUENT AND PUMP COMPRISING AT LEAST ONE OF SUCH CELLS
US6241494B1 (en) * 1998-09-18 2001-06-05 Schlumberger Technology Company Non-elastomeric stator and downhole drilling motors incorporating same
US6457958B1 (en) * 2001-03-27 2002-10-01 Weatherford/Lamb, Inc. Self compensating adjustable fit progressing cavity pump for oil-well applications with varying temperatures

Also Published As

Publication number Publication date
EP1559913A1 (en) 2005-08-03
CA2494444A1 (en) 2005-07-30
FR2865781B1 (en) 2006-06-09
CN1654823B (en) 2011-08-17
US20050169779A1 (en) 2005-08-04
BRPI0500316B1 (en) 2018-03-06
US7413416B2 (en) 2008-08-19
FR2865781A1 (en) 2005-08-05
CA2494444C (en) 2012-02-21
CN1654823A (en) 2005-08-17
BRPI0500316A (en) 2005-09-20

Similar Documents

Publication Publication Date Title
EP1559913B1 (en) Progressive cavity pump
FR2794498A1 (en) Rotary, positive displacement mono- or Moineau pump, for e.g. oil industry wastes, is constructed with metal liner inside elastomer and casing, in positive contact with rotor to assure required pressure increase
US11280334B2 (en) Fluid delivery system with a shaft having a through-passage
FR2908844A1 (en) VARIABLE DISPLACEMENT PALLET PUMP
EP3132123B1 (en) Fuel gear pump intended, in particular, as a high-pressure pump
FR3031786A1 (en) INTEGRATION OF A PUMP IN FUT OF PINION
US6135723A (en) Efficient Multistage pump
EP3044464B1 (en) Multiphase pump impeller with means for amplifying and distributing gap flows
CA2874377C (en) Progressive cavity pump
CA2320927C (en) Cell for pumping polyphasic effluent and pump comprising at least one of said cells
EP3698044B1 (en) Rotating barrel pump with distinct barrel guiding and centering means
FR2706541A1 (en) Method for regulating the pressure and delivery flow rate of a positive-displacement pump, and positive-displacement pump for implementing the method
EP2334906B1 (en) Multifunction rotary machine with deformable rhomb
JP7298704B2 (en) gear pump
CA2585300C (en) Combination helical rotor pump
EP3601796B1 (en) Double-plate and double-cylinder pump
FR2906849A3 (en) Vane pump for engine of motor vehicle, has inner ring inserted between inner wall of guiding ring and outer surface of wall of housing for defining pumping stage that is formed by three chambers along direction of vanes rotating direction
EP3698045A1 (en) Double-plate rotary barrel pump
BE549733A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

111L Licence recorded

Free format text: 0100 PCM POMPES

Effective date: 20051028

17P Request for examination filed

Effective date: 20051114

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070924

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602005041738

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F04C0013000000

Ipc: F04C0002107000

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 2/08 20060101ALI20130114BHEP

Ipc: F04C 2/107 20060101AFI20130114BHEP

Ipc: F04C 13/00 20060101ALI20130114BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130412

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

111L Licence recorded

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR

Free format text: EXCLUSIVE LICENSE

Name of requester: PCM POMPES, FR

Effective date: 20051028

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: COMPLETEMENT D'ENREGISTREMENT DE LICENCE: LICENCE EXCLUSIVE

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 639685

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005041738

Country of ref document: DE

Effective date: 20140102

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131106

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 639685

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131106

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140306

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140306

BERE Be: lapsed

Owner name: BRATU, CHRISTIAN

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005041738

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

26N No opposition filed

Effective date: 20140807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005041738

Country of ref document: DE

Effective date: 20140807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140207

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050117

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: PCM TECHNOLOGIES, FR

Effective date: 20161014

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170116

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20181227

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20190108

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005041738

Country of ref document: DE

Owner name: PCM TECHNOLOGIES, FR

Free format text: FORMER OWNER: BRATU, CHRISTIAN, SAINT-NOM-LA-BRETECHE, FR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231116

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240115

Year of fee payment: 20

Ref country code: GB

Payment date: 20240119

Year of fee payment: 20