EP1557611B1 - Strömungsbarriere, Verkleidung und Brennkammer - Google Patents

Strömungsbarriere, Verkleidung und Brennkammer Download PDF

Info

Publication number
EP1557611B1
EP1557611B1 EP20040001229 EP04001229A EP1557611B1 EP 1557611 B1 EP1557611 B1 EP 1557611B1 EP 20040001229 EP20040001229 EP 20040001229 EP 04001229 A EP04001229 A EP 04001229A EP 1557611 B1 EP1557611 B1 EP 1557611B1
Authority
EP
European Patent Office
Prior art keywords
flow
cladding
combustion chamber
flow barrier
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20040001229
Other languages
English (en)
French (fr)
Other versions
EP1557611A1 (de
Inventor
Olga Deiss
Holger Grote
Andreas Heilos
Marc Tertilt
Bernd Vonnemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP20040001229 priority Critical patent/EP1557611B1/de
Priority to ES04001229.6T priority patent/ES2528177T3/es
Publication of EP1557611A1 publication Critical patent/EP1557611A1/de
Application granted granted Critical
Publication of EP1557611B1 publication Critical patent/EP1557611B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/04Supports for linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05005Sealing means between wall tiles or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00012Details of sealing devices

Definitions

  • the invention relates to a flow barrier as an insert in a flow region between a first and a second cladding element of a lining of a combustion chamber.
  • the invention leads to a fairing and a combustion chamber.
  • a combustion chamber in particular the combustion chamber of a gas turbine combustion chamber of a gas turbine, is usually provided with a lining in order to insulate and protect the housing parts of the combustion chamber-carrying housing, also referred to as combustion chamber structure.
  • the combustion chamber conditions prevailing in the combustion chamber which are characterized in particular by strongly fluctuating and high temperatures, pressures and oxidizing effects of the hot gas, are kept away from the housing.
  • a region of the housing is to be protected, in which the holder of the panel is attached.
  • the thermal loads are usually in a temperature range of 1350 ° C or above and can also, for. B. subject to strong fluctuations in the context of a quick closure.
  • the metallic housing is usually not suspendable.
  • the housing and the holder are therefore also to protect against a progressing with time material fatigue, the material fatigue is higher, the more frequent and larger temperature and pressure fluctuations occur in the combustion chamber.
  • the cladding usually has a number of cladding elements. Particularly advantageous is a formed from a ceramic cladding element, as a heat shield (Ceramic Heat Shield, CHS) proven. Another possibility is to form a cladding element of a high temperature resistant metal alloy. On a metallic cladding element, a ceramic coating can be applied.
  • a gap is set in the assembly of a trim element on the entire circumference of the trim element.
  • the cladding elements of the panel are therefore mounted at a distance. This clearance provides a flow area between a first and a second trim element of the trim.
  • a cooling air flow running between the housing part and the lining is guided during operation of the combustion chamber. This serves in particular for cooling the holder, which holds a cladding element on the inside of the housing part facing a combustion chamber.
  • the cooling air can penetrate through the flow region into the combustion chamber.
  • the gaps are to be protected from the combustion chamber side penetrating hot gas intake.
  • the cooling air is guided from the housing part and the back of the panel forth in the direction of the combustion chamber, to block in this way a gap with the cooling air.
  • the flow barrier thus has to meet a wide variety of requirements.
  • the flow barrier should on the one hand take account of a width of the flow region which varies as a result of thermal changes and on the other hand should be heat-resistant.
  • porous ceramic gaskets are made of EP 1 302 723 A1 known. Although such a porous ceramic gasket is resistant to high temperatures, it must not come into direct contact with the hot gas. Since this contact in the combustion chamber is difficult to avoid, such a porous ceramic seal must be flowed through by cooling air in order to cool the seal itself and also to block the flow region from a hot gas intake. Nevertheless, in porous ceramic gaskets of the type mentioned overheating occurred. The essential reason is that a sufficient in each case a real operation of a combustion chamber flow through the porous ceramic seal with cooling air is difficult to guarantee.
  • a cladding element when using the usual concept explained here at its edge due to the cooling air outlet at a significantly lower temperature than at its center facing the combustion chamber.
  • a usually panel-shaped cladding element has a relatively high rigidity along its lateral extent. The high temperature gradient along the lateral extent and the stiffness along the lateral extent together lead to considerable stresses along the lateral extent of the cladding element.
  • the US 5333443 A discloses a flow barrier for use in a flow region between first and second trim members of a combustor of a gas turbine engine.
  • the flow barrier is secured to a support structure carrying the trim elements and includes a screw and a stack of rectangular stacked sheet-like seals which are urged by the screw and a coil spring surrounding the screw to seal against the trim elements.
  • the seals are offset from each other and arranged several times, so that there is a seal of the flow area.
  • the US 6145452 A discloses hexagonal cladding elements of a combustor which are attached to a support structure at a central bore by means of a helical fastener made of ceramic.
  • the invention is whose task is to provide a flow barrier, which is resistant to heat and at the same time can be used in a variable-shape, varying in size flow area and which is as simple as possible.
  • a further object of the present invention in terms of the lining and the combustion chamber with such a flow barrier is to take into account the problems explained in connection with the cooling air.
  • a flow barrier for use in a flow region between a first and a second cladding element of a lining of a combustion chamber, wherein the flow barrier has a high temperature resistant ceramic body and a spring element and the high temperature resistant ceramic body and the spring element have an elongated extent, wherein the ceramic body rests along a bearing surface on the spring element, and the bearing surface is aligned along the elongate extent.
  • the invention has recognized that a hitherto customary porous ceramic flow barrier leads to a number of consequential problems which are avoided according to the concept of an overall high-temperature-resistant flow barrier explained here.
  • the use of a high temperature resistant ceramic body as part of the flow barrier ensures that the flow barrier has sufficient hot gas resistance, which is independent of a cooling air flow.
  • an alumina ceramic has been found. It can also be used depending on the usefulness of another high-temperature resistant ceramic.
  • the sufficient hot gas resistance of the high-temperature resistant ceramic body has, in particular, the particularly reliable and reliable effect of the flow barrier in comparison to conventional porous ceramic flow barriers.
  • the combination of the high-temperature resistant ceramic body with a spring element to a flow barrier also has the effect according to the finding of the invention that the barrier effect of the flow barrier achieved by the spring force acting on the ceramic body proves to be particularly effective.
  • the combination of the high-temperature resistant ceramic body and the spring element to a flow barrier proves to be particularly adaptable when used in a highly variable shape and distance flow region between the first and the second cladding element as a result of temperature fluctuations.
  • the parts, d. H. the high-temperature resistant ceramic body and the spring element, the flow barrier can be easily manufactured and thus produced inexpensively.
  • the invention is thus, in departure from the known porous ceramic flow barrier, from the new and surprising in its effect consideration that compared to a porous ceramic flow barrier the flow barrier explained here with a relatively rigid high-temperature resistant ceramic body yet to a reliable sealing of the flow area leads.
  • the flow barrier according to the new concept namely as sufficiently variable within the variable-shape flow area.
  • the high temperature resistant ceramic body and the spring element have an elongated extent, wherein the ceramic body rests along a bearing surface on the spring element and the bearing surface is aligned along the elongate extent.
  • elongated spring elements can be assembled particularly easily and mounted in a flow region of a lining of a combustion chamber. Its elongated extent accounts for the elongate extent of the flow area between a first and a second trim element of the fairing.
  • the support surface is curved towards the spring element.
  • the spring element on its side facing the support surface on a trough and the high-temperature resistant ceramic body on its side facing the support surface on a bulge are suitably adapted to each other, so that the ceramic body in the spring element comes to rest securely and is secured against lateral slipping in the trough.
  • the spring element expediently has retaining means which ensure the position of the high-temperature-resistant ceramic body along the elongate extension.
  • the ceramic body is also in an axial direction, ie in a direction of elongated extent, against a Secured slipping.
  • a stop or a sufficiently rough design of the bearing surface between the spring element and the ceramic body is particularly suitable.
  • the spring element is formed at least along a fraction of the elongated extent in the form of a spring subjected to compression according to the operating principle of a disc spring. That is, the spring element is, except for its elongated extension (instead of a round in a plate spring), formed in principle like a plate spring and is based in principle on the same mechanism of action as a plate spring.
  • the spring element is formed along a further fraction of the elongated extension in the form of a bare support. It has proved to be particularly useful to form the spring element along a central part of the elongated extension in the form of a compression spring, clip-like, after the operating principle of a disc spring and form along its lateral parts of the elongated extension in the form of a bare support.
  • the supports support the high-temperature resistant ceramic body in its edition while in the middle part of the spring force is generated.
  • the spring element is formed at least along a fraction of the elongated extent in the form of a pressure-loaded, resiliently yielding solid body.
  • any type of material comes into consideration, which gives the solid body a pressure-loaded resilient effect. It can be a uniform solid material or a composition or a conglomerate of different materials.
  • a cross section through the solid body advantageously has a shape that is similar to the shape of a horizontal figure eight.
  • the object with regard to the cladding is achieved by a cladding for a combustion chamber with a number of cladding elements, wherein between a first and second cladding element, a flow region is formed, in which a flow barrier of the above type is used.
  • one or more flow barriers are inserted into the flow region in such a way that the flow region is completely sealed by the one or more flow barriers. In this way, namely a hot gas intake into the flow area is completely prevented.
  • One or more of the flow barriers are particularly advantageously used in all flow regions extending along a circumference of a cladding element. To this In this way, a hot gas intake is avoided in all flow areas that run circumferentially around a cladding element.
  • the object is achieved in terms of the combustion chamber according to the invention by a combustion chamber with a lining, which has a number of cladding elements, wherein between a first and a second cladding element, a flow region is formed, in which a flow barrier of the type mentioned above is used.
  • This concept guarantees a reliable cooling of the holder and thus a secure and permanently stable mounting of the cladding elements.
  • a hot gas intake into the flow area is avoided.
  • Corrosion problems due to hot gas intake or other material loads in the vicinity of the flow region and behind the lining, in particular in the holder, are thus - in contrast to known flow barriers - eliminated.
  • the aforementioned flow barrier design also has the advantage that larger tolerances in adjusting the column, i. the flow area between a first and a second cladding element are possible. In this way, the assembly time of the cladding elements is considerably reduced.
  • the cooling air flowing out of a flow region between the lining elements is reduced or completely suppressed.
  • the temperature gradients that form from the edges of a cladding element towards the cladding element center and the stresses associated therewith along the lateral extent of the cladding element are significantly reduced. Due to the reduced stresses, fewer and, if any, shorter cracks will form in a cladding element during operation.
  • porous ceramic flow barriers are known.
  • Such a known flow barrier is in the form of a double tube formed with an outer shell of high temperature resistant, ceramic Nextelgewebe and an inner shell of an Inconellgestrick, which is flexible in the composite and has sufficient length stability as well as the flow barrier on the spring force of the fabric holds in its axial position.
  • the ends of the flow barrier are sewn with a multifilament thread.
  • FIG. 1 shows a lining 1 for a combustion chamber with a number of cladding elements in the region of a first cladding element 3 and a second cladding element 5.
  • a flow region 7 is formed in the form of a gap.
  • the risk of hot gas intake exists from the side of the combustion chamber 11.
  • the flow region 7 is a first variant of a flow barrier 9, which completely seals the flow region against hot gas intake, used.
  • the flow region has a holder 12.
  • a first part 13 of the holder 12 holds the first cladding element 3.
  • a second part 15 of the holder 12 holds the second cladding element 5.
  • Both the flow barrier 9 and the holder 12 engage in a cavity 17 into which the flow area 7 approximately the height of the center of the panel 1 and a cladding element 3, 5, expands.
  • the cavity 17 is formed by a first groove 23 of the first cladding element 3 and by a second groove 25 of the second cladding element 5.
  • the flow barrier 9 is formed by a high-temperature-resistant ceramic body 19 and a first variant of a spring element 21, wherein the first variant of the spring element 21 is formed in the form of a plate spring like spring-loaded.
  • the flow barrier 9 according to this first variant in the form of a metal seal with ceramic insert combines the temperature resistance of a ceramic with the spring properties of a metal.
  • the resilient metal clip as spring plate-like design and pressure-loaded spring of the first variant of the spring element 21 is mounted between the outlet ends of the holder 12 in the region of the cavity 17 and the high temperature resistant ceramic body 19.
  • the illustrated here first variant of the spring element 21 in the form of a metal clip presses the high temperature resistant ceramic body 19 firmly against the hot bar 33 of the first cladding element 3 and the hot bar 35 of the second cladding element 5.
  • the ceramic body 19 grinds on its top optimally on the bars 33, 35, so that the sealing effect of the flow barrier increases after a short period of operation and finally a complete sealing effect can be achieved.
  • the high-temperature-resistant ceramic body 19 protects the first variation of the spring element 21 formed as a metal clamp and the holder 12 from the side of the combustion chamber 11 before a hot gas intake through the flow region 7.
  • FIGS. 2 to 4 the assembly of the in the FIG. 1 shown first variant of the flow barrier 9.
  • a first cladding element 3 is mounted with a first part 13 of a holder 12 and a second part 15 of the holder 12.
  • the first variant of a flow barrier 9 in the form of a composite seal of a first variant of a spring element 21 in the form of a metal clip on the one hand and with a high temperature resistant ceramic body 19 on the other hand into the cavity 17 forming groove 23 of the first cladding element 3 is inserted.
  • the second cladding element 5 is pushed and mounted with its groove 17 forming the groove 25 via the holder 12 and the flow barrier 9.
  • first variant of a spring element 21 has a trough 41, which forms the bearing surface between the first variant of the spring element 21 and the ceramic solid body 19.
  • the in FIG. 2 shown solid ceramic body has a bulge 43, which comes to rest in the trough 41.
  • the bearing surface formed between the spring element 21 and the solid ceramic body 19 is thus arched towards the spring element 21.
  • the in FIG. 3 shown spring element 21 at its axial ends along its elongated extension 45 each have a stop 47, which secures the position of the ceramic body 19 in a direction of elongated extent 45, ie in the axial direction.
  • the spring element 21 also has, along its middle part 49 of the elongated extension 45, the shape of a spring under pressure, which is designed in accordance with the principle of action of a disc spring.
  • the spring 51 in the middle part 49 is at its sides 53 downwards, curved in an annular shape, the ends 55 facing slightly upwards, but are free.
  • the spring 51 thus has the form of a metal clip. In this way, it works much like a diaphragm spring.
  • the spring element 21 is designed in the form of a mere support, which also continues the trough 41.
  • the mere support has no spring action as the spring 51 in the middle part 49.
  • the trough 41 protects and reinforces the high temperature resistant ceramic body 19 along the entire elongated extension 45 of the ceramic body 19, in particular against breakage, and presses it against the hot gas side 33, 35 a Cladding element 3, 5 of in FIG. 1 ,
  • FIG. 5 shows a second variant of a flow barrier 10 with a high temperature resistant ceramic body 20 and a second variant of a spring element 22.
  • the second variant of the spring element 22 along the entire elongated extension 46 in the form of a pressure-loaded resiliently yielding solid body is formed.
  • the solid body is formed in the present embodiment of an Inconellgestrick or may in a further embodiment of this second variant of a similar material as the ceramic seal in the EP 1 302 723 A1 , namely in particular in the form of a ceramic seal with a Nextelhülle be formed.
  • the shape of the second variant of the Spring element 22 is similar to the shape of the first variant of the spring element 21 made of metal, namely in cross-section similar to the shape of a lying eight.
  • FIG. 6 is a perspective view of the second variant of the spring element 22 consisting of the solid ceramic body 20 and the pressure-loaded resiliently yielding solid body of the second variant of the spring element 22 shown.
  • This second variant of the flow barrier 10 in turn rests on a holder 12 and is located in a cavity 17 of a flow region 7 between a first cladding element 3 and a second cladding element 5.
  • the other elements of FIG. 6 correspond to those of FIG. 1 and are provided with the same reference numerals.
  • FIG. 7 shows a first cladding element 3 and a second cladding element 5 with the second variant of in FIG. 6 shown flow barrier 10 in a larger section of the panel 2 for a selected in this embodiment annular combustion chamber.
  • the second variant of the flow barrier 10 could in the present case optionally also by the in FIG. 1 shown first variant of the flow barrier 9 to be replaced.
  • FIG. 7 illustrates the effect of such a first variant of the flow barrier 9 or a second variant of a flow barrier 10 shown here in the combustion chamber.
  • the flow barrier 9, 10 with high-temperature resistant ceramic body 19, 20 and spring element 21, 22 is virtually impermeable to air due to their above-described training after a short period of operation.
  • lining elements 3, 5 are attached to the combustion chamber 11 facing inside of a housing part 4 by means of one or more brackets for fastening the cladding elements 3, 5.
  • the brackets 12 have cooling air holes 14.
  • the flow barrier 9, 10 is in fact inserted into a flow region 7 in such a way that the flow region 7 is completely sealed by the flow barrier 9, 10, since it is impermeable to air.
  • a running between the housing part 4 and the cover 3, 5 cooling air flow 6 does not get through the flow area 7 into the combustion chamber 11, but rather for the benefit of the combustion chamber, along an orientation 48 of the flow region for cooling the holder 12 deflected.
  • the extent of the flow region 48 suitably agrees with the in FIGS. 2 to 5 shown elongated expansions 45, 46 of a flow barrier 9, 10 match.
  • the distance between a first 3 and a second 5 cladding element is formed by a gap which provides a flow region 7 between the first 3 and the second cladding element and in the combustion chamber side hot gas and in the opposite direction cooling air can penetrate, the flow region 7 due to temperature changes may have varying dimensions.
  • a flow barrier 9, 10 is disclosed herein which has a high-temperature resistant ceramic body 19, 20 and a spring element 21, 22.
  • the proposed flow barrier 9, 10 has improved heat resistance, greater cooling-air saving potential and reduces thermally-induced stresses in a trim element 3, 5.
  • the invention leads to a lining of a combustion chamber and a combustion chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Gasket Seals (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • Die Erfindung betrifft eine Strömungsbarriere als Einsatz in einem Strömungsbereich zwischen einem ersten und einem zweiten Verkleidungselement einer Verkleidung einer Brennkammer. Die Erfindung führt auf eine Verkleidung und eine Brennkammer.
  • Ein Brennraum, insbesondere der Brennraum einer Gasturbinenbrennkammer einer Gasturbine, ist üblicherweise mit einer Verkleidung versehen, um die Gehäuseteile des die Brennkammer tragenden Gehäuses, auch als Brennkammerstruktur bezeichnet, zu isolieren und zu schützen. Die im Brennraum herrschenden Brennkammerbedingungen, die insbesondere durch stark schwankende und hohe Temperaturen, Drücke und oxidierende Wirkungen des Heißgases gekennzeichnet sind, sind von dem Gehäuse fern zu halten. Insbesondere ist ein Bereich des Gehäuses zu schützen, in dem die Halterung der Verkleidung angebracht ist. Im Brennraum einer Gasturbine liegen die thermischen Belastungen in der Regel in einem Temperaturbereich von 1350 °C oder darüber und können zudem, z. B. im Rahmen eines Schnellschlusses starken Schwankungen unterliegen. Einer derartigen Belastung ist das metallische Gehäuse in der Regel nicht aussetzbar. Das Gehäuse und die Halterung sind somit auch vor einer mit der Zeit fortschreitenden Materialermüdung zu schützen, wobei die Materialermüdung um so höher ist, je häufiger und größer Temperatur- und Druckschwankungen im Brennraum auftreten.
  • Aus diesem Grund ist an einer dem Brennraum zugewandten Innenseite eines Gehäuseteils eine Verkleidung angebracht. Die Verkleidung weist in der Regel eine Anzahl von Verkleidungselementen auf. Als besonders vorteilhaft hat sich ein aus einer Keramik gebildetes Verkleidungselement, auch als Hitzeschild (Ceramic Heat Shield, CHS) bezeichnet, erwiesen. Eine weitere Möglichkeit besteht darin, ein Verkleidungselement aus einer hochtemperaturfesten Metalllegierung zu bilden. Auf einem metallischen Verkleidungselement kann ein keramisches Coating aufgebracht werden.
  • Zur Kompensation unterschiedlicher Wärmeausdehnungskoeffizienten wird bei der Montage eines Verkleidungselements am gesamten Umfang des Verkleidungselements ein Spalt eingestellt. Die Verkleidungselemente der Verkleidung werden also auf Abstand montiert. Dieser Abstand stellt einen Strömungsbereich zwischen einem ersten und einem zweiten Verkleidungselement der Verkleidung bereit.
  • Zum einen wird beim Betrieb der Brennkammer eine zwischen dem Gehäuseteil und der Verkleidung verlaufende Kühlluftströmung geführt. Diese dient insbesondere zur Kühlung der Halterung, welche ein Verkleidungselement an der einem Brennraum zugewandten Innenseite des Gehäuseteils hält. Die Kühlluft kann durch den Strömungsbereich in den Brennraum eindringen. Zum anderen sind die Spalte vor brennraumseitig eindringendem Heißgaseinzug zu schützen. Dazu wird die Kühlluft vom Gehäuseteil und der Rückseite der Verkleidung her in die Richtung des Brennraums geführt, um auf diese Weise einen Spalt mit der Kühlluft zu sperren.
  • Die beiden letzteren im Strömungsbereich auftretenden Strömungen von Kühlluft einerseits und Heißgas andererseits haben eine Reihe von Konsequenzen, die mittels einer im Strömungsbereich eingesetzten hochtemperaturfesten Strömungsbarriere gezielt und vorteilhaft beeinflusst werden kann. Die Strömungsbarriere hat somit unterschiedlichsten Anforderungen zu genügen.
  • Die Strömungsbarriere sollte zum einen einer aufgrund thermischer Änderungen variierenden Breite des Strömungsbereichs Rechnung tragen und sollte zum anderen hitzebeständig sein.
  • So sind beispielsweise poröse keramische Dichtungen aus der EP 1 302 723 A1 bekannt. Eine solche poröse keramische Dichtung ist zwar hochtemperaturbeständig, darf aber dennoch nicht direkt mit dem Heißgas in Berührung kommen. Da sich dieser Kontakt in der Brennkammer nur schwer vermeiden lässt, muss eine solche poröse keramische Dichtung von Kühlluft durchströmt werden, um die Dichtung selbst zu kühlen und des Weiteren den Strömungsbereich vor einem Heißgaseinzug zu sperren. Dennoch sind bei porösen keramischen Dichtungen der genannten Art Überhitzungen aufgetreten. Der wesentliche Grund liegt darin, dass eine in jedem Fall eines Realbetriebs einer Brennkammer ausreichende Durchströmung der porösen keramischen Dichtung mit Kühlluft nur schwer zu garantieren ist.
  • Des Weiteren hat die oben genannte Verwendung von Kühlluft zur Sperrung des Strömungsbereichs und zur Kühlung einer hochtemperaturfesten Strömungsbarriere den Nachteil, dass die Kühlluft an den Kanten des Verkleidungselements in den Brennraum eintritt und auf diese Weise ganz erhebliche Temperaturgradienten entlang der lateralen Ausdehnung eines Verkleidungselements entstehen. So weist ein Verkleidungselement bei Anwendung des hier erläuterten üblichen Konzepts an seiner Kante infolge des Kühlluftaustritts eine erheblich geringere Temperatur auf als an seiner dem Brennraum zugewandten Mitte. Zudem weist ein üblicherweise plattenförmig ausgebildetes Verkleidungselement entlang seiner lateralen Ausdehnung infolge seiner geometrischen Form eine relativ hohe Steifigkeit auf. Der hohe Temperaturgradient entlang der lateralen Ausdehnung und die Steifigkeit entlang der lateralen Ausdehnung führen zusammen zu ganz erheblichen Spannungen entlang der lateralen Ausdehnung des Verkleidungselements. Diese sind weitaus gravierender als Wölbungsspannungen des Verkleidungselements, welche aufgrund eines Temperaturgradienten auch über die Dicke des Verkleidungselements auftreten. Eine Möglichkeit, diesem Problem zu begegnen, ist in der nicht veröffentlichten europäischen Patentanmeldung EP-1508761-A beschrieben. Dem Problem kann durch eine temperaturangepasste Ausbildung eines Verkleidungselements begegnet werden.
  • Die US 5333443 A offenbart eine Strömungsbarriere zum Einsatz in einem Strömungsbereich zwischen einem ersten und einem zweiten Verkleidungselement einer Brennkammer einer Gasturbine. Die Strömungsbarriere ist an einer die Verkleidungselemente tragenden Tragstruktur befestigt und umfasst eine Schraube und einen Stapel aus rechteckigen übereinander gestapelten blattartigen Dichtungen, welche durch die Schraube und eine die Schraube umgebende Spiralfeder zur Abdichtung gegen die Verkleidungselemente gedrückt werden. Die Dichtungen sind gegeneinander versetzt und mehrfach angeordnet, so dass sich eine Abdichtung des Strömungsbereiches ergibt.
  • Die US 6145452 A offenbart hexagonale Verkleidungselemente einer Brennkammer, die an einer zentralen Bohrung mittels eines aus Keramik gefertigten schraubenförmigen Befestigungselements an einer Tragstruktur befestigt sind.
  • Die genannten Lösungsansätze erweisen sich nicht in jeder Hinsicht als vorteilhaft und sind letztendlich relativ komplex und damit kostenintensiv. Wünschenswert wäre eine Strömungsbarriere, die den angesprochenen Problemen der Hitzebeständigkeit, der temperaturbedingt variierenden Strömungsbereichsform sowie den durch die Kühlluft bewirkten Problemen begegnet und besonders einfach ausgestaltet ist. Wünschenswert wäre auch eine Verkleidung und eine Brennkammer, die vorteilhaft gegenüber bisherigen Lösungen ausgebildet sind.
  • An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, eine Strömungsbarriere anzugeben, die hitzebeständig ist und zugleich in einen formveränderlichen, in seinen Abmessungen variierenden Strömungsbereich eingesetzt werden kann und die dabei möglichst einfach ausgestaltet ist. Eine weitergehende Aufgabe der vorliegenden Erfindung hinsichtlich der Verkleidung und der Brennkammer mit einer solchen Strömungsbarriere besteht darin, den im Zusammenhang mit der Kühlluft erläuterten Problemen Rechnung zu tragen.
  • Hinsichtlich der Strömungsbarriere wird die Aufgabe erfindungsgemäß durch eine Strömungsbarriere zum Einsatz in einen Strömungsbereich zwischen einem ersten und einem zweiten Verkleidungselement einer Verkleidung einer Brennkammer gelöst, wobei die Strömungsbarriere einen hochtemperaturfesten Keramikkörper und ein Federelement aufweist und der hochtemperaturfeste Keramikkörper und das Federelement eine längliche Ausdehnung aufweisen, wobei der Keramikkörper entlang einer Auflagefläche auf dem Federelement aufliegt, und die Auflagefläche entlang der länglichen Ausdehnung ausgerichtet ist.
  • Beim Einsatz der Strömungsbarriere in den Strömungsbereich ist der hochtemperaturfeste Keramikkörper dem Brennraum der Brennkammer zugewandt und verhindert somit den Heißgaseinzug. Die Heißgaseinzugshemmung wird durch die unterstützende Federkraft des Federelements noch verbessert. Dabei ist das Federelement selbst durch den hochtemperaturfesten Keramikkörper vor einem Heißgaszugriff geschützt. Das Federelement selbst braucht also nur geringeren Anforderungen an die Hochtemperaturfestigkeit im Vergleich zum Keramikkörper zu genügen. Alle hinter dem Verkleidungselement und dem hochtemperaturfesten Keramikkörper liegenden Teile, einschließlich des Federelements, lassen sich darüber hinaus effektiv durch Kühlluft kühlen.
  • Die Erfindung hat erkannt, dass eine bisher übliche poröse keramische Strömungsbarriere zu einer Reihe von Folgeproblemen führt, die gemäß dem hier erläuterten Konzept einer insgesamt hochtemperaturfesten Strömungsbarriere vermieden werden. Die Verwendung eines hochtemperaturfesten Keramikkörpers als Teil der Strömungsbarriere garantiert, dass die Strömungsbarriere eine ausreichende Heißgasbeständigkeit aufweist, die unabhängig von einer Kühlluftdurchströmung ist. Als zweckmäßig hat sich eine Aluminiumoxidkeramik erwiesen. Es kann darüber hinaus je nach Zweckmäßigkeit auch eine andere hochtemperaturfeste Keramik eingesetzt werden. Die ausreichende Heißgasbeständigkeit des hochtemperaturfesten Keramikkörpers hat vor allem die besonders sichere und zuverlässige Wirkung der Strömungsbarriere im Vergleich zu bisher üblichen porösen keramischen Strömungsbarrieren zur Folge.
  • Die Kombination des hochtemperaturfesten Keramikkörpers mit einem Federelement zu einer Strömungsbarriere hat gemäß der Erkenntnis der Erfindung zudem die Wirkung, dass die durch die auf den Keramikkörper wirkende Federkraft erreichte Barrierenwirkung der Strömungsbarriere sich als besonders effektiv erweist.
  • Schließlich erweist sich die Kombination des hochtemperaturfesten Keramikkörpers und des Federelements zu einer Strömungsbarriere als besonders anpassungsfähig bei der Verwendung in einem infolge von Temperaturschwankungen stark form- und abstandsvariablen Strömungsbereichs zwischen dem ersten und dem zweiten Verkleidungselement.
  • Die Teile, d. h. der hochtemperaturfeste Keramikkörper und das Federelement, der Strömungsbarriere lassen sich einfach fertigen und damit kostengünstig herstellen.
  • Die Erfindung geht also, in Abkehr von der bekannten porösen keramischen Strömungsbarriere, von der neuen und in seiner Wirkung überraschenden Überlegung aus, dass im Vergleich zu einer porösen keramischen Strömungsbarriere die hier erläuterte Strömungsbarriere mit einem relativ starren hochtemperaturfesten Keramikkörper dennoch zu einer verlässlichen Abdichtung des Strömungsbereichs führt. In Kombination mit dem Federelement erweist sich die Strömungsbarriere gemäß dem neuen Konzept nämlich als ausreichend variabel innerhalb des formveränderlichen Strömungsbereichs.
  • Der hochtemperaturfeste Keramikkörper und das Federelement haben eine längliche Ausdehnung, wobei der Keramikkörper entlang einer Auflagefläche auf dem Federelement aufliegt und die Auflagefläche entlang der länglichen Ausdehnung ausgerichtet ist. Solche länglich ausgebildeten Federelemente lassen sich besonders einfach zusammensetzen und in einem Strömungsbereich einer Verkleidung einer Brennkammer montieren. Ihre längliche Ausdehnung trägt der länglichen Ausdehnung des Strömungsbereichs zwischen einem ersten und einem zweiten Verkleidungselement der Verkleidung Rechnung.
  • Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen und geben im Einzelnen vorteilhafte Möglichkeiten an, die Strömungsbarriere unter anderem hinsichtlich ihrer Barrierenwirkung, Heißgasbeständigkeit und Stabilität zu realisieren.
  • Vorzugsweise ist die Auflagefläche zum Federelement hin gewölbt. Insbesondere weist das Federelement auf seiner der Auflagefläche zugewandten Seite eine Mulde auf und der hochtemperaturfeste Keramikkörper auf seiner der Auflagefläche zugewandten Seite eine Auswölbung auf. Die Auswölbung des Keramikkörpers und die Mulde des Federelements sind zweckmäßigerweise aufeinander angepasst, so dass der Keramikkörper im Federelement sicher zu liegen kommt und gegen ein seitliches Verrutschen in der Mulde gesichert ist.
  • Des Weiteren weist das Federelement zweckmäßigerweise Haltemittel auf, welche die Lage des hochtemperaturfesten Keramikkörpers entlang der länglichen Ausdehnung sichert. Auf diese Weise ist der Keramikkörper auch in einer axialen Richtung, d. h. in eine Richtung der länglichen Ausdehnung, gegen ein Verrutschen gesichert. Als Haltemittel ist ein Anschlag oder eine ausreichend rauhe Ausgestaltung der Auflagefläche zwischen dem Federelement und dem Keramikkörper besonders geeignet.
  • In einer ersten Variante der Erfindung ist das Federelement mindestens entlang eines Bruchteils der länglichen Ausdehnung in Form einer druckbeanspruchten Feder nach dem Wirkprinzip einer Tellerfeder ausgebildet. Das heißt, das Federelement ist, bis auf seine längliche Ausdehnung (statt einer runden bei einer Tellerfeder), im Prinzip wie eine Tellerfeder ausgebildet und beruht im Prinzip auf dem gleichen Wirkmechanismus wie eine Tellerfeder.
  • Es hat sich als besonders vorteilhaft erwiesen, dass das Federelement entlang eines weiteren Bruchteils der länglichen Ausdehnung in Form einer bloßen Auflage ausgebildet ist. Dabei hat es sich als besonders zweckmäßig erwiesen, das Federelement entlang eines mittleren Teils der länglichen Ausdehnung in Form einer druckbeanspruchten Feder, klammerartig, nach dem Wirkprinzip einer Tellerfeder auszubilden und entlang seiner seitlichen Teile der länglichen Ausdehnung in Form einer bloßen Auflage auszubilden. Die Auflagen unterstützen den hochtemperaturfesten Keramikkörper in seiner Auflage während im mittleren Teil die Federkraft erzeugt wird. Im Einzelnen ist eine vorteilhafte Ausführungsform der ersten Variante des Federelements im Zusammenhang mit der Zeichnung erläutert.
  • Gemäß einer zweiten Variante der Erfindung ist das Federelement mindestens entlang eines Bruchteils der länglichen Ausdehnung in Form eines druckbeanspruchten, federnd nachgebenden Vollkörpers ausgebildet. Dabei kommt jede Art eines Materials in Betracht, welches dem Vollkörper eine druckbeanspruchte federnde Wirkung verleiht. Dabei kann es sich um einheitliches Vollmaterial oder um eine Zusammensetzung oder ein Konglomerat unterschiedlicher Materialien handeln. Ein Querschnitt durch den Vollkörper hat vorteilhaft eine Form, die ähnlich der Form einer liegenden Acht ist. Im Einzelnen ist eine vorteilhafte Ausführungsform der zweiten Variante des Federelements im Zusammenhang mit der Zeichnung erläutert.
  • Die Aufgabe hinsichtlich der Verkleidung wird erfindungsgemäß durch eine Verkleidung für eine Brennkammer mit einer Anzahl von Verkleidungselementen gelöst, wobei zwischen einem ersten und zweiten Verkleidungselement ein Strömungsbereich gebildet ist, in den eine Strömungsbarriere der oben genannten Art eingesetzt ist.
  • Im Rahmen einer Weiterbildung dieser Verkleidung hat es sich als besonders vorteilhaft erwiesen, dass eine oder mehrere Strömungsbarrieren derart in den Strömungsbereich eingesetzt sind, dass der Strömungsbereich durch die eine oder mehreren Strömungsbarrieren vollständig abgedichtet ist. Auf diese Weise wird nämlich ein Heißgaseinzug in den Strömungsbereich vollständig verhindert.
  • Besonders vorteilhaft sind in sämtliche entlang eines Umfangs eines Verkleidungselements verlaufende Strömungsbereiche eine oder mehrere der Strömungsbarrieren eingesetzt. Auf diese Weise wird ein Heißgaseinzug in allen umfänglich um ein Verkleidungselement herumlaufende Strömungsbereiche vermieden.
  • Die Aufgabe wird hinsichtlich der Brennkammer erfindungsgemäß gelöst durch eine Brennkammer mit einer Verkleidung, die eine Anzahl von Verkleidungselementen aufweist, wobei zwischen einem ersten und einem zweiten Verkleidungselement ein Strömungsbereich gebildet ist, in den eine Strömungsbarriere der oben genannten Art eingesetzt ist.
  • Im Rahmen einer besonders bevorzugten Weiterbildung der Brennkammer ist
    • ein Verkleidungselement an der einem Brennraum zugewandten Innenseite eines Gehäuseteils mittels einer Halterung angebracht, und
    • eine oder mehrere Strömungsbarrieren derart in den Strömungsbereich eingesetzt, dass der Strömungsbereich durch die eine oder mehrere Strömungsbarrieren vollständig abgedichtet ist, und
    • eine zwischen dem Gehäuseteil und der Verkleidung verlaufende Kühlluftströmung durch die eine oder mehrere der Strömungsbarrieren entlang einer Ausdehnung des Strömungsbereichs zur Kühlung der Halterung abgelenkt wird.
  • Dieses Konzept garantiert, dass eine zuverlässige Kühlung der Halterung und damit eine sichere und dauerhaft beständige Halterung der Verkleidungselemente. Durch die Abdichtung des Strömungsbereichs wird darüber hinaus ein Heißgaseinzug in den Strömungsbereich vermieden. Korrosionsprobleme durch Heißgaseinzug oder sonstige Materialbelastungen in der Nähe des Strömungsbereichs und hinter der Verkleidung, insbesondere bei der Halterung, sind damit - im Unterschied zu bekannten Strömungsbarrieren - beseitigt.
  • Schließlich wird auch das Ausströmen von Kühlluft in den Brennraum und damit eine brennraumseitig unterschiedliche Temperaturbelastung der Verkleidungselementkanten einerseits und der Verkleidungselementmitten andererseits vermieden. Laterale Temperaturgradienten von der Kante zur Mitte eines Verkleidungselements hin sind damit weitgehend beseitigt. Das Blockieren der Kühlluft führt damit zu einer adiabaten Temperatursituation bei den Verkleidungselementen. Langfristige Schäden an einem Verkleidungselement, z. B. Risse, werden dadurch vermieden. Durch die weitestgehende bzw. vollständige Abdichtung des Kühlluftstroms im Strömungsbereich mittels dem vorliegenden Konzept einer Strömungsbarriere wird ein erhebliches Einsparpotential von Kühlluft im Vergleich zum bisher üblichen Konzept einer porösen keramischen Strömungsbarriere erreicht.
  • Es dringt damit also weniger Kühlluft in den Brennraum selbst ein. Damit besteht nicht nur ein hohes Potential zur Verringerung des Kühlluftverbrauchs, was wiederum eine Absenkung der Verbrennungstemperatur zur Folge hat. Letzteres hat im Ergebnis darüber hinaus auch eine Reduzierung der NOx-Emission zur Folge.
  • Die genannte Ausbildung der Strömungsbarriere hat auch den Vorteil, dass größere Toleranzen beim Einstellen der Spalte, d.h. des Strömungsbereichs zwischen einem ersten und einem zweiten Verkleidungselement möglich sind. Auf diese Weise wird die Montagezeit der Verkleidungselemente erheblich reduziert.
  • Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung beschrieben. Diese soll die Ausführungsbeispiele nicht maßgeblich darstellen, vielmehr ist die Zeichnung, wo zur Erläuterung dienlich, in schematisierter und/oder leicht verzerrter Form ausgeführt. Im Hinblick auf Ergänzungen der aus der Zeichnung unmittelbar erkennbaren Lehren wird auf den einschlägigen Stand der Technik verwiesen.
  • Im Einzelnen zeigt die Figur in:
    • FIG 1 eine besonders bevorzugte Ausführungsform einer Verkleidung für eine Brennkammer mit einer besonders bevorzugten Ausführungsform einer ersten Variante einer Strömungsbarriere in einer Querschnittsansicht;
    • FIG 2 jeweils in perspektivischer Ansicht (a) und einer Querschnittsansicht (b) einen hochtemperaturfesten Keramikkörper der besonders bevorzugten Ausführungsform der ersten Variante einer Strömungsbarriere;
    • FIG 3 jeweils in perspektivischer Ansicht (a) und einer Querschnittsansicht (b) ein Federelement der besonders bevorzugten Ausführungsform der ersten Variante einer Strömungsbarriere;
    • FIG 4 jeweils in einer perspektivischen Ansicht (a) und einer Querschnittsansicht (b) die besonders bevorzugte Ausführungsform der ersten Variante einer Strömungsbarriere mit dem hochtemperaturfesten Keramikkörper der FIG 2 und dem Federelement der FIG 3;
    • FIG 5 jeweils in einer perspektivischen Ansicht (a) und einer Querschnittsansicht (b) eine besonders bevorzugte Ausführungsform einer zweiten Variante einer Strömungsbarriere;
    • FIG 6 eine besonders bevorzugte Ausführungsform einer Verkleidung für eine Brennkammer mit der besonders bevorzugten Ausführungsform der zweiten Variante der Strömungsbarriere in einer perspektivischen Ansicht;
    • FIG 7 in perspektivischer Ansicht einen größeren Bereich der besonders bevorzugten Ausführungsform der Verkleidung der FIG 6 mit schematisch gezeigter Kühlluftströmung.
  • Üblicherweise werden zur Kompensation unterschiedlicher Wärmeausdehnungskoeffizienten bei der Montage von Verkleidungselementen in Form von keramischen Hitzeschilden (Ceramic Heat Shields, CHS) bei einer Brennkammer einer Gasturbine auf dem gesamten Umfang des Hitzeschilds Spalte eingestellt. Um diese im Folgenden als Strömungsbereich bezeichnete Spalte vor Heißgaseinzug zu schützen, werden die Strömungsbereiche bisher mit Verdichterendluft gesperrt. Diese als Kühlluft eingesetzte Verdichterendluft erzeugt Temperaturgradienten in dem im Folgenden als Verkleidungselement bezeichneten Hitzeschild, was bei Betrieb der Gasturbine zu thermischen Rissen im Verkleidungselement führt.
  • Durch den Einsatz der im Folgenden als Strömungsbarriere bezeichneten Dichtung nach dem Konzept der Erfindung wird die aus einem Strömungsbereich zwischen den Verkleidungselementen ausströmende Kühlluft vermindert oder ganz unterdrückt. Somit verringern sich die von den Kanten eines Verkleidungselements zur Verkleidungselementmitte hin ausbildenden Temperaturgradienten und die damit verknüpften Spannungen entlang der lateralen Ausdehnung des Verkleidungselements in ganz erheblichem Maße. Aufgrund der reduzierten Spannungen bilden sich im Betrieb weniger und, wenn überhaupt, kürzere Risse in einem Verkleidungselement aus.
  • Bekannt sind eingangs genannte poröse keramische Strömungsbarrieren. Eine solche bekannte Strömungsbarriere ist in Form eines Doppelschlauchs ausgebildet mit einer Außenhülle aus hochtemperaturbeständigem, keramischem Nextelgewebe und einer Innenhülle aus einem Inconellgestrick, welches im Verbund flexibel ist und eine ausreichende Längenstabilität hat als auch die Strömungsbarriere über die Federkraft des Gestrickes auf ihrer axialen Position hält. Die Enden der Strömungsbarriere sind mit einem Nextelfaden vernäht.
  • Eine solche schlauchartig ausgebildete poröse keramische Strömungsbarriere ist zwar hochtemperaturbeständig, darf aber nicht direkt mit dem Heißgas in Berührung kommen. Da sich dieser Kontakt in der Brennkammer nur schwer vermeiden lässt, muss die Strömungsbarriere von Kühlluft durchströmt werden. Eine ausreichende Durchströmung mit Kühlluft lässt sich jedoch nicht in jeder Phase eines Realbetriebs einer Gasturbine garantieren, so dass eine bisher übliche Strömungsbarriere Überhitzungen aufweisen kann. Weiterhin führt eine unzureichende Durchströmung von Kühlluft dazu, dass die Halterung eines Verkleidungselements nicht ausreichend mit Kühlluft versorgt wird und dort überhitzt, wo die Strömungsbarriere versagt. Eine Überhitzung der bekannten Strömungsbarriere in Form eines flexiblen Gestrickes führt zum Verlust der Federkraft des Gestrickes und verschlimmert die oben geschilderte Situation.
  • Aus diesen Gründen ist das oben erläuterte neue Konzept einer hochtemperaturbeständigen Strömungsbarriere gemäß der Erfindung vorgeschlagen worden. Die vorgeschlagene Strömungsbarriere hält einem direkten Heißgaskontakt stand und bietet eine größere passive Sicherheit gegen die Verkleidungshalterungsüberhitzung. Dies wird im Einzelnen anhand der folgenden Figuren erläutert.
  • FIG 1 zeigt eine Verkleidung 1 für eine Brennkammer mit einer Anzahl von Verkleidungselementen im Bereich eines ersten Verkleidungselements 3 und eines zweiten Verkleidungselements 5. Zwischen dem ersten Verkleidungselement 3 und dem zweiten Verkleidungselement 5 ist ein Strömungsbereich 7 in Form eines Spaltes gebildet. Die Gefahr eines Heißgaseinzugs besteht von der Seite des Brennraums 11 her. Im Strömungsbereich 7 ist eine erste Variante einer Strömungsbarriere 9, die den Strömungsbereich vollständig gegen Heißgaseinzug abdichtet, eingesetzt. Weiter weist der Strömungsbereich eine Halterung 12 auf. Ein erster Teil 13 der Halterung 12 hält das erste Verkleidungselement 3. Ein zweiter Teil 15 der Halterung 12 hält das zweite Verkleidungselement 5. Sowohl die Strömungsbarriere 9 als auch die Halterung 12 greifen in einen Hohlraum 17 ein, in den sich der Strömungsbereich 7 etwa auf der Höhe der Mitte der Verkleidung 1 bzw. eines Verkleidungselements 3, 5, aufweitet. Der Hohlraum 17 ist durch eine erste Nut 23 des ersten Verkleidungselements 3 und durch eine zweite Nut 25 des zweiten Verkleidungselements 5 gebildet. Die Strömungsbarriere 9 ist durch einen hochtemperaturfesten Keramikkörper 19 und einer ersten Variante eines Federelements 21 gebildet, wobei die erste Variante des Federelements 21 in Form einer druckbeanspruchten Feder tellerfederartig ausgebildet ist.
  • Die Strömungsbarriere 9 gemäß dieser ersten Variante in Form einer Metalldichtung mit Keramikeinsatz kombiniert die Temperaturbeständigkeit einer Keramik mit den Federeigenschaften eines Metalls. Die als federnde Metallklammer tellerfederartig ausgebildete und druckbeanspruchte Feder der ersten Variante des Federelements 21 wird zwischen den auslaufenden Enden der Halterung 12 im Bereich des Hohlraums 17 und dem hochtemperaturfesten Keramikkörper 19 montiert. Die hier dargestellte erste Variante des Federelements 21 in Form einer Metallklammer drückt den hochtemperaturfesten Keramikkörper 19 fest gegen den heißen Riegel 33 des ersten Verkleidungselements 3 und den heißen Riegel 35 des zweiten Verkleidungselements 5. Zusätzlich presst ein durch die Kühlluftströmung hervorgerufener Überdruck von der dem Brennraum 11 abgewandten Seite der Verkleidung 1 die Strömungsbarriere 9 gegen die heißgasseitigen Riegel 33, 35. Während des Betriebs der Brennkammer schleift sich der Keramikkörper 19 an seiner Oberseite optimal auf die Riegel 33, 35 ein, so dass die Dichtwirkung der Strömungsbarriere nach kurzer Betriebszeit zunimmt und schließlich eine vollständige Dichtwirkung erreicht werden kann.
  • Aufgrund der Federwirkung der als Metallklammer ausgebildeten ersten Variante des Federelements 21 wird die thermische Ausdehnung des ersten 3 und zweiten 5 Verkleidungselements nicht behindert. Der hochtemperaturfeste Keramikkörper 19 schützt die als Metallklammer ausgebildete erste Variation des Federelements 21 und die Halterung 12 vor einem Heißgaseinzug durch den Strömungsbereich 7 von der Seite des Brennraums 11 her. Bei der Einstellung des Strömungsbereichs 7 können größere Toleranzen zugelassen werden, da in Umfangsrichtung keine Strömungsbereiche mehr vorhanden sind.
  • Die FIG 2 bis 4 stellen im Einzelnen die Montage der in der FIG 1 gezeigten ersten Variante der Strömungsbarriere 9 dar. Bezug nehmend auf FIG 1 wird zuerst ein erstes Verkleidungselement 3 mit einem ersten Teil 13 einer Halterung 12 und einem zweiten Teil 15 der Halterung 12 montiert. Danach wird die erste Variante einer Strömungsbarriere 9 in Form einer zusammengesetzten Dichtung aus einer ersten Variante eines Federelements 21 in Form einer Metallklammer einerseits und mit einem hochtemperaturfesten Keramikkörper 19 andererseits in die den Hohlraum 17 bildende Nut 23 des ersten Verkleidungselements 3 eingeschoben. Anschließend wird das zweite Verkleidungselement 5 mit seiner den Hohlraum 17 bildenden Nut 25 über die Halterung 12 und die Strömungsbarriere 9 geschoben und montiert.
  • Die in FIG 3 gezeigte erste Variante eines Federelements 21 weist eine Mulde 41 auf, welche die Auflagefläche zwischen der ersten Variante des Federelements 21 und dem keramischen Vollkörper 19 bildet. Der in FIG 2 gezeigte keramische Vollkörper weist eine Auswölbung 43 auf, welche in der Mulde 41 zu liegen kommt. Die zwischen Federelement 21 und keramischem Vollkörper 19 gebildete Auflagefläche ist also zum Federelement 21 hin gewölbt.
  • Als ein Haltemittel weist das in FIG 3 gezeigte Federelement 21 an seinen axialen Enden entlang seiner länglichen Ausdehnung 45 jeweils einen Anschlag 47 auf, welcher die Lage des Keramikkörpers 19 in eine Richtung der länglichen Ausdehnung 45, also in axialer Richtung, sichert.
  • Das Federelement 21 weist darüber hinaus entlang seines mittleren Teils 49 der länglichen Ausdehnung 45 die Form einer druckbeanspruchten Feder auf, die nach dem Wirkprinzip einer Tellerfeder ausgebildet ist. Die Feder 51 im mittleren Teil 49 ist an ihren Seiten 53 nach unten hin, ringförmig gekrümmt, wobei die Enden 55 leicht nach oben weisen, aber frei sind. Die Feder 51 hat also die Form einer Metallklammer. Auf diese Weise funktioniert sie ähnlich wie eine Tellerfeder. In den Seitenteilen 57 jenseits des mittleren Teils 49 der hier dargestellten ersten Variante des Federelements 21 ist das Federelement 21 in Form einer bloßen Auflage ausgebildet, die auch die Mulde 41 fortsetzt. Die bloße Auflage hat keine Federwirkung wie die Feder 51 im mittleren Teil 49. Die Mulde 41 schützt und verstärkt den hochtemperaturfesten Keramikkörper 19 entlang der gesamten länglichen Ausdehnung 45 des Keramikkörpers 19, insbesondere gegen Bruch, und drückt ihn gegen den heißgasseitigen Riegel 33, 35 eines Verkleidungselements 3, 5 der in FIG 1.
  • FIG 5 zeigt eine zweite Variante einer Strömungsbarriere 10 mit einem hochtemperaturfesten Keramikkörper 20 und einer zweiten Variante eines Federelements 22. Vorliegend ist die zweite Variante des Federelements 22 entlang der gesamten länglichen Ausdehnung 46 in Form eines druckbeanspruchten federnd nachgebenden Vollkörpers ausgebildet. Der Vollkörper ist bei der hier vorliegenden Ausführungsform aus einem Inconellgestrick gebildet oder kann in einer weiteren Ausführungsform dieser zweiten Variante aus einem ähnlichen Material wie die Keramikdichtung in der EP 1 302 723 A1 , nämlich insbesondere in Form einer Keramikdichtung mit einer Nextelhülle, ausgebildet sein. Die Form der zweiten Variante des Federelements 22 ist ähnlich der Form der ersten Variante des Federelements 21 aus Metall, nämlich im Querschnitt ähnlich der Form einer liegenden Acht.
  • In FIG 6 ist in perspektivischer Ansicht die zweite Variante des Federelements 22 bestehend aus dem keramischen Vollkörper 20 und dem druckbeanspruchten federnd nachgebenden Vollkörper der zweiten Variante des Federelements 22 gezeigt. Diese zweite Variante der Strömungsbarriere 10 liegt wiederum auf einer Halterung 12 auf und befindet sich in einem Hohlraum 17 eines Strömungsbereichs 7 zwischen einem ersten Verkleidungselement 3 und einem zweiten Verkleidungselement 5. Die weiteren Elemente der FIG 6 entsprechen denen der FIG 1 und sind mit gleichen Bezugszeichen versehen.
  • FIG 7 zeigt ein erstes Verkleidungselement 3 und ein zweites Verkleidungselement 5 mit der zweiten Variante der in FIG 6 gezeigten Strömungsbarriere 10 in einem größeren Ausschnitt der Verkleidung 2 für eine bei dieser Ausführungsform gewählten Ringbrennkammer.
  • Die zweite Variante der Strömungsbarriere 10 könnte im vorliegenden Fall wahlweise auch durch die in FIG 1 gezeigte erste Variante der Strömungsbarriere 9 ersetzt werden.
  • FIG 7 verdeutlicht die Wirkung einer solchen ersten Variante der Strömungsbarriere 9 oder einer hier gezeigten zweiten Variante einer Strömungsbarriere 10 bei der Brennkammer. Die Strömungsbarriere 9, 10 mit hochtemperaturfestem Keramikkörper 19, 20 und Federelement 21, 22 ist aufgrund ihrer oben erläuterten Ausbildung nach kurzer Betriebszeit praktisch luftundurchlässig. Die in FIG 7 gezeigten Verkleidungselemente 3, 5 sind an der einem Brennraum 11 zugewandten Innenseite eines Gehäuseteils 4 mittels einer oder mehrerer Halterungen zur Befestigung der Verkleidungselemente 3, 5 angebracht. Die Halterungen 12 weisen Kühlluftbohrungen 14 auf. Durch die vollständige Abdichtung des Strömungsbereichs 7 gegenüber dem Brennraum 11 besitzt das hier vorgestellte Konzept einer Strömungsbarriere 9, 10 ein höheres Kühllufteinsparpotential als die in der EP 1 302 723 A1 beschriebene poröse keramische Dichtung. Die Strömungsbarriere 9, 10 ist nämlich derart in einen Strömungsbereich 7 eingesetzt, dass der Strömungsbereich 7 durch die Strömungsbarriere 9, 10 vollständig abgedichtet ist, da diese luftundurchlässig ist. Eine zwischen dem Gehäuseteil 4 und der Verkleidung 3, 5 verlaufende Kühlluftströmung 6 gerät also nicht durch den Strömungsbereich 7 hindurch in den Brennraum 11, sondern wird vielmehr zum Vorteil der Brennkammer, entlang einer Ausrichtung 48 des Strömungsbereichs zur Kühlung der Halterung 12 abgelenkt. Die Ausdehnung des Strömungsbereichs 48 stimmt zweckmäßigerweise mit den in FIG 2 bis 5 gezeigten länglichen Ausdehnungen 45, 46 einer Strömungsbarriere 9, 10 überein.
  • Zusammenfassend weist eine Brennkammer zur Isolierung eines tragenden Gehäuseteils gegen einen Brennraum 11 der Brennkammer eine Verkleidung 1 auf, die aus einer Anzahl von Verkleidungselementen gebildet ist. Der Abstand zwischen einem 3 ersten und einem zweiten 5 Verkleidungselement ist durch einen Spalt gebildet, der einen Strömungsbereich 7 zwischen dem ersten 3 und dem zweiten 5 Verkleidungselement bereitstellt und in den brennraumseitig Heißgas und in Gegenrichtung Kühlluft eindringen kann, wobei der Strömungsbereich 7 infolge von Temperaturänderungen variierende Abmessungen haben kann. Um eine hochtemperaturfeste Strömungsbarriere für einen Strömungsbereich 7 solcher Art möglichst einfach auszugestalten, wird vorliegend eine Strömungsbarriere 9, 10 angegeben, welche einen hochtemperaturfesten Keramikkörper 19, 20 und ein Federelement 21, 22 aufweist. Die vorgeschlagene Strömungsbarriere 9, 10 hat eine verbesserte Hitzebeständigkeit, ein größeres Kühllufteinsparpotential und verringert thermisch induzierte Spannungen in einem Verkleidungselement 3, 5. Die Erfindung führt auf eine Verkleidung einer Brennkammer und eine Brennkammer.

Claims (12)

  1. Strömungsbarriere (9, 10) zum Einsatz in einem Strömungsbereich (7) zwischen einem ersten (3) und einem zweiten (5) Verkleidungselement einer Verkleidung (1) einer Brennkammer, wobei die Strömungsbarriere (9, 10) einen hochtemperaturfesten Keramikkörper (19, 20) und ein Federelement (21, 22) aufweist und
    der hochtemperaturfeste Keramikkörper (19, 20) und das Federelement (21, 22) eine längliche Ausdehnung (45) aufweisen, wobei der Keramikkörper (19, 20) entlang einer Auflagefläche auf dem Federelement (21, 22) aufliegt, und die Auflagefläche entlang der länglichen Ausdehnung (45) ausgerichtet ist.
  2. Strömungsbarriere (9, 10) nach Anspruch 1,
    dadurch gekennzeichnet, dass die Strömungsbarriere (9, 10) derart zwischen dem ersten (3) und dem zweiten (5) Verkleidungselement befestigbar ist, dass die Strömungsbarriere (9, 10) in eine Aufweitung des Strömungsbereichs (7) eingreift, wobei die Aufweitung des Strömungsbereichs durch eine erste Nut in dem ersten Verkleidungselements und eine zweite Nut in dem zweiten Verkleidungselements gebildet ist.
  3. Strömungsbarriere (9, 10) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Auflagefläche zum Federelement (21, 22) hin gewölbt ist.
  4. Strömungsbarriere (9, 10) nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass
    das Federelement (21, 22) ein Haltemittel (47) aufweist, welche die Lage des hochtemperaturfesten Keramikkörpers (19, 20) entlang der länglichen Ausdehnung (45) sichert.
  5. Strömungsbarriere (9) nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass
    das Federelement (21) mindestens entlang eines Bruchteils der länglichen Ausdehnung (45) in Form einer druckbeanspruchten Feder nach dem Wirkprinzip einer Tellerfeder ausgebildet ist.
  6. Strömungsbarriere (9) nach Anspruch 5,
    dadurch gekennzeichnet, dass
    das Federelement (21) entlang eines weiteren Bruchteils der länglichen Ausdehnung (45) in Form einer bloßen Auflage ausgebildet ist.
  7. Strömungsbarriere (10) nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass
    das Federelement (22) mindestens entlang eines Bruchteils der länglichen Ausdehnung (45) in Form eines druckbeanspruchten, federnd nachgebenden Vollkörpers ausgebildet ist.
  8. Verkleidung (1) für eine Brennkammer mit einer Anzahl von Verkleidungselementen, wobei zwischen einem ersten (3) und zweiten (5) Verkleidungselement ein Strömungsbereich (7) gebildet ist, in den eine Strömungsbarriere (9, 10) nach einem der Ansprüche 1 bis 7 eingesetzt ist.
  9. Verkleidung (1) nach Anspruch 8,
    dadurch gekennzeichnet, dass
    eine oder mehrere Strömungsbarrieren (9, 10) derart in den Strömungsbereich (7) eingesetzt sind, dass der Strömungsbereich (7) durch die eine oder mehreren Strömungsbarrieren (9, 10) vollständig abgedichtet ist.
  10. Verkleidung (1) nach Anspruch 8 oder 9,
    dadurch gekennzeichnet, dass
    in sämtliche entlang eines Umfangs eines Verkleidungselements (3, 5) verlaufende Strömungsbereiche (7) eine oder mehrere Strömungsbarrieren (9, 10) eingesetzt sind.
  11. Brennkammer mit einer Verkleidung (1), die eine Anzahl von Verkleidungselementen (3, 5) aufweist, wobei zwischen einem ersten (3) und zweiten (5) Verkleidungselement ein Strömungsbereich (7) gebildet ist, in den eine Strömungsbarriere (9, 10) nach einem der Ansprüche 1 bis 7 eingesetzt ist.
  12. Brennkammer nach Anspruch 11,
    dadurch gekennzeichnet, dass
    - ein Verkleidungselement (3, 5) an der einem Brennraum (11) zugewandten Innenseite eines Gehäuseteils (4) mittels einer Halterung (12) angebracht ist, und
    - eine oder mehrere Strömungsbarrieren (9, 10) derart in den Strömungsbereich (7) eingesetzt sind, dass der Strömungsbereich (7) durch die eine oder mehreren Strömungsbarrieren (9, 10) vollständig abgedichtet ist, und
    - eine zwischen dem Gehäuseteil (4) und der Verkleidung (1) verlaufende Kühlluftströmung (6) die durch eine oder mehrere Strömungsbarrieren (9, 10) entlang einer Ausdehnung (48) des Strömungsbereichs (7) zur Kühlung der Halterung (12) abgelenkt wird.
EP20040001229 2004-01-21 2004-01-21 Strömungsbarriere, Verkleidung und Brennkammer Expired - Lifetime EP1557611B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20040001229 EP1557611B1 (de) 2004-01-21 2004-01-21 Strömungsbarriere, Verkleidung und Brennkammer
ES04001229.6T ES2528177T3 (es) 2004-01-21 2004-01-21 Barrera de flujo, revestimiento y cámara de combustión

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20040001229 EP1557611B1 (de) 2004-01-21 2004-01-21 Strömungsbarriere, Verkleidung und Brennkammer

Publications (2)

Publication Number Publication Date
EP1557611A1 EP1557611A1 (de) 2005-07-27
EP1557611B1 true EP1557611B1 (de) 2014-12-31

Family

ID=34626476

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20040001229 Expired - Lifetime EP1557611B1 (de) 2004-01-21 2004-01-21 Strömungsbarriere, Verkleidung und Brennkammer

Country Status (2)

Country Link
EP (1) EP1557611B1 (de)
ES (1) ES2528177T3 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105324611A (zh) 2013-05-21 2016-02-10 西门子股份公司 用于燃烧室的隔热件的隔热瓦
DE102015202570A1 (de) * 2015-02-12 2016-08-18 Rolls-Royce Deutschland Ltd & Co Kg Abdichtung eines Randspalts zwischen Effusionsschindeln einer Gasturbinenbrennkammer
EP3104077B1 (de) * 2015-06-08 2021-05-12 ANSALDO ENERGIA S.p.A. Wärmeisolierende keramikplatte mit geringer dicke für eine brennkammer einer gasturbine
EP3845810B1 (de) * 2019-12-31 2023-11-22 ANSALDO ENERGIA S.p.A. Stützvorrichtung für wärmeisolierende kacheln einer brennkammer einer gasturbinenanlage für kraftwerke und eine gasturbinenanlage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333443A (en) * 1993-02-08 1994-08-02 General Electric Company Seal assembly
DE19730751A1 (de) * 1996-07-24 1998-01-29 Siemens Ag Keramisches Bauteil für eine Wärmeschutzschicht sowie Wärmeschutzschicht
DE59706558D1 (de) * 1997-07-28 2002-04-11 Alstom Keramische Auskleidung
EP1260767A1 (de) * 2001-05-25 2002-11-27 Siemens Aktiengesellschaft Hitzeschildanordnung für eine Heissgas führende Komponente, insbesondere für Strukturteile von Gasturbine, sowie Verfahren zum Herstellen einer derartigen Anordnung
EP1302723A1 (de) * 2001-10-15 2003-04-16 Siemens Aktiengesellschaft Auskleidung für Innenwände von Brennkammern

Also Published As

Publication number Publication date
ES2528177T3 (es) 2015-02-05
EP1557611A1 (de) 2005-07-27

Similar Documents

Publication Publication Date Title
EP2363643B1 (de) Hitzeschildelement
EP1872058B1 (de) Brennkammer mit einem hitzeschild
DE60032440T2 (de) Halterung für die Brennkammer einer Gasturbine
DE102012105402B4 (de) Verstellvorrichtung für einen Abgasturbolader
DE10155420A1 (de) Hitzeschildanordnung mit Dichtungselement
EP0558540A1 (de) Keramischer hitzeschild an einer tragstruktur.
DE4343658A1 (de) Gleitverbindungsvorrichtung zwischen zwei Teilen, die starken mechanischen und thermischen Belastungen unterliegen
WO2009124824A1 (de) Befestigungselement und abgasturbolader mit variabler turbinengeometrie
DE60119674T2 (de) Verfahren und Vorrichtung für die Abdichtung verstellbarer Düsen in Gasturbinen
EP1429058A2 (de) Flachdichtung, insbesondere Abgaskrümmerdichtung
EP2881691A1 (de) Wärmeüberträger mit Rohrscheibe und eingeschobener Hülse
DE102005032980A1 (de) Brennkammerbaugruppe für einen Verdampferbrenner
EP0904512B1 (de) Hitzeschildanordnung, insbesondere für strukturteile von gasturbinenanlagen
DE4414961A1 (de) Zylinderkopfdichtung
EP3091188B1 (de) Strömungsmaschine mit einer dichtungseinrichtung
EP1557611B1 (de) Strömungsbarriere, Verkleidung und Brennkammer
DE102005046731A1 (de) Hitzeschildanordnung
DE60300423T2 (de) Kühlsystem für eine Nachbrennerdüse in einer Turbomaschine
DE102008020870A1 (de) Klappenventil
EP1591724B1 (de) Spaltdichtelement für einen Hitzeschild
EP1128131A1 (de) Hitzeschildelement, Brennkammer und Gasturbine
DE2909467A1 (de) Absperrschieber fuer rohrleitungen grosser nennweiten
DE2937788A1 (de) Leichtmetallzylinderkopf fuer brennkraftmaschinen
WO2005008053A1 (de) Motor, insbesondere zweitakt-grossdieselmotor
DE4322526A1 (de) Brennkraftmaschine mit Katalysator im Auslaßkanal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050822

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20110428

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140804

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2528177

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150205

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 704647

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014797

Country of ref document: DE

Effective date: 20150219

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014797

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151001

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 704647

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160120

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160321

Year of fee payment: 13

Ref country code: IT

Payment date: 20160127

Year of fee payment: 13

Ref country code: ES

Payment date: 20160223

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160115

Year of fee payment: 13

Ref country code: GB

Payment date: 20160111

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160404

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040121

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004014797

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170121

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170121

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170122

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180627