EP1550664B1 - Siliziumverbindung - Google Patents

Siliziumverbindung Download PDF

Info

Publication number
EP1550664B1
EP1550664B1 EP03797641A EP03797641A EP1550664B1 EP 1550664 B1 EP1550664 B1 EP 1550664B1 EP 03797641 A EP03797641 A EP 03797641A EP 03797641 A EP03797641 A EP 03797641A EP 1550664 B1 EP1550664 B1 EP 1550664B1
Authority
EP
European Patent Office
Prior art keywords
substituted
carbon atom
optional
formula
atom number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03797641A
Other languages
English (en)
French (fr)
Other versions
EP1550664A1 (de
EP1550664A4 (de
Inventor
Mikio JNC Corporation YAMAHIRO
Hisao JNC Corporation OIKAWA
Kazuhiro JNC Corporation YOSHIDA
Kenya JNC Corporation ITO
Yasuhiro JNC Corporation YAMAMOTO
Masami JNC Corporation TANAKA
Nobumasa JNC Corporation OOTAKE
Kenichi JNC Corporation WATANABE
Kohji Laboratory of Polymeric Materials OHNO
Yoshinobu Lab. of Polymeric Materials TSUJII
Takeshi Lab. of Polymeric Materials FUKUDA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
JNC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp filed Critical JNC Corp
Publication of EP1550664A1 publication Critical patent/EP1550664A1/de
Publication of EP1550664A4 publication Critical patent/EP1550664A4/de
Application granted granted Critical
Publication of EP1550664B1 publication Critical patent/EP1550664B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment

Definitions

  • the present invention relates to a novel silicon compound characterized by having a polymerization initiating ability for addition-polymerizable monomers, a production process for the same and a polymer obtained using the same.
  • silsesquioxane derivatives of a cage type having a dimethylsiloxy group as an organic-inorganic composite material containing silsesquioxane as an inorganic component. This is because they are expected to be applied to precursors of organic/inorganic hybrid materials, low dielectric materials, optical crystals and liquid crystal materials, and the reason therefor resides in that the above silsesquioxane derivatives have a structure close to silica and zeolite.
  • Cage type silsesquioxanes in which a hydroxyl group (document 1), an epoxy group (document 2) or a methacryloyloxy group (document 3) is bonded to a dimethylsiloxy group are reported.
  • So-called organic-inorganic composite materials of organic polymers and silsesquioxanes are prepared by making use of the above functional groups.
  • the organic-inorganic composite materials can be obtained by radically polymerizing cage type silsesquioxanes having a methacryloyloxy group alone or in the presence of other acryl base monomers.
  • an ⁇ -haloester group is a good polymerization initiator for styrene base monomers and methacrylic acid base monomers in living radical polymerization, but silsesquioxane derivatives having an ⁇ -haloester group have not been known to date.
  • the present inventors have found a novel silicon compound having a living radical polymerization initiating ability for addition-polymerizable monomers of a wide range. Then, it has been found that the above silicon compound is effective for solving the problem described above regarding conventional organic-inorganic composite materials. That is, the present invention comprises the following constitutions.
  • alkyl in which optional -CH 2 - may be substituted with -O- or -CH CH-includes alkyl, alkoxy, alkoxyalkyl, alkenyl, alkyloxyalkenyl and alkenyloxyalkyl.
  • alkyl and alkylene may be either a linear group or a branched group.
  • any of alkyl, alkenylene, alkenyl and alkylene in alkyloxyalkenyl and alkenyloxyalkyl each described above may be either a linear group or a branched group. Both of cycloalkyl and cycloalkenyl may be or may not be a cross-linked ring structure.
  • a (meth)acrylic acid derivative is used as a general term for acrylic acid derivatives and methacrylic acid derivatives.
  • (Meth)acrylate is used as a general term for acrylate and methacrylate.
  • (Meth)acryloyloxy is used as a general term for acryloyloxy and methacryloyloxy.
  • the silicon compound of the present invention is represented by Formula (1).
  • the silicon compound represented by Formula (1) shall be described as the compound (1).
  • Compounds represented by the other formulas shall be shown by the same abbreviation.
  • Respective R 1 's in Formula (1) are groups independently selected from hydrogen, alkyl, substituted or non-substituted aryl and substituted or non-substituted arylalkyl. All R 1 's are preferably the same one group but may be constituted from two or more different groups.
  • R 1 's are constituted from different groups are a case where they are constituted from two or more alkyls, a case where they are constituted from two or more aryls, a case where they are constituted from two or more arylalkyls, a case where they are constituted from hydrogen and at least one aryl, a case where they are constituted from at least one alkyl and at least one aryl, a case where they are constituted from at least one alkyl and at least one arylalkyl and a case where they are constituted from at least one aryl and at least one arylalkyl. They ma be combinations other than the above examples.
  • the compound (1) having two or more different R 1 's can be obtained by using two or more raw materials in producing it. The raw materials shall be described later.
  • R 1 When R 1 is alkyl, it has a carbon atom number of 1 to 40.
  • the preferred carbon atom number is 1 to 30.
  • the more preferred carbon atom number is 1 to 8.
  • alkyl are non-substituted alkyl having a carbon atom number of 1 to 30, alkoxyalkyl having a carbon atom number of 2 to 30, alkyl which has a carbon atom number of 1 to 8 and in which one -CH 2 - is substituted with cycloalkylene, alkenyl having a carbon atom number of 2 to 20, alkenyloxyalkyl having a carbon atom number of 3 to 20, alkyloxyalkenyl having a carbon atom number of 3 to 20, alkyl which has a carbon atom number of 1 to 8 and in which one -CH 2 - is substituted with cycloalkenylene and groups in which optional hydrogens in the above groups are substituted with fluorine.
  • the preferred carbon atom number of cycloalkylene and cycloalkenylene is 3 to 8.
  • non-substituted alkyl having a carbon atom number of 1 to 30 are methyl, ethyl, propyl, 1-methylethyl, butyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, hexyl, 1,1,2-trimethylpropyl, heptyl, octyl, 2,4,4-trimethylpentyl, nonyl, decyl, undecyl, dodecyl, tetradecyl, hexadecyl, octadecyl, eicosyl, docosyl and triacontyl.
  • fluorinated alkyl having a carbon atom number of 1 to 30 are 2-fluoroethyl, 2,2-difluoroethyl, 3,3,3-trifluoropropyl, hexafluoropropyl, nonafluoro-1,1,2,2-tetrahydrohexyl, tridecafluoro-1,1,2,2-tetrahydrooctyl, heptadecafluoro-1,1,2,2-tetrahydrodecyl, perfluoro-1H,1H,2H,2H-dodecyl and perfluoro-1H,1H,2H,2H-tetradecyl.
  • alkoxyalkyl and fluorinated alkoxyalkyl each having a carbon atom number of 2 to 29 are 3-methoxypropyl, methoxyethoxyundecyl, 2-fluoroethyloxypropyl, 2,2,2-trifluoroethyloxypropyl, 2-fluoro-1-fluoromethylethyloxypropyl, 2,2,3,3-tetrafluoropropyloxypropyl, 2,2,3,3,3-pentafluoropropyloxypropyl, hexafluoroisopropyloxypropyl, heptafluoroisopropyloxypropyl, hexafluorobutyloxypropyl, heptafluorobutyloxypropyl, octafluoroisobutyloxypropyl, octafluoroisobutyloxypropyl, octafluoropentyloxypropyl, 2-fluoroe
  • alkyl which has a carbon atom number of 1 to 8 and in which one -CH 2 - is substituted with cycloalkylene are cyclohexylmethyl, adamantaneethyl, cyclopentyl, cyclohexyl, 2-bicycloheptyl and cyclooctyl.
  • Cyclohexyl is an example in which -CH 2 - in methyl is substituted with cyclohexylene.
  • Cyclohexylmethyl is an example in which -CH 2 - of a ⁇ position in ethyl is substituted with cyclohexylene.
  • alkenyl having a carbon atom number of 2 to 20 are vinyl, 2-propenyl, 3-butenyl, 5-hexenyl, 7-octenyl, 10-undecenyl and 21-docosenyl.
  • alkenyloxyalkyl having a carbon atom number of 3 to 20 is allyloxyundecyl.
  • alkyl which has a carbon atom number of 1 to 8 and in which one -CH 2 - is substituted with cycloalkenylene are 2-(3-cyclohexenyl)ethyl, 5-(bicycloheptenyl)ethyl, 2-cyclopentenyl, 3-cyclohexenyl, 5-norbornene-2-yl and 4-cyclooctenyl.
  • R 1 in Formula (1) is substituted or non-substituted aryl
  • phenyl in which optional hydrogens may be substituted with halogen or alkyl having a carbon atom number of 1 to 10 and non-substituted naphthyl.
  • halogen are fluorine, chlorine and bromine.
  • the more specific examples of the preferred aryl are phenyl, non-substituted naphthyl, alkylphenyl, alkyloxyphenyl, alkenylphenyl, phenyl having as a substituent, alkyl in which at least one -CH 2 - is substituted with phenylene and groups in which optional hydrogens are substituted with halogen in the above groups.
  • phenyl means non-substituted phenyl unless otherwise described.
  • halogenated phenyl examples are pentafluorophenyl, 4-chlorophenyl and 4-bromophenyl.
  • alkylphenyl are 4-methylphenyl, 4-ethylphenyl, 4-propylphenyl, 4-butylphenyl, 4-pentylphenyl, 4-heptylphenyl, 4-octylphenyl, 4-nonylphenyl, 4-decylphenyl, 2,4-dimethylphenyl, 2,4,6-trimethylphenyl, 2,4,6-triethylphenyl, 4-(1-methylethyl)phenyl, 4-(1,1-dimethylethyl)phenyl, 4-(2-ethylhexyl)phenyl and 2,4,6-tris(1-methylethyl)phenyl.
  • alkyloxyphenyl are (4-methoxy)phenyl, (4-ethoxy)phenyl, (4-propoxy)phenyl, (4-butoxy)phenyl, (4-pentyloxy)phenyl, (4-heptyloxy)phenyl, (4-decyloxy)phenyl, (4-octadecyloxy)phenyl, 4-(1-methylethoxy)phenyl, 4-(2-methylpropoxy)phenyl and 4-(1,1-dimethylethoxy)phenyl.
  • alkenylphenyl are 4-vinylphenyl, 4-(1-methylvinyl)phenyl and 4-(3-butenyl)phenyl.
  • phenyl having as a substituent, alkyl in which at least one -CH 2 - is substituted with phenylene are 4-(2-phenylvinyl)phenyl, 4-phenoxyphenyl, 3-(phenylmethyl)phenyl, biphenyl and terphenyl.
  • phenyl in which a part of hydrogens is substituted with halogen and in which the other hydrogens are substituted with alkyl, alkyloxy or alkenyl are 3-chloro-4-methylphenyl, 2,5-dichloro-4-methylphenyl, 3,5-dichloro-4-methylphenyl, 2,3,5-trichloro-4-methylphenyl, 2,3,6-trichloro-4-methylphenyl, 3-bromo-4-methylphenyl, 2,5-dibromo-4-methylphenyl, 3,5-dibromo-4-methylphenyl, 2,3-difluoro-4-methylphenyl, 3-chloro-4-methoxyphenyl, 3-bromo-4-methoxyphenyl, 3,5-dibromo-4-methoxyphenyl, 2,3-difluoro-4-methoxyphenyl, 2,3-difluoro-4-ethoxyphenyl, 2,3-difluoro-4
  • R 1 in Formula (1) is substituted or non-substituted arylalkyl
  • the preferred example of the arylalkyl is phenylalkyl. In this case, optional hydrogens of the phenyl may be substituted with halogen or alkyl having a carbon atom number of 1 to 12.
  • the preferred carbon number of the alkylene is 1 to 12, and the more preferred carbon number is 1 to 8.
  • non-substituted phenylalkyl are phenylmethyl, 2-phenylethyl, 3-phenylpropyl, 4-phenylbutyl, 5-phenylpentyl, 6-phenylhexyl, 11-phenylundecyl, 1-phenylethyl, 2-phenylpropyl, 1-methyl-2-phenylethyl, 1-phenylpropyl, 3-phenylbutyl, 1-methyl-3-phenylpropyl, 2-phenylbutyl, 2-methyl-2-phenylpropyl and 1-phenylhexyl.
  • phenylalkyl in which at least one hydrogen on phenyl is substituted with fluorine are 4-fluorophenylmethyl, 2,3,4,5,6-pentafluorophenylmethyl, 2-(2,3,4,5,6-pentafluorophenyl) ethyl, 3-(2,3,4,5,6-pentafluorophenyl)propyl, 2-(2-fluorophenyl)propyl and 2-(4-fluorophenyl)propyl.
  • phenylalkyl in which at least one hydrogen on phenyl is substituted with chlorine are 4-chlorophenylmethyl, 2-chlorophenylmethyl, 2,6-dichlorophenylmethyl, 2,4-dichlorophenylmethyl, 2,3,6-trichlorophenylmethyl, 2,4,6-trichlorophenylmethyl, 2,4,5-trichlorophenylmethyl, 2,3,4,6-tetrachlorophenylmethyl, 2,3,4,5,6-pentachlorophenylmethyl, 2-(2-chlorophenyl)ethyl, 2-(4-chlorophenyl)ethyl, 2-(2,4,5-chlorophenyl)ethyl, 2-(2,3,6-chlorophenyl) ethyl, 3-(3-chlorophenyl)propyl, 3-(4-chlorophenyl)propyl, 3-(2,4,5-trichlorophenyl)propyl, 3-(2,4,5
  • phenylalkyl in which at least one hydrogen on phenyl is substituted with bromine are 2-bromophenylmethyl, 4-bromophenylmethyl, 2,4-dibromophenylmethyl, 2,4,6-tribromophenylmethyl, 2, 3, 4, 5-tetrabromophenylmethyl, 2, 3, 4, 5, 6-pentabromophenylmethyl, 2-(4-bromophenyl)ethyl, 3-(4-bromophenyl)propyl, 3-(3-bromophenyl)propyl, 4-(4-bromophenyl)butyl, 1-(4-bromophenyl)ethyl, 2-(2-bromophenyl)propyl and 2-(4-bromophenyl)propyl.
  • phenylalkyl in which at least one hydrogen on phenyl is substituted with alkyl having a carbon atom number of 1 to 12 are 2-methylphenylmethyl, 3-methylphenylmethyl, 4-methylphenylmethyl, 4-dodecylphenylmethyl, 3,5-dimethylphenylmethyl, 2-(4-methylphenyl)ethyl, 2-(3-methylphenyl) ethyl, 2-(2,5-dimethylphenyl)ethyl, 2-(4-ethylphenyl) ethyl, 2-(3-ethylphenyl)ethyl, 1-(4-methylphenyl) ethyl, 1-(3-methylphenyl)ethyl, 1-(2-methylphenyl) ethyl, 2-(4-methylphenyl)propyl, 2-(2-methylphenyl)propyl, 2-(4-ethylphenyl)propyl, 2-(2-ethylpheny
  • phenylalkyl having as a substituent for phenyl, alkyl which has a carbon atom number of 1 to 12 and in which at least one hydrogen is substituted with fluorine are 3-(trifluoromethyl)phenylmethyl, 2-(4-trifluoromethylphenyl) ethyl, 2-(4-nonafluorobutylphenyl) ethyl, 2-(4-tridecafluorohexylphenyl) ethyl, 2-(4-heptadecafluorooctylphenyl) ethyl, 1-(3-trifluoromethylphenyl) ethyl, 1-(4-trifluoromethylphenyl) ethyl, 1-(4-nonafluorobutylphenyl) ethyl, 1-(4-tridecafluorohexylphenyl) ethyl, 1-(4-heptadecafluoroo
  • phenylalkyl having as a substituent for phenyl, alkyl which has a carbon atom number of 1 to 12 and in which one -CH 2 - is substituted with -O- are 4-methoxyphenylmethyl, 3-methoxyphenylmethyl, 4-ethoxyphenylmethyl, 2-(4-methoxyphenyl)ethyl, 3-(4-methoxyphenyl)propyl, 3-(2-methoxyphenyl)propyl, 3-(3,4-dimethoxyphenyl)propyl, 11-(4-methoxyphenyl)undecyl, 1-(4-methoxyphenyl)ethyl, 2-(3-methoxymethyl)phenyl)ethyl and 3-(2-nonadecafluorodecenyloxyphenyl)propyl.
  • phenylalkyl having as a substituent for phenyl alkyl having a carbon atom number of 1 to 12 in which one -CH 2 - is substituted with cycloalkylene and in which another -CH 2 - may be substituted with -O- are cyclopentylphenylmethyl, cyclopentyloxyphenylmethyl, cyclohexylphenylmethyl, cyclohexylphenylethyl, cyclohexylphenylpropyl and cyclohexyloxyphenylmethyl.
  • phenylalkyl having as a substituent for phenyl alkyl having a carbon atom number of 1 to 12 in which one -CH 2 - is substituted with phenylene and in which another -CH 2 - may be substituted with -O- are 2-(4-phenoxyphenyl)ethyl, 2-(4-phenoxyphenyl)propyl, 2-(2-phenoxyphenyl)propyl, 4-biphenylylmethyl, 3-biphenylylethyl, 4-biphenylylethyl, 4-biphenylylpropyl, 2-(2-biphenylyl)propyl and 2-(4-biphenylyl)propyl.
  • phenylalkyl in which at least two hydrogens on phenyl are substituted with different groups are 3-(2,5-dimethoxy-(3,4,6-trimethylphenyl)propyl, 3-chloro-2-methylphenylmethyl, 4-chloro-2-methylphenylmethyl, 5-chloro-2-methylphenylmethyl, 6-chloro-2-methylphenylmethyl, 2-chloro-4-methylphenylmethyl, 3-chloro-4-methylphenylmethyl, 2,3-dichloro-4-methylphenylmethyl, 2,5-dichloro-4-methylphenylmethyl, 3,5-dichloro-4-methylphenylmethyl, 2,3,5-trichloro-4-methylphenylmethyl, 2,3,5,6-tetrachloro-4-methylphenylmethyl, (2,3,4,6-tetrachloro-5-methylphenyl)methyl, 2,3,4,5-tetrachloro-6-methylphenylmethyl, 4-chloro-3,5-dimethyl, 5-
  • phenyl in the phenylalkyl are non-substituted phenyl and phenyl having at least one of fluorine, alkyl having a carbon atom number of 1 to 4, vinyl and methoxy as a substituent.
  • phenylalkenyl in which hydrogen on phenyl is substituted with fluorine or methyl are 4-fluorophenylvinyl, 2,3-difluorophenylvinyl, 2,3,4,5,6-pentafluorophenylvinyl and 4-methylphenylvinyl.
  • R 1 are ethyl, 2-fluoroethyl, 2,2-difluoroethyl, propyl, 3,3,3-trifluoropropyl, hexafluoropropyl, 2-methylpropyl, 2,4,4-trimethylpentyl, tridecafluoro-1,1,2,2-tetrahydrooctyl, cyclopentyl, cyclohexyl, phenyl, phenyl halide, methylphenyl, dimethylphenyl, methoxyphenyl, non-substituted naphthyl, phenylmethyl, phenylethyl, phenylbutyl, 2-phenylpropyl, 1-methyl-2-phenylethyl, pentafluorophenylpropyl, 4-ethylphenylethyl, 3-ethylphenylethyl, 4-(1,1-dimethylethyl)phenyle
  • R 1 is ethyl, 3,3,3-trifluoropropyl, 2-methylpropyl, 2,4,4-trimethylpentyl, tridecafluoro-1,1,2,2-tetrahydrooctyl, cyclopentyl, cyclohexyl and phenyl.
  • the most preferred examples of R 1 are phenyl and 3,3,3-trifluoropropyl.
  • R 2 and R 3 in Formula (1) are independently alkyl having a carbon atom number of 1 to 8, phenyl or cyclohexyl.
  • the examples of the alkyl are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, 2-methylbutyl, hexyl, 2-methylpentyl, heptyl, 2-methylhexyl, octyl, 2-methylheptyl and 2-ethylhexyl.
  • the most preferred alkyl is methyl.
  • a in Formula (1) is a group having a living radical polymerization initiating ability for a monomer as defined in claim 1.
  • the preferred examples of the silicon compound of the present invention having haloalkylphenyl is a compound represented by Formula (1-1):
  • R 1 , R 2 and R 3 have the same meanings as those of these codes in Formula (1), and
  • a 1 is a group represented by Formula (2-1):
  • X in Formula (2-1) is halogen such as Cl, Br and I. Cl and Br are more preferred as an initiating group in atom transfer radical polymerization.
  • Z 1 is alkylene having a carbon atom number of 1 to 3. The examples of Z 1 are methylene, 1,2-ethylene, 1,1-ethylene, 1,3-trimethylene, ethylmethylene, 1-methyl-1,2-ethylene and 2-methyl-1,2-ethylene. The preferred example of Z 1 is methylene.
  • Z 2 is alkylene having a carbon atom number of 2 to 10. In this alkylene, one -CH 2 - may be substituted with -O-.
  • a bonding position of Z 1 on the benzene ring is a meta position or a para position to a bonding position of Z 2 .
  • R 6 is alkyl having 1 to 3 carbon atoms.
  • the examples of R 6 are methyl, ethyl, propyl and isopropyl.
  • Preferred R 6 is methyl.
  • the term a showing the number of R 6 is 0, 1 or 2, and a is preferably 0.
  • a bonding position of R 6 on the benzene ring is any position excluding the bonding positions of Z 1 and Z 2 .
  • a preferred method for introducing a functional group into a silsesquioxane derivative is a method in which an Si-H functional silsesquioxane derivative is bonded to a compound having an unsaturated bond at a terminal by hydrosilylation reaction.
  • Z 2 in Formula (2) is a group represented by Z 3 -C 2 H 4 -.
  • Formula (2-1) is Formula (2-1-1):
  • Z 3 in Formula (2-1-1) is a single bond or alkylene having a carbon atom number of 1 to 8.
  • one -CH 2 - may be substituted with -O-.
  • the preferred examples of Z 2 in Formula (2-1) are -C 2 H 4 -, -C 3 H 6 -, -OC 2 H 4 -, -OC 3 H 6 -, -CH 2 OC 2 H 4 -, - CH 2 OC 3 H 6 -, -C 2 H 4 OC 2 H 4 - and -C 2 H 4 OC 3 H 6 -.
  • the selected range of Z 2 shall not be restricted to them.
  • codes other than Z 3 have the same meanings as those of the codes in Formula (2-1), and the bonding positions of Z 1 and R 6 on a benzene ring are the same as these bonding positions in Formula (2-1).
  • a photo initiator-transfer agent-terminator polymerization method is known as a photopolymerization method using a dithiocarbamate group as a polymerization initiating group.
  • a dithiocarbamate group is radically dissociated by virtue of light and that it has an excellent polymerization initiating ability and sensitizing ability.
  • this photopolymerization is like living polymerization. Accordingly, the silicon compound of the present invention having a dithiocarbamate group can continue to maintain a living polymerizability as long as it is irradiated with light, and it has a photopolymerization initiating ability for all radically polymerizable monomers.
  • a dithiocarbamate group has a radiation resistance, a pharmacological activity such as a weeding effect, a complex-forming ability and a hydrophilicity in addition to the characteristics as a photopolymerization initiating group, and therefore it is possible to efficiently use these characteristics.
  • the silicon compound of the present invention having a dithiocarbamate group is a compound represented by Formula (1-2):
  • R 1 , R 2 and R 3 have the same meanings as those of these codes in Formula (1), and A 2 is a group represented by Formula (2-2) : Z 1 , Z 2 , R 6 and a in Formula (2-2) are defined in the same manner as in these codes in Formula (2-1), and the bonding positions of Z 1 and R 6 are defined as well in the same manner as in Formula (2-1).
  • R 4 and R 5 are independently hydrogen, alkyl having a carbon atom number of 1 to 12, cycloalkyl having a carbon atom number of 5 to 10 or aryl having a carbon atom number of 6 to 10.
  • R 4 or R 5 other than hydrogen are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, 2-methylbutyl, hexyl, 2-methylpentyl, heptyl, 2-methylhexyl, octyl, 2-methylheptyl, 2-ethylhexyl, decyl, phenyl, cyclopentyl and cyclohexyl. Both of R 4 and R 5 may be one of these groups or one of R 4 and R 5 may be one of these groups, and the other may be hydrogen.
  • R 4 and R 5 may be combined with each other to form a ring together with N.
  • the examples of a dithiocarbamate group are N-cyclotrimethylenedithiocarbamate, N-cyclotetramethylenedithiocarbamate, N-cyclopentamethylenedithiocarbamate, N-cyclohexamethylenedithiocarbamate, N-cycloheptamethylenedithiocarbamate and N-cyclooctamethylenedithiocarbamate.
  • the preferred dithiocarbamate groups are N,N-dimethyldithiocarbamate, N,N-diethyldithiocarbamate, N-methyldithiocarbamate and N-ethyldithiocarbamate. N,N-diethyldithiocarbamate is most preferred.
  • Z 2 in Formula (2-2) is preferably a group represented by Z 3 -C 2 H 4 as is the case with Formula (2-1). That is, the preferred example of Formula (2-2) is Formula (2-2-1):
  • Z 3 is defined in the same manner as in Z 3 in Formula (2-1-1), and the codes other than Z 3 have the same meanings as those of these codes in Formula (2-2).
  • the bonding positions of Z 1 and R 6 on a benzene ring are the same as these bond positions in Formula (2-2).
  • the group having an ⁇ -haloester group means a group having ⁇ -halocarbonyloxy at an end.
  • An atom transfer radical polymerization method is known as a polymerization method using the above ⁇ -halocarbonyloxy as a group for initiating radical polymerization.
  • a polymerization catalyst used in the above method is a metal complex comprising an 8th group, 9th group, 10th group or 11th group element in the periodic table as a central metal atom.
  • this atom transfer radical polymerization it is known that a group having ⁇ -halocarbonyloxy has an excellent polymerization initiating ability. It is well known as well that this polymerization is like living polymerization.
  • the silicon compound of the present invention having an ⁇ -haloester group has an excellent polymerization initiating ability in the presence of a transition metal complex and can continue to maintain a living polymerizability. It can initiate polymerization for all radically polymerizable monomers. In particular, it can reveal an excellent living polymerizability to (meth)acrylic acid derivatives or styrene base derivatives.
  • the silicon compound of the present invention having an ⁇ -haloester group has an ⁇ -halocarbonyloxy group at an end, and therefore it can be derived into a lot of derivatives by applying various organic reactions.
  • it can be derived into a silsesquioxane derivative having an organic metal functional group by reacting the above silicon compound with lithium, magnesium or zinc.
  • the silicon compound of the present invention having an ⁇ -haloester group is reacted with zinc to be derived into a silsesquioxane derivative having an organic zinc functional group, and then aldehyde and ketone are added thereto, whereby it can be converted into alcohols.
  • the silsesquioxane derivative having an organic zinc functional group is useful as an intermediate raw material used for a so-called Reformatsky reaction.
  • An ⁇ -halocarbonyloxy group has a strong electrophilicity, and therefore it can be converted into an amino group and a mercapto group using various nucleophilic reagents. Further, an ⁇ -halocarbonyloxy group is treated with enamine to be converted into an imine salt, and this imine salt is hydrolyzed, whereby it can be converted into ketone. That is, the silicon compound of the present invention having an ⁇ -halocarbonyloxy group is also useful as an intermediate raw material used for a Stork Enamine Reaction. Silsesquioxane derivatives having various organic functional groups and polymerizable functional groups can be prepared as well by reacting the above silicon compound with aliphatic and aromatic Grignard reagents. Accordingly, the silicon compound of the present invention having an ⁇ -halocarbonyloxy group can be used not only as a polymerization initiator but also as an intermediate useful for various organic syntheses.
  • the silicon compound of the present invention having an ⁇ -haloester group is a compound represented by Formula (1-3):
  • R 1 , R 2 and R 3 have the same meanings as those of these codes in Formula (1), and A 3 is a group represented by Formula (2-3):
  • X 1 in the above formula is halogen, and the examples thereof are chlorine, bromine and iodine. Chlorine and bromine are most preferred as an initiating group for atom transfer radical polymerization.
  • R 7 is hydrogen, alkyl having a carbon atom number of 1 to 20, aryl having a carbon atom number of 6 to 20 or arylalkyl having a carbon atom number of 7 to 20.
  • R 7 are hydrogen, alkyl having a carbon atom number of 1 to 20, phenyl in which optional hydrogens may be substituted with alkyl having a carbon atom number of 1 to 14 and phenylalkyl constituted from a phenyl group in which optional hydrogens may be substituted with alkyl having a carbon atom number of 1 to 14 and an alkylene group having a carbon atom number of 1 to 14, wherein the total number of carbon atoms in the above groups is 7 to 20.
  • the more preferred examples of R 7 are hydrogen and alkyl having a carbon atom number of 1 to 20.
  • the further preferred examples of R 7 are hydrogen, methyl and ethyl, and the most preferred example is methyl.
  • R 8 is alkyl having a carbon atom number of 1 to 20, aryl having a carbon atom number of 6 to 20 or arylalkyl having a carbon atom number of 7 to 20.
  • the preferred examples of R 8 are alkyl having a carbon atom number of 1 to 20, phenyl in which optional hydrogens may be substituted with alkyl having a carbon atom number of 1 to 14 and phenylalkyl constituted from a phenyl group in which optional hydrogens may be substituted with alkyl having a carbon atom number of 1 to 14 and an alkylene group having a carbon atom number of 1 to 14, wherein the total number of carbon atoms in the above groups is 7 to 20.
  • R 8 is alkyl having a carbon atom number of 1 to 20.
  • the further preferred examples of R 8 are methyl and ethyl, and the most preferred example is methyl.
  • Z 4 is alkylene having a carbon atom number of 2 to 20 or alkenylene having a carbon atom number of 3 to 8. Optional -CH 2 - in these alkylene and alkenylene may be substituted with -O-.
  • the preferred example of Z 4 is alkylene which has a carbon atom number of 2 to 10 and in which optional -CH 2 - may be substituted with - O-.
  • alkylene examples include -C 2 H 4 -, -C 3 H 6 -, -C 4 H 8 -, -C 5 H 10 -, -C 2 H 4 -O-C 3 H 6 - and -C 3 H 6 -O-C 3 H 6 -.
  • Z 4 are -C 3 H 6 -, -C 4 H 8 -, - C 5 H 10 - and -C 2 H 4 -O-C 3 H 6 -.
  • R 1 Z 3 Formula (1-2-1) 1 Et - (Et-) 7 (Q-C1-Ph-C2-DM-) 3 Si 7 O 12 2 iBu - (iBu-) 7 (Q-C1-Ph-C2-DM-) 3 Si 7 O 12 3 iOc - (iOc-) 7 (Q-C1-Ph-C2-DM-) 3 Si 7 O 12 4 CP - (CP-) 7 (Q-C1-Ph-C2-DM-) 3 Si 7 O 12 5 B - (B-) 7 (Q-C1-Ph-C2-DM-) 3 Si 7 O 12 6 Et C1 (Et-) 7 (Q-C1-Ph-C3-DM-) 3 Si 7 O 12 7 iBu C1 (iBu-) 7 (Q-C1-Ph-C3-DM-) 3 Si 7 O 12 8 iOc C1 (iOc-) 7 (Q-C1-Ph-C3-DM-) 3 Si 7 O
  • Table 2 to Table 4 are the preferred examples of the silicon compounds of the present invention. However, these examples shall not restrict the scope of the silicon compound of the present invention. Preferred as well are, for example, the compounds in which R 1 described above is a fluorine-containing group such as 3,3,3-trifluoropropyl and tridecafluoro-1,1,2,2-tetrahydrooctyl. Among the examples described above, the compound in which R 1 is phenyl is most preferred.
  • R 11 Z 4 R 7 R 8 X 1 Formula (1-3-1) 85 Et C3 H Me BR (Et-) 7 (BR-CHMe-OCO-C3-DM-) 3 Si 7 O 12 86 IBu C3 H Me BR (IBu-) 7 (BRCL-CHMe-OCO-C3-DM-) 3 Si 7 O 12 87 IOc C3 H Me BR (IOc-) 7 (BR-CHMe-OCO-C3-DM-) 3 Si 7 O 12 88 CPe C3 H Me BR (CPe-) 7 (BR-CHMe-OCO-C3-DM-) 3 Si 7 O 12 89 CHe C3 H Me BR (CHe-) 7 (BR-CHMe-OCo-C3-DM-) 3 Si 7 O 12 90 Ph C3 H Me BR (Ph-) 7 (BR-CHMe-OCO-C3-DM-) 3 Si 7 O 12 91 TFPr C3 H Me BR (TFPr-)
  • R 11 Z 4 R 7 R 8 X 1 Formula (1-3-1) 106 Et C20C3 H Me BR (Et-) 7 (BR-CHMe-OCO-C2OC3-DM-) 3 Si 7 O 12 107 IBu C20C3 H Me BR (IBu-) 7 (BR-CHMe-OCO-C2OC3-DM-) 3 Si 7 O 12 108 IOc C20C3 H Me BR (IOc-) 7 (BR-CHMe-OCO-C2OC3-DM-) 3 Si 7 O 12 109 CPe C20C3 H Me BR (CPe-) 7 (BR-CHMe-OCO-C2OC3-DM-) 3 Si 7 O 12 110 CHe C20C3 H Me BR (CHe-) 7 (BR-CHMe-OCO-C2OC3-DM-) 3 Si 7 O 12 111 Ph C20C3 H Me BR (Ph-) 7 (BR-CHMe-OCO-C2OC3-DM
  • R 11 Z 4 R 7 R 8 X 1 Formula (1-3-1) 148 Et C4 Et Et Et BR (Et-) 7 (BR-CEt 2 -OCO-C4-DM-) 3 Si 7 O 12 149 IBu C4 Et Et Et BR (IBu-) 7 (BR-R-CEt 2 -OCO-C4-DM-) 3 Si 7 O 12 150 IOc C4 Et Et Et BR (IOc-) 7 (CL-CEt 2 -OCO-C4-DM-) 3 Si 7 O 12 151 CPe C4 Et Et Et BR (CPe-) 7 (BR-CEt 2 -OCO-C4-DM-) 3 Si 7 O 12 152 CHe C4 Et Et BR (CHe-) 7 (BR-CEt 2 -OCO-C4-DM-) 3 Si 7 O 12 153 Ph C4 Et Et Et BR (Ph-) 7 (CL-CEt 2 -OCO-C4-DM-) 3 Si 7 O 12 154 TFP
  • the compound (1-3) shall not be restricted by the examples described in Table 6 to Table 13.
  • the compounds in which R 11 is tridecafluoro-1,1,2,2-tetrahydrooctyl are preferred as well.
  • R 1 in Formula (3-1) has the same meaning as that of R 1 in Formula (1).
  • Such compound can be synthesized by hydrolyzing a trichlorosilane compound and further maturing it.
  • Frank J. Feher et al. obtain a compound in which R 1 is cyclopentyl in Formula (3-1) by reacting cyclopentyltrichlorosilane in a water-acetone mixed solvent under a room temperature or refluxing temperature and further maturing it for 2 weeks (refer to Organometallics, 10, 2526-(1991 ) or Chemical European Journal, 3, No. 6, 900-(1997 )).
  • An Si-H functional silsesquioxane derivative can be produced by reacting the compound (3-1) with Si-H functional diorganochlorosilane by making use of the reactivity of silanol (Si-OH).
  • the Si-H functional diorganochlorosilane is represented by Formula (4).
  • the preferred example of the compound (4) is dimethylochlorosilane.
  • a compound (5) is obtained by reacting the compound (3-1) with the compound (4): R 1 , R 2 and R 3 in Formula (4) and Formula (5) have the same meanings as those of these codes in Formula (1).
  • a method making use of nucleophilic displacement can be adopted in order to synthesize the compound (5) from the compound (3-1) and the compound (4). This method is described in, for example, J. Am. Chem. Soc., 112, 1931-(1990 ).
  • Conditions for selecting a solvent used for this nucleophilic displacement reaction are that it is not reacted with the compound (3-1) and the compound (4) and that it is sufficiently dehydrated.
  • the examples of the solvent are tetrahydrofuran, toluene and dimethylformamide. The most preferred solvent is well-dehydrated tetrahydrofuran.
  • a preferred use amount of the compound (4) is 3 to 15 times in terms of an equivalent ratio based on the compound (3-1) when it is reacted with all of the Si-OH (silanol) groups of the compound (3-1).
  • hydrogen chloride is generated by reacting hydrogen of silanol with chlorine of chlorosilane, and therefore this hydrogen chloride has to be removed from the reaction system.
  • a method for removing hydrogen chloride shall not be restricted, and triethylamine is most preferably used.
  • a preferred use amount of triethylamine is 3 to 15 times in terms of an equivalent ratio based on the compound (3-1).
  • a preferred reaction temperature is a temperature at which side reactions do not take place at the same time and at which a quantitative nucleophilic displacement reaction can be allowed to proceed.
  • the raw materials In charging the raw materials, it is most preferably carried out under a low temperature condition, for example, in an ice bath, and then it may be carried out at a room temperature.
  • the reaction time shall not specifically be restricted as long as it is time enough for allowing a quantitative nucleophilic displacement reaction to proceed.
  • the intended silicon compound can be obtained in 10 to 15 hours.
  • Another preferred raw material used in the present invention is a compound (3-2):
  • R 1 is the same as R 1 in Formula (1), and M is a monovalent alkali metal atom.
  • the preferred examples of the alkali metal are sodium and potassium. The most preferred example is sodium.
  • the compound (3-2) is obtained by preparing a silsesquioxane oligomer by hydrolyzing a silane compound having a trifunctional hydrolyzable group and reacting this with a monovalent alkali metal hydroxide in an organic solvent. It is obtained as well by hydrolyzing and condensing the silane compound having a trifunctional hydrolyzable group in the presence of an organic solvent, water and an alkali metal hydroxide.
  • the compound (3-2) can be produced for short time at a high yield by either method (refer to, for example, WO02/09839 pamphlet).
  • the compound (3-2) in which seven R 1 's in Formula (3-2) are constituted from at least two different groups can be obtained by using at least two silane compounds having a trifunctional hydrolyzable group.
  • the compound (3-2) shows a higher reactivity than that of a silanol group of the compound (3-1). Accordingly, use of the above compound for a raw material makes it possible to readily synthesize the derivative thereof at a high yield. Further, since it has -ONa as a reactive group, hydrogen chloride is not generated if chlorosilanes are used for synthetic reaction of the derivative. Accordingly, the reaction operation can be facilitated, and it can completely be reacted. That is, the compound (5) can readily be obtained from the compound (3-2) and the compound (4).
  • Reaction in which the compound (3-2) is reacted with the compound (4) to prepare the compound (5) can be carried out as well in the same manner as in a case where the compound (3-1) is used.
  • a preferred use amount of the compound (4) is 3 to 15 times in terms of an equivalent ratio based on the compound (3-2).
  • triethylamine does not have to be used for the purpose of removing hydrogen chloride. However, triethylamine may be used as a catalytic role for allowing the reaction to proceed quickly.
  • a use amount thereof is preferably 3 to 15 times in terms of an equivalent ratio based on the compound (3-2).
  • a preferred solvent used in the reaction is the same as in the reaction using the compound (3-1).
  • the reaction temperature shall not specifically be restricted as long as side reactions do not take place at the same time and a quantitative nucleophilic reaction goes on.
  • the reaction may be carried out under a low temperature condition, for example, in an ice bath.
  • the subsequent reaction may be carried out under a room temperature condition or a heating condition.
  • the reaction temperature falls in a range of 0 to 150°C, more preferably in a range of 0 to 50°C.
  • the reaction time shall not specifically be restricted as long as it is time enough for allowing a quantitative nucleophilic reaction to go on.
  • the intended silicon compound can be obtained in 1 to 15 hours.
  • the preferred synthetic process for the silicon compound of the present invention is a process carried out by a hydrosilylation reaction using the compound (5) described above.
  • a compound having haloalkylphenyl can be synthesized by the hydrosilylation reaction alone. That is, it is a reaction of the compound (5) with a compound (6-1) in the presence of a transition metal catalyst:
  • Codes in Formula (6-1) are codes defined in the same manners as in the codes in Formula (2-1-1) described above, and the bonding positions of Z 1 and R 6 on a benzene ring are the same as the bond positions of these codes in Formula (2-1-1).
  • the examples of the transition metal catalyst used are platinum, rhodium, iridium, ruthenium, palladium, molybdenum, iron, cobalt, nickel and manganese. Among them, a platinum catalyst is more preferred.
  • the above catalysts can be used in the form of a homogeneous catalyst prepared by dissolving them in a solvent or a solid catalyst prepared by carrying them on carbon or silica. They may be used in a form in which phosphine, amine and potassium acetate are allowed to coexist.
  • a preferred use amount of the transition metal catalyst is 1 ⁇ 10 -6 to 1 ⁇ 10 -2 mole per mole of an Si-H group in the compound (5) in terms of a transition metal atom.
  • a use amount of the compound (6-1) is preferably 1 to 5 times in terms of an equivalent ratio based on an Si-H group in the compound (5).
  • the hydrosilylation reaction is a reaction which proceeds almost quantitatively, and therefore it is not meaningful so much to raise the above equivalent ratio.
  • an effect of shortening the reaction time can be expected, and therefore an adverse effect of using a large amount of the compound (6-1) is only the cost efficiency.
  • R 1 , R 2 and R 3 in Formula (1-1) have the same meanings as those of these codes in Formula (1), and
  • a 1 is a group represented by Formula (2-1-1):
  • a preferred reaction temperature in the hydrosilylation reaction is not higher than a boiling point of the solvent used.
  • the compound (6-1) is a compound having a polymerizable unsaturated bond.
  • the preferred reaction temperature for preventing this compound from being spontaneously polymerized during the hydrosilylation reaction is 20 to 80°C.
  • a polymerization inhibitor such as phenol derivatives, phenothiazine derivatives or N-nitrosophenylamine salt derivatives may be used for the purpose of inhibiting the above polymerization reaction.
  • the most preferred polymerization inhibitor is 4-tert-butylpyrocatechol.
  • a preferred use amount thereof is 1 to 100,000 ppm based the whole weight of the reaction liquid. The more preferred range of the use amount thereof is 100 to 20,000 ppm.
  • organic solvent used for the above hydrosilylation reaction shall not specifically be restricted as long as it readily dissolves the raw materials without reacting with them.
  • the preferred examples of the organic solvent are aliphatic hydrocarbons (examples: hexane and heptane), aromatic hydrocarbons (examples: toluene and xylene) and cyclic ethers (examples: tetrahydrofuran and dioxane).
  • aliphatic hydrocarbons examples: hexane and heptane
  • aromatic hydrocarbons examples: toluene and xylene
  • cyclic ethers examples: tetrahydrofuran and dioxane.
  • Alcohols such as 2-propanol may be added for the purpose of controlling the activity of the catalyst.
  • the unreacted raw material compounds and the solvent shall be referred to as impurities in all.
  • a distillation method is applied in order to remove the impurities, the liquid is maintained under a high temperature condition for long time, and therefore spontaneous polymerization of the unreacted compounds having a double bond is likely to be induced.
  • a refining method carried out by reprecipitation operation is preferably used in order to efficiently remove the impurities without damaging a purity of the compound (1-1).
  • This refining method is carried out in the following manner. First, the reaction liquid is dissolved in a solvent dissolving both of the compound (1-1) and the impurities. In this case, a preferred concentration of the compound (1-1) is, roughly speaking, 1 to 15 % by weight.
  • a so-called precipitant is added to the above solution to precipitate only the compound (1-1).
  • a preferred use amount of the precipitant is 20 to 50 times based on the weight of the solvent used for dissolving both of the compound (1-1) and the impurities. This use range is a rough standard, and as is the case with the foregoing concentration rage of the compound (1-1), it does not necessarily have to fall in the above range.
  • the preferred solvent used for dissolving the compound (1-1) is a solvent having a large dissolving power and a relatively low boiling point.
  • the preferred precipitant is a solvent which is compatible with the solvent for dissolving the compound (1-1) and does not dissolve the compound (1-- 1) at all and which dissolves only the impurities and has a relatively low boiling point.
  • the example of the preferred precipitant is lower alcohols.
  • the particularly preferred precipitant is methanol.
  • a repeating frequency of the reprecipitation operation is advisably raised in order to further elevate the refining degree.
  • a column chromatography is preferred for further refining the compound (1-1) after removing the polymerizable unreacted products.
  • a preferred adsorbent used in this case is silica gel and the like.
  • a preferred developing solvent is hexane, cyclohexane, toluene, chloroform, ethyl acetate and acetone.
  • the more preferred developing solvent is a mixed solvent of ethyl acetate and hexane.
  • a mixing ratio of the solvents shall not specifically be restricted, and it may be controlled so that a transfer rate (Rf value) of the specified substance into the developing solvent falls in a range of 0.1 to 0.7.
  • a silicon compound represented by Formula (1-2) can be obtained by reacting the compound (1-1) obtained at the hydrosilylation reaction step described above with a dithiocarbamic acid metal salt represented by Formula (7):
  • R 4 and R 5 in Formula (7) are groups defined in the same manner as in these codes in Formula (2-2-1);
  • M 1 is a metal element of the 1st or the 2nd group in the periodic table; and
  • p is the same value as an atomic value of M 1 .
  • the examples of M 1 are Li, Na, K, Cu, Mg, Ca and Zn.
  • the preferred examples of M 1 are Na and K.
  • a 2 in the above formula is a group represented by Formula (2-2-1), and the other codes have the same meanings as those of these codes in Formula (1-1).
  • the reaction of the compound (1-1) with the compound (7) is a quantitative nucleophilic displacement reaction, and side reactions do not take place.
  • a preferred use amount of dithiocarbamate is 1 to 5 times in terms of an equivalent ratio based on a halogen content in the compound (1-1).
  • Use of this salt in a large amount makes it possible to shorten the reaction time.
  • the reaction is usually carried out in an atmosphere of inert gas such as nitrogen in a dried organic solvent which is inert to the raw materials.
  • the examples of the organic solvent are lower alcohols (example: methanol), cyclic ethers (examples: tetrahydrofuran and dioxane) and aromatic hydrocarbons (examples: toluene and xylene).
  • the preferred examples of the organic solvent are tetrahydrofuran and methanol.
  • the preferred reaction temperature is 120°C or lower considering the possibility that dithiocarbamate is thermally decomposed. The more preferred reaction temperature is 100°C or lower.
  • the reaction time shall not specifically be restricted, and the intended silicon compound can be obtained usually in 1 to 10 hours.
  • a phase transfer catalyst such as benzyltrimethylammonium chloride, tetramethylammonium chloride, tetrabutylammonium bromide, trioctylammonium chloride, dioctylmethylammonium chloride, triethylamine and dimethylaniline.
  • the compound (1-2) contained in the reaction mixture is refined by a refining method carried out by the reprecipitation operation described above and/or a column chromatography.
  • the reaction of the dithiocarbamate with the compound (1-1) and refining of the compound (1-2) have to be carried out under a fluorescent lamp in which a UV ray is cut off and in a draft on which a UV-cut film is applied.
  • the compound (1-2) has dithiocarbamate which is a photosensitive group, and therefore it has to be stored in a light-shielded vessel charged with inert gas such as nitrogen and argon in a cold and dark place under non-aqueous environment.
  • the compound (1-2) can be obtained as well by a process in which a step of reacting a dithiocarbamic acid metal salt with a halogenated alkyl group is carried out in advance.
  • This production process is a process in which the compound (6-1) described above is first reacted with the compound (7) to prepare a compound represented by Formula (6-2):
  • Codes in this formula are defined in the same manner as in the codes in Formula (2-2-1).
  • the bonding positions of Z 1 and R 6 on a benzene ring are the same as the bond positions of these codes in Formula (2-2-1) .
  • the above reaction itself is fundamentally the same as the reaction of the compound (1-1) described above with the compound (7), and it can be carried out in the same manner as in the case of the above reaction.
  • the same caution as in the reaction of the compound (5) with the compound (6-1) in the production process described above is required in terms of handling the compounds having a polymerizable group. That is, the reaction temperature has to be controlled to a considerably low temperature of 20 to 80°C, and a polymerization inhibitor has to be used as well. Further, a UV ray has to be cut off as much as possible not only in the reaction and the refining step but also in storing the product.
  • the compound (1-2) can be obtained by the hydrosilylation reaction of the compound (5) with the compound (6-2). This hydrosilylation reaction can be carried out in the same manner as in the reaction of the compound (5) with the compound (6-1).
  • the compound (1-1) can be produced as well by a production process in which reaction using the compound (3-1) or the compound (3-2) is set to a final reaction step. First, the compound (4) and the compound (6-1) are subjected to hydrosilylation reaction in the presence of a transition metal catalyst to produce a compound (8-1):
  • R 2 and R 3 have the same meanings as those of these codes in Formula (4), and the other codes have the same meanings as those of the respective codes in Formula (6-1).
  • the bonding positions of Z 1 and R 6 on a benzene ring are the same as the bond positions of these codes in Formula (6-1).
  • the compound (8-1) is reacted with the compound (3-1) or the compound (3-2), whereby the compound (1-1) can be produced.
  • the hydrosilylation reaction of the compound (4) with the compound (6-1) can be carried out in the same manner as in the hydrosilylation reaction of the compound (5) with the compound (6-1).
  • the reaction of the compound (8-1) with the compound (3-1) or the compound (3-2) can be carried out in the same manner as in the reaction of the compound (4) with the compound (3-1) or the compound (3-2).
  • the compound (1-2) also can be produced by a production process in which reaction using the compound (3-1) or the compound (3-2) is set to a final reaction step. That is, first the compound (6-2) is obtained from the compound (6-1) and the compound (7), and then a compound represented by Formula (8-2) is produced by the hydrosilylation reaction of the compound (6-2) with the compound (4):
  • R 2 and R 3 have the same meanings as those of these codes in Formula (4), and the other codes have the same meanings as those of the codes in Formula (6-2).
  • the bonding positions of Z 1 and R 6 on a benzene ring are the same as the bond positions of these codes in Formula (6-2).
  • the compound (1-2) can be produced by reacting the above compound (8-2) with the compound (3-1) or the compound (3-2).
  • the hydrosilylation reaction of the compound (6-2) with the compound (4) can be carried out in the same manner as in the hydrosilylation reaction of the compound (5) with the compound (6-1).
  • the reaction of the compound (8-2) with the compound (3-1) or the compound (3-2) can be carried out in the same manner as in the reaction of the compound (4) with the compound (3-1) or the compound (3-2).
  • a process in which the compound (8-1) described above is reacted with the compound (7) is considered as well for a production process for the compound (8-2).
  • a preferred raw material used in this process is a silicon compound represented by Formula (9):
  • R 1 , R 2 and R 3 in the above formula are groups defined in the same manners as in these codes in Formula (1), and Z 4 is defined in the same manner as in Z 4 in Formula (2-3).
  • the compound (1-3) is obtained by reacting the above compound (9) with a compound (10) in which halogen is bonded to carbon of an ⁇ position: R 7 , R 8 and X 1 in the above formula are defined in the same manners as in these codes in Formula (2-3), and X 2 is halogen.
  • the examples of this halogen are chlorine, bromine and iodine, and chlorine and bromine are preferred.
  • X 1 and X 2 may be same or different.
  • Synthetic routes shown in the following scheme 1 (or scheme 2) and scheme 3 are one of the specific examples of the process for producing the compound (1-3).
  • Pt 2 (dvds) 3 is a platinum-divinyltetramethyldisiloxane complex
  • Me is methyl
  • Ph is phenyl
  • THF is tetrahydrofuran
  • TEA is triethylamine.
  • a compound (3-1-1) is reacted with dimethylchlorosilane using THF as a solvent at a room temperature in the presence of triethylamine to prepare a compound (5-1).
  • the compound (3-1-1) is described in Organometallics, 10, 2526-(1991 ).
  • the compound (9) can be produced as well by the following process.
  • the compound (5-1) and alcohol having an alkenyl group which is protected by a trimethylsilyl group are subjected to a hydrosilylation reaction in toluene in the presence of a platinum-divinyltetramethyldisiloxane complex to thereby produce a compound (9-T).
  • it is derived into the compound (9-1) having a hydroxyl group by alcoholysis using large excess methanol at a room temperature or on a condition of slightly heating (40°C).
  • TMS is a trimethylsilyl group.
  • R 1 , R 2 and R 3 have the same meanings as those of these codes in Formula (9), and A 3 is the group represented by Formula (2-3) described above.
  • the compound (9) is readily reacted with the compound (10) to be esterified. Hydrogen chloride by-produced in the reaction induces side reactions such as dehydration and addition to a double bond part, and therefore the reaction is carried out in the coexistence of an organic base in order to remove it.
  • the examples of the organic base are pyridine, dimethylaniline, triethylamine and tetramethylurea. Other organic bases may be used as long as they can inhibit the side reactions and allow the reaction to quickly proceed.
  • the most preferred example of the organic base is triethylamine.
  • This reaction is a nucleophilic displacement reaction which proceeds quantitatively, and a use amount of the compound (10) is preferably 1 to 10 times in terms of an equivalent ratio based on the compound (9). An increase in a use amount of the compound (10) makes it possible to react the whole compound (9) and makes it possible to shorten the reaction time.
  • the above reaction is carried out in environment of inert gas such as argon gas and nitrogen gas and in a dried organic solvent which is inert to the raw materials.
  • organic solvent are cyclic ethers (tetrahydrofuran, dioxane and the like), aromatic hydrocarbons (toluene, xylene and the like), halogenated hydrocarbons (methylene chloride, chloroform and the like) and carbon tetrachloride.
  • the preferred example of the organic solvent is methylene chloride.
  • the reaction temperature shall not specifically be restricted. However, the above reaction quickly goes on while generating heat, and therefore usually it is carried out preferably under a low temperature condition.
  • the preferred reaction temperature is 100°C or lower, and the most referred reaction temperature is 35°C or lower.
  • the reaction may be carried out while irregularly controlling the reaction temperature.
  • the reaction may be carried out while cooling the reaction system using a dry ice-methanol bath or an ice bath in an initial stage, and then the temperature may be elevated to the vicinity of a room temperature to continue the reaction.
  • the reaction time shall not specifically be restricted, and usually the intended silicon compound can be obtained in 1 to 10 hours.
  • a general term "impurities" shall be given to the unreacted raw material compounds and the solvent. If a distillation method is applied in order to remove the impurities, the liquid is maintained under a high temperature condition for long time, and therefore the intended compound is likely to be decomposed. Accordingly, refining is preferably carried out by reprecipitation operation in order to efficiently remove the impurities without damaging a purity of the compound (1-3).
  • This refining method is carried out in the following manner. First, the reaction liquid is dissolved in a solvent dissolving both of the compound (1-3) and the impurities. In this case, a preferred concentration of the compound (1-3) is, roughly speaking, 1 to 15 % by weight.
  • a so-called precipitant is added to the above solution to precipitate only the compound (1-3).
  • a preferred use amount of the precipitant is 20 to 50 times based on the weight of the solvent used for dissolving both of the compound (1-3) and the impurities. This use range is a rough standard, and as is the case with the foregoing concentration rage of the compound (1-3), it does not necessarily have to fall in the above range.
  • the preferred solvent used for dissolving the compound (1-3) is a solvent having a large dissolving power and a relatively low boiling point.
  • the preferred precipitant is a solvent which is compatible with the solvent for dissolving the compound (1-3) and does not dissolve the compound (1-3) at all and which dissolves only the impurities and has a relatively low boiling point.
  • the example of the preferred precipitant is lower alcohols.
  • the particularly preferred precipitant is methanol.
  • a repeating frequency of the reprecipitation operation is advisably raised in order to further elevate the refining degree.
  • This addition-polymerizable monomer is a monomer having at least one addition-polymerizable double bond.
  • One of the examples of a monomer having one addition-polymerizable double bond is a (meth)acrylic acid derivative.
  • the specific examples thereof are (meth)acrylic acid, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, n-heptyl (meth)acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, phenyl (meth)acrylate, toluyl (meth)acrylate, benzyl (meth)acrylate, 2-me
  • styrene base monomer is a styrene base monomer.
  • the specific examples thereof are styrene, vinyltoluene, ⁇ -methylstyrene, p-chlorostyrene, p-chloromethylstyrene, m-chloromethylstyrene, o-aminostyrene, p-styrenechlorosulfonic acid, styrenesulfonic acid and salts thereof, vinylphenylmethyl dithiocarbamate, 2-(2-bromopropanonyloxy)styrene, 2-(2-bromo-isobutyryloxy)styrene, 1-(2-((4-vinylphenyl)-methoxy)-1-phenylethoxy)-2,2,6,6-tetramethylpiperidine, 1-(4-vinylphenyl)-3,5,7,9,11,13,15-hepta
  • the other examples of the monomer having one addition-polymerizable double bond are fluorine-containing vinyl monomers (perfluoroethylene, perfluoropropylene, vinylidene fluoride and the like), silicon-containing vinyl base monomers (vinyltrimethoxysilane, vinyltriethoxysilane and the like), maleic anhydride, maleic acid, monoalkyl esters and dialkyl esters of maleic acid, fumaric acid, monoalkyl esters and dialkyl esters of fumaric acid, maleimide base monomers (maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenylmaleimide and cyclohexylmaleimide), monomers having a nitrile group (acrylonitrile, methacrylonitrile and the like
  • macromonomers which have one polymerizable double bond in a molecule and in which a principal chain is a macromer of styrene, (meth)acrylic acid ester, diorganosiloxane or alkylene glycol.
  • the examples of a monomer having two addition-polymerizable double bonds are divinylbenzene and di(meth)acrylate base monomers.
  • the examples of the di(meth)acrylate base monomers are 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, polyethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, hydroxypivalic acid ester neopentyl glycol di(meth)acrylate, trimethylolpropane di(meth)acrylate, bis[(meth)acryloyloxyethoxy] bisphenol A, bis[(meth)acryloyloxyethoxy] tet
  • macromonomers which have two polymerizable double bonds in a molecule and in which a principal chain is a macromer of styrene, (meth)acrylic acid ester, diorganosiloxane or alkylene glycol.
  • a monomer having three or more addition-polymerizable double bonds are trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol monohydroxypenta(meth)acrylate, tris(2-hydroxyethylisocyanate) tri(meth)acrylate, tris(diethylene glycol)trimelate tri(meth)acrylate, 3,7,14-tris[(((meth)acryloyloxypropyl)dimethylsiloxy)]-1,3,5,7,9,11,14-heptaethyltricyclo [7.3.3.1 5,11 ]heptasiloxane, 3,7,14-tris[(((meth)acryloyloxypropyl)dimethylsiloxy)]-1,3,5,7,9,11,14-heptaisobut
  • macromonomers which have three or more polymerizable double bonds in a molecule and in which a principal chain is a macromer of styrene, (meth)acrylic acid ester, diorganosiloxane or alkylene glycol.
  • the monomers described above may be used alone or a plurality thereof may be copolymerized. When copolymerized, they may be random-copolymerized or block-copolymerized.
  • the preferred monomers used in the present invention are the (meth)acrylic acid derivatives and the styrene derivatives. The more preferred monomers are the (meth)acrylic acid derivatives.
  • the plural (meth)acrylic acid derivatives may be copolymerized, and the plural styrene derivatives may be copolymerized. At least one (meth)acrylic acid derivative may be copolymerized with at least one styrene derivative.
  • An atom transfer radical polymerization method in the present invention is one of living radical polymerization methods.
  • the examples of documents in which the living radical polymerization method is described are J. Am. Chem. Soc., 1995, 117, 5614 , and Macromolecules, 1995, 28, 7901 and Science, 1996, 272, 866 .
  • the preferred examples of a transition metal complex used as a polymerizing catalyst are metal complexes in which the 7th, 8th, 9th, 10th or 11th group element in the periodic table is used as center metal.
  • the more preferred catalysts are a complex of zero-valent copper, a complex of monovalent copper, a complex of divalent ruthenium, a complex of divalent iron and a complex of divalent nickel.
  • the complexes of copper are preferred.
  • the examples of a monovalent copper compound are cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide and cuprous perchlorate.
  • pyridylmethaneimines N-(n-propyl)-2-pyridylmethaneimine and the like
  • polyamines tetramethylethylenediamine, pentamethyldiethylenetriamine, hexamethyltris(2-aminoethyl)amine and the like
  • polycyclic alkaloid such as L-(-)-sparteine
  • a tristriphenylphosphine complex (RuCl 2 (PPh 3 ) 3 ) of divalent ruthenium chloride is also suitable as the catalyst.
  • the ruthenium compound is used as the catalyst, aluminum alkoxides are added as an activating agent.
  • the examples of the suitable catalysts other than the above compounds are a bistriphenylphosphine complex (FeCl 2 (PPh 3 ) 2 ) of divalent iron, a bistriphenylphosphine complex (NiCl 2 (PPh 3 ) 2 ) of divalent nickel and a bistributylphosphine complex (NiBr 2 (PBu 3 ) 2 ) of divalent nickel.
  • a solvent may be used for the polymerization reaction.
  • the examples of the solvent used are hydrocarbons (examples: benzene, toluene and the like), ethers (examples: diethyl ether, THF, diphenyl ether, anisole, dimethoxybenzene and the like), halogenated hydrocarbons (examples: methylene chloride, chloroform, chlorobenzene and the like), ketones (examples: acetone, methyl ethyl ketone, methyl isobutyl ketone and the like), alcohols (examples: methanol, ethanol, propanol, isopropanol, n-butyl alcohol, tert-butyl alcohol and the like), nitriles (examples: acetonitrile, propionitrile, benzonitrile and the like), esters (examples: ethyl acetate, butyl a
  • the compounds given above in parentheses are the preferred examples of the respective solvents. They may be used alone or in combination of two or more kinds thereof.
  • the polymerization can be carried out as well in an emulsion system or a system in which a supercritical fluid CO 2 is used as a medium.
  • the solvent which can be used shall not be restricted to the above examples.
  • the atom transfer radical polymerization can be carried out under reduced pressure, atmospheric pressure or applied pressure according to the kind of the addition-polymerizable monomer and the kind of the solvent.
  • the polymerizing catalyst or a radical produced is likely to be deactivated when brought into contact with oxygen. In such case, the polymerizing rate is reduced, and a good living polymer is not obtained. Accordingly, it is important to carry out the polymerization under inert gas environment of nitrogen or argon. In this reaction, oxygen dissolved in the polymerization system has to be removed in advance under reduced pressure. Then, it is possible to shift to a polymerization step as it is under reduced pressure after finishing the step of removing dissolved oxygen.
  • a conventional method can be adopted for the atom transfer radical polymerization, and it shall not specifically be restricted by the polymerization method. Capable of being adopted is, for example, a bulk polymerization method, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method or a bulk-suspension polymerization method.
  • the polymerization temperature falls in a range of 0 to 200°C, and the preferred polymerization temperature falls in a range of a room temperature to 150°C.
  • R 2 and R 3 are groups independently selected from alkyl having a carbon atom number of 1 to 8, phenyl and cyclohexyl.
  • a 1 is a group represented by Formula (2-1).
  • R 11 , R 2 and R 3 have the same meanings as those of these codes in Formula (1-1-2), and B 1 is a group represented by Formula (2-1-P):
  • P 1 is a chain of a structural unit obtained by polymerizing an addition-polymerizable monomer, and the other codes have the same meanings as those of these codes in Formula (2-1).
  • R 11 , R 2 and R 3 have the same meanings as those of these codes in Formula (1-1-2).
  • a 3 is a group represented by Formula (2-3), and B 3 is a group represented by Formula (2-3-P):
  • P 3 is a chain of a structural unit obtained by polymerizing an addition-polymerizable monomer, and the other codes have the same meanings as those of these codes in Formula (2-3) .
  • Suitable selection of the kind of the monomer used makes it possible to control the structure of the polymer (P-3). For example, if the monomer is homopolymerized, silsesquioxane to which the homopolymer is bonded is obtained. If the plural monomers are added at the same time and polymerized, silsesquioxane to which the random copolymer is bonded is obtained. If adopted is a method in which the monomers are successively added, for example, a method in which the second monomer is added after finishing the polymerization of the first monomer to complete the polymerization, silsesquioxane to which the block copolymer is bonded is obtained.
  • a silicon compound having a (meth)acryl group or a - styryl group makes it possible to introduce a structural unit containing a silicon atom into the structure of the polymer.
  • the examples of the above silicon compound are trialkoxysilane, polydimethylsiloxane and silsesquioxane.
  • the addition-polymerizable monomer After copolymerized with an addition-polymerizable monomer having an initiating group which does not take part in atom transfer radical polymerization, the addition-polymerizable monomer is further polymerized in the other polymerization mode (for example, nitroxyl polymerization and photo initiator-transfer agent-terminator polymerization) using the resulting polymer as an initiator, whereby a graft copolymer can be formed.
  • the other polymerization mode for example, nitroxyl polymerization and photo initiator-transfer agent-terminator polymerization
  • the examples of the addition-polymerizable monomer having an initiating group which does not take part in atom transfer radical polymerization are 1-(2-(4-vinylphenylmethoxy)-1-phenylethoxy-2,2,6,6-tetramethylpyridine, 1-(meth)acryloxy-2-phenyl-2-(2,2,6,6-tetramethyl-1-piperidinyloxy)ethane, (1-(4-(4-(meth)acryloxyethoxyethyl)phehylethoxy)piperidine and vinylphenylmethyldithiocarbamate.
  • a monomer having a glycidyl group (example: glycidyl (meth)acrylate)
  • a monomer having an oxetanyl group (example: 3-ethyl-3-(meth)acryloyloxymethyloxetane) or a monomer having dioxolane(example: 4-(meth)acryloyloxymethyl-2-methyl-2-ethyl-1,3-dioxolane)
  • an aliphatic sulfonium salt, an aromatic sulfonium salt or an aromatic iodonium salt is added as a thermally latent or optically latent cation polymerization initiator to the resulting polymer, whereby a cross-linked polymer having a three-dimensional network structure can be prepared by cation polymerization.
  • the examples of the aliphatic sulfonium salt which is the thermally latent cation polymerization initiator are 3-methyl-2-butenyltetramethylenesulfonium hexafluoroantimonate and 2-butenyltetramethylenesulfonium hexafluoroantimonate, and they are marketed from Asahi Denka Co., Ltd. Many products of the aromatic sulfonium salt which is the thermally latent or optically latent cation polymerization initiator are marketed from Sanshin Chemical Industry Co., Ltd. and Asahi Denka Co., Ltd.
  • Diphenyl-4-thiophenoxyphenylsulfonium hexafluoroantimonate also is the example of the aromatic sulfonium salt.
  • the example of the aromatic iodonium salt is (4-pentadecyloxyphenyl)phenyliodonium hexafluoroantimonate.
  • a photosensitizer for example, Adeka Optomer SP-100 (manufactured by Asahi Denka Co., Ltd.) may be used in combination.
  • a monofunctional or multifunctional glycidyl base cross-linking agent or a monofunctional or multifunctional oxetane base cross-linking agent may be allowed to coexist.
  • a refining method for the polymer (P-3) shall be explained.
  • This compound is isolated and refined by efficiently removing the unreacted addition-polymerizable monomer.
  • Various methods are available, and a refining method carried out by reprecipitation operation is preferred.
  • This refining method is carried out in the following manner.
  • a solvent which does not dissolve the polymer (P-3) but dissolves the unreacted monomer a so-called precipitant is added to the polymerization reaction liquid containing the polymer (P-3) and the unreacted monomer to precipitate only the polymer (P-3).
  • a preferred use amount of the precipitant is 20 to 50 times based on the weight of the polymerization reaction liquid described above.
  • the preferred precipitant is a solvent which is compatible with the polymerization solvent used in polymerization and which does not dissolve the polymer (P-3) at all but dissolves only the unreacted monomer and has a relatively low boiling point.
  • the examples of the preferred precipitant are lower alcohols and aliphatic hydrocarbons.
  • the particularly preferred precipitant is methanol and hexane. A repeating frequency of the reprecipitation operation is advisably increased in order to further raise a removing efficiency of the unreacted monomer. This method makes it possible to deposit only the polymer (P-3) in a poor solvent, and the polymer can readily be separated from the unreacted monomer by filtering operation.
  • the transition metal complex which is the polymerizing catalyst remains in the compound (P-3) isolated by the method described above, and therefore problems such as coloring of the polymer, influence on the physical properties and environmental safety are brought about in a certain case. Accordingly, this catalyst residue has to be removed in finishing the polymerization reaction.
  • the catalyst residue can be removed by adsorbing treatment using activated carbon.
  • adsorbents other than activated carbon are ion exchange resins (acid, basic or chelate form) and inorganic adsorbents.
  • the inorganic adsorbents have a character of a solid acid, a solid base or neutrality. They are particles having a porous structure and therefore have a very high adsorbing ability. It is also one of the characteristics of the inorganic adsorbents that they can be used in a wide temperature range extending from a low temperature to a high temperature.
  • the examples of the inorganic adsorbents are silicon dioxide, magnesium oxide, silica ⁇ alumina, aluminum silicate, activated alumina, clay base adsorbents such as acid clay and activated clay, zeolite base adsorbents, dawsonites compounds and hydrotalcites compounds.
  • Zeolite includes natural products and synthetic products, and either can be used. Kinds such as a crystal form, an amorphous form, a noncrystal form, a glass form, a synthetic product and a natural product are available for silicon dioxide, and silicon dioxide of a powder form can be used in the present invention regardless of the kind.
  • the examples of natural aluminum silicate are pumice, fly ash, kaoline, bentonite, activated clay and diatomaceous earth.
  • Synthetic aluminum silicate has a large specific surface area and a high adsorbing ability.
  • the hydrotalcites compound is carbonate hydrate of aluminum ⁇ magnesium hydroxide.
  • the acid adsorbents and the basic adsorbents are preferably used in combination with activated carbon.
  • the examples of the acid adsorbents are acid clay, activated clay and aluminum silicate.
  • the examples of the basic adsorbents are activated alumina, the zeolite base adsorbents and the hydrotalcites compounds each described above. These adsorbents may be used alone or in a mixture of two or more kinds thereof.
  • the polymer (P-3) produced by the atom transfer radical polymerization can be refined by bringing into contact with activated alumina.
  • a commercial product available from Aldrich Co., Ltd. can be used as activated alumina.
  • the adsorbents can be mixed and brought into contact with the compound, but they may be brought into contact at the separate steps respectively.
  • the reaction liquid When brought into contact with the adsorbent, the reaction liquid may be used as it is or may be diluted with a solvent.
  • the diluent may be selected from usual solvents only on the condition that it is not a poor solvent for the polymer.
  • a temperature for treating with the adsorbent shall not specifically be restricted. The treatment may be carried out usually at 0 to 200°C.
  • the preferred temperature range is a room temperature to 180°C.
  • a use amount of the absorbent falls in a range of 0.1 to 500 % by weight based on the weight of the polymer (P-3). Considering the economical efficiency and the operability, the preferred range is 0.5 to 10 % by weight.
  • a method of a batch system in which stirring-mixing and solid-liquid separation are carried out by batch operation can be used for solid-liquid contact of the absorbent and the polymer liquid.
  • capable of being used is a method of a continuous system such as a fixed layer system in which the polymer liquid is allowed to pass through a vessel charged with the adsorbent, a moving layer system in which the liquid is allowed to pass through a moving layer of the adsorbent and a fluidized layer system in which the adsorbent is fluidized by a liquid to carry out adsorption.
  • a mixing and dispersing operation carried out by stirring can be combined, if necessary, with an operation for elevating the dispersing efficiency, such as shaking of the vessel and use of a supersonic wave.
  • the absorbent is removed by a method such as filtering, centrifugal separation and settling - separation, and washing treatment is carried out if necessary to obtain the refined polymer liquid.
  • Treatment by the absorbent may be carried out for the polymer (P-3) which is the final product, and it may be carried out for an intermediate product used for producing this polymer.
  • this polymer in the respective polymerizing steps of the block copolymer obtained by the atom transfer radical polymerization, this polymer can be isolated and subjected to adsorbing treatment.
  • the polymer (P-3) subjected to treatment by the adsorbent may be separated by depositing in a poor solvent or distilling off volatile components such as the solvent under reduced pressure.
  • a molecular weight of an addition polymer can be measured by gel permeation chromatography (GPC) using a calibration curve in which a linear polymer such as polystyrene and poly(methyl methacrylate) is used as a standard sample.
  • GPC gel permeation chromatography
  • the polymer (P-3) belongs to a polymer of a vinyl base monomer originating in silsesquioxane, that is, a branched type-high molecular compound.
  • the polymer (P-3) when determining a molecular weight of the polymer (P-3) as it is, it is considered to involve a problem on an accuracy in molecular weight analysis to use a calibration curve in which a linear polymer such as polystyrene and poly(methyl methacrylate) is used as a standard sample.
  • the polymer (P-3) has silsesquioxane at an end part thereof, and therefore it can readily be decomposed under an acid condition or a basic condition. That is, an accuracy in molecular weight analysis of a polymer part can further be enhanced by cutting off an addition polymer from silsesquioxane and then measuring the molecular weight thereof.
  • Hydrofluoric acid is preferably used when decomposing the polymer (P-3) under an acid condition.
  • Potassium hydroxide is preferably used when decomposing the polymer (P-3) under a basic condition.
  • the polymer (P-3) can be decomposed in either of a homogeneous system and a heterogeneous system.
  • the silsesquioxane part of the polymer (P-3) can be decomposed in a homogeneous mixed system of an organic solvent (THF, acetonitrile and the like) which can dissolve the polymer (P-3) and hydrofluoric acid.
  • THF organic solvent
  • acetonitrile and the like which can dissolve the polymer (P-3) and hydrofluoric acid.
  • the silsesquioxane part can be decomposed as well in a heterogeneous mixed system of toluene and hydrofluoric acid.
  • phase transfer catalyst is preferably used in combination.
  • the examples of the phase transfer catalyst are benzyltrimethylammonium chloride, tetramethylammonium chloride, tetrabutylammonium bromide, trioctylammonium chloride, dioctylmethylammonium chloride, triethylamine and dimethylaniline.
  • potassium hydroxide decomposition can be carried out as well in a mixed solvent of THF, ethanol and water.
  • the addition polymer cut off by the above methods is measured by GPC, whereby a molecular weight of an addition polymer part in the polymer (P-3), a molecular weight of a so-called graft chain can be determined. It is possible as well to determine a molecular weight of the polymer (P-3) itself by using a universal calibration curve obtained from the viscosity and the GPC data. An absolute molecular weight of the polymer (P-3) can be determined as well by an end group determination method, a membrane osmotic pressure method, an ultracentrifugal method and a light scattering method.
  • a preferred molecular weight of the graft chain in the polymer (P-3) falls in a range of 500 to 1,000,000 for a number average molecular weight in terms of poly(methyl methacrylate). The more preferred range is 1,000 to 100,000. However, the upper limit value and the lower limit value in this range do not necessarily have a specific meaning.
  • the molecular weight distribution falls preferably in a range of 1.01 to 2.0 in terms of a dispersion degree (Mw/Mn).
  • Mn is a theoretical number average molecular weight
  • MW M is a molecular weight of the vinyl base monomer
  • MW I is a molecular weight of the ⁇ -haloester group.
  • a molar ratio of the vinyl base monomer/ ⁇ -haloester group can be selected from a range of about 2/1 to about 40000/1, preferably about 10/1 to about 5000/1.
  • the above number average molecular weight can be controlled as well by changing the polymerization time.
  • Mn is a theoretical number average molecular weight
  • MW M is a molecular weight of the vinyl base monomer
  • MW I is a molecular weight of the compound (1-3-2).
  • conversion rate a consumption rate of the monomer.
  • the silicon compound of the present invention having a dithiocarbamate group can continue to maintain a polymerization initiating ability as long as irradiated with light, and it has a photopolymerization initiating ability for all radically polymerizable monomers.
  • a dithiocarbamate group has the respective functions of a polymerization initiator, a chain transfer agent and a photopolymerization terminator all together in photopolymerization, and the reaction mechanism thereof has already become clear.
  • the compound (1-2) of the present invention having a dithiocarbamate group is dissociated into a radical on an alkylphenyl group bonded to the silicon compound and a dithiocarbamate radical by irradiating with light. Then, the radical on the alkylphenyl group takes part in the initiation of the reaction, and the dithiocarbamate radical takes part in the termination of the reaction.
  • the dithiocarbamate radical is added to the growing end as a terminator to form again a dithiocarbamate group.
  • the polymer thus formed can also be used as a polymer photoinitiator having a photopolymerization initiating ability.
  • the silicon compound of the present invention having a dithiocarbamate group can initiate polymerization of a vinyl base monomer coexisting therewith by being decomposed by irradiating with a UV ray having a wavelength of 250 to 500 nm, preferably 300 to 400 nm having energy required for radically dissociating the dithiocarbamate group.
  • the form of carrying out the polymerization reaction can suitably be selected from bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization and bulk-suspension polymerization.
  • a solvent used when producing by solution polymerization is preferably a solvent which has a small chain transfer constant and which can dissolve a vinyl base monomer and a polymer thereof.
  • the examples of such preferred solvent are benzene, toluene, xylene, ethylbenzene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, methyl cellosolve, ethyl cellosolve, dimethylformamide, isopropyl alcohol, butanol, hexane and heptane.
  • a solvent having no characteristic absorption in a UV ray area of 250 to 500 nm is rather preferred.
  • the polymerization temperature falls in a range of 0 to 200°C, preferably a room temperature to 150°C, but it shall not specifically be restricted.
  • the photo initiator-transfer agent-terminator polymerization can be carried out under reduced pressure, atmospheric pressure or applied pressure according to the kind of the vinyl base monomer and the kind of the solvent. It is important to carry out the polymerization usually under environment of inert gas such as nitrogen and argon, for example, under flowing of inert gas. Oxygen dissolved in the polymerization system has to be removed in advance under reduced pressure, and therefore it is possible to transfer to a polymerization step as it is under reduced pressure after finishing the step of removing dissolved oxygen.
  • inert gas such as nitrogen and argon
  • R 11 , R 2 and R 3 are groups defined in the same manner as in these codes in Formula (1-1-2).
  • a 2 is a group represented by Formula (2-2)
  • B 2 is a group represented by Formula (2-2-P):
  • P 2 in the above formula is a group comprising the polymer of the vinyl base monomer, and the other codes have the same meanings as those of the codes in Formula (2-2).
  • the bonding positions of Z 1 and R 6 on a benzene ring are the same as these bond positions in Formula (2-2).
  • the structure of the polymer (P-2) can be controlled by the same method as in obtaining the polymer (P-3) by the atom transfer radical polymerization method.
  • Silsesquioxane to which a high branched type polymer is bonded can be obtained by using an initiator monomer, for example, N,N-diethyldithiocarbamoylmetylstyrene or N-ethyldithiocarbamoylmetylstyrene in combination in polymerizing a conventional vinyl base monomer.
  • the vinyl base monomer After copolymerized with a vinyl base monomer having an initiating group which does not take part in photo initiator-transfer agent-terminator polymerization, the vinyl base monomer is further polymerized in the other polymerization mode (for example, an atom transfer radical polymerization method) using the resulting polymer as an initiator, whereby a graft copolymer can be formed.
  • the other polymerization mode for example, an atom transfer radical polymerization method
  • the examples of the vinyl base monomer having an initiating group which does not take part in photo initiator-transfer agent-terminator polymerization are 1-(2-((4-ethenylphenyl)methoxy)-1-phenylethoxy-2,2,6,6-tetramethylpyridine, 1-(meth)acryloxy-2-phenyl-2-(2,2,6,6-tetramethyl-1-piperidinyloxy)ethane, (1-(4-((4-(meth)acryloxy)ethoxyethyl)phenylethoxy)piperidine, 2-(2-bromopropanoyloxy)ethyl (meth)acrylate, 2-(2-bromoisobutyryloxy)ethyl (meth)acrylate, p-chloromethylstyrene, 2-(2-bromopropanoyloxy)styrene and 2-(2-bromoisobutyryloxy)styrene.
  • the end dithiocarbamate group thereof is treated, whereby the polymer (P-2) can be deactivated against a UV ray.
  • a deactivating method are a method in which the polymer (P-2) is treated in an acid solution or a basic solution, a method in which the polymer (P-2) is treated at a high temperature of 250°C or higher for several minutes, a method in which the polymer is irradiated with an electromagnetic beam of high energy having a wavelength of 220 nm or less, a method in which a monomer having a UV ray-absorbing group is added and then photopolymerized and a method in which a UV ray-absorbing agent is merely added.
  • the end dithiocarbamate group can be substituted by adding a reagent having a large chain transfer constant (thiol derivatives, thiuram, xanthates and nitroxides) while irradiating the polymer (P-2) obtained with a UV ray.
  • a reagent having a large chain transfer constant thiol derivatives, thiuram, xanthates and nitroxides
  • a method for isolating and refining the polymer (P-2) shall be explained. This compound is isolated and refined by efficiently removing the unreacted vinyl base monomer. Various methods are available, and a refining method by the reprecipitating operation described above is preferred. This method makes it possible to precipitate only the polymer (P-2) in a poor solvent and readily separate the polymer from the unreacted monomer by filtering operation.
  • the polymer may be isolated by distilling off volatile components such as the solvent and the unreacted monomer under a condition of reduced pressure.
  • a preferred solvent for dissolving the polymer (P-2) is a solvent having a large dissolving power and a relatively low boiling point.
  • a preferred precipitant is a solvent which is compatible with the solvent for the polymer (P-2) and does not dissolve at all the polymer (P-2) and which dissolves only the impurities or the unreacted monomer and has a relatively low boiling point.
  • the examples of the preferred precipitant are lower alcohols and aliphatic hydrocarbons.
  • the particularly preferred precipitant is methanol or hexane. It is advisable to increase the repeating frequency of the reprecipitating operation in order to further raise the refining degree.
  • a molecular weight and a molecular weight distribution of the polymer (P-2) can be analyzed by the same method as explained in the polymer (P-3).
  • the polymer of the vinyl base monomer bonded to silsesquioxane, a so-called graft chain has a number average molecular weight falling in a range of 500 to 1,000,000. The more preferred range is 1,000 to 100,000. However, the upper limit value and the lower limit value in this range do not have a specific meaning.
  • a molecular weight distribution of the graft chain falls preferably in a range of 1.01 to 3.0 in terms of a dispersion degree.
  • a molecular weight of the polymer (P-2) It is possible as well to determine a molecular weight of the polymer (P-2) by using a universal calibration curve obtained from the viscosity and the GPC data.
  • An absolute molecular weight of the polymer (P-2) can be determined as well by an end group determination method, a membrane osmotic pressure method, an ultracentrifugal method and a light scattering method.
  • a molecular weight of the graft chain in the polymer (P-2) can be controlled in the same manner as in the case of the polymer (P-3).
  • Shodex KF-G (GUARDCOLUMN) and 2 columns of Shodex KF-804L (excluded critical molecular weight (polystyrene) : 400,000) manufactured by Showa Denko K. K. were used connecting in series, and Shodex STANDARD M-75 (polymethyl methacrylate) manufactured by Showa Denko K. K. was used as a standard sample for a calibration curve. The other conditions are the same as described above.
  • a four neck separable flask having a content volume of 2 liter equipped with a reflux condenser, a thermometer and a dropping funnel was charged with ice and water (640.7 g) and toluene (200 g), and the inside of the flask was cooled to 0°C while stirring.
  • a mixed solution of phenyltrichlorosilane (211.5 g) and toluene (130 g) dried on molecular sieves for a whole day and nigh was dropwise added thereto in one hour so that a temperature in the inside of the flask did not exceed 2°C, and then the solution was further stirred at a room temperature for 30 minutes.
  • This compound had a weight average molecular weight of about 3100 in terms of polystyrene measured by GPC. This is designated as a compound (A).
  • a four-neck flask of 200 ml equipped with a reflux condenser was charged with the compound (A-1) (2.0 g), toluene (100g), triethylamine (1.7 g) and trimethylchlorosilane (1.4 g), and the mixture was stirred at a room temperature for 2 hours by means of a magnetic stirrer. After finishing the reaction, it was washed with pure water and dried under vacuum to obtain a compound (2.1 g) into which a trimethylsilyl group was introduced. This is designated as a compound (A-T).
  • the compound (A-T) was subjected to structural analysis by means of 1 H-NMR, 13 C-NMR, 29 Si-NMR, mass spectrometry and IR analysis. It was confirmed from a 1 H-NMR chart and a 13 C-NMR chart that a phenyl group and a trimethylsilyl group were present in an integral ratio of 7 : 3.
  • the compound (A-T) has a structure represented by Formula (3-2-T).
  • the compound (A-1) is a compound having a structure represented by Formula (3-2-1).
  • the T structure is a term showing a partial structure in which three oxygen atoms are bonded to one silicon atom, that is, -Si(O-) 3 .
  • a three neck flask having a content volume of 50 ml equipped with a dropping funnel and a thermometer was charged with a rotator, the compound (3-2-1) (15.0 g) obtained by making use of the method in Example 1 and THF (85 g), and the flask was sealed with dry nitrogen.
  • Dimethylchlorosilane (12.8 g) was dropwise added thereto from the dropping funnel in about 10 minutes while stirring by means of a magnetic stirrer. In this case, the dropping speed was controlled so that the content did not exceed 40°C. After finishing dropwise adding, stirring was continued at a room temperature for 3 hours to complete the reaction.
  • the structure of the white solid matter thus obtained was analyzed by means of gel permeation chromatography (GPC), 1 H-NMR, 29 Si-NMR and IR analysis. It was confirmed from a GPC chart that the white solid matter was monodispersed and that it had a weight average molecular weight of 1000 in terms of polystyrene. It was confirmed from a 1 H-NMR chart that a phenyl group and a methyl group were present in an integral ratio of 15 : 6 and that a hydrosilyl group and a methyl group were present in an integral ratio of 1 : 6.
  • a 1000 ml glass flask equipped with a stirrer, a reflux condenser, a thermometer and a dropping funnel was charged with the compound (5-1) (1.0 g, 2.7 ⁇ 10 -3 mole in terms of Si-H), chloromethylstyrene (0.5 g, 3.3 ⁇ 10 -3 mole), 4-tert-butylpyrocatechol (2.0 mg) and toluene (1.6 g).
  • the flask was heated up to 60°C on an oil bath while stirring under nitrogen atmosphere.
  • a platinum catalyst (Carsted catalyst: platinum divinyltetramethyldisiloxane complex xylene solution, Pt content: 3 % by weight, 8.7 ⁇ l) was introduced thereinto by means of a syringe to carry out hydrosilylation reaction.
  • a 500 ml glass beaker was charged with 300 g of methanol, and the reaction solution described above was slowly dropwise added thereto while stirring and then left standing still in a freezing chamber (-35°C) for a night.
  • a 200 ml Schrenk tube equipped with a stirrer was charged with the compound (12) (0.17 g) obtained in Example 5, methyl methacrylate (6.4 ml), distilled toluene (13.9 ml) and decane (1.1 ml) under a dry nitrogen gas atmosphere in a draft in which a UV ray was cut, and the solution was sufficiently stirred at a room temperature to prepare a solution (A) for polymerization.
  • the solution (A) (3 ml) for polymerization was sampled by means of a glass-made syringe under a dry nitrogen gas atmosphere and introduced into a 4 ml glass ampul, and then it was subjected to freeze vacuum deaeration (pressure: 1 ⁇ 10 -2 Pa) by means of a high vacuum device equipped with a diffusion pump and sealed in a vacuum state by means of a hand burner.
  • the sealed ampul was set in a rotary photopolymerizing apparatus (400 W extra-high pressure mercury lamp: UVL-400HA, manufactured by Riko Kagaku Sangyo Co., Ltd.), and photopolymerization was carried out to obtain a pale yellow viscous polymer solution.
  • the polymerization conditions thereof were a light source distance: 150 mm, a UV ray illuminance (wavelength: 365 nm): 4.7 mW/cm 2 , a rotating speed: 10 rpm and polymerization time: 10 minutes.
  • This polymer solution was subjected to reprecipitation refining with hexane (100 ml), and then the precipitate was recovered by suction filtration.
  • the precipitate was dried at 80°C for 3 hours in a vacuum dryer to obtain 0.063 g of a polymer (a).
  • the above polymer was subjected to GPC measurement, and the results thereof are shown in Table 14. The measurement was carried out on the following conditions.
  • a glass transition temperature and a thermal decomposition temperature of the polymer (a) were determined, and the results thereof are shown in Table 14. The measurements were carried out in the following conditions.
  • Photopolymerization was carried out in the same manner as in Example 6 to obtain 0.102 g of a polymer (b), except that the polymerization time was changed to 20 minutes. This polymer was subjected to GPC measurement, and the results thereof are shown in Table 14.
  • a mixed solution of hydrofluoric acid (0.17 ml) and acetonitrile (0.83 ml) was prepared.
  • the polymer (b) (15 mg) was dissolved in this mixed solution and stirred at a room temperature for 48 hours. Then, the solution was dried up at 80°C for 3 hours in a vacuum dryer to recover the polymer. This polymer was subjected to GPC measurement, and the results thereof are shown below.
  • the polymer (b) was subjected to thermal analysis in the same manner as in the polymer (a).
  • the glass transition temperature measured by means of the differential scanning type calorimeter and the thermal decomposition temperature measured by the thermogravimetry are shown in Table 14.
  • Photopolymerization was carried out in the same manner as in Example 6 to obtain 0.129 g of a polymer (c), except that the polymerizing time was changed to 30 minutes. This polymer was subjected to GPC measurement, and the results thereof are shown in Table 14.
  • the polymer (c) was subjected to thermal analysis in the same manner as in the polymer (a).
  • the glass transition temperature measured by means of the differential scanning type calorimeter and the thermal decomposition temperature measured by the thermogravimetry are shown in Table 14.
  • Photopolymerization was carried out in the same manner as in Example 6 to obtain 0.181 g of a polymer (d), except that the polymerizing time was changed to 60 minutes. This polymer was subjected to GPC measurement, and the results thereof are shown in Table 14.
  • a molecular weight of a graft chain in the polymer (d) was measured in the same manner as in the polymer (b), and the results thereof are shown below.
  • the polymer (d) was subjected to thermal analysis in the same manner as in the polymer (a).
  • the glass transition temperature measured by means of the differential scanning type calorimeter and the thermal decomposition temperature measured by the thermogravimetry are shown in Table 14.
  • Photopolymerization was carried out in the same manner as in Example 6 to obtain 0.255 g of a polymer (e), except that the polymerizing time was changed to 120 minutes. This polymer was subjected to GPC measurement, and the results thereof are shown in Table 14.
  • the polymer (e) was subjected to thermal analysis in the same manner as in the polymer (a).
  • the glass transition temperature measured by means of the differential scanning type calorimeter and the thermal decomposition temperature measured by the thermogravimetry are shown in Table 14.
  • Photopolymerization was carried out in the same manner as in Example 6 to obtain 0.307 g of a polymer (f), except that the polymerizing time was changed to 193 minutes. This polymer was subjected to GPC measurement, and the results thereof are shown in Table 14.
  • a molecular weight of a graft chain in the polymer (f) was measured in the same manner as in the polymer (b), and the results thereof are shown below.
  • the polymer (f) was subjected to thermal analysis in the same manner as in the polymer (a).
  • the glass transition temperature measured by means of the differential scanning type calorimeter and the thermal decomposition temperature measured by the thermogravimetry are shown in Table 14.
  • Photopolymerization was carried out in the same manner as in Example 6 to obtain 0.491 g of a polymer (g), except that the polymerizing time was changed to 240 minutes. This polymer was subjected to GPC measurement, and the results thereof are shown in Table 14.
  • the polymer (g) was subjected to thermal analysis in the same manner as in the polymer (a).
  • the glass transition temperature measured by means of the differential scanning type calorimeter and the thermal decomposition temperature measured by the thermogravimetry are shown in Table 14.
  • Tg is a glass transition temperature
  • Td is a thermal decomposition temperature
  • a 200 ml four neck flask equipped with a reflux condenser, a dropping funnel, a thermometer and a rotator was charged with the compound (5-1) (50.0 g) obtained by making use of the method of Example 3, ethylene glycol monoallyl ether (27.7 g) and toluene (77.7 g) and sealed with dry nitrogen.
  • a platinum-divinyltetramethyldisiloxane complex/xylene solution platinum-divinyltetramethyldisiloxane complex/xylene solution (platinum content: 3.0 % by weight, 14 ⁇ l) was added thereto at a room temperature by means of a microsyringe while stirring by means of a magnetic stirrer. The reaction proceeded while generating heat, and stirring was continued for 3 hours.
  • reaction solution was sampled and subjected to infrared absorption spectral analysis to result in confirming that a peak (2,130 cm -1 ) assigned to Si-H disappeared, and therefore this time was regarded as a reaction end point.
  • the reaction mixture obtained was concentrated under reduced pressure by means of a rotary evaporator. Methanol (176 g) was added to the resulting residue, and then powder activated carbon (0.58 g) was added thereto and stirred at a room temperature for 2 hours. This methanol solution was filtered, and the solution obtained was concentrated under reduced pressure to obtain a white solid mater (63.0 g, yield: 99.1 %).
  • the white solid matter described above had a GPC purity of 97.1 %, and it was found from the results of IR, 1 H-NMR, 13 C-NMR and 29 Si-NMR each shown below that the above compound had a structure represented by Formula (13).
  • Cuprous bromide was introduced into a heat resistant glass-made ampul in a draft which was cut off from a UV ray, and a compound (16)/methyl methacrylate/L-(-)-sparteine/anisole solution was further added thereto and quickly cooled using liquid nitrogen. Then, freezing vacuum deaeration (pressure: 1.0 Pa) was carried out three times by means of a vacuum device equipped with an oil-sealed rotary pump, and the ampul was quickly sealed by means of a hand burner while maintaining a state of vacuum.
  • freezing vacuum deaeration pressure: 1.0 Pa
  • a proportion of the compound (16), methyl methacrylate, cuprous bromide and L-(-)-sparteine was set to 1 : 900 : 3 : 6 in terms of a molar ratio in the above order, and a use amount of anisole was set to such an amount that a concentration of methyl methacrylate became 50 wt %.
  • the sealed heat resistant glass-made ampul was set in a constant temperature-shaking bath, and polymerization was carried out to obtain a brown viscous solution of a polymer (1a).
  • the polymerization temperature was 70°C
  • the polymerization time was 1.0 hour.
  • a monomer conversion rate in this polymerization reaction system was determined from the relation of a proton ratio of the respective substituents in the monomer and the polymer by diluting the solution of the polymer (1a) with deuterated chloroform and then subjecting the solution to 1 H-NMR measurement.
  • the polymer produced was recovered by reprecipitation refining from hexane, and a THF solution (1 wt %) of the polymer was prepared.
  • Example 17 Polymerization was carried out in the same manner as in Example 17 to obtain the respective brown viscous solutions of a polymer (1b) to a polymer (1e), except that the polymerization time was changed as shown in Table 15. Then, the respective polymers were refined in the same manner as in Example 17 to determine a monomer conversion rate, a theoretical number average molecular weight, a number average molecular weight and a molecular weight distribution of the polymers, and the results thereof are shown in Table 15.
  • Cuprous bromide was introduced into a heat resistant glass-made ampul in a draft which was cut off from a UV ray, and the compound (14) obtained in Example 14/methyl methacrylate/L-(-)-sparteine/anisole solution was further added and quickly cooled using liquid nitrogen. Then, freezing vacuum deaeration (pressure: 1.0 Pa) was carried out three times by means of a vacuum device equipped with an oil-sealed rotary pump, and the ampul was quickly sealed by means of the hand burner while maintaining a state of vacuum.
  • a proportion of the compound (14), methyl methacrylate, cuprous bromide and L-(-)-sparteine was set to 1 : 900 : 3 : 6 in terms of a molar ratio in the above order, and a use amount of anisole was set to such an amount that a concentration of methyl methacrylate became 50 wt %.
  • the sealed heat resistant glass-made ampul was set in a constant temperature-shaking bath, and polymerization was carried out to obtain a brown viscous solution of a polymer (2a).
  • the polymerization temperature was 70°C
  • the polymerization time was 0.5 hour.
  • a monomer conversion rate in this polymerization reaction system was determined from the relation of a proton ratio of the respective substituents in the monomer and the polymer by diluting the solution of the polymer (2a) with deuterated chloroform and then subjecting the solution to 1 H-NMR measurement.
  • the polymer produced was recovered by reprecipitation refining from hexane, and a THF solution (1 wt %) of the polymer was prepared.
  • a theoretical molecular weight of the graft chain was calculated from the following equation assuming that an ester bond which was an initiating end in the polymerization was cut off by hydrolysis brought about by hydrofluoric acid treatment and that all terminating ends in the polymerization had become Br. The results thereof are shown in Table 16-2.
  • Theoretical Mn of graft chain monomer consumption rate mole % / 100 ⁇ MW M ⁇ molar ratio of vinyl base monomer to ⁇ - bromoester group + MW I
  • a mixed solution of hydrofluoric acid (0.17 ml) and acetonitrile (0.83 ml) was prepared.
  • the polymer (2a) (10 mg) was dissolved in the above mixed solution in a polypropylene-made microtube (1.5 ml) into which a rotator was introduced, and the solution was stirred at 40°C for 24 hours in an incubator equipped with a magnetic stirrer. Then, the solution was dried up at 80°C for 3 hours in a vacuum dryer to recover the polymer.
  • the polymer was subjected to GPC measurement, and the result thereof is shown in Table 16-2.
  • Example 22 Polymerization was carried out in the same manner as in Example 22 to obtain the respective brown viscous solutions of a polymer (2b) to a polymer (2f), except that the polymerization time was changed as shown in Table 16-1. Then, the respective polymers were refined in the same manner as in Example 22 to determine a monomer conversion rate, a theoretical number average molecular weight, a number average molecular weight and a molecular weight distribution of the polymers, and the results thereof are shown Table 16-1.
  • Cuprous bromide was introduced into a heat resistant glass-made ampul in a draft which was cut off from a UV ray, and the compound (14)/methyl methacrylate/L-(-)-sparteine/anisole solution was further added thereto and quickly cooled using liquid nitrogen. Then, freezing vacuum deaeration (pressure: 1.0 Pa) was carried out three times by means of a vacuum device equipped with an oil-sealed rotary pump, and the ampul was quickly sealed by means of the hand burner while maintaining a state of vacuum.
  • a proportion of the compound (14), methyl methacrylate, cuprous bromide and L-(-)-sparteine was set to 1 : 450 : 3 : 6 in terms of a molar ratio in the above order, and a use amount of anisole was set to such an amount that a concentration of methyl methacrylate became 50 wt %.
  • the sealed heat resistant glass-made ampul was set in a constant temperature-shaking bath, and polymerization was carried out to obtain a brown viscous solution of a polymer (3a).
  • the polymerization temperature was 70°C
  • the polymerization time was 0.25 hour.
  • a monomer conversion rate in this polymerization reaction system was determined from the relation of a proton ratio of the respective substituents in the monomer and the polymer by diluting the solution of the polymer (3a) with deuterated chloroform and then subjecting the solution to 1 H-NMR measurement.
  • the polymer produced was recovered by reprecipitation and refining from hexane, and a THF solution (1 wt %) of the above polymer was prepared.
  • a theoretical molecular weight of the graft chain was calculated from the following equation assuming that an ester bond which was an initiating end in the polymerization was cut off by hydrolysis brought about by hydrofluoric acid treatment and that all terminating ends in the polymerization had become Br. The results thereof are shown in Table 17-2.
  • Theoretical Mn of graft chain monomer consumption rate mole % / 100 ⁇ MW M ⁇ molar ratio of vinyl base monomer to ⁇ - bromoester group + MW I
  • a mixed solution of hydrofluoric acid (0.17 ml) and acetonitrile (0.83 ml) was prepared.
  • the polymer (3a) (10 mg) was dissolved in the above mixed solution in a polypropylene-made microtube (1.5 ml) into which a rotator was introduced, and the solution was stirred at 40°C for 24 hours in an incubator equipped with a magnetic stirrer. Then, the solution was dried up at 80°C for 3 hours in a vacuum dryer to recover the polymer.
  • the polymer recovered was subjected to GPC measurement, and the results thereof are shown in Table 17-2.
  • Example 28 Polymerization was carried out in the same manner as in Example 28 to obtain the respective brown viscous solutions of a polymer (3b) to a polymer (3g), except that the polymerization time was changed as shown in Table 17-1.
  • the respective polymers were refined in the same manner as in Example 28 to determine a monomer conversion rate, a theoretical number average molecular weight, a number average molecular weight and a molecular weight distribution, and the results thereof are shown in Table 17-1.
  • a four neck flask having a content volume of one liter equipped with a reflux condenser, a thermometer and a dropping funnel was charged with phenyltrimethoxyosilane (99 g), sodium hydroxide (10 g) and 2-propanol (500 ml), and a rotator was put thereinto.
  • Deionized water 11 g was dropwise added thereto from the dropping funnel in about 2 minutes while stirring at a room temperature by means of a magnetic stirrer, and then the flask was heated on an oil bath up to a temperature at which 2-propanol was refluxed. After refluxing was started, stirring was continued for 1.5 hour to complete the reaction.
  • the flask was pulled up from the oil bath and left standing still a night at a room temperature to completely deposit a solid matter produced.
  • the solid matter deposited was filtrated by means of a pressure filter equipped with a membrane filter having a pore diameter of 0.1 ⁇ m. Then, the solid matter thus obtained was washed once with 2-propanol and dried at 70°C for 4 hours in a vacuum dryer to obtain a compound (A-1) (66 g) of a white solid matter.
  • a four neck flask having a content volume of 50 ml equipped with a dropping funnel, a reflux condenser and a thermometer was charged with a rotator, the compound (A-1) (1.2 g) obtained in Example 35, tetrahydrofuran (12 g) and triethylamine (1.8 g), and the flask was sealed with dry nitrogen.
  • Chlorotrimethylosilane (2.3 g) was dropwise added thereto from the dropping funnel at a room temperature in about one minute while stirring by means of a magnetic stirrer. After finishing dropwise adding, stirring was continued at a room temperature for 3 hours to complete the reaction.
  • the compound (A-T) was subjected to structural analysis by means of 1 H-NMR, 13 C-NMR, 29 Si-NMR, mass spectrometry, X ray crystal structure analysis and IR analysis. It was confirmed from a 1 H-NMR chart and a 13 C-NMR chart that a phenyl group and a trimethylsilyl group were present in an integral ratio of 7 : 3.
  • Example 35 The same operation as in Example 35 is carried out, except that cyclohexyltrimethoxysilane is substituted for phenyltrimethoxyosilane, whereby a cyclohexylsilsesquioxane compound represented by Formula (17) to which sodium is bonded can be obtained.
  • Example 4 The same operation as in Example 4 is carried out, except that the compound (17) is substituted for the compound (A-1), whereby a cyclohexylsilsesquioxane compound having trimethylsilyl group represented by Formula (18-T) can be obtained. Further, it can be confirmed by subjecting the compound (18-T) to structural analysis by the same operation as in Example 36 that the compound (17) described above is produced.
  • a four neck flask having a content volume of 200 ml equipped with a reflux condenser, a thermometer and a dropping funnel was charged with cyclopentyltrimethoxyosilane (19.0 g), THF (100 ml), sodium hydroxide (1.7 g) and deionized water (2.3 g), and the mixture was heated while stirring by means of a magnetic stirrer. After refluxing was started at 67°C, stirring was continued for 10 hours to finish the reaction. Then, the flask was pulled up from the oil bath and left standing still a night at a room temperature to completely deposit a solid matter produced. The solid matter deposited was filtered and dried under vacuum to obtain a compound of a powder-like solid matter (4.2 g).
  • Example 39 A four neck flask having a content volume of 100 ml equipped with a reflux condenser was charged with the compound (1.0 g) obtained in Example 39, THF (30 ml), triethylamine (0.5 g) and trimethylchlorosilane (0.7 g), and the mixture was stirred at a room temperature for 2 hours while stirring by means of a magnetic stirrer. After finishing the reaction, the same treatment as in confirming the structure in Example 36 was carried out to obtain a compound of a powder-like solid matter (0.9 g).
  • the compound thus obtained was analyzed by means of 1 H-NMR, 29 Si-NMR and X ray crystal structure analysis. It was confirmed from 1 H-NMR that a cyclopentyl group and a trimethylsilyl group were present in an integral ratio of 7 : 3. Confirmed from 29 Si-NMR were a peak of 8.43 ppm indicating a trimethylsilyl group and three kinds of peaks of - 66.37 ppm, -67.97 ppm and -67.99 ppm having a cyclopentyl group and indicating a T structure.
  • a ratio of the sum of the peak intensities of -67.97 ppm and -67.99 ppm to a peak intensity of -66.37 ppm was 6 : 1. It was confirmed from these results and the crystal structure obtained by the X ray crystal structure analysis that the compound of a powder-like solid matter which was the object of the analysis was a silicon compound represented by Formula (19). Accordingly, it was indicated that the compound obtained in Example 7 had a structure represented by Formula (20).
  • Example 35 The same operation as in Example 35 is carried out, except that ethyltrimethoxysilane is substituted for phenyltrimethoxyosilane, whereby an ethylsilsesquioxane compound represented by Formula (21) to which sodium is bonded can be obtained.
  • Example 36 The same operation as in Example 36 is carried out, except that the compound (21) is substituted for the compound (A-1), whereby an ethylsilsesquioxane compound having a trimethylsilyl group represented by Formula (22) can be obtained. Further, it can be confirmed by subjecting the compound (22) to structural analysis by the same operation as in Example 4 that the compound (21) described above is produced.
  • a four neck flask having a content volume of 200 ml equipped with a reflux condenser, a thermometer and a dropping funnel was charged with isobutyltrimethoxyosilane (18.7 g), THF (100 ml), sodium hydroxide (1.8 g) and deionized water (2.4 g), and the mixture was heated while stirring by means of a magnetic stirrer. After refluxing was started at 67°C, stirring was continued for 10 hours to finish the reaction. The reaction solution was concentrated under constant pressure until a solid matter was deposited, and then the resulting concentrate was left standing still a night at a room temperature to completely deposit the solid matter. This was filtered and dried under vacuum to obtain a compound of a powder-like solid matter (5.1 g).
  • a four neck flask having a content volume of 200 ml equipped with a reflux condenser was charged with the compound of a powder-like solid matter (1.0 g) obtained in Example 43, THF (20 ml), triethylamine (0.5 g) and trimethylchlorosilane (0.8 g), and the mixture was stirred at a room temperature for 2 hours while stirring by means of a magnetic stirrer. After finishing the reaction, the same treatment as in confirming the structure in Example 4 was carried out to obtain a compound of a powder-like solid matter (0.9 g).
  • Example 35 The same operation as in Example 35 is carried out, except that isooctyltrimethoxysilane is substituted for phenyltrimethoxyosilane, whereby an isooctylsilsesquioxane compound represented by Formula (25) to which sodium is bonded can be obtained.
  • Example 36 The same operation as in Example 36 is carried out, except that the compound (25) is substituted for the compound (A-1), whereby an isooctylsilsesquioxane compound having a trimethylsilyl group represented by Formula (26) can be obtained. Further, it can be confirmed by subjecting the compound (26) to structural analysis by the same operation as in Example 36 that the compound (25) described above is produced.
  • a four neck flask having a content volume of 1 liter equipped with a reflux condenser, a thermometer and a dropping funnel was charged with trifluoropropyltrimethoxyosilane (100 g), THF (500 ml), deionized water (10.5 g) and sodium hydroxide (7.9 g), and the mixture was heated on an oil bath from a room temperature up to a temperature at which THF was refluxed while stirring by means of a magnetic stirrer. After refluxing was started, stirring was continued for 5 hours to complete the reaction.
  • the flask was pulled up from the oil bath and left standing still a night at a room temperature, and then the flask was set again on the oil bath to heat and concentrate the reaction solution under constant pressure until a solid matter was deposited.
  • the product deposited was filtrated through a pressure filter equipped with a membrane filter having a pore diameter of 0.5 ⁇ m. Then, the solid matter thus obtained was washed once with THF and dried at 80°C for 3 hours in a vacuum dryer to obtain 74 g of a white power-like solid matter.
  • a four neck flask having a content volume of 50 ml equipped with a dropping funnel, a reflux condenser and a thermometer was charged with the white power-like solid matter (1.0 g) obtained in Example 47, THF (10 g) and triethylamine (1.0 g), and the flask was sealed with dry nitrogen.
  • Chlorotrimethylsilane (3.3 g) was dropwise added thereto at a room temperature in about one minute while stirring by means of a magnetic stirrer. After finishing dropwise adding, stirring was further continued at a room temperature for 3 hours to complete the reaction. Then, 10 g of pure water was added thereto to hydrolyze sodium chloride produced and unreacted chlorotrimethylsilane.
  • the reaction mixture thus obtained was transferred into a separating funnel and separated into an organic phase and an aqueous phase, and the resulting organic phase was repeatedly washed with deionized water until the washing solution became neutral.
  • the organic phase thus obtained was dried on anhydrous magnesium sulfate, filtered and concentrated under reduced pressure by means of a rotary evaporator to obtain a compound (0.9 g) of a white solid matter.
  • the white power-like solid matter thus obtained was subjected to structural analysis by means of GPC, 1 H-NMR, 29 Si-NMR and 13 C-NMR. It was confirmed from a GPC chart that the white power-like solid matter showed a monodispersibility and that it had a weight average molecular weight of 1570 in terms of polystyrene and a purity of 98 % by weight. It was confirmed from a 1 H-NMR chart that a trifluoropropyl group and a trimethylsilyl group were present in an integral ratio of 7 : 3.
  • a four neck flask having a content volume of 50 ml equipped with a reflux condenser, a thermometer and a dropping funnel was charged with tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane (4.9 g), THF (15 ml), sodium hydroxide (0.2 g) and ion-exchanged water (0.2 g), and a rotator was put thereinto to heat and reflux the mixture at 75°C. After refluxing was started, stirring was continued for 5 hours to finish the reaction. Then, it was concentrated under constant pressure by heating and dried at 80°C for 3 hours in a vacuum dryer to obtain 4.0 g of a viscous liquid.
  • Example 49 A three neck flask having a content volume of 50 ml was charged with the viscous liquid (2.6 g) obtained in Example 49, THF (10 g), triethylamine (1.0 g) and trimethylchlorosilane (3.3 g), and the mixture was stirred at a room temperature for 3 hours while stirring by means of a magnetic stirrer. After finishing the reaction, the same treatment as in confirming the structure in Example 48 was carried out to obtain 1.3 g of a viscous liquid.
  • the compound thus obtained was analyzed by GPC. As a result of carrying out the measurement, it was confirmed that the viscous liquid was monodispersed and that it had a weight average molecular weight of 3650 (not corrected) in terms of polystyrene and a purity of 100 %. Synthetically judging from the above result and the results obtained in Examples 35 to 48, it was estimated that the viscous liquid which was the object of the analysis was a silicon compound represented by Formula (29). Accordingly, it is indicated that the compound obtained in Example 49 has a structure represented by Formula (30).
  • Example 37 The same operation as in Example 3 is carried out, except that the compound (17) obtained in Example 37 is substituted for the compound (A-1), whereby a compound represented by Formula (31) can be obtained.
  • Example 39 The same operation as in Example 3 is carried out, except that the compound (20) obtained in Example 39 is substituted for the compound (A-1), whereby a compound represented by Formula (32) can be obtained.
  • Example 3 The same operation as in Example 3 is carried out, except that the compound (21) obtained in Example 41 is substituted for the compound (A-1), whereby a compound represented by Formula (33) can be obtained.
  • Example 41 The same operation as in Example 3 is carried out, except that the compound (21) obtained in Example 41 is substituted for the compound (A-1), whereby a compound represented by Formula (34) can be obtained.
  • Example 3 The same operation as in Example 3 is carried out, except that the compound (24) obtained in Example 43 is substituted for the compound (A-1), whereby a compound represented by Formula (35) can be obtained.
  • a reactor having a content volume of 300 ml equipped with a dropping funnel, a thermometer and a stirrer was charged with the compound (28) (10 g) obtained by making use of the method of Example 47 and a hydrochlorofluorocarbon base mixed solvent HCFC-225 (80 ml) and sealed with dry nitrogen.
  • Chlorodimethylsilane (12.5 g) was dropwise added thereto in about 5 minutes while stirring at a room temperature. After finishing dropwise adding, the solution was heated so that a solution temperature was 50°C, and after reaching 50°C, stirring was continued for 5 hours. The solution was cooled until a solution temperature was 30°C or lower, and then ion-exchanged water (60 g) was dropwise added thereto in about 5 minutes.
  • the hydrochlorofluorocarbon base mixed solvent HCFC-225 described above is a mixture of CF 3 CF 2 CHCl 2 and CClF 2 CF 2 CHClF.
  • Example 56 The same operation as in Example 56 is carried out, except that the compound (30) obtained in Example 50 is substituted for the compound (A-1), whereby a compound represented by Formula (37) can be obtained.
  • the compound (5-1) described in Example 3 can be obtained by a method in which a compound represented by Formula (38) (trisilanolphenyl POSS, manufactured by Hybrid Plastics Co., Ltd. In U.S.) used as a raw material is reacted with dimethylchlorosilane (1.0 equivalent or more based on silanol) in tetrahydrofuran in the presence of triethylamine (1.0 equivalent or more based on silanol).
  • a compound represented by Formula (38) trisilanolphenyl POSS, manufactured by Hybrid Plastics Co., Ltd. In U.S.
  • dimethylchlorosilane 1.0 equivalent or more based on silanol
  • triethylamine 1.0 equivalent or more based on silanol
  • the compound (31) described in Example 51 can be obtained by a method in which a compound represented by Formula (39) (trisilanolcyclohexyl POSS, manufactured by Hybrid Plastics Co., Ltd. in U.S.) used as a raw material is reacted with dimethylchlorosilane (1.0 equivalent or more based on silanol) in tetrahydrofuran in the presence of triethylamine (1.0 equivalent or more based on silanol).
  • a compound represented by Formula (39) trisilanolcyclohexyl POSS, manufactured by Hybrid Plastics Co., Ltd. in U.S.
  • the compound (32) described in Example 52 can be obtained by a method in which a compound represented by Formula (40) (trisilanolcyclopentyl POSS, manufactured by Hybrid Plastics U.S Co., Ltd. in U.S.) used as a raw material is reacted with dimethylchlorosilane (1.0 equivalent or more based on silanol) in tetrahydrofuran in the presence of triethylamine (1.0 equivalent or more based on silanol).
  • Formula (40) trisilanolcyclopentyl POSS, manufactured by Hybrid Plastics U.S Co., Ltd. in U.S.
  • the compound (33) described in Example 53 can be obtained by a method in which a compound represented by Formula (41) (trisilanolethyl POSS, manufactured by Hybrid Plastics Co., Ltd. in U.S.) used as a raw material is reacted with dimethylchlorosilane (1.0 equivalent or more based on silanol) in tetrahydrofuran in the presence of triethylamine (1.0 equivalent or more based on silanol).
  • Formula (41) trisilanolethyl POSS, manufactured by Hybrid Plastics Co., Ltd. in U.S.
  • the compound (34) described in Example 54 can be obtained by a method in which a compound represented by Formula (42) (trisilanolisobutyl POSS, manufactured by Hybrid Plastics Co., Ltd. in U.S.) used as a raw material is reacted with dimethylchlorosilane (1.0 equivalent or more based on silanol) in tetrahydrofuran in the presence of triethylamine (1.0 equivalent or more based on silanol).
  • Formula (42) trisilanolisobutyl POSS, manufactured by Hybrid Plastics Co., Ltd. in U.S.
  • the compound (35) described in Example 55 can be obtained by a method in which a compound represented by Formula (43) (trisilanolisooctyl POSS, manufactured by Hybrid Plastics Co., Ltd. in U.S.) used as a raw material is reacted with dimethylchlorosilane (1.0 equivalent or more based on silanol) in tetrahydrofuran in the presence of triethylamine (1.0 equivalent or more based on silanol).
  • Formula (43) trisilanolisooctyl POSS, manufactured by Hybrid Plastics Co., Ltd. in U.S.
  • Example 47 A 300 ml four neck flask equipped with a dropping funnel, a reflux condenser, a thermometer and a rotator was set in an ice bath.
  • the compound (28) 5 g obtained in Example 47 was put into the above four-neck flask and dissolved in butyl acetate (50 g), and then acetic acid (0.5 g) was dropwise added thereto.
  • the flask was stirred for one hour in the ice bath. After put back to a room temperature, the reaction solution was washed (three times) with deionized-water (100 ml).
  • the solvent was distilled off by means of a rotary evaporator, and the residue was dried (50°C, one hour) as it was under reduced pressure to obtain a viscous liquid (4.3 g).
  • the compound thus obtained was subjected to GPC measurement to result in finding that a single peak was shown and that the presence of impurities was not confirmed. Further, analysis using IR was carried out to result in confirming absorption (in the vicinity of 3400 cm -1 ) indicating the presence of a silanol group. Accordingly, it was indicated that the compound obtained had a structure represented by Formula (44).
  • the compound (36) described in Example 56 can be obtained by a method in which the compound (44) described above used as a raw material is reacted with dimethylchlorosilane (1.0 equivalent or more based on silanol) in HCFC-225 in the presence of triethylamine (1.0 equivalent or more based on silanol).
  • Example 64 The same operation as in Example 64 is carried out, except that the compound (30) obtained in Example 50 is substituted for the compound (28) obtained in Example 47, whereby a compound represented by Formula (45) can be obtained.
  • the compound (37) described in Example 57 can be obtained by a method in which the compound (45) described above used as a raw material is reacted with dimethylchlorosilane (1.0 equivalent or more based on silanol) in HCFC-225 in the presence of triethylamine (1.0 equivalent or more based on silanol).
  • Example 4 The same operation as in Example 4 is carried out, except that used is the compound (5-1) described in Example 3 which is derived using the compound (38) described above as a raw material, whereby the compound represented by Formula (11) which is described in Example 4 can be derived. Then, the silicon compound having a dithiocarbamoyl group represented by Formula (12) described above can be obtained by the same operation as in Example 5 using the above compound (11) as a raw material.
  • silsesquioxane compounds having a hydrosilyl group which are derived by the methods described in Examples 51 to 56 or Examples 59 to 64 are used as raw materials to carry out the same operation as in Example 4, whereby silsesquioxanes having a chloromethylphenylethyl group represented by Formula (46) and shown in Table 18 can be derived.
  • Table 18 Example No. Compound name R 12 Raw material compound 67 Compound (46-1) CH Compound (31) 68 Compound (46-2) CP Compound (32) 69 Compound (46-3) Et Compound (33) 70 Compound (46-4) iBu Compound (34) 71 Compound (46-5) iOc Compound (35) 72 Compound (46-6) TFPr Compound (36)
  • Example 4 The same operation as in Example 4 is carried out, except that the compound (37) is used as a raw material and that the solvent is changed from toluene to HCFC-225, whereby silsesquioxane having a chloromethylphenylethyl group represented by Formula (46-7) can be derived.
  • silsesquioxane compounds having a hydrosilyl group which are derived by the methods described in Examples 51 to 55 or Examples 59 to 63 are used as raw materials to carry out the same operation as in Example 13, whereby silsesquioxanes having a hydroxyethoxypropyl group represented by Formula (47) and shown in Table 19 can be derived.
  • Table 19 Example No. Compound name R 12 Raw material Raw material 74 Compound (47-1) CH Compound (31) 75 Compound (47-2) CP Compound (32) 76 Compound (47-3) Et Compound (33) 77 Compound (47-4) iBu Compound (34) 78 Compound (47-5) iOc Compound (35)
  • a reactor having a content volume of 100 ml equipped with a dropping funnel, a thermometer and a stirrer was charged with the compound (29) (2.5 g), ethylene glycol monoallyl ether (2.7 g) and toluene (3.0 g) and sealed with dry nitrogen.
  • a platinum divinyltetramethyldisiloxane complex (17 ⁇ l) was added thereto at a room temperature by means of a microsyringe while stirring by means of a magnetic stirrer. After stirring was further continued for 2 hours, the reaction solution was sampled and subjected to infrared absorption spectral analysis to confirm that a peak of 2,130 cm -1 originating in Si-H disappeared, and it was regarded as an end point of the reaction.
  • the reaction solution was concentrated under reduced pressure by means of a rotary evaporator to obtain 2.6 g of a brown viscous liquid.
  • the above transparent viscous liquid had a GPC purity of 99.9 %, a number average molecular weight of 1,790 and a weight average molecular weight of 1,910. It was found from the results of 1 H-NMR, 13 C-NMR and 29 Si-NMR that the above compound had a structure represented by Formula (47-6).
  • Example 13 The same operation as in Example 13 is carried out, except that the compound (37) is used as a raw material and that the solvent is changed from toluene to HCFC-225, whereby silsesquioxane having a hydroxyethoxypropyl group represented by Formula (47-7) can be derived.
  • silsesquioxane compounds having a hydrosilyl group which are derived by the methods described in Examples 51 to 56 or Examples 59 to 64 are used as raw materials to carry out the same operation as in Example 15, whereby silsesquioxanes having a hydroxybutyl group represented by Formula (48) and shown in Table 20 can be derived.
  • Table 20 Example No. Compound name R 12 Raw material compound 81 Compound (48-1) CH Compound (31) 82 Compound (48-2) CP Compound (32) 83 Compound (48-3) Et Compound (33) 84 Compound (48-4) iBu Compound (34) 85 Compound (48-5) iOc Compound (35) 86 Compound (48-6) TFPr Compound (36)
  • Example 15 The same operation as in Example 15 is carried out, except that the compound (37) is used as a raw material and that the solvent is changed from toluene to HCFC-225, whereby silsesquioxane having a hydroxybutyl group represented by Formula (48-7) can be derived.
  • silsesquioxanes having a hydroxyethoxypropyl group which are derived by the methods described in Examples 74 to 78 are used as raw materials to carry out the same operation as in Example 14, whereby silane compounds having a 2-bromo-2-methylpropanoyloxyethoxypropyl group represented by Formula (49) and shown in Table 21 can be synthesized.
  • Table 21 Example No. Compound name R 12
  • Raw material compound 88 Compound (49-1) CH Compound (47-1) 89 Compound (49-2) CP Compound (47-2) 90 Compound (49-3) Et Compound (47-3) 91 Compound (49-4) iBu Compound (47-4) 92 Compound (49-5) iOc Compound (47-5)
  • a 100 ml Kjeldahl flask was charged with the compound (47-6) (3.15 g) derived by the method described in Example 79, triethylamine (0.925 g) dried on molecular sieves (4A) and dry methylene chloride (36.2 ml) under argon atmosphere.
  • the compound (47-6) was dissolved while stirring at a room temperature by means of a magnetic stirrer, and then the solution was cooled on a dry ice-methanol bath to maintain a solution temperature at -78°C.
  • the above transparent viscous liquid had a GPC purity of 96.2 %, and it was found from the results of 1 H-NMR, 13 C-NMR and 29 Si-NMR each shown below that the above compound had a structure represented by Formula (49-6).
  • Example 14 The same operation as in Example 14 is carried out, except that the compound (37) is used as a raw material and that the solvent is changed from dry methylene chloride to dry HCFC-225, whereby a silicon compound having a 2-bromo-2-methylpropanoyloxyethoxypropyl group represented by Formula (49-7) can be derived.
  • Example 16 The same operation as in Example 16 is carried out, except that the silsesquioxanes having a hydroxybutyl group which are obtained by the methods described in Examples 81 to 86 are used as raw materials, whereby silicon compounds having a 2-bromo-2-methylpropanoyloxybutyl group represented by Formula (50) and shown in Table 22 can be synthesized.
  • Table 22 Example No.
  • Example 16 The same operation as in Example 16 is carried out, except that the compound (48-7) is used as a raw material and that the solvent is changed from dry methylene chloride to dry HCFC-225, whereby a silicon compound having a 2-bromo-2-methylpropanoyloxybutyl group represented by Formula (50-7) can be synthesized.
  • Example 5 The same operation as in Example 5 is carried out, except that the silsesquioxanes having a chloromethylphenylethyl group which are obtained by the methods described in Examples 67 to 72 are used as raw materials, whereby silicon compounds having a dithiocarbamoyl group represented by Formula (51) and shown in Table 23 can be synthesized.
  • Example 5 The same operation as in Example 5 is carried out, except that the compound (46-7) is used as a raw material and that the solvent is changed from tetrahydrofuran to dry HCFC-225, whereby a silicon compound having a dithiocarbamoyl group represented by Formula (51-7) can be synthesized.
  • Cuprous bromide was introduced into a heat resistant glass-made ampul in a draft which was cut off from a UV ray, and the compound (49-6)/methyl methacrylate/L-(-)-sparteine/xylene solution was further added and quickly cooled using liquid nitrogen. Then, freezing vacuum deaeration (pressure: 1.0 Pa) was carried out three times by means of a vacuum device equipped with an oil-sealed rotary pump, and the ampul was quickly sealed by means of a hand burner while maintaining a state of vacuum.
  • a proportion of the compound (49-6), methyl methacrylate, cuprous bromide and L-(-)-sparteine was set to 1 : 900 : 3 : 6 in terms of a molar ratio in the above order, and a use amount of xylene was set to such an amount that a concentration of methyl methacrylate was 30 wt%.
  • the sealed heat resistant glass-made ampul was set in a constant temperature-shaking bath, and polymerization was carried out to obtain a brown viscous solution of a polymer (4a).
  • the polymerization temperature was 70°C, and the polymerization time was 1.0 hour.
  • the solution of the polymer (4a) was sampled and diluted with tetrahydrofuran, and then it was subjected to GPC measurement.
  • a monomer conversion rate in this polymerization reaction system was analyzed based on a peak area obtained from a GPC measured value of a poly(methyl methacrylate) having a known concentration.
  • the polymer obtained was refined by a reprecipitation method using hexane, and a THF solution (1 wt%) of the above polymer was prepared. This was allowed to pass through a column filled with activated alumina to thereby remove the copper complex by adsorption. Further, this solution was dropwise added to hexane to reprecipitate the polymer, and it was dried (80°C, 6 hours) under reduced pressure. Shown in Table 24-1 are a monomer conversion rate in the above polymerization reaction system, a theoretical number average molecular weight of the polymer (4a) derived from the above monomer conversion rate, the number average molecular weight actually measured by GPC and the molecular weight distribution.
  • a theoretical molecular weight of the graft chain was calculated from the following equation assuming that an ester bond which was an initiating end in the polymerization was cut off by hydrolysis brought about by hydrofluoric acid treatment and that all terminating ends in the polymerization had become Br. The results thereof are shown in Table 24-2.
  • Theoretical Mn of graft chain monomer consumption rate mole % / 100 ⁇ MW M ⁇ molar ratio of vinyl base monomer to ⁇ - bromoester group + MW I
  • a mixed solution of hydrofluoric acid (0.17 ml) and acetonitrile (0.83 ml) was prepared.
  • the polymer (4a) (10 mg) was dissolved in the above mixed solution in a polypropylene-made microtube (1.5 ml) into which a rotator was introduced, and the solution was stirred at 40°C for 24 hours in an incubator equipped with a magnetic stirrer. Then, the solution was dried up at 80°C for 3 hours in a vacuum dryer to recover the polymer.
  • the above polymer was subjected to GPC measurement, and the result thereof is shown in Table 24-2.
  • Example 109 Polymerization was carried out in the same manner as in Example 109 to obtain the respective brown viscous solutions of a polymer (4b) to a polymer (4e), except that the polymerization time was changed as shown in Table 24-1.
  • the respective polymers were refined in the same manner as in Example 109 to determine a monomer conversion rate, a theoretical number average molecular weight, a number average molecular weight and a molecular weight distribution, and the results thereof are shown in Table 24-1.
  • the silicon compound provided by the present invention is a silsesquioxane derivative and has an excellent living-polymerizable radical polymerization-initiating function.
  • the silicon compound of the present invention shows an excellent living radical polymerization-accelerating function particularly to styrene derivatives and (meth)acrylic acid derivatives. For example, it is possible to initiate polymerization of a (meth)acryl base monomer by the silicon compound of the present invention to form a (meth)acryl base polymer with 3 points in the silsesquioxane structure of the present invention being utilized as starting points.
  • the silicon compound of the present invention has characteristics other than the function of a polymerization initiator.
  • ⁇ -haloester has a strong electrophilicity, and therefore reaction of the silicon compound of the present invention with nucleophilic reagents makes it possible to synthesize various silsesquioxane derivatives corresponding to the nucleophilic reagents. Accordingly, the silicon compound of the present invention is also useful as an intermediate in organic synthesis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polymerisation Methods In General (AREA)

Claims (46)

  1. Silicium-Verbindung dargestellt durch die Formel (1):
    Figure imgb0222
    worin die jeweiligen Gruppen R1 Gruppen sind unabhängig ausgewählt aus Wasserstoff, Alkyl mit einer Kohlenstoffzahl von 1 bis 40, worin wahlweise Wasserstoffe durch Fluor substituiert sein können und worin wahlweise -CH2- mit -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen substituiert sein können, substituiertem oder nicht-substituiertem Aryl und Arylalkyl, gebildet aus einer substituierten oder nicht-substituierten Aryl-Gruppe und einer Alkylen-Gruppe, worin wahlweise Wasserstoffe durch Fluor ersetzt sein können und worin wahlweise -CH2-substituiert sein kann mit -O- oder -CH=CH-; R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl; und A eine Gruppe mit einer Polymerisationsinitiierungsfähigkeit für ein Monomer ist und eine Gruppe ist, dargestellt durch eine der Formeln (2-1), (2-2) und Formel (2-3):
    Figure imgb0223
    worin Z1 Alkylen mit einer Kohlenstoffzahl von 1 bis 3 ist, worin wahlweise -CH2- durch -O- substituiert sein kann; Z2 Alkylen mit einer Kohlenstoffzahl von 2 bis 10 ist, worin wahlweise -CH2- substituiert sein kann durch -O-, -COO- oder -OCO-; R6 Alkyl ist mit einer Kohlenstoffzahl von 1 bis 3; a eine ganze Zahl von 0 bis 2 ist; X Halogen ist; und eine Bindeposition von Z1 an einem Benzol-Ring eine meta-Position oder para-Position zu einer Bindeposition von Z2 ist, und eine Bindeposition von R6 eine wahlweise Position ist, mit Ausnahme der jeweiligen Bindeposition von Z1 und Z2;
    Figure imgb0224
    worin R4 und R5 unabhängig Wasserstoff, Alkyl mit einer Kohlenstoffzahl von 1 bis 12, Cycloalkyl mit einer Kohlenstoffzahl von 5 bis 10 oder Aryl mit einer Kohlenstoffzahl von 6 bis 10 sind, und R4 und R5 miteinander kombiniert sein können, zur Bildung eines Rings zusammen mit N; Z1 Alkylen mit einer Kohlenstoffzahl von 1 bis 3 ist, worin wahlweises -CH2-substituiert sein kann mit -O-; Z2 Alkylen mit einer Kohlenstoffzahl von 2 bis 10 ist, worin wahlweises -CH2- substituiert sein kann mit -O-, -COO- oder -OCO-; R6 Alkyl mit einer Kohlenstoffzahl von 1 bis 3 ist; a eine ganze Zahl von 0 bis 2 ist; und eine Bindeposition von Z1 an einem Benzol-Ring eine meta- oder para-Position zur Bindeposition von Z2 ist, und eine Bindeposition von R6 eine wahlweise Position ist, mit Ausnahme der jeweiligen Bindeposition von Z1 und Z2;
    Figure imgb0225
    worin Z4 Alkylen mit einer Kohlenstoffzahl von 2 bis 20 ist oder Alkenylen mit einer Kohlenstoffzahl von 3 bis 8 ist, und wahlweises -CH2- in diesen Alkylen und Alkenylen mit -O- substituiert sein kann; R7 Wasserstoff, Alkyl mit einer Kohlenstoffzahl von 1 bis 20 ist, Aryl mit einer Kohlenstoffzahl von 6 bis 20 oder Arylalkyl mit einer Kohlenstoffzahl von 7 bis 20 ist; R8 Alkyl mit einer Kohlenstoffzahl von 1 bis 20, Aryl mit einer Kohlenstoffzahl von 6 bis 20 oder Arylalkyl mit einer Kohlenstoffzahl von 7 bis 20 ist; und X1 Halogen ist.
  2. Silicium-Verbindung nach Anspruch 1, worin die jeweiligen R1 Gruppen sind, unabhängig ausgewählt aus Wasserstoff und Alkyl mit einer Kohlenstoffzahl von 1 bis 30, worin wahlweise Wasserstoffe durch Fluor substituiert sein können und worin wahlweises -CH2- mit -O- oder Cycloalkylen substituiert sein kann.
  3. Silicium-Verbindung nach Anspruch 1, worin die jeweiligen R1 Gruppen sind, unabhängig ausgewählt aus Alkenyl mit einer Kohlenstoffzahl von 2 bis 20, worin wahlweise Wasserstoffe mit Fluor substituiert sein können und worin wahlweise -CH2- substituiert sein kann mit -O- oder Cycloalkylen, und Alkyl mit einer Kohlenstoffzahl von 1 bis 20, worin wahlweise Wasserstoffe durch Fluor substituiert sein können und worin zumindest ein -CH2- mit Cycloalkenylen substituiert ist.
  4. Silicium-Verbindung nach Anspruch 1, worin die jeweiligen R1 Gruppen sind, unabhängig ausgewählt aus Phenyl, worin wahlweise Wasserstoffe durch Halogen oder Alkyl mit einer Kohlenstoffzahl von 1 bis 10 substituiert sein können, und nicht-substituiertem Naphthyl; worin im Alkyl, das ein Substituent von - Phenyl ist, wahlweise Wasserstoffe substituiert sein können mit Fluor und wahlweises -CH2- mit -O-, -CH=CH-, Cycloalkylen oder Phenylen substituiert sein kann; und wenn das Phenyl mehrere Substituenten hat, können die Substituenten gleich oder verschiedene Gruppen sein.
  5. Silicium-Verbindung nach Anspruch 1, worin die jeweiligen R1 Gruppen sind, unabhängig ausgewählt aus Phenylalkyl, das aus einer Phenyl-Gruppe gebildet ist, worin wahlweise Wasserstoffe durch Halogen oder Alkyl mit einer Kohlenstoffzahl von 1 bis 12 und einer Alkylen-Gruppe mit einer Kohlenstoffzahl von 1 bis 12 substituiert sein können, worin wahlweise Wasserstoffe mit Fluor substituiert sein können und worin wahlweises -CH2- mit -O- oder -CH=CH- substituiert sein kann; im Alkyl, das ein Substituent der Phenyl-Gruppe ist, wahlweise Wasserstoffe durch Fluor substituiert sein können und wahlweise -CH2- durch -O-, -CH=CH-, Cycloalkylen oder Phenylen substituiert sein; und wenn die Phenyl-Gruppe mehrere Substituenten hat, können die Substituenten gleiche oder verschiedene Gruppen sein.
  6. Silicium-Verbindung nach Anspruch 1, worin die jeweiligen R1 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweise Wasserstoffe mit Fluor substituiert sein können und wahlweises -CH2- substituiert sein kann durch -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen, Phenyl, worin wahlweise Wasserstoffe mit Halogen, Methyl oder Methoxy substituiert sein können, nicht-substituiertem Naphthyl und Phenylalkyl, gebildet aus einer Phenyl-Gruppe, worin wahlweise Wasserstoffe mit Fluor, Alkyl mit einer Kohlenstoffzahl von 1 bis 4, Vinyl oder Methoxy substituiert sein können und einer Alkylen-Gruppe mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweises -CH2- mit -O- oder -CH=CH-substituiert sein kann; und wenn das Phenyl oder die Phenyl-Gruppe in dem Phenylalkyl mehrere Substituenten hat, können die Substituenten gleiche oder verschiedene Gruppen sein.
  7. Silicium-Verbindung nach Anspruch 1, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweise Wasserstoffe mit Fluor substituiert sein können und worin wahlweises -CH2- mit -O-, -CH=CH-, Cycloalkyl oder Cycloalkenylen substituiert sein können, Phenyl, worin wahlweise Wasserstoffe mit Halogen, Methyl oder Methoxy substituiert sein können, nicht-substituiertem Naphthyl und Phenylalkyl, gebildet aus einer Phenyl-Gruppe, worin wahlweise Wasserstoffe mit Fluor, Alkyl mit einer Kohlenstoffzahl von 1 bis 4, Vinyl oder Methoxy substituiert sein können, und einer Alkylen-Gruppe mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweises -CH2- mit -O- oder -CH=CH- substituiert sein kann; und wenn das Phenyl oder die Phenyl-Gruppe in dem Phenylalkyl mehrere Substituenten hat, können die Substituenten die gleichen oder verschiedene Gruppen sein.
  8. Silicium-Verbindung nach Anspruch 1, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Ethyl, 3,3,3-Trifluorpropyl, 2-Methylpropyl, 2,4,4-Trimethylphenyl, Tridecafluor-1,1,2,2-tetrahydrooctyl, Cyclopentyl, Cyclohexyl und Phenyl.
  9. Silicium-Verbindung nach Anspruch 1, worin alle R1 die gleiche Gruppe sind, ausgewählt aus 3,3,3-Trifluorpropyl; und R2 und R3 Methyl sind.
  10. Silicium-Verbindung nach Anspruch 1, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweise Wasserstoffe mit Fluor substituiert sein können, und worin wahlweises -CH2- substituiert sein kann durch -O-, -CH=CH-, Cycloalkylen oder Cycloalkenyl, Phenyl, worin wahlweise Wasserstoffe durch Halogen, Methyl oder Methoxy substituiert sein können, nicht-substituiertem Naphthyl und Phenylalkyl, gebildet aus einer Phenyl-Gruppe, worin wahlweise Wasserstoffe mit Fluor, Alkyl mit einer Kohlenstoffzahl von 1 bis 4, Vinyl oder Methoxy substituiert sein können, und einer Alkylen-Gruppe mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweises -CH2- durch -O- oder -CH=CH- substituiert sein kann, wenn das Phenyl oder die Phenyl-Gruppe in dem Phenylalkyl mehrere Substituenten hat, können die Substituenten gleiche oder verschiedene Gruppen sein; und A ist durch die Formel (2-1) dargestellt.
  11. Silicium-Verbindung nach Anspruch 1, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Ethyl, 3,3,3-Trifluorpropyl, 2-Methylpropyl, 2,4,4-Trimethylpentyl, Tridecafluor-1,1,2,2-tetrahydrooctyl, Cyclopentyl, Cyclohexyl und Phenyl; A die Gruppe ist, dargestellt durch die Formel (2-1), Z2 in der Formel (2-1) die Bedeutung Z3-C2H4- ist; und Z3 eine Einfachbindung oder Alkylen mit einer Kohlenstoffzahl von 1 bis 8 ist, worin wahlweises -CH2- substituiert sein kann mit -O-, -COO- oder -OCO-.
  12. Silicium-Verbindung nach Anspruch 1, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Phenyl und 3,3,3-Trifluorpropyl; R2 und R3 Methyl sind; A die Gruppe ist, dargestellt durch die Formel (2-1) und in der Formel (2-1) Z1 -CH2-, Z2 -C2H4-, X Chlor oder Brom, und a 0 sind.
  13. Silicium-Verbindung nach Anspruch 1, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweise Wasserstoffe mit Fluor substituiert sein können und worin wahlweise -CH2- mit -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen substituiert sein kann, Phenyl, worin wahlweise Wasserstoffe mit Halogen, Methyl oder Methoxy substituiert sein können, nicht-substituiertem Naphthyl und Phenylalkyl, gebildet aus einer Phenyl-Gruppe, worin wahlweise Wasserstoffe durch Fluor, Alkyl mit einer Kohlenstoffzahl von 1 bis 4, Vinyl oder Methoxy substituiert sein können, und einer Alkylen-Gruppe mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweises -CH2- durch -O- oder -CH=CH- substituiert sein kann; wenn Phenyl oder die Phenyl-Gruppe in dem Phenylalkyl mehrere Substituenten hat, können die Substituenten gleiche oder verschiedene Gruppen sein; und A ist die Gruppe, dargestellt durch die Formel (2-2).
  14. Silicium-Verbindung nach Anspruch 1, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Ethyl, 3,3,3-Trifluorpropyl, 2-Methylpropyl, 2,4,4-Trimethylpentyl, Tridecafluor-1,1,2,2-tetrahydrooctyl, Cyclopentyl, Cyclohexyl und Phenyl; A die Gruppe ist, dargestellt durch die Formel (2-2); und in der Formel (2-2) Z2 Z3-C2H4- und Z3 eine Einfachbindung oder Alkylen mit einer Kohlenstoffzahl von 1 bis 8 ist, worin wahlweises -CH2- substituiert sein kann durch -O-, -COO- oder -OCO-.
  15. Silicium-Verbindung nach Anspruch 1, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Phenyl und 3,3,3-Trifluorpropyl; R2 und R3 Methyl sind; A die Gruppe ist, dargestellt durch die Formel (2-2); und in der Formel (2-2) R4 und R5 Ethyl sind; Z1 -CH2- ist; Z2 -C2H4- ist und a 0 ist.
  16. Silicium-Verbindung nach Anspruch 1, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweise Wasserstoffe durch Fluor substituiert sein können und worin wahlweises -CH2- substituiert sein kann durch -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen, Phenyl, worin wahlweise Wasserstoffe durch Halogen, Methyl oder Methoxy substituiert sein können, nicht-substituiertem Naphthyl und Phenylalkyl, gebildet aus einer Phenyl-Gruppe, worin wahlweise Wasserstoffe mit Fluor, Alkyl mit einer Kohlenstoffzahl von 1 bis 4, Vinyl oder Methoxy substituiert sein können und einer Alkylen-Gruppe mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweises -CH2- substituiert sein kann mit -O- oder -CH=CH-; R1 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl; und A die Gruppe ist, dargestellt durch die Formel (2-3).
  17. Silicium-Verbindung nach Anspruch 1, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Ethyl, 3,3,3-Trifluorpropyl, 2-Methylpropyl, 2,4,4-Trimethylpentyl, Tridecafluor-1,1,2,2-tetrahydrooctyl, Cyclopentyl, Cyclohexyl und Phenyl; A die Gruppe ist, dargestellt durch die Formel (2-3); und Z4 in der Formel (2-3) Alkylen mit einer Kohlenstoffzahl von 2 bis 10 ist, worin wahlweises -CH2- substituiert sein kann durch -0-.
  18. Silicium-Verbindung nach Anspruch 1, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Phenyl und 3,3,3-Trifluorpropyl; R2 und R3 Methyl sind; A die Gruppe ist, dargestellt durch die Formel (2-3); und in der Formel (2-3) Z4 -C2H4-, -C3H4- oder -C2H4-O-C3H6- sind; R7 und R8 Methyl sind und X Brom ist.
  19. Produktionsverfahren für eine Silicium-Verbindung, dargestellt durch die Formel (1-1), dargestellt durch Durchführen eines Schrittes (a) und dann eines Schrittes (b):
    Figure imgb0226
    worin die jeweiligen Gruppen R1 Gruppen sind unabhängig ausgewählt aus Wasserstoff, Alkyl mit einer Kohlenstoffzahl von 1 bis 40, worin wahlweise Wasserstoffe durch Fluor substituiert sein können und worin wahlweise -CH2- mit -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen substituiert sein können, substituiertem oder nicht-substituiertem Aryl und Arylalkyl, gebildet aus einer substituierten oder nicht-substituierten Aryl-Gruppe und einer Alkylen-Gruppe, worin wahlweise Wasserstoffe durch Fluor ersetzt sein können und worin wahlweise -CH2-substituiert sein kann mit -O- oder -CH=CH-; R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl; und A1 eine Gruppe ist, dargestellt durch die Formel (2-1-1) :
    Figure imgb0227
    worin Z1 Alkylen mit einer Kohlenstoffzahl von 1 bis 3 ist, worin wahlweises -CH2- substituiert sein kann mit -O-; Z3 eine Einfachbindung oder Alkylen mit einer Kohlenstoffzahl von 1 bis 8 ist, worin wahlweises -CH2-substituiert sein kann mit -O-, -COO- oder -OCO-; R6 eine Kohlenstoffzahl von 1 bis 3 ist; a eine ganze Zahl von 0 bis 2 ist; X Halogen ist; und eine Bindeposition von Z1 an einem Benzol-Ring eine meta-Position oder para-Position zu einer Bindeposition von Z3 ist, und eine Bindeposition von R6 eine wahlweise Position mit Ausnahme der jeweiligen Bindepositionen von Z1 und Z3 ist;
    <Schritt (a) >
    ein Schritt, worin eine Verbindung mit der Formel (3-1) mit einer Verbindung mit der Formel (4) reagiert wird, unter Erhalt einer Verbindung mit der Formel (5):
    Figure imgb0228
    Figure imgb0229
    Figure imgb0230
    worin R1, R2 und R3 in den obigen Formeln die gleichen Bedeutungen wie bei der Formel (1-1) haben;
    <Schritt (b) >
    ein Schritt, worin die Verbindung mit der Formel (5) mit einer Verbindung mit der Formel (6-1) in der Gegenwart eines Übergangsmetallkatalysators reagiert wird, unter Erhalt der Silicium-Verbindung mit der Formel (1-1):
    Figure imgb0231
    worin die Bedeutungen in der obigen Formel die gleiche Bedeutungen wie bei den jeweiligen Substituenten in der Formel (2-1-1) haben und die Bindepositionen der Substituenten die gleichen sind wie die Bindepositionen der Substituenten in der Formel (2-1-1).
  20. Produktionsverfahren nach Anspruch 19, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweise Wasserstoffe mit Fluor substituiert sein können und worin wahlweises -CH2- substituiert sein kann mit -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen, Phenyl, worin wahlweise Wasserstoffe substituiert sein können mit Halogen, Methyl oder Methoxy, nicht-substituiertem Naphthyl und Phenylalkyl, gebildet aus eine Phenyl-Gruppe, worin wahlweise Wasserstoffe substituiert sein können mit Fluor, Alkyl mit einer Kohlenstoffzahl von 1 bis 4, Vinyl oder Methoxy, und einer Alkylen-Gruppe, worin wahlweises -CH2- substituiert sein kann mit -O-; und R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl.
  21. Produktionsverfahren nach Anspruch 19, worin alle R1 die gleiche Gruppe sind, ausgewählt aus 3,3,3-Trifluorpropyl, 2-Methylpropyl, 2,4,4-Trimethylpentyl, Tridecafluor-1,1,2,2-tetrahydrooctyl, Cyclopentyl, Cyclohexyl und Phenyl; und R2 und R3 Methyl sind.
  22. Produktionsverfahren für eine Silicium-Verbindung, dargestellt durch die Formel (1-1), gekennzeichnet durch Durchführen eines Schrittes (c) und dann eines Schrittes (b):
    Figure imgb0232
    worin die jeweiligen Gruppen R1 Gruppen sind unabhängig ausgewählt aus Wasserstoff, Alkyl mit einer Kohlenstoffzahl von 1 bis 40, worin wahlweise Wasserstoffe durch Fluor substituiert sein können und worin wahlweise -CH2- mit -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen substituiert sein können, substituiertem oder nicht-substituiertem Aryl und Arylalkyl, gebildet aus einer substituierten oder nicht-substituierten Aryl-Gruppe und einer Alkylen-Gruppe, worin wahlweise Wasserstoffe durch Fluor ersetzt sein können und worin wahlweise -CH2-substituiert sein kann mit -0- oder -CH=CH-; R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl; und A1 eine Gruppe ist, dargestellt durch die Formel (2-1-1) :
    Figure imgb0233
    worin Z1 Alkylen mit einer Kohlenstoffzahl von 1 bis 3 ist, worin wahlweises -CH2- substituiert sein kann mit -O-; Z3 eine Einfachbindung oder Alkylen mit einer Kohlenstoffzahl von 1 bis 8 ist, worin wahlweises -CH2-substituiert sein kann mit -O-, -COO- oder -OCO-; R6 Alkyl mit einer Kohlenstoffzahl von 1 bis 3 ist; a eine ganze Zahl von 0 bis 2 ist; X Halogen ist; und eine Bindeposition von Z1 an einem Benzol-Ring eine meta-Position oder para-Position zu einer Bindeposition von Z3 ist, und eine Bindeposition von R6 eine wahlweise Position mit Ausnahme der jeweiligen Bindepositionen von Z1 und Z3 ist;
    <Schritt (c) >
    ein Schritt, worin eine Verbindung mit der Formel (3-2) mit einer Verbindung der Formel (4) reagiert wird, unter Erhalt einer Verbindung mit der Formel (5):
    Figure imgb0234
    Figure imgb0235
    Figure imgb0236
    worin R1 R2 und R3 in den obigen Formeln die gleichen Bedeutungen wie bei der Formel (1-1) haben und M ein monovalentes Alkalimetallatom ist;
    <Schritt (b) >
    ein Schritt, worin die Verbindung mit der Formel (5) mit einer Verbindung mit der Formel (6-1) in der Gegenwart eines Übergangsmetallkatalysators reagiert wird, unter Erhalt der Silicium-Verbindung mit der Formel (1-1):
    Figure imgb0237
    worin die Bedeutungen in der obigen Formel die gleichen Bedeutungen wie bei den jeweiligen Substituenten in der Formel (2-1-1) haben und die Bindepositionen der Substituenten die gleichen sind wie die Bindepositionen der Substituenten in der Formel (2-1-1).
  23. Produktionsverfahren gemäß Anspruch 22, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweise Wasserstoffe substituiert sein können mit Fluor und worin wahlweise -CH2- substituiert sein kann mit -O-, -CH=CH-; Cycloalkylen oder Cycloalkenylen, Phenyl, worin wahlweise Wasserstoffe substituiert sein können durch Halogen, Methyl oder Methoxy, nicht-substituiertem Naphthyl und Phenylalkyl, gebildet aus einer Phenyl-Gruppe, worin wahlweise Wasserstoffe mit Fluor, Alkyl mit einer Kohlenstoffzahl von 1 bis 4, Vinyl oder Methoxy substituiert sein können, und einer Alkylen-Gruppe, worin wahlweises -CH2- substituiert sein kann mit -O-; und R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl.
  24. Produktionsverfahren gemäß Anspruch 22, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Ethyl, 3,3,3-Trifluorpropyl, 2-Methylpropyl, 2,4,4-Trimethylpentyl, Tridecafluor-1,1,2,2-tetrahydrooctyl, Cyclopentyl, Cyclohexyl und Phenyl; und R2 und R3 Methyl sind.
  25. Produktionsverfahren für eine Silicium-Verbindung, dargestellt durch die Formel (1-2), gekennzeichnet durch Reaktion einer Silicium-Verbindung, dargestellt durch die Formel (1-1) mit einer Verbindung der Formel (7) :
    Figure imgb0238
    worin die jeweiligen R1 Gruppen sind, unabhängig ausgewählt aus Wasserstoff, Alkyl mit einer Kohlenstoffzahl von 1 bis 40, worin wahlweise Wasserstoffe substituiert sein können mit Fluor, und worin wahlweises -CH2- substituiert sein kann mit -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen, substituiertem oder nicht-substituiertem Aryl und Arylalkyl, gebildet aus einer substituierten oder nicht-substituierten Aryl-Gruppe und einer Alkylen-Gruppe, worin wahlweise Wasserstoffe mit Fluor substituiert sein können und worin wahlweises -CH2- mit -O- oder -CH=CH- substituiert sein kann; R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl; und A2 eine Gruppe ist, dargestellt durch die Formel (2-2-1) :
    Figure imgb0239
    worin R4 und R5 unabhängig Wasserstoff, Alkyl mit einer Kohlenstoffzahl von 1 bis 12, Cycloalkyl mit einer Kohlenstoffzahl von 5 bis 10 oder Aryl mit einer Kohlenstoffzahl von 6 bis 10 sind, und R4 und R5 miteinander zur Bildung eines Rings zusammen mit N kombiniert sein können; Z1 Alkylen mit einer Kohlenstoffzahl von 1 bis 3 ist, worin wahlweises -CH2-mit -O- substituiert sein kann; Z3 eine Einfachbindung oder Alkylen mit einer Kohlenstoffzahl von 1 bis 8 ist, worin wahlweises -CH2- substituiert sein kann mit -O-, -COO- oder -OCO-; R6 Alkyl mit einer Kohlenstoffzahl von 1 bis 3 ist; a eine ganze Zahl von 0 bis 2 ist; X Halogen ist; eine Bindeposition von Z1 an einem Benzol-Ring eine meta-Position oder para-Position zu einer Bindeposition von Z3 ist; und eine Bindeposition von R6 eine wahlweise Position ist, mit Ausnahme der jeweiligen Bindeposition von Z1 und Z3;
    Figure imgb0240
    worin R1, R2 und R3 die gleichen Bedeutungen wie bei der Formel (1-2) haben; und A1 eine Gruppe mit der Formel (2-1-1) ist;
    Figure imgb0241
    worin Z1, Z3, R6 und a die gleichen Bedeutungen wie bei der Formel (2-2-1) haben; X Halogen ist; und die Bindepositionen von Z1 und R6 an einem Benzol-Ring die gleichen wie die Bindepositionen in der Formel (2-2-1) sind;
    Figure imgb0242
    worin R4 und R5 die gleichen Bedeutungen wie bei der Formel (2-2-1) haben; M1 ein Metallelement der ersten Gruppe oder zweiten Gruppe im Periodensystem ist; und p der gleiche Wert wie der Atomwert von M1 ist.
  26. Produktionsverfahren gemäß Anspruch 25, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweise Wasserstoffe mit Fluor substituiert sein können und worin wahlweise -CH2- mit -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen substituiert sein kann, Phenyl, worin wahlweise Wasserstoffe mit Halogen, Methyl oder Methoxy substituiert sein können, nicht-substituiertem Naphthyl und Phenylalkyl, gebildet aus einer Phenyl-Gruppe, worin wahlweise Wasserstoffe mit Fluor, Alkyl mit einer Kohlenstoffzahl von 1 bis 4, Vinyl oder Methoxy substituiert sein können und einer Alkylen-Gruppe, worin wahlweises -CH2- mit -O- substituiert sein kann; und R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl.
  27. Produktionsverfahren nach Anspruch 25, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Ethyl, 3,3,3-Trifluorpropyl, 2-Methylpropyl, 2,4,4-Trimethylpentyl, Tridecafluor-1,1,2,2-tetrahydrooctyl, Cyclopentyl, Cyclohexyl und Phenyl; und R2 und R3 Methyl sind.
  28. Produktionsverfahren für eine Silicium-Verbindung, dargestellt durch die Formel (1-2), gekennzeichnet durch den Erhalt einer Verbindung mit der Formel (5) durch einen Schritt (a) oder einen Schritt (c) und durch Durchführen eines Schrittes (d) und anschließend eines Schrittes (e):
    Figure imgb0243
    worin die jeweiligen R1 Gruppen sind, unabhängig ausgewählt aus Wasserstoff, Alkyl mit einer Kohlenstoffzahl von 1 bis 40, worin wahlweise Wasserstoffe substituiert sein können mit Fluor, und worin wahlweises -CH2- substituiert sein kann mit -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen, substituiertem oder nicht-substituiertem Aryl und Arylalkyl, gebildet aus einer substituierten oder nicht-substituierten Aryl-Gruppe und einer Alkylen-Gruppe, worin wahlweise Wasserstoffe mit Fluor substituiert sein können und worin wahlweises -CH2- mit -O- oder -CH=CH- substituiert sein kann; R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl; und A2 eine Gruppe ist, dargestellt durch die Formel (2-2-1) :
    Figure imgb0244
    worin Z1 Alkylen mit einer Kohlenstoffzahl von 1 bis 3 ist, worin wahlweises -CH2- mit -0- substituiert sein kann; Z3 eine Einfachbindung oder Alkylen mit einer Kohlenstoffzahl von 1 bis 8 ist, worin wahlweises -CH2-substituiert sein kann mit -O-, -COO- oder -OCO-; R4 und R5 unabhängig Wasserstoff, Alkyl mit einer Kohlenstoffzahl von 1 bis 12, Cycloalkyl mit einer Kohlenstoffzahl von 5 bis 10 oder Aryl mit einer Kohlenstoffzahl von 6 bis 10 sind, und R4 und R5 miteinander zur Bildung eines Rings zusammen mit N kombiniert sein können; R6 Alkyl mit einer Kohlenstoffzahl von 1 bis 3 ist; a eine ganze Zahl von 0 bis 2 ist; und eine Bindeposition von Z1 an einem Benzol-Ring eine meta-Position oder para-Position zu einer Bindeposition von Z3 ist; und eine Bindeposition von R6 eine wahlweise Position ist, mit Ausnahme der jeweiligen Bindeposition von Z1 und Z3;
    <Schritt (a)>
    ein Schritt, worin eine Verbindung mit der Formel (3-1) mit einer Verbindung mit der Formel (4) reagiert wird, unter Erhalt einer Verbindung mit der Formel (5):
    Figure imgb0245
    Figure imgb0246
    Figure imgb0247
    worin R1, R2 und R3 in den obigen Formeln die gleichen Bedeutungen wie bei der Formel (1-1) haben;
    <Schritt (c) >
    ein Schritt, worin eine Verbindung mit der Formel (3-2) mit der Verbindung der Formel (4) reagiert wird, unter Erhalt der Verbindung mit der Formel (5)
    Figure imgb0248
    worin R die gleiche Bedeutung wie bei R1 in der Formel (1-2) hat; und M ein monovalentes Alkalimetallatom ist;
    <Schritt (d) >
    ein Schritt, worin eine Verbindung mit der Formel (6-1) mit einer Verbindung mit der Formel (7) reagiert wird, unter Erhalt einer Verbindung mit der Formel (6-2)
    Figure imgb0249
    Figure imgb0250
    Figure imgb0251
    worin Z1, Z3, R6, a, R4 und R5 in den obigen Formeln die gleichen Bedeutungen wie bei der Formel (2-2-1) haben; die Bindepositionen von Z1 und R6 an einem Benzol-Ring die gleichen sind wie diese Bindepositionen in der Formel (2-2-1); X Halogen ist; M1 ein Metallelement der ersten Gruppe oder der zweiten Gruppe des Periodensystems ist; und p der gleiche Wert wie ein Atomwert von M1 ist;
    <Schritt (e) >
    ein Schritt, worin die Verbindung mit der Formel (5) mit der Verbindung der Formel (6-2) in der Gegenwart eines Übergangsmetallkatalysators reagiert wird, unter Erhalt der Silicium-Verbindung mit der Formel (1-2).
  29. Produktionsverfahren gemäß Anspruch 28, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweise Wasserstoffe mit Fluor substituiert sein können und worin wahlweises -CH2- durch -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen substituiert sein kann; Phenyl, worin wahlweise Wasserstoffe mit Halogen, Methyl oder Methoxy substituiert sein können, nicht-substituiertem Naphthyl und Phenylalkyl, gebildet aus einer Phenyl-Gruppe, worin wahlweise Wasserstoffe mit Fluor, Alkyl mit einer Kohlenstoffzahl von 1 bis 4, Vinyl oder Methoxy substituiert sein können, und einer Alkylen-Gruppe, worin wahlweises -CH2- mit -O- substituiert sein kann; und R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl.
  30. Produktionsverfahren gemäß Anspruch 28, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Ethyl, 3,3,3-Trifluorpropyl, 2-Methylpropyl, 2,4,4-Trimethylpentyl, Tridecafluor-1,1,2,2-tetrahydrooctyl, Cyclopentyl, Cyclohexyl und Phenyl; und R2 und R3 Methyl sind.
  31. Produktionsverfahren für eine Silicium-Verbindung, dargestellt durch die Formel (1-1), gekennzeichnet durch Durchführung eines Schrittes (f) und anschließend eines Schrittes (g):
    Figure imgb0252
    worin die jeweiligen Gruppen R1 Gruppen sind unabhängig ausgewählt aus Wasserstoff, Alkyl mit einer Kohlenstoffzahl von 1 bis 40, worin wahlweise Wasserstoffe durch Fluor substituiert sein können und worin wahlweise -CH2- mit -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen substituiert sein können, substituiertem oder nicht-substituiertem Aryl und Arylalkyl, gebildet aus einer substituierten oder nicht-substituierten Aryl-Gruppe und einer Alkylen-Gruppe, worin wahlweise Wasserstoffe durch Fluor ersetzt sein können und worin wahlweise -CH2-substituiert sein kann mit -0- oder -CH=CH-; R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl; und A1 eine Gruppe ist, dargestellt durch die Formel (2-1-1) :
    Figure imgb0253
    worin Z1 Alkylen mit einer Kohlenstoffzahl von 1 bis 3 ist, worin wahlweises -CH2- substituiert sein kann mit -O-; Z3 eine Einfachbindung oder Alkylen mit einer Kohlenstoffzahl von 1 bis 8 ist, worin wahlweises -CH2-substituiert sein kann mit -O-, -COO- oder -OCO-; R6 Alkyl mit einer Kohlenstoffzahl von 1 bis 3 ist; a eine ganze Zahl von 0 bis 2 ist; X Halogen ist; und eine Bindeposition von Z1 an einem Benzol-Ring eine meta-Position oder para-Position zu einer Bindeposition von Z3 ist, und eine Bindeposition von R6 eine wahlweise Position mit Ausnahme der jeweiligen Bindepositionen von Z1 und Z3 ist;
    <Schritt (f) >
    ein Schritt, worin eine Verbindung mit der Formel (4) mit einer Verbindung mit der Formel (6-1) in der Gegenwart eines Übergangsmetallkatalysators reagiert wird, unter Erhalt einer Verbindung mit der Formel (8-1):
    Figure imgb0254
    Figure imgb0255
    Figure imgb0256
    worin in den obigen Formeln R1, R2 und R3 die gleichen Bedeutungen wie bei der Formel (1-1) haben; Z1, Z3, R6 und a die gleichen Bedeutungen wie bei der Formel (2-1-1) haben; die Bindeposition von Z1 und R6 an einem Benzol-Ring die gleichen sind wie diese Bindeposition in der Formel (2-1-1); und X Halogen ist;
    <Schritt (g) >
    ein Schritt, worin die Verbindung mit der Formel (8-1) mit einer Verbindung mit der Formel (3-1) oder einer Verbindung mit der Formel (3-2) reagiert wird, unter Erhalt der Verbindung der Formel 1-1):
    Figure imgb0257
    Figure imgb0258
    worin in den obigen Formeln R1 die gleiche Bedeutung wie R1 in der Formel (1-1) hat; und M ein monovalentes Alkalimetallatom ist.
  32. Produktionsverfahren gemäß Anspruch 31, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweise Wasserstoffe mit Fluor substituiert sein können und worin wahlweise -CH2- substituiert sein kann durch -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen, Phenyl, worin wahlweise Wasserstoffe mit Halogen, Methyl oder Methoxy substituiert sein können, nicht-substituiertem Naphthyl und Phenylalkyl, gebildet aus einer Phenyl-Gruppe, worin wahlweise Wasserstoffe mit Fluor substituiert sein können, Alkyl mit einer Kohlenstoffzahl von 1 bis 4, Vinyl oder Methoxy und Alkylen-Gruppe, worin wahlweises -CH2- substituiert sein kann durch -O-; und R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl.
  33. Produktionsverfahren nach Anspruch 31, worin alle R1 die gleichen Gruppen sind, ausgewählt aus Ethyl, 3,3,3-Trifluorpropyl, 2-Methylpropyl, 2,4,4-Trimethylpentyl, Tridecafluor-1,1,2,2-tetrhydrooctyl, Cyclopentyl, Cyclohexyl und Phenyl; und R2 und R3 Methyl sind.
  34. Produktsverfahren für eine Silicium-Verbindung, dargestellt durch die Formel (1-2), gekennzeichnet durch den Erhalt einer Verbindung mit der Formel (6-2) durch einen Schritt (d) und Durchführen eines Schrittes (h) und dann eines Schrittes (i):
    Figure imgb0259
    worin die jeweiligen R1 Gruppen sind, unabhängig ausgewählt aus Wasserstoff, Alkyl mit einer Kohlenstoffzahl von 1 bis 40, worin wahlweise Wasserstoffe substituiert sein können mit Fluor, und worin wahlweises -CH2- substituiert sein kann mit -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen, substituiertem oder nicht-substituiertem Aryl und Arylalkyl, gebildet aus einer substituierten oder nicht-substituierten Aryl-Gruppe und einer Alkylen-Gruppe, worin wahlweise Wasserstoffe mit Fluor substituiert sein können und worin wahlweises -CH2- mit -O- oder -CH=CH- substituiert sein können; R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl; und A2 eine Gruppe ist, dargestellt durch die Formel (2-2-1) :
    Figure imgb0260
    worin Z1 Alkylen mit einer Kohlenstoffzahl von 1 bis 3 ist, worin wahlweises -CH2- mit -O- substituiert sein kann; Z3 eine Einfachbindung oder Alkylen mit einer Kohlenstoffzahl von 1 bis 8 ist, worin wahlweises -CH2-substituiert sein kann mit -O-, -COO- oder -OCO-; R4 und R5 unabhängig Wasserstoff, Alkyl mit einer Kohlenstoffzahl von 1 bis 12, Cycloalkyl mit einer Kohlenstoffzahl von 5 bis 10 oder Aryl mit einer Kohlenstoffzahl von 6 bis 10 sind, und R4 und R5 miteinander zur Bildung eines Rings zusammen mit N kombiniert sein können; R6 Alkyl mit einer Kohlenstoffzahl von 1 bis 3 ist; a eine ganze Zahl von 0 bis 2 ist; und eine Bindeposition von Z1 an einem Benzol-Ring eine meta-Position oder para-Position zu einer Bindeposition von Z3 ist; und eine Bindeposition von R6 eine wahlweise Position ist, mit Ausnahme der jeweiligen Bindeposition von Z1 und Z3;
    <Schritt (d) >
    ein Schritt, worin eine Verbindung mit der Formel (6-1) mit einer Verbindung der Formel (7) reagiert wird, unter Erhalt einer Verbindung mit der Formel (6-2)
    Figure imgb0261
    Figure imgb0262
    Figure imgb0263
    worin Z1, Z3, R6, a, R4 und R5 in den obigen Formeln die gleichen Bedeutungen wie bei der Formel (2-2-1) haben; die Bindepositionen von Z1 und R6 an einem Benzol-Ring die gleichen sind wie diese Bindepositionen in der Formel (2-2-1); X Halogen ist; M1 ein Metallelement der ersten Gruppe oder der zweiten Gruppe des Periodensystems ist; und p der gleiche Wert wie ein Atomwert von M1 ist;
    <Schritt (h)>
    ein Schritt, worin die Verbindung mit der Formel (6-2) mit einer Verbindung mit der Formel (4) in der Gegenwart eines Übergangsmetallkatalysators reagiert wird, unter Erhalt einer Silicium-Verbindung mit der Formel (8-2):
    Figure imgb0264
    Figure imgb0265
    worin R2 und R3 in den obigen Formeln die gleichen Bedeutungen wie bei der Formel (1-2) haben; die anderen Gruppen die gleichen Bedeutungen wie bei der Formel (2-2-1) haben; und die Bindeposition von Z1 und R6 an einem Benzol-Ring die gleichen sind wie diese Bindepositionen in der Formel (2-2-1);
    <Schritt (i)>
    ein Schritt, worin die Verbindung mit der Formel (8-2) mit einer Verbindung mit der Formel (3-1) oder einer Verbindung mit der Formel (3-2) reagiert wird, unter Erhalt der Verbindung mit der Formel (1-2):
    Figure imgb0266
    Figure imgb0267
    worin in den obigen Formeln R1 die gleiche Bedeutung wie bei R1 in der Formel (1-2) hat; und M ein monovalentes Alkalimetallatom ist.
  35. Produktionsverfahren nach Anspruch 34, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweise Wasserstoffe durch Fluor substituiert sein können und worin wahlweise -CH2- substituiert sein können durch -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen, Phenyl, worin wahlweise Wasserstoffe substituiert sein können durch Halogen, Methyl und Methoxy, nicht-substituiertem Naphthyl und Phenylalkyl, gebildet aus einer Phenyl-Gruppe, worin wahlweise Wasserstoffe mit Fluor substituiert sein können, Alkyl, mit einer Kohlenstoffzahl von 1 bis 4, Vinyl oder Methoxy und einer Alkylen-Gruppe, worin wahlweises -CH2-substituiert sein kann mit -O-; und R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl.
  36. Produktionsverfahren nach Anspruch 34, worin alle R1 die gleiche Gruppe sind, ausgewählt aus Ethyl, 3,3,3-Trifluorpropyl, 2-Methylpropyl, 2,4,4-Trimethylpentyl, Tridecafluor-1,1,2,2-tetrahydrooctyl, Cyclopentyl, Cyclohexyl und Phenyl; und R2 und R3 Methyl sind.
  37. Produktionsverfahren für eine Silicium-Verbindung, dargestellt durch die Formel (1-3), gekennzeichnet durch Reaktion einer Verbindung mit der Formel (9) mit einer Verbindung mit der Formel (10):
    Figure imgb0268
    worin die jeweiligen R1 Gruppen sind, unabhängig ausgewählt aus Wasserstoff, Alkyl mit einer Kohlenstoffzahl von 1 bis 40, worin wahlweise Wasserstoffe substituiert sein können mit Fluor und worin wahlweises -CH2- substituiert sein kann mit -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen, substituiertem oder nicht-substituiertem Aryl und Arylalkyl, gebildet aus einer substituierten oder nicht-substituierten Aryl-Gruppe und Alkylen-Gruppe, worin wahlweise Wasserstoffe substituiert sein können mit Fluor und worin wahlweise -CH2- substituiert sein kann mit -O- oder -CH=CH-; R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl; und A3 eine Gruppe mit der Formel (2-3) ist:
    Figure imgb0269
    worin Z4 Alkylen mit einer Kohlenstoffzahl von 2 bis 20 oder Alkenylen mit einer Kohlenstoffzahl von 3 bis 8 ist, und wahlweises -CH2- in diesem Alkylen und Alkenylen mit -O- substituiert sein kann; R7 Wasserstoff, Alkyl mit einer Kohlenstoffzahl von 1 bis 20, Aryl mit einer Kohlenstoffzahl von 6 bis 20 oder Arylalkyl mit einer Kohlenstoffzahl von 7 bis 20 ist; R8 Alkyl mit einer Kohlenstoffzahl von 1 bis 20, Aryl mit einer Kohlenstoffzahl von 6 bis 20 oder Arylalkyl mit einer Kohlenstoffzahl von 7 bis 20 ist; und X1 Halogen ist;
    Figure imgb0270
    Figure imgb0271
    worin R1, R2, R3 und Z4 in der Formel (9) die gleichen Bedeutungen haben wie bei der Formel (1-3), in der Formel (10) R7, R8 und X1 die gleichen Bedeutungen wie bei der Formel (2-3) haben und X2 Halogen ist.
  38. Produktionsverfahren nach Anspruch 37, worin alle R1 die gleiche Gruppen sind, ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweise Wasserstoffe mit Fluor substituiert sein können und worin wahlweises -CH2- mit -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen substituiert sein können, Phenyl, worin wahlweise Wasserstoffe substituiert sein können mit Halogen, Methyl oder Methoxy, nicht-substituiertem Naphthyl und Phenylalkyl, gebildet aus einer Phenyl-Gruppe, worin wahlweise Wasserstoffe substituiert sein können mit Fluor, Alkyl mit einer Kohlenstoffzahl von 1 bis 4, Vinyl oder Methoxy, und einer Alkylen-Gruppe, worin wahlweises -CH2- mit -0- substituiert sein kann; und R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl.
  39. Produktsverfahren nach Anspruch 37, worin alle R1 die gleichen Gruppen sind, ausgewählt aus Ethyl, 3,3,3-Trifluorpropyl, 2-Methylpropyl, 2,4,4-Trimethylpentyl, Tridecafluor-1,1,2,2,-tetrahydrooctyl, Cyclopentyl, Cyclohexyl und Phenyl; und R2 und R3 Methyl sind.
  40. Polymer, erhalten durch Polymerisation eines Additions-polymerisierbaren Monomers unter Verwendung der Silicium-Verbindung gemäß Anspruch 1 als Initiator und unter Verwendung eines Übergangsmetallkomplexes als Katalysator.
  41. Polymer, dargestellt durch die Formel (P-1):
    Figure imgb0272
    worin alle R11 die gleiche Gruppe sind, ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweise Wasserstoffe mit Fluor substituiert sein können und worin wahlweises -CH2- mit -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen substituiert sein können, Phenyl, worin wahlweise Wasserstoffe substituiert sein können mit Halogen, Methyl oder Methoxy, nicht-substituiertem Naphthyl und Phenylalkyl, gebildet aus einer Phenyl-Gruppe, worin wahlweise Wasserstoffe substituiert sein können mit Fluor, Alkyl mit einer Kohlenstoffzahl von 1 bis 4, Vinyl oder Methoxy und einer Alkylen-Gruppe, worin wahlweises -CH2- mit -O- substituiert sein kann; und R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl; und B1 eine Gruppe mit der Formel (2-1-P) ist:
    Figure imgb0273
    worin Z1 Alkylen mit einer Kohlenstoffzahl von 1 bis 3 ist, worin wahlweises -CH2- mit -O- substituiert sein kann; Z3 eine Einfachbindung oder Alkylen mit einer Kohlenstoffzahl von 1 bis 8 ist, worin wahlweises -CH2-substituiert sein kann durch -O-, -COO- oder -OCO-; R6 Alkyl mit einer Kohlenstoffzahl von 1 bis 3 ist; a eine ganze Zahl von 0 bis 2 ist; X Halogen ist; eine Bindeposition von Z1 an einem Benzol-Ring eine meta-oder para-Position zu einer Bindeposition von Z3 ist; und eine Bindeposition von R6 eine wahlweise Position mit Ausnahme der jeweiligen Bindeposition von Z1 und Z3 ist; und P1 eine Kette einer strukturellen Einheit ist, erhalten durch Polymerisation eines Additions-polymerisierbaren Monomers.
  42. Polymer mit der Formel (P-2):
    Figure imgb0274
    worin alle R11 die gleiche Gruppe sind, ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweise Wasserstoffe mit Fluor substituiert sein können und worin wahlweises -CH2- mit -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen substituiert sein können, Phenyl, worin wahlweise Wasserstoffe substituiert sein können mit Halogen, Methyl oder Methoxy, nicht-substituiertem Naphthyl und Phenylalkyl, gebildet aus einer Phenyl-Gruppe, worin wahlweise Wasserstoffe substituiert sein können mit Fluor, Alkyl mit einer Kohlenstoffzahl von 1 bis 4, Vinyl oder Methoxy, und einer Alkylen-Gruppe, worin wahlweises -CH2- mit -O- substituiert sein kann; und R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl; und B1 eine Gruppe mit der Formel (2-2-P) ist:
    Figure imgb0275
    worin Z1 Alkylen mit einer Kohlenstoffzahl von 1 bis 3 ist, worin wahlweises -CH2- substituiert sein kann durch -O-; Z3 eine Einfachbindung oder Alkylen mit einer Kohlenstoffzahl von 1 bis 8 ist, worin wahlweises -CH2- substituiert sein kann mit -O-, -COO- oder -OCO-; R4 und R5 unabhängig Wasserstoff, Alkyl mit einer Kohlenstoffzahl von 1 bis 12, Cycloalkyl mit einer Kohlenstoffzahl von 5 bis 10 oder Aryl mit einer Kohlenstoffzahl von 6 bis 10 sind; und R4 und R5 miteinander zur Bildung eines Rings zusammen mit N kombiniert sein können; R6 Alkyl mit einer Kohlenstoffzahl von 1 bis 3 ist; a eine ganze Zahl von 0 bis 2 ist; eine Bindeposition von Z1 an einem Benzol-Ring eine meta-Position oder para-Position zu einer Bindeposition von Z3 ist, und eine Bindeposition von R6 eine wahlweise Position mit Ausnahme der jeweiligen Bindepositionen von Z1 und Z3 ist; und P2 eine Kette einer strukturellen Einheit ist, erhalten durch Polymerisation eines Additions-polymerisierbaren Monomers.
  43. Polymer mit der Formel (P-3):
    Figure imgb0276
    worin alle R11 die gleiche Gruppe sind, ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, worin wahlweise Wasserstoffe mit Fluor substituiert sein können und worin wahlweises -CH2- mit -O-, -CH=CH-, Cycloalkylen oder Cycloalkenylen substituiert sein kann, Phenyl, worin wahlweise Wasserstoffe substituiert sein können mit Halogen, Methyl oder Methoxy, nicht-substituiertem Naphthyl und Phenylalkyl, gebildet aus einer Phenyl-Gruppe, worin wahlweise Wasserstoffe substituiert sein können mit Fluor, Alkyl mit einer Kohlenstoffzahl von 1 bis 4, Vinyl oder Methoxy, und einer Alkylen-Gruppe, worin wahlweises -CH2- mit -O-substituiert sein kann; und R2 und R3 Gruppen sind, unabhängig ausgewählt aus Alkyl mit einer Kohlenstoffzahl von 1 bis 8, Phenyl und Cyclohexyl; und B3 eine Gruppe mit der Formel (2-3-P) ist:
    Figure imgb0277
    worin Z4 Alkylen mit einer Kohlenstoffzahl von 2 bis 20 oder Alkenylen mit einer Kohlenstoffzahl von 3 bis 8 ist, und wahlweises -CH2- in diesem Alkylen und Alkenylen substituiert sein kann mit -O-; R7 Wasserstoff, Alkyl mit einer Kohlenstoffzahl von 1 bis 20, Aryl mit einer Kohlenstoffzahl von 6 bis 20 oder Arylalkyl mit einer Kohlenstoffzahl von 7 bis 20 ist; R8 Alkyl mit einer Kohlenstoffzahl von 1 bis 20, Aryl mit einer Kohlenstoffzahl von 6 bis 20 oder Aralkyl mit einer Kohlenstoffzahl von 7 bis 20 ist; X1 Halogen ist; und P3 eine Kette einer strukturellen Einheit ist, erhalten durch Polymerisation eines Additions-polymerisierbaren Monomers.
  44. Polymer gemäß Anspruch 41, worin das Additionspolymerisierbare Monomer zumindest eines ist, ausgewählt aus der Gruppe aus (Meth)acrylsäure-Derivaten und der Gruppe von Styrol-Derivaten.
  45. Polymer gemäß Anspruch 42, worin das Additionspolymerisierbare Monomer zumindest eines ist, ausgewählt aus der Gruppe aus (Meth)acrylsäure-Derivaten und der Gruppe von Styrol-Derivaten.
  46. Polymer gemäß Anspruch 43, worin das Additionspolymerisierbare Monomer zumindest eines ist, ausgewählt aus der Gruppe aus (Meth)acrylsäure-Derivaten und der Gruppe von Styrol-Derivaten.
EP03797641A 2002-09-17 2003-09-17 Siliziumverbindung Expired - Fee Related EP1550664B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002270429 2002-09-17
JP2002270429 2002-09-17
JP2003129350 2003-05-07
JP2003129350 2003-05-07
PCT/JP2003/011856 WO2004026883A1 (ja) 2002-09-17 2003-09-17 ケイ素化合物

Publications (3)

Publication Number Publication Date
EP1550664A1 EP1550664A1 (de) 2005-07-06
EP1550664A4 EP1550664A4 (de) 2008-02-20
EP1550664B1 true EP1550664B1 (de) 2012-06-27

Family

ID=32032864

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03797641A Expired - Fee Related EP1550664B1 (de) 2002-09-17 2003-09-17 Siliziumverbindung

Country Status (5)

Country Link
US (1) US7399819B2 (de)
EP (1) EP1550664B1 (de)
JP (1) JP4887626B2 (de)
AU (1) AU2003264473A1 (de)
WO (1) WO2004026883A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076443B2 (en) 1999-08-04 2011-12-13 Hybrid Plastics, Inc. Preparation of polyhedral oligomeric silsesquioxane silanols and siloxides functionalized with olefinic groups
JP4963781B2 (ja) * 2004-02-25 2012-06-27 リンテック株式会社 ポリシルセスキオキサングラフト共重合体の製造方法、粘着剤および粘着シート
US7256243B2 (en) * 2004-05-07 2007-08-14 Chisso Corporation Silicon compound
US7563828B2 (en) 2004-07-16 2009-07-21 Alcatel-Lucent Usa Inc. Solid state proton conductor system derived from hybrid composite inorganic-organic multicomponent material
JP2006096735A (ja) * 2004-08-31 2006-04-13 Chisso Corp ケイ素化合物の製造方法
JP2008512546A (ja) * 2004-09-10 2008-04-24 ダウ・コーニング・コーポレイション 無水物官能性シルセスキオキサン樹脂
EP1849788A1 (de) * 2004-12-28 2007-10-31 Chisso Corporation Siliziumverbindung
US9616460B2 (en) 2011-12-02 2017-04-11 Toyota Motor Engineering & Manufacturing North America, Inc. Terminate-on-demand cationic polymerization method for forming a two-dimensional coating
JP5918104B2 (ja) * 2012-10-24 2016-05-18 水澤化学工業株式会社 カビ毒吸着剤
RU2527968C1 (ru) * 2013-02-12 2014-09-10 Федеральное государственное унитарное предприятие "Ордена Ленина и ордена Трудового Красного Знамени научно-исследовательский институт синтетического каучука имени академика С.В. Лебедева" (ФГУП "НИИСК") Полидиметилметил(гексафторалкил)силоксаны для термо-, маслобензостойких материалов
DE102014212698A1 (de) * 2014-07-01 2016-01-07 Wacker Chemie Ag Verfahren zur Herstellung von Siloxanen aus Alkalisalzen von Silanolen
ES2849951T3 (es) 2015-06-18 2021-08-24 89Bio Ltd Derivados de piperidina 4-bencil y 4-benzoil sustituidos
PE20180572A1 (es) 2015-06-18 2018-04-04 Cephalon Inc Derivados de piperidina 1,4-sustituidos
WO2017141796A1 (ja) * 2016-02-15 2017-08-24 国立研究開発法人産業技術総合研究所 シロキサン及びその製造方法
KR102242545B1 (ko) * 2017-09-27 2021-04-19 주식회사 엘지화학 항균성 고분자 코팅 조성물 및 항균성 고분자 필름
JP7474442B2 (ja) 2020-09-23 2024-04-25 Jnc株式会社 長鎖アルキルを有する不完全かご型シルセスキオキサン

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0348705A3 (de) 1988-06-29 1991-02-27 Akademie der Wissenschaften der DDR Organophile Doppelringkieselsäurederivate mit käfigartigen Strukturen, Verfahren zu ihrer Herstellung und ihre Verwendung
US5789487A (en) * 1996-07-10 1998-08-04 Carnegie-Mellon University Preparation of novel homo- and copolymers using atom transfer radical polymerization
US5942638A (en) * 1998-01-05 1999-08-24 The United States Of America As Represented By The Secretary Of The Air Force Method of functionalizing polycyclic silicones and the resulting compounds
US6458903B1 (en) * 1998-06-01 2002-10-01 Kaneka Corporation Polymerization method
EP1202791B1 (de) * 1999-06-11 2006-12-27 Gas Separation Technology, Inc. Poröses gasdurchlässiges material zur gastrennung
US6911518B2 (en) 1999-12-23 2005-06-28 Hybrid Plastics, Llc Polyhedral oligomeric -silsesquioxanes, -silicates and -siloxanes bearing ring-strained olefinic functionalities
RU2293745C2 (ru) * 1999-08-04 2007-02-20 Хайбрид Плэстикс Способ образования полигедральных олигомерных силсесквиоксанов (варианты)
US7122591B2 (en) * 2001-01-24 2006-10-17 Asahi Kasei Kabushiki Kaisha Polyphenylene ether-based resin composition containing silicon compound
WO2003064490A2 (en) * 2001-06-27 2003-08-07 Hybrid Plastics Llp Process for the functionalization of polyhedral oligomeric silsesquioxanes
WO2003052014A1 (de) * 2001-12-06 2003-06-26 Degussa Ag Strukturierte oberflächen mit erhebungen und vertiefungen, verfahren zur herstellung solcher oberflächen sowie deren verwendung
WO2004014924A1 (ja) * 2002-08-07 2004-02-19 Chisso Corporation ケイ素化合物
JP4370831B2 (ja) * 2002-09-13 2009-11-25 チッソ株式会社 官能基を有するシルセスキオキサン誘導体
US7053167B2 (en) * 2002-09-13 2006-05-30 Chisso Corporation Silsesquioxane derivative having functional group

Also Published As

Publication number Publication date
US7399819B2 (en) 2008-07-15
EP1550664A1 (de) 2005-07-06
AU2003264473A1 (en) 2004-04-08
JP4887626B2 (ja) 2012-02-29
EP1550664A4 (de) 2008-02-20
JPWO2004026883A1 (ja) 2006-01-19
WO2004026883A1 (ja) 2004-04-01
US20060094849A1 (en) 2006-05-04

Similar Documents

Publication Publication Date Title
US7964692B2 (en) Polymer obtained by addition-polymerization initiated by a silicon compound
EP1548020B1 (de) Siliziumverbindung
EP1550664B1 (de) Siliziumverbindung
EP1650214B1 (de) Siliziumverbindung
JP4379120B2 (ja) シルセスキオキサン誘導体およびその製造方法
EP1208105B1 (de) Verfahren zur herstellung polyhedrischer oligomerer silsesquioxane
EP1686133B1 (de) Siliziumverbindung
US20040030084A1 (en) Production process for silsesquioxane derivative and silsesquioxane derivative
JPWO2004024741A1 (ja) シルセスキオキサン誘導体およびその製造方法
JPWO2005000857A1 (ja) 有機ケイ素化合物とその製造方法、およびポリシロキサンとその製造方法
JP2005015738A (ja) 官能基を有するシルセスキオキサン誘導体の製造方法およびシルセスキオキサン誘導体
JP4882270B2 (ja) ケイ素化合物
JP4765356B2 (ja) シロキサンブロック共重合体およびその製造法
JP4915498B2 (ja) 有機ケイ素化合物

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE GB

A4 Supplementary search report drawn up and despatched

Effective date: 20080122

17Q First examination report despatched

Effective date: 20110315

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JNC CORPORATION

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WATANABE, KENICHI,CHISSO CORPORATION

Inventor name: OOTAKE, NOBUMASA,CHISSO CORPORATION

Inventor name: OIKAWA, HISAO,CHISSO CORPORATION

Inventor name: YAMAMOTO, YASUHIRO,CHISSO CORPORATION

Inventor name: TANAKA, MASAMI,CHISSO CORPORATION

Inventor name: YAMAHIRO, MIKIO,CHISSO CORPORATION

Inventor name: OHNO, KOHJI,LABORATORY OF POLYMERIC MATERIALS

Inventor name: FUKUDA, TAKESHI,LAB. OF POLYMERIC MATERIALS

Inventor name: TSUJII, YOSHINOBU,LAB. OF POLYMERIC MATERIALS

Inventor name: YOSHIDA, KAZUHIRO,CHISSO CORPORATION

Inventor name: ITO, KENYA,CHISSO CORPORATION

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

RIN1 Information on inventor provided before grant (corrected)

Inventor name: YAMAMOTO, YASUHIRO, JNC CORPORATION

Inventor name: TANAKA, MASAMI, JNC CORPORATION

Inventor name: OOTAKE, NOBUMASA, JNC CORPORATION

Inventor name: ITO, KENYA, JNC CORPORATION

Inventor name: YAMAHIRO, MIKIO, JNC CORPORATION

Inventor name: TSUJII, YOSHINOBU, LAB. OF POLYMERIC MATERIALS

Inventor name: FUKUDA, TAKESHI, LAB. OF POLYMERIC MATERIALS

Inventor name: OIKAWA, HISAO, JNC CORPORATION

Inventor name: WATANABE, KENICHI, JNC CORPORATION

Inventor name: YOSHIDA, KAZUHIRO, JNC CORPORATION

Inventor name: OHNO, KOHJI, LABORATORY OF POLYMERIC MATERIALS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60341414

Country of ref document: DE

Effective date: 20120823

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130328

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60341414

Country of ref document: DE

Effective date: 20130328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190903

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190912

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60341414

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200917