EP1536882A1 - Autothermes verfahren mit periodischer strömungsumkehr - Google Patents

Autothermes verfahren mit periodischer strömungsumkehr

Info

Publication number
EP1536882A1
EP1536882A1 EP03757758A EP03757758A EP1536882A1 EP 1536882 A1 EP1536882 A1 EP 1536882A1 EP 03757758 A EP03757758 A EP 03757758A EP 03757758 A EP03757758 A EP 03757758A EP 1536882 A1 EP1536882 A1 EP 1536882A1
Authority
EP
European Patent Office
Prior art keywords
regeneration
fixed bed
temperature
phase
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03757758A
Other languages
English (en)
French (fr)
Inventor
Gerhart Eigenberger
Bernd Glöckler
Gregorius Kolios
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Eigenberger Gerhart
Glockler Bernd
Kolios Gregorius
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eigenberger Gerhart, Glockler Bernd, Kolios Gregorius, Evonik Degussa GmbH filed Critical Eigenberger Gerhart
Publication of EP1536882A1 publication Critical patent/EP1536882A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • B01J8/0221Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0423Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds
    • B01J8/0438Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds the beds being placed next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/46Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using discontinuously preheated non-moving solid materials, e.g. blast and run
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00327Controlling the temperature by direct heat exchange
    • B01J2208/00336Controlling the temperature by direct heat exchange adding a temperature modifying medium to the reactants
    • B01J2208/00353Non-cryogenic fluids
    • B01J2208/00371Non-cryogenic fluids gaseous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00398Controlling the temperature using electric heating or cooling elements inside the reactor bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00415Controlling the temperature using electric heating or cooling elements electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00522Controlling the temperature using inert heat absorbing solids outside the bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00243Mathematical modelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention relates to an autothermal process for coupling endothermic and exothermic reactions in reactors with periodic flow reversal.
  • these can be high-temperature reactions.
  • thermodynamic equilibrium endothermic synthesis reactions often require high temperatures of 500 to 1000 ° C in order to proceed with a sufficiently high conversion.
  • Typical examples are dehydrogenation and steam reforming of hydrocarbons to produce synthesis gas.
  • the gaseous or vaporous starting materials must first be heated to the reaction temperature and then the required enthalpy of reaction must be supplied to them at high temperature.
  • the heat required for this is provided by an exothermic accompanying reaction, usually a combustion reaction.
  • the present application extends the state of the art laid down in PCT / EP00 / 10928 by concrete inventive configurations for the above-mentioned asymmetrical case in which one endothermic reaction in a cyclical change with an exothermic accompanying reaction in a catalytic fixed bed reactor with periodic change of the flow direction is to be carried out.
  • the invention is based on the following concept: If gaseous or vaporous feedstocks for an endothermic reaction at low temperature are introduced into an adiabatic catalyst bed which is uniformly preheated to a sufficiently high temperature T ma ⁇ , a pronounced temperature which migrates in the direction of flow develops. and turnover front, in which a turnover is reached which corresponds to the equilibrium turnover at the temperature T ma ⁇ .
  • Low temperature is understood to mean the ambient temperature or a temperature which is above or at the temperature at which the substances in question are gaseous or vaporous.
  • a sufficiently high temperature T ma ⁇ is understood to mean a temperature at which the endothermic reaction is so rapid that it largely takes place in a manner controlled by equilibrium and at the same time the equilibrium conversion is sufficient for technical applications.
  • the production phase of the endothermic reaction lasts as long as the reaction front is in the active part of the catalyst bed.
  • the fixed bed cools down in the production phase.
  • the production phase must be followed by a regeneration phase in which the catalyst bed is heated up again to the original uniform temperature T max .
  • the regeneration takes place according to the invention in that a regeneration stream with a low temperature is fed continuously to the reactor during the regeneration phase in countercurrent to the production phase, the
  • Production time corresponds to ⁇ ⁇ .
  • This regeneration gas stream is supplied with heat at several discrete points arranged over the length of the catalytically active region and distributed over the flow cross-section such that the original temperature profile is set again at the end of the regeneration phase.
  • the distance between the feed points is' about to be selected so long as a pure temperature front during the duration of the regeneration passes through the catalyst bed.
  • a further embodiment results if the inlets already have a high temperature.
  • the reaction mixture continuously enters the front end of the reactor and is heated by the fixed bed to the temperature T ma ⁇ necessary for the required conversion, where T m a is greater than or equal to a minimum preheating temperature T j. and reacts in a catalytically active part of the fixed bed, whereby the fixed bed cools down.
  • a regeneration stream with the desired maximum temperature T max is passed through the catalytically active fixed bed until the entire catalytically active area has again reached the maximum temperature T max .
  • Figures 2a and 2b Diagrams of the temperature and turnover curve in the method according to the invention
  • Figure 3 Diagrams for changing the
  • Figure 4 a reactor structure.
  • FIGS. 1 a and 1 b show, using the example of steam reforming of methane and assuming a reaction conversion determined only by the temperature, how the temperature front spreads through the catalyst bed starting from temperature profile 1 or 1 ′.
  • the length coordinate of the catalyst bed is designated z and is given in meters.
  • the temperature rises very quickly from a base temperature TB to the preheating or maximum temperature T max in the fixed bed, while the turnover increases accordingly.
  • An implicit determination equation is given below for the asymptotic final value of the base temperature in a sufficiently long catalyst bed.
  • the higher the preheating temperature T max the slower the front moves and the lower the base temperature T B ( Figure lb).
  • the minimum preheating temperature Ti of the catalyst bed from which a pronounced front is formed under the conditions mentioned, follows from the condition: d 2 x
  • X is the equilibrium conversion of the endothermic reaction which depends on the reaction temperature T. Its gradient
  • Velocity of migration of a fictitious, dissipation-free thermal front which is an inert gas flow with the same
  • the fixed bed reactor should be as in FIG. 2 be sketched.
  • the fixed bed consists of a catalytically active zone and an inert edge zone, which are arranged one behind the other in the direction of flow.
  • the catalytically active zone can also be preceded by a short inert zone.
  • the temperature profile at the beginning of the production phase (state 1) has an increasing one
  • the subsequent inert bed prevents the sales from falling again as the temperature drops.
  • the outlet temperature is constantly at the level of the inlet temperature during this time interval. This prevents sensible heat from being discharged from the reactor.
  • the heat storage capacity of the fixed bed made of catalyst and inert material is largely exhausted and the outlet temperature would then rise (state 2).
  • the dashed lines show the temperature and turnover curves at the end of the production phase.
  • the dotted lines in between represent profiles at times between states 1 and 2.
  • the peripheral zone can also contain a catalyst for a desirable subsequent reaction. However, it must not catalyze the main endothermic reaction.
  • a typical example in the case of steam reforming of methane would be the replacement of the inert peripheral zone with a water gas shift catalyst, in which CO and water vapor are increasingly converted into CO 2 and hydrogen as the temperature drops.
  • the regeneration of the bed from state 2 to state 1 is required to implement an efficient cyclic process.
  • the process conditions during the regeneration phase must meet the following requirements:
  • the profile of the maximum temperature T max is set by regulating the local heat input via temperature sensors which are installed in the vicinity of the feeds and downstream in the direction of the regeneration current.
  • the heat input can z. B. by in the Catalyst bed installed heating elements or by hot gas feed.
  • a solution is particularly preferred in which a reactant for an exothermic reaction is admixed to the regeneration gas stream at the feed points, which reacts automatically at the prevailing temperature and takes place completely, e.g. B. a catalytic combustion.
  • FIG. 3 schematically shows the configuration of a fixed bed reactor with temperature-controlled side feed of a reactant required for the regeneration and the basic change in the temperature fronts during the regeneration time.
  • the temperature controller is labeled TC. It can be seen how the temperature fronts generated at the feed points replenish the broken temperature profile and at the same time a shift of the temperature profile flanks takes place at the entry and exit of the (inert) bed to the starting position.
  • FIG. 4 shows a possible reactor structure according to the invention using the example of steam reforming of methane.
  • the reactor 1 contains an axially structured fixed bed with the inert edge zones 2 and 4 and the catalytically active zone 3, which is filled with a suitable reforming catalyst.
  • Four distributors 5 for feeding an additional stream are integrated in the reactor 1.
  • the distributors are supplied by axially guided supply lines that have good thermal contact with the surrounding fixed bed.
  • the distance between the distributors corresponds to the distance that a fictitious thermal front would cover during the regeneration phase.
  • Thermocouples 6 are installed in the vicinity of the distributors and are used to regulate the temperature of the reactor.
  • the reactor 1 is mixed with a mixture 7 of technically relevant feed composition
  • the distributors 5 are supplied with a fuel 9, for example methane, or the exhaust gas of a pressure swing adsorption system for hydrogen purification.
  • the throughput in the supply lines is set by means of control valves 10 so that the temperature of the measuring points is regulated to 1000 K.
  • a fuel-containing main stream 8 can also be fed to the reactor during the regeneration phase, in which an oxygen-containing gas, e.g. B. air is added.
  • the cyclic process described is characterized by a high level of energy efficiency, since the inlet and outlet take place (relatively) cold in both the production and regeneration period and the high temperature required for the endothermic reaction remains completely in the reactor.
  • Ti is the temperature that the catalyst bed reached at the end of the production phase.
  • An endothermic reaction can advantageously be carried out in the manner described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur autothermen Durchführung endothermer Reaktionen in adiabatischen Festbettreaktoren (4) im zyklischen Wechsel zwischen einer Produktionsphase für die endotherme Reaktion und einer Regenerationsphase für die Wärmezufuhr, bei dem - während der Produktionsphase kontinuierlich Reaktionsgemisch (7) mit niedriger Temperatur am vorderen Ende des Reaktors eintritt, durch das Festbett auf die für den geforderten Umsatz notwendige Temperatur Tmax aufgeheizt wird, wobei Tmax grösser oder gleich einer Mindestvorheiztemperatur Tr ist, dabei in einem katalytisch aktiven Teil des Festbetts reagiert und gleichzeitig das Festbett abkühlt und den Reaktor über eine hintere inerte, dem katalytisch aktiven Teil nachgeschaltete Zone oder ein weiteres katalytisches Festbett verlässt, - während der Regenerationsphase kontinuierlich ein Regenerationsstrom (8) mit niedriger Temperatur am hinteren Ende des Reaktors zugeführt und vorne abgezogen wird, wobei die Gesamtwärmekapazität m•pcPRΔtR des Regenerationsstroms m•R über der Regenerationsdauer ΔtR 70 bis 300 %, vorzugsweise 80 bis 120 % der entsprechenden Gesamtwärmekapazität m•pcPRΔtR des Reaktionsgemischs über der Produktionsdauer ΔtP entspricht und - an mehreren diskreten (5), über der Länge des katalytisch aktiven Bereichs angeordneten Stellen Wärme so zugeführt und über dem Strömungsquerschnitt verteilt wird, dass ein ursprüngliche Temperaturprofil am Ende der Regenerationsphase wieder eingestellt wird.

Description

AUTOTHERMES VERFAHREN MIT PERIODISCHER STROMUNGSUM EHR
Beschreibung
Die Erfindung betrifft ein autothermes Verfahren zur Kopplung endothermer und exothermer Reaktionen in Reaktoren mit periodischer Strömungsumkehr. Insbesondere kann es sich hierbei um Hochtemperaturreaktionen handeln.
Endotherme Synthesereaktionen benötigen aus Gründen des thermodynamisehen Gleichgewichts häufig hohe Temperaturen von 500 bis 1000°C, um mit ausreichend hohem Umsatz abzulaufen. Typische Beispiele sind Dehydrierungen sowie die Dampf- Reformierung von Kohlenwasserstoffen zur Erzeugung von Synthesegas. Das bedeutet, dass die gas- oder dampfförmig vorliegenden Edukte zunächst auf Reaktionstemperatur aufgeheizt werden müssen und ihnen dann die benötigte Reaktionsenthalpie bei hoher Temperatur zugeführt werden muss. In aller Regel wird die dafür benötigte Wärme über eine exotherme Begleitreaktion, meist eine Verbrennungsreaktion, bereitgestellt. Dabei kommt einer möglichst direkten thermischen Kopplung der endothermen Synthese mit der exothermen Begleitreaktion sowie einer effizienten Wärmeintegration des Gesamtsystems entscheidende wirtschaftliche Bedeutung zu. Idealerweise sollten alle an der endothermen und der exothermen Reaktion beteiligten Edukte dem Reaktionssystem „kalt", d.h. bei Umgebungstemperatur bzw. bei einer Temperatur knapp oberhalb einer möglichen Kondensation zugeführt und alle entstehenden Produkte bei vergleichbar niedrigen Temperaturen abgeführt werden, so dass die für die Reaktion benötigte Zone hoher Temperatur vollständig im Reaktor verbleibt. Eine solche Reaktionsführung wird als „autotherm" bezeichnet. Aus dem Stand der Technik ist beispielsweise die PCT/EP00/10928 bekannt, die die autotherme Kopplung endothermer und exothermer Reaktionen beschreibt. Demnach ist ein optimales Verfahren insbesondere durch Gegenstromführung von Prozessgasen mit gleichen Wärmekapazitätsströmen in den Wärmetauschzonen der Reaktorschaltung und durch die örtlich verteilte Dosierung von Edukten der exothermen Reaktion gekennzeichnet .
Darüber hinaus sind aus dem Stand der Technik asymmetrische Fahrweisen mit periodischem Wechsel der Strömungsrichtung bekannt, wobei ein Zyklus aus einer endothermen Produktionsphase mit Durchströmung des Reaktors in einer Richtung und einer exothermen Regenerationsphase mit Durchströmung in Gegenrichtung besteht. Für diesen Fall existieren bisher keine überzeugenden Konzepte. Die Unzulänglichkeiten der Reaktionsführung führen entweder zu exzessiven Maximaltemperaturen {M. S . Kulkarnl and M. P. Dudukovlc : Ind. Eng. Chem . Res . , 37, 770- 781 (1998) ) oder zu einer technisch uninteressanten Reaktorleistung (G. Kollos and G. Elgenberger: Chem . Eng. Sei . , 54, 2637-2646 (1999) ) .
Es ist nun Aufgabe der vorliegenden Erfindung, das Verfahren aus dem Stand der Technik in vorteilhafter Weise weiterzubilden .
Die Aufgabe wird hierbei gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1 bzw. 12.
Vorteilhafte Ausgestaltungen der Erfindung finden sich in den Unteransprüchen .
Die vorliegende Anmeldung erweitert den in PCT/EP00/10928 niedergelegten Stand der Technik um konkrete erfinderische Ausgestaltungen für den o. a. asymmetrischen Fall, in dem eine endotherme Reaktion im zyklischen Wechsel mit einer exothermen Begleitreaktion in einem katalytischen Festbettreaktor mit periodischem Wechsel der Strömungsrichtung durchgeführt werden soll.
Die Erfindung beruht auf folgendem Konzept: Werden gas- oder dampfförmige Einsatzstoffe für eine endotherme Reaktion mit niedriger Temperatur in ein adiabates Katalysatorbett eingeleitet, das einheitlich auf eine ausreichend hohe Temperatur Tmaχ vorgeheizt ist, so entwickelt sich eine ausgeprägte, in Strömungsrichtung wandernde Temperatur- und Umsatzfront, in der ein Umsatz erreicht wird, der dem Gleichgewichtsumsatz bei der Temperatur Tmaχ entspricht. Dabei soll unter niedriger Temperatur die Umgebungstemperatur oder eine Temperatur verstanden werden, die oberhalb oder bei der Temperatur liegt, bei der die betreffenden Stoffe gas- bzw. dampfförmig sind. Als ausreichend hohe Temperatur Tmaχ wird eine Temperatur verstanden, bei der die endotherme Reaktion so schnell ist, dass sie weitgehend gleichgewichtskontrolliert abläuft und gleichzeitig der Gleichgewichtsumsatz für technische Anwendungen ausreicht.
Die Produktionsphase der endothermen Reaktion dauert so lange, wie sich die Reaktionsfront im aktiven Teil des Katalysatorbettes befindet. In der Produktionsphase kühlt das Festbett ab.
Der Produktionsphase muss sich eine Regenerationsphase anschließen, in der das Katalysatorbett wieder auf die ursprüngliche einheitliche Temperatur Tmax aufgeheizt wird. Die Regeneration erfolgt erfindungsgemäß dadurch, dass dem Reaktor während der Regenerationsphase kontinuierlich ein Regenerationsstrom mit niedriger Temperatur im Gegenstrom zur Produktionsphase zugeführt wird, wobei die
Gesamtwärmekapazität mP cPRAtR des Regenerationsstroms mR über der Regenerationsdauer AtR in etwa der entsprechenden Gesamtwärmekapazität mP cPPAtP des Reaktionsgemischs über der
Produktionsdauer Δ^entspricht . Diesem Regenerationsgasstrom wird an mehreren diskreten, über der Länge des katalytisch aktiven Bereichs angeordneten Stellen Wärme so zugeführt und über dem Strömungsquerschnitt verteilt, dass das ursprüngliche Temperaturprofil am Ende der Regenerationsphase wieder eingestellt wird. Dabei ist ' der Abstand zwischen den Einspeisestellen etwa so lang zu wählen, wie eine reine Temperaturfront während der Dauer der Regeneration durch das Katalysatorbett wandert.
Eine weitere Ausgestaltung ergibt sich, sofern die Zuläufe bereits eine hohe Temperatur besitzen. Dabei tritt während der Produktionsphase kontinuierlich Reaktionsgemisch am vorderen Ende des Reaktors ein, wird durch das Festbett auf die für den geforderten Umsatz notwendige Temperatur Tmaχ aufgeheizt, wobei Tma größer oder gleich einer Mindestvorheiztemperatur Tj. ist, und reagiert dabei in einem katalytisch aktiven Teil des Festbetts, wodurch sich das Festbett abkühlt. Während der Regenerationsphase wird ein Regenerationsstrom mit der gewünschten Maximaltemperatur Tmax solange durch das katalytisch aktive Festbett geleitet, bis der ganze katalytisch aktive Bereich wieder die Maximaltemperatur Tmax angenommen hat .
Weitere Vorteile und Merkmale der Erfindung ergeben sich aus den übrigen Anmeldungsunterlagen und insbesondere der nachfolgenden Beschreibung von Ausführungsbeispielen des Verfahrens. Die Erfindung soll nun im Folgenden anhand einer Zeichnung näher erläutert werden. Dabei zeigen:
Figur la und lb: Diagramme zum Temperaturverlauf während der
Produktionsphase der endothermen Reaktion;
Figur 2a und 2b: Diagramme zum Temperatur- und Umsatzverlauf beim erfindungsgemäßen Verfahren; Figur 3: Diagramme zur Veränderung des
Temperaturprofils während der Regenerationsphase;
Figur 4: einen Reaktoraufbau.
Die Figuren la und lb zeigen am Beispiel der Dampfreformierung von Methan und unter der Annahme eines nur von der Temperatur bestimmten Reaktionsumsatzes, wie sich die Temperaturfront ausgehend vom Temperaturprofil 1 bzw. 1' durch das Katalysatorbett ausbreitet. Die Verläufe sind dabei für zwei unterschiedliche Temperaturen von Tmaχ = 1000K (Figur la) und Tma = 1500K (Figur lb) dargestellt. Dabei ist die Längenkoordinate des Katalysatorbettes mit z bezeichnet und in Metern angegeben. In der Front steigt die Temperatur sehr schnell von einer Basistemperatur TB auf die Vorheiz- bzw. Maximaltemperatur Tmax im Festbett an, während der Umsatz entsprechend zunimmt. Für den asymptotischen Endwert der Basistemperatur in einem hinreichend langen Katalysatorbett wird nachfolgend eine implizite Bestimmungsgleichung angegeben. Je höher die Vorheiztemperatur Tmax, desto langsamer wandert die Front und desto tiefer sinkt die Basistemperatur TB (Figur lb) .
Die Mindest-Vorheiztemperatur Ti des Katalysatorbettes, ab der sich unter den genannten Voraussetzungen eine ausgeprägte Front ausbildet, folgt aus der Bedingung: d2x
= 0 dT2
Dabei ist X der von der Reaktionstemperatur T abhängige Gleichgewichtsumsatz der endothermen Reaktion. Sein Gradient
. ist bei der Temperatur Ti maximal. dT
Die Reaktionsfront erreicht asymptotisch einen konstanten Temperaturhub Tmax —TB und eine konstante Wanderungsgeschwindigkeit wR . Für die Basistemperatur TB gilt die folgende implizite Beziehung: dX _ X(Tmax )-X(TB ) dT TB max ~ * B und für wR die Beziehung:
Darin symbolisiert ΔTad die adiabate Temperaturabsenkung der
Reaktionsmischung bei Vollumsatz und wτ die
Wanderungsgeschwindigkeit einer fiktiven, dissipationsfreien thermischen Front, die ein inerter Gasstrom mit derselben
Wärmekapazität wie der Prozessstrom hervorrufen würde. wτ ergibt sich aus der folgenden Beziehung: sτ m- c wτ = -*- = sτ
Δt (m ■ c)
Darin bedeuten:
-dt : Die Dauer einer Prozessphase. sτ : Die Strecke, um die eine ideale thermische Front im
Zeitintervall - twandert.
• m : Massenstrom des Prozessgases. cp : Spezifische Wärmekapazität des Prozessstroms. (m-c) : Wärmekapazität des Festbettes.
Das in Figur 1 a) und b) gezeigte und vorstehend charakterisierte Verhalten kennzeichnet die Produktionsphase der endothermen Reaktion. Ihr muss erfindungsgemäß eine Regenerationsphase folgen, in der das ursprüngliche Temperaturprofil wiederhergestellt wird.
Für den erfindungsgemäßen Prozess, bestehend aus einem zyklischen Wechsel zwischen Produktions- und Regenerationsphase sollte der Festbettreaktor wie in Figur 2 skizziert aufgebaut sein. Das Festbett besteht aus einer katalytisch aktiven Zone und einer inerten Randzone, die in Strömungsrichtung hintereinander angeordnet sind. Der katalytisch aktiven Zone kann zusätzlich auch eine kurze inerte Zone vorgelagert werden. Das Temperaturprofil zu Beginn der Produktionsphase (Zustand 1) besitzt eine aufsteigende
Flanke im Zulaufbereich, ein Plateau bei T = Tmax (hier bei ca.
1000 K) bis zum Ende der katalytisch aktiven Schicht und in der inerten Randzone eine abfallende Flanke, gefolgt von einem Plateau auf dem Niveau der Zulauftemperatur (hier bei ca. 400 K) . Dieser Verlauf ist durch die durchgezogene Linie dargestellt.
Dabei ist die Entwicklung der Temperaturverläufe (obere Darstellung) und der Umsatzverläufe (untere Darstellung) während der Produktionsphase unter den obigen Bedingungen und unter Voraussetzung eines effizienten Wärmetauschs zwischen Gas und Festbett sowie einer schnellen Reaktionskinetik gezeigt. Wie die zeitlich aufeinander folgenden Temperatur- und Umsatzprofile zwischen dem Anfangszustand 1 und dem Endzustand 2 zeigen, wird über der gesamten Dauer der Produktionsphase am Austritt der katalytisch aktiven Zone die geforderte Maximaltemperatur Tmax und damit der geforderte
Endumsatz erreicht. Die sich anschließende inerte Schüttung verhindert, dass mit der jetzt absinkenden Temperatur auch der Umsatz wieder absinkt. Gleichzeitig liegt während dieses Zeitintervalls die Austrittstemperatur konstant auf dem Niveau der Eintrittstemperatur. Damit wird das Austragen fühlbarer Wärme aus dem Reaktor verhindert. Am Ende der Produktionsphase ist die Wärmespeicherkapazität des Festbettes aus Katalysator und Inertmaterial weitgehend erschöpft und die Austrittstemperatur würde anschließend ansteigen (Zustand 2) . Die gestrichelten Linien zeigen die Verläufe von Temperatur und Umsatz am Ende der Produktionsphase. Die dazwischen liegenden punktierten Linien stellen Profile zu zwischen den Zuständen 1 und 2 liegenden Zeitpunkten dar. Anstelle der inerten Randzone, in der die Temperatur zum Ausgang des Reaktors abfällt, kann die Randzone auch einen Katalysator für eine wünschenswerte Folgereaktion enthalten. Er darf allerdings die endotherme Hauptreaktion nicht katalysieren. Ein typisches Beispiel wäre im Fall der Dampfreformierung von Methan der Ersatz der inerten Randzone durch einen Wassergas-Shift-Katalysator, in dem mit fallender Temperatur zunehmend CO und Wasserdampf in C02 und Wasserstoff umgewandelt werden.
Für die Realisierung eines leistungsfähigen zyklischen Verfahrens ist die Regeneration des Bettes vom Zustand 2 auf den Zustand 1 erforderlich. Erfindungsgemäß müssen dazu die Prozessbedingungen während der Regenerationsphase folgende Voraussetzungen erfüllen:
• Die Wärmekapazitäten der während der Regenerationsphase (Index R) und der während der Produktionsphase (Index P) durchgesetzten Prozessströme: ' -cpR -ΔtR bzw. ' -cpP -ΔtP , müssen in etwa gleich sein. Dabei ist für die spezifische Wärmekapazität cp des jeweiligen Gases ein Mittelwert über den durchlaufenen Temperatur- und Konzentrationsbereich anzusetzen.
• Es uss ein Wärmeeintrag an örtlich diskreten Stellen im Katalysatorbett erfolgen. Der Abstand der Einspeisestellen soll dabei dem Abstand der Strecke entsprechen, die von einer fiktiven thermischen Front während der Regenationsphase gerade überbrückt wird.
• Das geforderte konstante oder örtlich veränderliche
Profil der Maximaltemperatur Tmax wird dadurch eingestellt, dass der lokale Wärmeeintrag über Temperatursensoren geregelt wird, die in der Nähe der Einspeisungen und stromabwärts in Richtung des Regenerationsstroms installiert sind.
• Der Wärmeeintrag kann dabei z. B. durch in der Katalysatorschüttung installierte Heizelemente oder durch Heißgaseinspeisung erfolgen. Besonders bevorzugt ist eine Lösung, bei der dem Regeneriergasstrom an den Einspeisestellen ein Reaktionspartner für eine exotherme Reaktion zugemischt wird, die bei der herrschenden Temperatur selbständig zündet und vollständig abläuft, z. B. eine katalytische Verbrennung.
Figur 3 zeigt schematisch die für die Regeneration erforderliche Konfiguration eines Festbettreaktors mit temperaturgeregelter Seiteneinspeisung eines Reaktionspartners und die prinzipielle Veränderung der Temperaturfronten während der Regenerationszeit. Der Temperaturregler ist dabei mit TC gekennzeichnet. Man erkennt, wie die an den Einspeisestellen erzeugten Temperaturfronten das eingebrochene Temperaturprofil wieder auffüllen und gleichzeitig eine Verschiebung der Temperaturprofilflanken am Ein- und Austritt der (inerten) Schüttung in die Ausgangsposition stattfindet.
Figur 4 zeigt einen möglichen erfindungsgemäßen Reaktoraufbau am Beispiel der Wasserdampfreformierung von Methan. Der Reaktor 1 enthält ein axial strukturiertes Festbett mit den inerten Randzonen 2 und 4 und der katalytisch aktiven Zone 3, die mit einem geeigneten Reformierkatalysator gefüllt ist. Im Reaktor 1 sind vier Verteiler 5 für die Einspeisung eines Zusatzstroms integriert. Die Verteiler werden durch axial geführte Zuleitungen versorgt, die einen guten thermischen Kontakt zum umgebenden Festbett haben. Der Abstand zwischen den Verteilern entspricht der Strecke, die eine fiktive thermische Front während der Regenerationsphase zurücklegen würde. In der Nähe der Verteiler sind jeweils Thermoelemente 6 installiert, die zur Temperaturregelung des Reaktors dienen. Während der Produktionsphase wird der Reaktor 1 mit einem Gemisch 7 von technisch relevanter ZulaufZusammensetzung
( yH2θ •' ycH4 = 3 ' 1 ) und einer Zulauftemperatur von 400K von links nach rechts in der zeichnerischen Darstellung durchströmt. Während der Regenerationsphase wird die Strömungsrichtung umgekehrt und im Hauptstrom 8 wird z. B. ein Sauerstoffhaltiges Gas dem Reaktor zugeführt. Die gesamte Wärmekapazität i ^fh R c pR At R } ) r die mit dem Hauptstrom 8 zugeführt wird, soll dabei in etwa der gesamten Wärmekapazität im c Δt } entsprechen, die während der Produktionsphase mit dem Reaktionsgemisch 7 zugeführt wurde. Die Verteiler 5 werden mit einem Brennstoff 9, beispielsweise Methan oder dem Abgas einer Druckwechsel-Adsorptionsanlage zur Wasserstoffreinigung versorgt. Der Durchsatz in den Versorgungsleitungen wird mittels Regelventilen 10 so eingestellt, dass die Temperatur der Messstellen auf 1000 K geregelt wird. Alternativ kann dem Reaktor während der Regenerationsphase auch ein brennstoffhaltiger Hauptstrom 8 zugeführt werden, in den über die Einspeisungen ein sauerstoffhaltiges Gas, z. B. Luft zugemischt wird.
Der beschriebene zyklische Prozess zeichnet sich durch eine hohe Energieeffizienz aus, da Zu- und Ablauf sowohl in der Produktions- wie in der Regenerationsperiode (relativ) kalt erfolgen und die für die endotherme Reaktion erforderliche hohe Temperatur vollständig im Reaktor verbleibt.
Falls die Zuläufe allerdings bereits eine hohe Temperatur besitzen, kann die thermische regenerative Kopplung der endothermen und der exothermen Reaktion auch mit heißen Zuläufen erfolgen. Dabei wird der im endothermen Produktionsschritt erreichbare Umsatz nach wie vor von der zuvor eingestellten Temperatur Tmax der Katalysatorschüttung bestimmt. Ähnlich wie in Fig. 2 findet der Endumsatz in einer steilen Temperaturfront statt, wenn die eingangs abgeleitete Bedingung Tmax > i erfüllt ist.
Für die Regeneration mit einem auf Tmax vorgeheizten Regenerationsgasstrom ergeben sich allerdings vereinfachte Bedingungen. Dabei kann der Regenerationsstrom auch im Gleichstrom, zweckmäßiger aber im Gegenstrom zum Produktionsstrom geführt werden. Die Zufuhr der gesamten Regenerationswärme erfolgt jetzt über den Reaktorzulauf, sodass keine weiteren Einspeisestellen erforderlich sind. Für die benötigte Wärmekapazität des Regenerationsstroms bei Gegenstromführung gilt dann:
| m,R cRAtR TW, , Cpbmtp
Dabei ist Ti die Temperatur, die das Katalysatorbett am Ende Produktionsphase eingenommen hat.
Auf die beschriebene Weise kann eine endotherme Reaktion vorteilhaft durchgeführt werden.

Claims

Patentansprüche
1. Verfahren zur autothermen Durchführung endothermer Reaktionen in adiabatischen Festbettreaktoren im zyklischen Wechsel zwischen einer Produktionsphase für die endotherme Reaktion und einer Regenerationsphase für die Wärmezufuhr, dadurch gekennzeichnet, dass während der Produktionsphase kontinuierlich Reaktionsgemisch mit niedriger Temperatur am vorderen Ende des Reaktors eintritt, durch das Festbett auf die für den geforderten Umsatz notwendige Temperatur max aufgeheizt wird, wobei Tmax größer oder gleich einer Mindestvorheiztemperatur Ti ist, dabei in einem katalytisch aktiven Teil des Festbetts reagiert und gleichzeitig das Festbett abkühlt und den Reaktor über eine hintere inerte, dem katalytisch aktiven Teil nachgeschaltete Zone oder ein weiteres katalytisches Festbett verlässt, während der Regenerationsphase kontinuierlich ein Regenerationsstrom mit niedriger Temperatur am hinteren Ende des Reaktors zugeführt und vorne abgezogen wird, wobei die Gesamtwärmekapazität mP cPRAtR des
Regenerationsstroms mR über der Regenerationsdauer ΔtR 70 bis 300%, vorzugsweise 80 bis 120% der entsprechenden
Gesamtwärmekapazität mPcPPAtP des Reaktionsgemischs über der Produktionsdauer Atpentspricht und an mehreren diskreten, über der Länge des katalytisch aktiven Bereichs angeordneten Stellen Wärme so zugeführt und über dem Strömungsquerschnitt verteilt wird, dass ein ursprüngliches Temperaturprofil am Ende der Regenerationsphase wieder eingestellt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass dem katalytisch aktiven Teil des Reaktorfestbetts ein inerter Bereich vorgeschaltet wird. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wärmekapazitäten mlcl der einen oder beider inerten Zone, die Wärmekapazitätsströme wie während Produktion und Regeneration und die Periodendauer von Produktionsphase, Atp , und von Regenerationsphase, AtR . den folgenden Gleichungen genügen:
wobei die Konstanten a, b Werte zwischen 0.1 und 1.0 annehmen und Δtpund ΔtÄ zwischen 0.5 und 30 Minuten liegen.
Verfahren nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet, dass die Menge der Katalysatorschüttung gemäß der Formel: dX
1 + ΔI\ - mpCpp Atp dT bemessen wird, wobei die tatsächliche Menge zwischen 100% und 300%, vorzugsweise zwischen 110% und 150% des Formelwertes beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Länge der Katalysatorschüttung zwischen zwei Einspeisestellen für die Wärmezufuhr jeweils so bemessen wird, dass ihre Wärmekapazität mκcκ jeweils zwischen 50 und 100%, zweckmäßigerweise um 90% des durch die Formel: mκcκ = tR mR cPR gegebenen Wertes ausmacht .
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass zwischen dem Ende der inerten Zone und der in Strömungsrichtung der Regeneration erste Wärmeeinspeisung eine aktive Katalysatorschüttung der gleichen Länge wie zwischen zwei Einspeisestellen angeordnet wird.
7. Verfahren nach einem der Ansprüche 1 bis 6 , dadurch gekennzeichnet, dass die diskrete Wärmezufuhr während der Regenerationsphase durch eine automatische Regelung oder Steuerung so erfolgt, dass die Temperatur jeweils stromabwärts der Wärmezufuhr auf einen vorgegebenen
Sollwert Tmax geregelt oder gesteuert wird.
8. Verfahren nach einem der Ansprüche 1 bis 7 , dadurch gekennzeichnet, dass die Wärmezufuhr während der Regenerationsphase durch eine exotherme Begleitreaktion erzeugt wird, wobei dem Regenerationsstrom an den diskreten Einspeisestellen ein Reaktand zugemischt wird, der mit dem Regenerationshauptstrom exotherm reagiert.
9. Verfahren nach Anspruch 8 , dadurch gekennzeichnet, dass der einzuspeisende Reaktand für die Regenerationsphase vom Festbettende her durch Zuleitungen zugeführt wird und durch Wärmetausch mit dem Regenerationsstrom und/oder dem Festbett aufgeheizt wird.
10. Verfahren nach einem der Ansprüche 1 bis 9 , dadurch gekennzeichnet, dass Produktions- und Regenerationsphase durch Spülphasen oder Entspannungsphasen getrennt werden, in denen für die folgende Phase störende Komponenten im Gleich- oder Gegenstrom zu der vorherigen Phase aus dem Festbettreaktor entfernt werden.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass für die Durchführung einer Folgereaktion bei niedriger Temperatur, insbesondere der Wassergas-Shiftreaktion im Anschluss an die Reformierung, ein katalytisches Festbett eingesetzt wird, das anstelle des inerten Teils dem katalytisch aktiven Teil des Festbettes nachgeschaltet ist.
12. Verfahren zur autothermen Durchführung endothermer Reaktionen in adiabatischen Festbettreaktoren im zyklischen Wechsel zwischen einer Produktionsphase für die endotherme Reaktion und einer Regenerationsphase für die Wärmezufuhr, dadurch gekennzeichnet, dass während der Produktionsphase kontinuierlich Reaktionsgemisch am vorderen Ende des Reaktors eintritt, durch das Festbett auf die für den geforderten Umsatz notwendige Temperatur max aufgeheizt wird, wobei Tmax größer oder gleich einer Mindestvorheiztemperatur Ti ist, dabei in einem katalytisch aktiven Teil des Festbetts reagiert und gleichzeitig das Festbett abkühlt und den Reaktor wieder verlässt, und während der Regenerationsphase ein Regenerationsstrom mit der gewünschten Maximaltemperatur Tmax solange durch das katalytisch aktive Festbett geleitet wird, bis der ganze katalytisch aktive Bereich wieder die Maximaltemperatur Tmax angenommen hat.
EP03757758A 2002-08-23 2003-08-13 Autothermes verfahren mit periodischer strömungsumkehr Withdrawn EP1536882A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10239547 2002-08-23
DE10239547A DE10239547A1 (de) 2002-08-23 2002-08-23 Autothermes Verfahren zur Kopplung endothermer und exothermer Reaktionen in Reaktoren mit periodischer Strömungsumkehr
PCT/EP2003/008981 WO2004026456A1 (de) 2002-08-23 2003-08-13 Autothermes verfahren mit periodischer strömungsumkehr

Publications (1)

Publication Number Publication Date
EP1536882A1 true EP1536882A1 (de) 2005-06-08

Family

ID=31197468

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03757758A Withdrawn EP1536882A1 (de) 2002-08-23 2003-08-13 Autothermes verfahren mit periodischer strömungsumkehr

Country Status (3)

Country Link
EP (1) EP1536882A1 (de)
DE (1) DE10239547A1 (de)
WO (1) WO2004026456A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2991596B1 (fr) * 2012-06-08 2015-08-07 Arkema France Reaction catalytique avec regeneration en flux inverse
EP3599015A1 (de) * 2018-07-26 2020-01-29 Yncoris GmbH & Co. KG Verfahren zur endothermen katalytischen umsetzung von verketteten ausgangskohlenwasserstoffen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19953233A1 (de) * 1999-11-04 2001-05-10 Grigorios Kolios Autotherme Reaktorschaltungen zur direkten Kopplung endothermer und exothermer Reaktionen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004026456A1 *

Also Published As

Publication number Publication date
DE10239547A1 (de) 2004-03-04
WO2004026456A1 (de) 2004-04-01

Similar Documents

Publication Publication Date Title
DE60025124T2 (de) Methode und Vorrichtung zur Wasserstoffherstellung mittels Reformierung
DE69736438T2 (de) Methode zur dampfreformierung von kohlenwasserstoffen
DE69818996T2 (de) Herstellung von methanol
EP1871740B1 (de) Verfahren zur kontinuierlichen herstellung von methylmercaptan
DE2834589C3 (de) Verfahren zum katalytischen Umwandeln eines kohlenoxyd- und wasserstoffreichen, schwefelarmen Einsatzgasgemischs
DE2711897C3 (de) Verfahren und Vorrichtung zur katalytischen Oxidation von gasförmigen Schwefelverbindungen zu Schwefeltrioxid
DE60036569T2 (de) Verfahren und apparatur wobei eine plattenvorrichtung zum beheizen und vorheizen verwendet wird
EP0320440B1 (de) Vorwärmung von Kohlenwasserstoff/Wasserdampf-Gemischen
DE3608611C2 (de)
DE60116459T2 (de) Verfahren zur Herstellung eines Wasserstoff und Kohlenmonoxid enthaltenden Gemisches
WO2007054572A1 (de) Verfahren und vorrichtung zur temperaturführung in einer abgasnachbehandlungsanlage
WO2004026456A1 (de) Autothermes verfahren mit periodischer strömungsumkehr
WO2020221640A1 (de) Verfahren und anlage zur herstellung von vinylchlorid aus 1,2-dichlorethan
DE3318501A1 (de) Alkoholspaltung und abwaermerueckgewinnungsverfahren fuer kraftfahrzeuge
DE2947128C2 (de) Verfahren zur kontinuierlichen Erzeugung eines Hochtemperatur-Reduktionsgases
WO2017067648A1 (de) Verfahren zur erzeugung von synthesegas
WO2019149435A1 (de) Rohrreaktor und verfahren zum betreiben eines rohrreaktors
DE69204361T2 (de) Verfahren zur Herstellung von hoch-kalorienhaltigem Stadtgas.
DE3413508A1 (de) Verfahren zur dissoziation von alkoholtreibstoffen und wiedergewinnung von abwaerme fuer kraftfahrzeuge
DE69404104T2 (de) Verfahren zur Verringerung der Zündtemperatur einer exothermen katalytischen Reaktion
DE3100641C2 (de) Verfahren zum Betreiben einer Vorrichtung zur Erzeugung von Spaltgas für die Herstellung von NH↓3↓-Synthesegas
EP0365899A2 (de) Reaktor zur Durchführung von Verbrennungsprozessen
DE2819753A1 (de) Mehrstufiges katalytisches verfahren zur umwandlung einer kohlenwasserstoffbeschickung
DE3881600T2 (de) Chemische Verfahren mit exothermen Reaktionen.
DE2807422A1 (de) Verfahren und vorrichtung zum methanisieren von kohlenmonoxyd- und wasserstoffhaltigem einsatzgas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070313

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK INDUSTRIES AG

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EVONIK INDUSTRIES AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK DEGUSSA GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EVONIK DEGUSSA GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150910