EP1529123B1 - Intermetallic material and use of said material - Google Patents

Intermetallic material and use of said material Download PDF

Info

Publication number
EP1529123B1
EP1529123B1 EP20030739941 EP03739941A EP1529123B1 EP 1529123 B1 EP1529123 B1 EP 1529123B1 EP 20030739941 EP20030739941 EP 20030739941 EP 03739941 A EP03739941 A EP 03739941A EP 1529123 B1 EP1529123 B1 EP 1529123B1
Authority
EP
European Patent Office
Prior art keywords
intermetallic
felt
turbine blade
intermetallic felt
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20030739941
Other languages
German (de)
French (fr)
Other versions
EP1529123A1 (en
Inventor
Andreas KÜNZLER
Mohamed Nazmy
Markus E. Staubli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1529123A1 publication Critical patent/EP1529123A1/en
Application granted granted Critical
Publication of EP1529123B1 publication Critical patent/EP1529123B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249962Void-containing component has a continuous matrix of fibers only [e.g., porous paper, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/24997Of metal-containing material

Definitions

  • the invention relates to an intermetallic material according to claims 1 and 2 and the use of this material as a felt and as a high-temperature protective layer according to claims 3 and 4.
  • the guide vanes and rotor blades of gas turbines are exposed to heavy loads.
  • the impeller of the gas turbine is fitted with a very small clearance to the stator, so that it comes to rub against.
  • a honeycomb structure is attached on the stator of the gas turbine.
  • the honeycomb structure is made of a heat-resistant metal alloy.
  • Another type are smooth, coated or uncoated thermal damper segments (WSS), which radially face the rotating blade at the outer radius. The blade tip then rubs against these heat dam segments.
  • WSS thermal damper segments
  • the coating has only a limited liability to the turbine blade.
  • cooling air bores with which either the heat spreader segment and / or the blade can be provided, are clogged during rubbing.
  • EP 132,667 or DE-C2-32 03 869 It is known to use metal felts at various points of gas turbine components, such as at the tip of a turbine blade ( DE-C2-32 03 869 ), between a metal core or a ceramic outer skin ( DE-C2 32 35 230 ) or as a shell of the turbine blade ( EP-B1-132 667 ).
  • these embodiments have the disadvantage that the metal felt used has insufficient oxidation resistance. Increases in hot-gas temperatures, for example in gas turbines today, mean that the materials used must always meet higher requirements. However, the metal felts in the mentioned documents no longer meet the requirement of today's standards, in particular with regard to a necessary degree of oxidation resistance.
  • EP-A2-0 916 897 and EP-A2-1 076 157 are metal felts, which are composed of an intermetallic alloy, known. These felts are made of sintered and pressed intermetallic fibers and have by the intermetallic phases compared to the above materials significantly improved material properties in terms of strength, oxidation resistance, ductility and abradability. Metallic high temperature fibers have also been described in VDI Report 1151, 1995 (Metallic High Temperature Fibers by Melt Extraction - Fabrication, Properties, Applications).
  • US 3,928,026 is a coating for Ni and Co base superalloys known with the following chemical composition (in wt .-%): 11-48 Co, 10-40 Cr, 9-15 Al, 0.1-1.0 reactive metal from the group of Y, Sc, Th, La and other rare earths, balance Ni, with the Ni content being at least 15%.
  • the invention solves the problem of further improving the material properties of intermetallic alloys, so that they as a felt or as a high-temperature protective layer of thermal heavily loaded gas turbine components can be used.
  • a suitable choice of the composition of the intermetallic alloy it should have sufficient strength, oxidation resistance, deformability, abradability and sufficient vibration damping properties.
  • the present invention also relates to an intermetallic material consisting of the following composition (wt .-%) 12 Al, 22 Cr, 36 Co, 0.2 Y, 0.2 Hf, 3 Fe, balance Ni and unavoidable impurities or from 10 Al, 22 Cr , 36 Co, 0.2 Y, 0.2 Hf, 2 Ta, 3 Fe, balance Ni and unavoidable impurities.
  • Such an intermetallic material can be used advantageously as a high-temperature coating of, for example, the turbine blades or other components due to the material properties.
  • intermetallic felt on frictional components in thermal turbomachinery is conceivable.
  • This may be, for example, the rotor or stator, the tip of a turbine blade, the turbine blades arranged opposite heat accumulation segments or the platform of the turbine blade.
  • a further advantage arises when the intermetallic felt is coated with a ceramic material, since a very good adhesion of the ceramic material is achieved on the rough surface of the intermetallic felt. This gives, for example, the tip of the guide or blade good protection against thermal and friction-induced mechanical effects.
  • Another advantage arises from the fact that cooling air holes are not clogged by the abrasion during operation, since it is a porous material.
  • the intermetallic felt also has sufficient vibration-absorbing properties.
  • a turbine blade 1 with a tip 11, an airfoil 14, a platform 12 and a blade root 13 is shown. It may be, for example, a guide or a blade of a gas turbine or a compressor.
  • an intermetallic felt 2 according to the invention is arranged at the tip 11 of this turbine blade 1.
  • the intermetallic felt 2 was made on the basis of a Ni-Co aluminide. To ensure adequate strength, oxidation resistance and to achieve ductility, the elements Ta, Cr, Y are added. Table 1 shows the composition according to the invention of the Ni-Co aluminide (designation IM 28 and IM 29).
  • the advantage of the intermetallic felts 2 is the significantly improved oxidation resistance. From the Fig. 7 and 8th For example, the oxidation of various materials can be seen in comparison with the commercial nickel base alloys Hastelloy X, Haynes 230, Haynes 214, and the alloy SV349. Tab. 1 shows the composition of the experimental alloys.
  • FIG. 8 shows the increase in weight given in Tab. 2 in [mg / cm 2 ] over a period of 12 hours at a temperature of 1200 ° C.
  • the weight gain is representative of the oxidation of the materials applied. From the Fig. 8 It can be seen that the comparative alloy Hastelloy X already after a short time of about 100 min. up to approx. 300 min. has a double weight gain. As the time progresses, Hastelloy X's weight gain continues to increase, while the IM14 and IM15 intermetallic felts are set to a constant between 0.6 - 0.8 mg / cm 2 , while the IM 28 and 29 alloys are even lower.
  • the oxidation resistance in the intermetallic felts is significantly improved, since a constant oxide layer has formed.
  • the two alloys IM 28 and 29 differ from the alloys IM 14 and IM 15 by a Co content of 36%. This further increases the oxidation resistance of the intermetallic material.
  • the Fig. 7 shows one with the Fig. 8 comparable presentation, but the experiments were carried out at a temperature of 1050 ° C.
  • the intermetallic felt 2 can be coated with a ceramic material 3, for example with a TBC (Thermal Barrier Coating).
  • TBC is a Y stabilized Zr oxide.
  • Equivalent materials are also conceivable.
  • the ceramic material 3 can be sprayed onto the intermetallic felt 2, it has by the uneven surface of the intermetallic felt 2 a very good grip on it and a good oxidation resistance.
  • the ceramic material 3 is a good protection against thermal and mechanical, for example, frictional effects.
  • cooling air holes which may be present in the turbine blade 1 or on the rotor / stator 4, do not clog, since the intermetallic felt 2 is a porous material.
  • FIG. 2 schematically shows a representation of a gas turbine with a rotor 4a, a stator 4b.
  • blades 6, on the stator 7 vanes 7 are attached.
  • heat guide segments 8 are usually arranged opposite the guide vanes 6, 7.
  • these heat barrier segments 8 may also consist wholly or partly of an intermetallic felt. Due to the porous properties improved cooling at this point is also possible if it has come to an abrasion, as the porous structure of the intermetallic felt prevents clogging.
  • the abrasion can be reduced as already described by a layer of TBC.
  • the component may also be cooled below the TBC layer, since the cooling medium can escape laterally through the porous felt.
  • the FIG. 5 shows a heat recovery segment according to the invention 8 according to the section V in the FIG. 2 ,
  • the intermetallic felt 2 was attached to a supporting base structure 5.
  • the supporting base structure 5 has fastening means 9, which for attachment to in the FIG. 5 not shown rotor 4a and stator 4b are used.
  • the lateral fastening means 9 are interconnected by struts 10. Between the struts 10 is on the side which faces the turbine blades, the intermetallic felt 2 is used and mechanically connected thereto. This can be done for example by soldering, welding or pouring. For reasons of durability, the felt should be firmly bonded to the supporting base structure 5.
  • FIG. 6 shows the section VI-VI of FIG. 5 ,
  • the struts 10 connecting the two fastening means 9 do not penetrate the intermetallic felt 2, but the intermetallic felt 2 is merely attached to them.
  • the intermetallic felt 2 can in turn be coated with a ceramic material 3, for example with a TBC (Thermal Barrier Coating). Equivalent materials are also conceivable.
  • a cooling effect is maintained even with abrasion, since there is no clogging of the intermetallic felt 2.
  • the intermetallic felt in the embodiment in the FIG. 3 mounted on the platform 12 of the turbine blade 1 of the thermal turbomachinery. Again, it makes sense, as with the Figure 1,2 . 5 and 6 described to coat the felt 2 with a ceramic material 3.
  • This has the advantage that the TBC adheres particularly well to the intermetallic felt and the felt is oxidation resistant. There is no additional binding layer (eg MCrA-IY) needed. In the FIG. 3 this is shown next to the right turbine blade 1.
  • the TBC also serves as protection against wear.
  • FIG. 4 shows a second variant of the embodiment of the detail IV of Figure 3.
  • a supporting base structure 5 consisting of a casting or other metal attached.
  • the supporting basic structure 5 may also consist of different chambers in order to ensure an optimal air supply to the intermetallic felt 2.
  • the intermetallic felt can also be used at points within the gas turbine that are subject to vibration, since the felt in addition to the aforementioned oxidation resistance also has very good vibration damping properties.
  • an intermetallic material according to the invention can advantageously also be used as a high-temperature coating 15 on the turbine blades or other components.
  • the two alloys also have improved oxidation properties, unlike the SV 349 alloy.
  • various prior art coating methods are known for applying the protective layer, for example, a plasma spray method.
  • a plasma spray method In this case, an existing of the material to be applied, metallic powder is introduced into a flame or a plasma jet. This powder melts on the spot and is sprayed against the surface to be coated, where the material solidifies and forms a continuous layer.
  • a physical (or chemical) vapor deposition process is also possible.
  • solid coating material is heated in block form and evaporated (eg with a laser or an electron beam). The vapor settles on the base material and forms a coating there after an adequate time.
  • Other, equivalent coating methods are also conceivable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The invention relates to an intermetallic material consisting of the following composition (wt. %) 8-15 % Al, 15-25 % Cr, 20-40 % Co, 0-5 % Ta, 0-0.03 % La, 0-0.5 % Y, 0-1.5 % Si, 0-1 % Hf, 0-0.2 % Zr, 0-0.2 % B, 0-0.1 % C, 0-4 % Fe, with Ni and unavoidable impurities constituting the remainder. The invention also relates to the use of said material as a high-temperature protective layer and on parts of thermal turbo machines that are affected by friction or vibrations.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die Erfindung betrifft ein intermetallisches Material gemäss den Ansprüchen 1 und 2 und die Verwendung dieses Materials als Filz und als Hochtemperaturschutzschicht gemäss den Ansprüchen 3 und 4.The invention relates to an intermetallic material according to claims 1 and 2 and the use of this material as a felt and as a high-temperature protective layer according to claims 3 and 4.

STAND DER TECHNIKSTATE OF THE ART

Die Leit- und Laufschaufeln von Gasturbinen sind starken Belastungen ausgesetzt. Um die Leckageverluste der Gasturbine klein zu halten wird beispielsweise das Laufrad der Gasturbine mit einem sehr kleinen Spiel zum Stator eingepasst, so dass es zum Anstreifen kommt. An dem Stator der Gasturbine ist eine Honigwabenstrukur angebracht. Die Honigwabenstruktur besteht aus einer warmfesten Metallegierung. Eine weitere Bauart sind glatte, beschichtete oder unbeschichtete Wärmestausegmente (WSS), welche der rotierenden Schaufel am Aussenradius radial gegenüberstehen. Die Schaufelspitze reibt dann gegen diese Wärmestausegmente. Um zu verhindern, dass die Schaufelspitze selbst abgerieben wird, kann sie beschichtet sein, um dann in einem grösseren Masse die Wärmestausegmente abzureiben. Nachteilig ist aber bei dieser Ausführungsform, dass die Beschichtung nur eine begrenzte Haftbarkeit an der Turbinenschaufel hat. Zudem ist nachteilig, dass Kühlluftbohrungen, mit welchen entweder das Wärmestausegment und/oder die Schaufel versehen sein können, beim Reiben verstopft werden.The guide vanes and rotor blades of gas turbines are exposed to heavy loads. In order to keep the leakage losses of the gas turbine small, for example, the impeller of the gas turbine is fitted with a very small clearance to the stator, so that it comes to rub against. On the stator of the gas turbine, a honeycomb structure is attached. The honeycomb structure is made of a heat-resistant metal alloy. Another type are smooth, coated or uncoated thermal damper segments (WSS), which radially face the rotating blade at the outer radius. The blade tip then rubs against these heat dam segments. In order to prevent the blade tip itself from being rubbed off, it can be coated to then rub off the heat release segments to a greater extent. A disadvantage, however, in this embodiment, that the coating has only a limited liability to the turbine blade. In addition, it is disadvantageous that cooling air bores, with which either the heat spreader segment and / or the blade can be provided, are clogged during rubbing.

Aus den Schriften DE-C2 32 35 230 , EP-132 667 oder DE-C2-32 03 869 ist es bekannt, Metallfilze an verschiedenen Stellen von Gasturbinenkomponenten einzusetzen, so z.B. an der Spitze einer Turbinenschaufel ( DE-C2-32 03 869 ), zwischen einem Metallkern oder einer keramischen Aussenhaut ( DE-C2 32 35 230 ) oder als Mantel der Turbinenschaufel ( EP-B1-132 667 ). Diese Ausführungen haben aber den Nachteil, dass der eingesetzte Metallfilz eine ungenügende Oxidationsbeständigkeit aufweist. Die Erhöhungen der Heissgastemperaturen, beispielsweise in heutigen Gasturbinen, führen dazu, dass die eingesetzten Materialien immer höheren Anforderungen genügen müssen. Die Metallfilze in den erwähnten Schriften erfüllen aber die Anforderung an heutige Massstäbe nicht mehr, insbesondere in bezug auf ein notwendiges Mass an Oxdationsbeständigkeit.From the scriptures DE-C2 32 35 230 . EP 132,667 or DE-C2-32 03 869 It is known to use metal felts at various points of gas turbine components, such as at the tip of a turbine blade ( DE-C2-32 03 869 ), between a metal core or a ceramic outer skin ( DE-C2 32 35 230 ) or as a shell of the turbine blade ( EP-B1-132 667 ). However, these embodiments have the disadvantage that the metal felt used has insufficient oxidation resistance. Increases in hot-gas temperatures, for example in gas turbines today, mean that the materials used must always meet higher requirements. However, the metal felts in the mentioned documents no longer meet the requirement of today's standards, in particular with regard to a necessary degree of oxidation resistance.

Aus US-B1-6,241,469 , US-B1-6,312,218 , DE-A1-199 12 701 , EP-A2-0 916 897 und EP-A2-1 076 157 sind Metallfilze, welche sich aus einer intermetallischen Legierung zusammensetzen, bekannt geworden. Diese Filze bestehen aus gesinterten und gepressten intermetallischen Fasern und weisen durch die intermetallischen Phasen gegenüber den o.g. Materialien deutlich verbesserte Materialeigenschaften in bezug auf Festigkeit, Oxidationbeständigkeit, Verformbarkeit und Abreibbarkeit auf. Metallische Hochtemperaturfasern sind auch im VDI-Bericht 1151, 1995 (Metallische Hochtemperaturfasern durch Schmelzextraktion - Herstellung, Eigenschaften, Anwendungen) beschrieben worden.Out US B1-6,241,469 . US B1-6,312,218 . DE-A1-199 12 701 . EP-A2-0 916 897 and EP-A2-1 076 157 are metal felts, which are composed of an intermetallic alloy, known. These felts are made of sintered and pressed intermetallic fibers and have by the intermetallic phases compared to the above materials significantly improved material properties in terms of strength, oxidation resistance, ductility and abradability. Metallic high temperature fibers have also been described in VDI Report 1151, 1995 (Metallic High Temperature Fibers by Melt Extraction - Fabrication, Properties, Applications).

Aus US 3,928,026 ist eine Beschichtung für Ni- und Co-Basis-Superlegierungen bekannt mit folgender chemischer Zusammensetzung (Angaben in Gew.-%): 11-48 Co, 10-40 Cr, 9-15 Al, 0.1-1.0 reaktives Metall aus der Gruppe von Y, Sc, Th, La und anderen seltenen Erden, Rest Ni, wobei der Ni-Anteil mindestens 15 % beträgt.Out US 3,928,026 is a coating for Ni and Co base superalloys known with the following chemical composition (in wt .-%): 11-48 Co, 10-40 Cr, 9-15 Al, 0.1-1.0 reactive metal from the group of Y, Sc, Th, La and other rare earths, balance Ni, with the Ni content being at least 15%.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Die Erfindung, wie sie in den unabhängigen Ansprüchen gekennzeichnet ist, löst die Aufgabe, die Materialeigenschaften von intermetallischen Legierungen noch weiter zu verbessern, so dass sie als Filz oder als Hochtemperaturschutzschicht an thermisch stark belasteten Gasturbinenbauteilen eingesetzt werden können. Durch eine entsprechende Wahl der Zusammensetzung der intermetallischen Legierung soll sie eine ausreichende Festigkeit, Oxidationsbeständigkeit, Verformbarkeit, Abreibbarkeit und ausreichende schwingungsdämpfende Eigenschaften besitzen.The invention, as characterized in the independent claims, solves the problem of further improving the material properties of intermetallic alloys, so that they as a felt or as a high-temperature protective layer of thermal heavily loaded gas turbine components can be used. By a suitable choice of the composition of the intermetallic alloy, it should have sufficient strength, oxidation resistance, deformability, abradability and sufficient vibration damping properties.

Die vorliegende Erfindung bezieht sich auch auf ein intermetallisches Material bestehend aus folgender Zusammensetzung (Gew.-%) 12 Al, 22 Cr, 36 Co, 0.2 Y, 0.2 Hf, 3 Fe, Rest Ni und unvermeidbare Verunreinigungen oder aus 10 Al, 22 Cr, 36 Co, 0.2 Y, 0.2 Hf, 2 Ta, 3 Fe, Rest Ni und unvermeidbare Verunreinigungen.The present invention also relates to an intermetallic material consisting of the following composition (wt .-%) 12 Al, 22 Cr, 36 Co, 0.2 Y, 0.2 Hf, 3 Fe, balance Ni and unavoidable impurities or from 10 Al, 22 Cr , 36 Co, 0.2 Y, 0.2 Hf, 2 Ta, 3 Fe, balance Ni and unavoidable impurities.

Ein solches intermetallisches Material kann aufgrund der Materialeigenschaften vorteilhaft als Hochtemperaturbeschichtung von beispielsweise den Turbinenschaufeln oder anderen Bauteilen eingesetzt werden.Such an intermetallic material can be used advantageously as a high-temperature coating of, for example, the turbine blades or other components due to the material properties.

Auch die Verwendung als intermetallischer Filz an reibungsbehafteten Komponenten in thermischen Turbomaschinen ist denkbar. Es kann sich dabei beispielsweise um den Rotor oder Stator, die Spitze einer Turbinenschaufel, um die der Turbinenschaufel gegenüberliegend angeordneten Wärmestausegmente oder um die Plattform der Turbinenschaufel handeln. Ein weiterer Vorteil entsteht, wenn der intermetallische Filz mit einem keramischen Material überzogen ist, da auf der rauhen Oberfläche des intermetallischen Filzes eine sehr gute Haftbarkeit des keramischen Materials erzielt wird. Dadurch erhält beispielsweise die Spitze der Leit- oder Laufschaufel einen guten Schutz gegen thermische und gegen durch Reibung bedingte mechanische Einwirkungen. Ein weiterer Vorteil entsteht dadurch, dass Kühlluftbohrungen durch den Abrieb während des Betriebes nicht verstopfen, da es sich um ein poröses Material handelt. Zudem hat der intermetallische Filz auch ausreichende schwingungsabsorbierende Eigenschaften.Also, the use as intermetallic felt on frictional components in thermal turbomachinery is conceivable. This may be, for example, the rotor or stator, the tip of a turbine blade, the turbine blades arranged opposite heat accumulation segments or the platform of the turbine blade. A further advantage arises when the intermetallic felt is coated with a ceramic material, since a very good adhesion of the ceramic material is achieved on the rough surface of the intermetallic felt. This gives, for example, the tip of the guide or blade good protection against thermal and friction-induced mechanical effects. Another advantage arises from the fact that cooling air holes are not clogged by the abrasion during operation, since it is a porous material. In addition, the intermetallic felt also has sufficient vibration-absorbing properties.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Die Erfindung wird an Hand der beiliegenden Zeichnungen erläutert, in denen

Fig. 1
eine Ausführungsform einer erfindungsgemässen Turbinenschaufel mit einem intermetallischen Filz an der Spitze zeigt,
Fig. 2
eine Ausführungsform einer Gasturbine mit Wärmestausegmenten, welche der Leit- bzw. Laufschaufel gegenüberliegend angeordnet sind und aus ei- nem intermetallischen Filz bestehen, darstellt,
Fig. 3
eine zweite Ausführungsform einer erfindungsgemässen Turbinenschaufel, wobei der intermetallische Filz auf der Plattform der Turbinenschaufel an- geordnet ist, darstellt,
Fig. 4
eine Variante der zweiten Ausführungsform des Details IV der Figur 3, wobei der intermetallische Filz zwischen den Turbinenschaufeln auf den Plattformen der Turbinenschaufeln auf einer tragenden Grundstruktur an- geordnet ist, darstellt,
Fig. 5
ein erfindungsgemässes Wärmestausegment mit einer tragenden Grund- struktur gemäss dem Ausschnitt V in der Fig. 2 zeigt,
Fig. 6
einen Schnitt durch das Wärmestausegment gemäss der Linie VI-VI in der Fig. 5 darstellt,
Fig. 7
eine Darstellung des Oxidationsverhaltens von verschiedenen Materialien bei einer Temperatur von 1050°C zeigt und
Fig. 8
eine Darstellung des Oxidationsverhaltens von verschiedenen Materialien bei einer Temperatur von 1200°C zeigt.
The invention will be explained with reference to the accompanying drawings, in which
Fig. 1
shows an embodiment of a turbine blade according to the invention with an intermetallic felt at the tip,
Fig. 2
an embodiment of a gas turbine with heat spreader segments, which are arranged opposite the guide blade and consist of an intermetallic felt,
Fig. 3
A second embodiment of a turbine blade according to the invention, wherein the intermetallic felt is arranged on the platform of the turbine blade,
Fig. 4
a variant of the second embodiment of the detail IV of FIG. 3 in which the intermetallic felt is arranged between the turbine blades on the platforms of the turbine blades on a supporting basic structure,
Fig. 5
an inventive thermal segment with a supporting basic structure according to the section V in the Fig. 2 shows,
Fig. 6
a section through the heat dissipation segment according to the line VI-VI in the Fig. 5 represents,
Fig. 7
shows a representation of the oxidation behavior of various materials at a temperature of 1050 ° C and
Fig. 8
shows a representation of the oxidation behavior of various materials at a temperature of 1200 ° C.

Es sind nur die für die Erfindung wesentlichen Elemente dargestellt. Gleiche Elemente sind in unterschiedlichen Figuren mit gleichen Bezugszeichen versehen.Only the elements essential to the invention are shown. Identical elements are provided in different figures with the same reference numerals.

WEG ZUR AUSFÜHRUNG DER ERFINDUNGWAY FOR CARRYING OUT THE INVENTION

In der Figur 1 ist eine Turbinenschaufel 1 mit einer Spitze 11, einem Schaufelblatt 14, einer Plattform 12 und einem Schaufelfuss 13 dargestellt. Es kann sich dabei beispielsweise um eine Leit- oder eine Laufschaufel einer Gasturbine oder eines Verdichters handeln. An der Spitze 11 dieser Turbinenschaufel 1 ein erfindungsgemässer intermetallischer Filz 2 angeordnet. Der intermetallische Filz 2 wurde auf der Basis eines Ni-Co-Aluminides hergestellt. Um eine ausreichende Festigkeit, Oxidationbeständigkeit und Verformbarkeit zu erreichen, sind die Elemente Ta, Cr, Y zugegeben. In der Tab. 1 ist die erfindungsgemässe Zusammensetzung des Ni-Co-Aluminides angegeben (Bezeichnung IM 28 und IM 29).In the FIG. 1 a turbine blade 1 with a tip 11, an airfoil 14, a platform 12 and a blade root 13 is shown. It may be, for example, a guide or a blade of a gas turbine or a compressor. At the tip 11 of this turbine blade 1, an intermetallic felt 2 according to the invention is arranged. The intermetallic felt 2 was made on the basis of a Ni-Co aluminide. To ensure adequate strength, oxidation resistance and to achieve ductility, the elements Ta, Cr, Y are added. Table 1 shows the composition according to the invention of the Ni-Co aluminide (designation IM 28 and IM 29).

Der Vorteil der intermetallischen Filze 2 ist die deutlich verbesserte Oxidationsbeständigkeit. Aus den Fig. 7 und 8 ist die Oxidation verschiedener Materialien im Vergleich mit den kommerziellen Nickelbasislegierungen Hastelloy X, Haynes 230, Haynes 214 und der Legierung SV349 ersichtlich. Die Tab. 1 gibt die Zusammensetzung der Versuchslegierungen wieder.The advantage of the intermetallic felts 2 is the significantly improved oxidation resistance. From the Fig. 7 and 8th For example, the oxidation of various materials can be seen in comparison with the commercial nickel base alloys Hastelloy X, Haynes 230, Haynes 214, and the alloy SV349. Tab. 1 shows the composition of the experimental alloys.

Zusammensetzung von Versuchslegierungen (Angaben in Gew.-%) Tab. 1 Bez. Ni Cr Co Mo W Fe Mn Si C Al Ta Y Zr Hf La Hastelloy X bal 22 1.5 9 0.6 18.5 0.5 0.5 0.1 0.3 -- -- -- -- -- Haynes 230 bal 22 3 2 14 3 0.5 0.4 -- -- -- -- -- -- 0.02 Haynes 214 bal 16 -- -- -- 3 -- -- -- -- -- 0.01 -- -- -- SV349 bal 13 30 -- -- -- -- 1.2 -- 11.5 0.5 0.3 -- -- -- IM14 bal 22 -- -- -- 3 -- -- -- 10 -- 0.2 -- -- -- IM15 bal 9 -- -- -- 1.6 -- -- -- 27 2 0.2 0.2 -- -- IM 28 bal 22 36 -- -- 3 -- -- -- 12 -- 0.2 -- 0.2 -- M 29 bal 22 36 -- -- 3 -- -- -- 10 2 0.2 -- 0.2 -- Composition of trial alloys (in% by weight) Tab. 1 Bez. Ni Cr Co Not a word W Fe Mn Si C al Ta Y Zr Hf La Hastelloy X bal 22 1.5 9 0.6 18.5 0.5 0.5 0.1 0.3 - - - - - Haynes 230 bal 22 3 2 14 3 0.5 0.4 - - - - - - 12:02 Haynes 214 bal 16 - - - 3 - - - - - 12:01 - - - SV349 bal 13 30 - - - - 1.2 - 11.5 0.5 0.3 - - - IM14 bal 22 - - - 3 - - - 10 - 0.2 - - - IN THE 15 bal 9 - - - 1.6 - - - 27 2 0.2 0.2 - - IM 28 bal 22 36 - - 3 - - - 12 - 0.2 - 0.2 - M 29 bal 22 36 - - 3 - - - 10 2 0.2 - 0.2 -

Die Figur 8 zeigt die Gewichtszunahme der in Tab. 2 angegebenen in [mg/cm2] über eine Zeit von 12 Stunden bei einer Temperatur von 1200° C. Die Gewichtszunahme ist stellvertretend für die Oxidation der Materialien aufgetragen. Aus der Fig. 8 wird ersichtlich, dass die Vergleichslegierung Hastelloy X schon nach einer kurzen Zeit von ca. 100 min. bis ca. 300 min. eine doppelte Gewichtszunahme aufweist. Mit fortschreitender Zeit steigt die Gewichtszunahme der Hastelloy X kontinuierlich weiter, während sich die intermetallischen Filze IM14 und IM15 auf einen konstanten Wert zwischen 0.6 - 0.8 mg/cm2 einstellen, während die beiden Legierungen IM 28 und 29 noch darunter liegen. Es wird deutlich, dass die Oxdiationbeständigkeit bei den intermetallischen Filzen wesentlich verbessert ist, da sich eine konstante Oxidschicht gebildet hat. Für die erfindungsgemässe Verwendung des intermetallischen Filzes an reibungsbehafteten Stellen einer thermischen Turbomaschine ist die Oxidationsbeständigkeit einer der wichtigsten Faktor für die Lebensdauer der ganzen Komponente. Die beiden Legierungen IM 28 und 29 unterscheiden sich durch einen Co-Anteil von 36% von den Legierungen IM 14 und IM 15. Dies steigert die Oxidationsbeständigkeit des intermetallischen Material noch weiter.The FIG. 8 shows the increase in weight given in Tab. 2 in [mg / cm 2 ] over a period of 12 hours at a temperature of 1200 ° C. The weight gain is representative of the oxidation of the materials applied. From the Fig. 8 It can be seen that the comparative alloy Hastelloy X already after a short time of about 100 min. up to approx. 300 min. has a double weight gain. As the time progresses, Hastelloy X's weight gain continues to increase, while the IM14 and IM15 intermetallic felts are set to a constant between 0.6 - 0.8 mg / cm 2 , while the IM 28 and 29 alloys are even lower. It becomes clear that the oxidation resistance in the intermetallic felts is significantly improved, since a constant oxide layer has formed. For the inventive use of the intermetallic felt at points of friction of a thermal turbomachine oxidation resistance is one of the most important factor for the life of the whole component. The two alloys IM 28 and 29 differ from the alloys IM 14 and IM 15 by a Co content of 36%. This further increases the oxidation resistance of the intermetallic material.

Die Fig. 7 zeigt eine mit der Fig. 8 vergleichbare Darstellung, jedoch wurden die Versuche bei einer Temperatur von 1050°C durchgeführt.The Fig. 7 shows one with the Fig. 8 comparable presentation, but the experiments were carried out at a temperature of 1050 ° C.

Um die Festigkeit dieser Turbinenschaufel 1 der Figur 1 an der Spitze 11 noch zu erhöhen, kann der intermetallische Filz 2 mit einem keramischen Material 3 überzogen werden, beispielsweise mit einem TBC (Thermal Barrier Coating). Es handelt sich bei TBC um ein mit Y stabilisiertes Zr-Oxid. Gleichwertige Materialien sind aber ebenso denkbar. Das keramische Material 3 kann auf den intermetallischen Filz 2 aufgespritzt werden, es hat durch die unebene Oberfläche des intermetallischen Filzes 2 einen sehr guten Halt auf ihm und eine gute Oxidationsbeständigkeit. Das keramische Material 3 ist ein guter Schutz gegen thermische und mechanische, beispielsweise reibungsbedingte Einwirkungen. Vorteilhaft können Kühlluftbohrungen, welche in der Turbinenschaufel 1 oder am Rotor/Stator 4 vorhanden sein können, nicht verstopfen, da es sich bei dem intermetallischen Filz 2 um ein poröses Material handelt.To the strength of this turbine blade 1 of FIG. 1 At the top 11 still increase, the intermetallic felt 2 can be coated with a ceramic material 3, for example with a TBC (Thermal Barrier Coating). TBC is a Y stabilized Zr oxide. Equivalent materials are also conceivable. The ceramic material 3 can be sprayed onto the intermetallic felt 2, it has by the uneven surface of the intermetallic felt 2 a very good grip on it and a good oxidation resistance. The ceramic material 3 is a good protection against thermal and mechanical, for example, frictional effects. Advantageously, cooling air holes, which may be present in the turbine blade 1 or on the rotor / stator 4, do not clog, since the intermetallic felt 2 is a porous material.

In der Figur 2 ist eine weitere Ausführungsform dargestellt. Die Figur 2 zeigt schematische eine Darstellung einer Gasturbine mit einem Rotor 4a, einem Stator 4b. An dem Rotor 4a sind Laufschaufeln 6, an dem Stator 7 sind Leitschaufeln 7 befestigt. Am Rotor 4a bzw. am Stator 4b sind üblicherweise dem Leit-/Laufschaufeln 6,7 gegenüberliegend Wärmestausegmente 8 angeordnet. Erfindungsgemäss können diese Wärrriestausegmente 8 ebenfalls ganz oder teilweise aus einem intermetallischen Filz bestehen. Durch die porösen Eigenschaften ist eine verbesserte Kühlung an dieser Stelle auch dann möglich, wenn es zu einem Abrieb gekommen ist, da die poröse Struktur des intermetallischen Filzes ein Verstopfen verhindert. Der Abrieb kann wie bereits beschrieben durch eine Schicht aus TBC verringert werden. Das Bauteil kann auch unter der TBC Schicht gekühlt sein, da das Kühlmedium seitlich durch den porösen Filz entweichen kann.In the FIG. 2 another embodiment is shown. The FIG. 2 schematically shows a representation of a gas turbine with a rotor 4a, a stator 4b. On the rotor 4a are blades 6, on the stator 7 vanes 7 are attached. On the rotor 4a or on the stator 4b, heat guide segments 8 are usually arranged opposite the guide vanes 6, 7. According to the invention, these heat barrier segments 8 may also consist wholly or partly of an intermetallic felt. Due to the porous properties improved cooling at this point is also possible if it has come to an abrasion, as the porous structure of the intermetallic felt prevents clogging. The abrasion can be reduced as already described by a layer of TBC. The component may also be cooled below the TBC layer, since the cooling medium can escape laterally through the porous felt.

Die Figur 5 zeigt ein erfindungsgemässes Wärmestausegment 8 gemäss dem Ausschnitt V in der Figur 2. Der intermetallische Filz 2 wurde an einer tragenden Grundstruktur 5 angebracht. Die tragenden Grundstruktur 5 weist Befestigungsmittel 9 auf, welche zur Befestigung am in der Figur 5 nicht dargestellten Rotor 4a bzw. Stator 4b dienen. Die seitlichen Befestigungsmittel 9 sind durch Streben 10 miteinander verbunden. Zwischen den Streben 10 ist auf der Seite, welche den Turbinenschaufeln zugewandt ist, der intermetallische Filz 2 eingesetzt und mit ihm mechanisch verbunden. Dies kann beispielsweise durch Löten, Schweissen oder durch Eingiessen geschehen. Aus Haltbarkeitsgründen sollte der Filz stoffschlüssig an der tragenden Grundstruktur 5 befestigt sein.The FIG. 5 shows a heat recovery segment according to the invention 8 according to the section V in the FIG. 2 , The intermetallic felt 2 was attached to a supporting base structure 5. The supporting base structure 5 has fastening means 9, which for attachment to in the FIG. 5 not shown rotor 4a and stator 4b are used. The lateral fastening means 9 are interconnected by struts 10. Between the struts 10 is on the side which faces the turbine blades, the intermetallic felt 2 is used and mechanically connected thereto. This can be done for example by soldering, welding or pouring. For reasons of durability, the felt should be firmly bonded to the supporting base structure 5.

Die Figur 6 zeigt den Schnitt VI-VI der Figur 5. Dort ist ersichtlich, dass die die beiden Befestigungsmittel 9 verbindenden Streben 10 den intermetallischen Filz 2 nicht durchdringen, sondern der intermetallische Filz 2 lediglich an ihnen befestigt ist. Wie aus der Figur 6 ersichtlich ist, kann, um die Temperaturbeständigkeit des Wärmestausegments 8 noch zu erhöhen, der intermetallische Filz 2 wiederum mit einem keramischen Material 3 überzogen werden, beispielsweise mit einem TBC (Thermal Barrier Coating). Gleichwertige Materialien sind aber ebenso denkbar. Wie bei der Turbinenschaufel 1 der Figur 1 bleibt eine Kühlwirkung auch bei einem Abrieb erhalten, da es zu keinem Verstopfen des intermetallischen Filzes 2 kommt.The FIG. 6 shows the section VI-VI of FIG. 5 , There, it can be seen that the struts 10 connecting the two fastening means 9 do not penetrate the intermetallic felt 2, but the intermetallic felt 2 is merely attached to them. Like from the FIG. 6 can be seen, in order to increase the temperature resistance of the heat spreader 8 even more, the intermetallic felt 2 can in turn be coated with a ceramic material 3, for example with a TBC (Thermal Barrier Coating). Equivalent materials are also conceivable. As with the turbine blade 1 of the FIG. 1 a cooling effect is maintained even with abrasion, since there is no clogging of the intermetallic felt 2.

Zu verbesserten Kühlzwecken ist der intermetallische Filz im Ausführungsbeispiel in der Figur 3 auf der Plattform 12 der Turbinenschaufel 1 der thermischen Turbomaschine angebracht. Auch hier macht es Sinn, wie bereits bei den Figur 1,2,5 und 6 beschrieben, den Filz 2 mit einem keramischen Material 3 zu überziehen. Das hat den Vorteil, dass das TBC besonders gut auf dem intermetallischen Filz haftet und der Filz oxidationsbeständig ist. Es wird keine zusätzliche Bindeschicht (z.B. MCrA-IY) benötigt. In der Figur 3 ist dies neben der rechten Turbinenschaufel 1 dargestellt. Das TBC dient auch als Schutz gegen Abnutzung.For improved cooling purposes, the intermetallic felt in the embodiment in the FIG. 3 mounted on the platform 12 of the turbine blade 1 of the thermal turbomachinery. Again, it makes sense, as with the Figure 1,2 . 5 and 6 described to coat the felt 2 with a ceramic material 3. This has the advantage that the TBC adheres particularly well to the intermetallic felt and the felt is oxidation resistant. There is no additional binding layer (eg MCrA-IY) needed. In the FIG. 3 this is shown next to the right turbine blade 1. The TBC also serves as protection against wear.

Figur 4 zeigt eine zweite Variante des Ausführungsbeispiels des Details IV aus Figur 3. Zwischen zwei Turbinenschaufeln 1 - auf der Plattform 12 der Turbinenschaufel 1 - ist der intermetallische Filz 2 auf einer tragenden Grundstruktur 5, bestehend aus einem Gussteil oder einem anderen Metall, befestigt. Die tragende Grundstruktur 5 kann auch aus verschiedenen Kammern bestehen, um eine optimale Luftzufuhr zum intermetallischen Filz 2 zu gewährleisten. FIG. 4 shows a second variant of the embodiment of the detail IV of Figure 3. Between two turbine blades 1 - on the platform 12 of the turbine blade 1 - the intermetallic felt 2 on a supporting base structure 5, consisting of a casting or other metal attached. The supporting basic structure 5 may also consist of different chambers in order to ensure an optimal air supply to the intermetallic felt 2.

Der intermetallischen Filzes kann auch an Stellen innerhalb der Gasturbine eingesetzt werden, die schwingungsbehaftet sind, da der Filz neben der erwähnten Oxidationsbeständigkeit zudem sehr gute schwingungsdämpfende Eigenschaften besitzt.The intermetallic felt can also be used at points within the gas turbine that are subject to vibration, since the felt in addition to the aforementioned oxidation resistance also has very good vibration damping properties.

Ein erfindungsgemässes intermetallisches Material kann aufgrund der Materialeigenschaften vorteilhaft auch als Hochtemperaturbeschichtung 15 an den Turbinenschaufeln oder anderen Bauteilen eingesetzt werden. Wie aus den beiden Fig. 8 und 7 ersichtlich, haben die beiden Legierungen im Gegensatz zu der Legierung SV 349 ebenfalls verbesserte Eigenschaften in bezug auf die Oxidation. Für eine solche Turbinenschaufel sind verschiedene Beschichtungsverfahren aus dem Stand der Technik bekannt, um die Schutzschicht aufzutragen, beispielsweise ist ein Plasma-Spritz-Verfahren. Dabei wird ein aus dem aufzutragenden Material bestehendes, metallisches Pulver in eine Flamme oder einen Plasmastrahl eingeführt. Dieses Pulver schmilzt auf der Stelle und wird gegen die zu beschichtende Oberfläche gespritzt, wo sich das Material verfestigt und eine durchgehende Schicht bildet.Due to the material properties, an intermetallic material according to the invention can advantageously also be used as a high-temperature coating 15 on the turbine blades or other components. Like from the two Fig. 8 and 7 As can be seen, the two alloys also have improved oxidation properties, unlike the SV 349 alloy. For such a turbine blade, various prior art coating methods are known for applying the protective layer, for example, a plasma spray method. In this case, an existing of the material to be applied, metallic powder is introduced into a flame or a plasma jet. This powder melts on the spot and is sprayed against the surface to be coated, where the material solidifies and forms a continuous layer.

Auch ein physikalisches (oder chemisches) Aufdampf-Verfahren ist möglich. Bei diesem Verfahren wird festes Beschichtungsmaterial in blockförmiger Form erhitzt und evaporiert (z.B. mit einem Laser oder einem Elektronenstrahl). Der Dampf schlägt sich auf dem Grundmaterial nieder und bildet dort nach einer adäquaten Zeit eine Beschichtung. Andere, gleichwertige Beschichtungsverfahren sind ebenso denkbar.A physical (or chemical) vapor deposition process is also possible. In this process, solid coating material is heated in block form and evaporated (eg with a laser or an electron beam). The vapor settles on the base material and forms a coating there after an adequate time. Other, equivalent coating methods are also conceivable.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
Turbinenschaufelturbine blade
22
Intermetallischer FilzIntermetallic felt
33
Keramischer ÜberzugCeramic coating
44
Rotor bzw. StatorRotor or stator
4a4a
Rotorrotor
4b4b
Statorstator
55
Tragende GrundstrukturCarrying basic structure
66
Laufschaufelblade
77
Leitschaufelvane
88th
WärmestausegmentHeat shield
99
Befestigungsmittelfastener
1010
Strebenpursuit
1111
Spitze der Turbinenschaufel 1Tip of the turbine blade 1
1212
Plattformplatform
1313
Schaufelfuss der Turbinenschaufel 1Blade of the turbine blade 1
1414
Schaufelblatt der Turbinenschaufel 1Airfoil of the turbine blade 1
1515
HochtemperaturbeschichtungHigh temperature coating

Claims (10)

  1. Intermetallic material, consisting of the following composition (% by weight: 12 Al, 22 Cr, 36 Co, 0.2 Y, 0.2 Hf, 3 Fe, remainder Ni and inevitable impurities.
  2. Intermetallic material, consisting of the following composition (% by weight): 10 Al, 22 Cr, 36 Co, 0.2 Y, 0.2 Hf, 2 Ta, 3 Fe, remainder Ni and inevitable impurities.
  3. Use of the intermetallic material according to one of Claims 1 to 2 as a high-temperature coating (15) in thermal turbomachines.
  4. Use of the intermetallic material according to one of Claims 1 to 2 as a felt on components which are subject to friction in thermal turbomachines.
  5. Use of the intermetallic felt according to Claim 4, characterized in that the intermetallic felt is arranged on a rotor (4, 4a) or stator (4, 4b).
  6. Use of the intermetallic felt according to Claim 4, characterized in that the component (1, 8) is a turbine blade or vane (1), and the tip (11) of the turbine blade or vane (1) is equipped with an intermetallic felt (2).
  7. Use of the intermetallic felt according to Claim 4, characterized in that the component (1, 8) is a turbine blade or vane (1) and the platform (12) of the turbine blade or vane (1) is equipped with an intermetallic felt (2).
  8. Use of the intermetallic felt according to Claim 4, characterized in that the component (1, 8) is a heat shield segment (8) made partially or completely from an intermetallic felt (2).
  9. Use of the intermetallic felt according to one of Claims 4 to 7, characterized in that the intermetallic felt (2) is covered with a ceramic material (3).
  10. Use of the intermetallic felt according to Claim 4, characterized in that the felt is used on components which are subject to vibration in thermal turbomachines.
EP20030739941 2002-08-16 2003-07-24 Intermetallic material and use of said material Expired - Fee Related EP1529123B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH140602 2002-08-16
CH14062002 2002-08-16
PCT/CH2003/000503 WO2004016819A1 (en) 2002-08-16 2003-07-24 Intermetallic material and use of said material

Publications (2)

Publication Number Publication Date
EP1529123A1 EP1529123A1 (en) 2005-05-11
EP1529123B1 true EP1529123B1 (en) 2011-10-05

Family

ID=31722378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030739941 Expired - Fee Related EP1529123B1 (en) 2002-08-16 2003-07-24 Intermetallic material and use of said material

Country Status (5)

Country Link
US (1) US7141128B2 (en)
EP (1) EP1529123B1 (en)
CN (1) CN100430499C (en)
AU (1) AU2003285270A1 (en)
WO (1) WO2004016819A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7316850B2 (en) 2004-03-02 2008-01-08 Honeywell International Inc. Modified MCrAlY coatings on turbine blade tips with improved durability
US7378132B2 (en) * 2004-12-14 2008-05-27 Honeywell International, Inc. Method for applying environmental-resistant MCrAlY coatings on gas turbine components
JP2006291307A (en) 2005-04-12 2006-10-26 Mitsubishi Heavy Ind Ltd Component of rotary machine, and rotary machine
EP1818419A1 (en) * 2006-01-16 2007-08-15 Siemens Aktiengesellschaft Alloy, protective layer and component
GB0807008D0 (en) * 2008-04-17 2008-05-21 Advanced Interactive Materials Helicoidal motors for use in down-hole drilling
US8273148B2 (en) 2009-01-30 2012-09-25 Untied Technologies Corporation Nickel braze alloy composition
EP2374909B1 (en) * 2010-03-30 2015-09-16 United Technologies Corporation Improved nickel braze alloy composition
CN107663605A (en) * 2016-07-29 2018-02-06 泰州市艾瑞克新型材料有限公司 Single crystal turbine blade sawtooth is preced with damping area wear-resistant coating and its preparation technology
EP3985138A1 (en) * 2020-10-14 2022-04-20 Siemens Energy Global GmbH & Co. KG Nicocral based alloy, a powder, a coating and a component
US11426822B2 (en) * 2020-12-03 2022-08-30 General Electric Company Braze composition and process of using
CN115747607B (en) * 2023-01-10 2023-04-14 西安稀有金属材料研究院有限公司 High-entropy alloy sheet for fiber metal laminate and preparation method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB607616A (en) * 1945-11-28 1948-09-02 Harold Ernest Gresham Nickel base alloy
GB1456554A (en) 1973-03-28 1976-11-24 United Aircraft Corp High temperature abradable material
US3928026A (en) * 1974-05-13 1975-12-23 United Technologies Corp High temperature nicocraly coatings
US4101713A (en) * 1977-01-14 1978-07-18 General Electric Company Flame spray oxidation and corrosion resistant superalloys
US4447503A (en) * 1980-05-01 1984-05-08 Howmet Turbine Components Corporation Superalloy coating composition with high temperature oxidation resistance
US4615864A (en) * 1980-05-01 1986-10-07 Howmet Turbine Components Corporation Superalloy coating composition with oxidation and/or sulfidation resistance
DE3203869C2 (en) 1982-02-05 1984-05-10 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Turbine rotor blades for turbo machines, in particular gas turbine engines
JPS58153752A (en) * 1982-03-08 1983-09-12 Takeshi Masumoto Ni-cr alloy material
DE3235230A1 (en) 1982-09-23 1984-03-29 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Gas turbine blade having a metal core and a ceramic vane
DE3327218A1 (en) 1983-07-28 1985-02-07 MTU Motoren- und Turbinen-Union München GmbH, 8000 München THERMALLY HIGH-QUALITY, COOLED COMPONENT, IN PARTICULAR TURBINE BLADE
US5192625A (en) * 1990-02-28 1993-03-09 General Electric Company Cobalt-base wrought alloy compositions and articles
US5536022A (en) * 1990-08-24 1996-07-16 United Technologies Corporation Plasma sprayed abradable seals for gas turbine engines
US5455119A (en) * 1993-11-08 1995-10-03 Praxair S.T. Technology, Inc. Coating composition having good corrosion and oxidation resistance
AU2663797A (en) * 1996-04-10 1997-10-29 Penn State Research Foundation, The Improved superalloys with improved oxidation resistance and weldability
DE19750517A1 (en) 1997-11-14 1999-05-20 Asea Brown Boveri Heat shield
DE19848103A1 (en) * 1998-10-19 2000-04-20 Asea Brown Boveri Sealing arrangement
DE19848104A1 (en) * 1998-10-19 2000-04-20 Asea Brown Boveri Turbine blade
DE19912701B4 (en) 1999-03-20 2006-01-19 Alstom combustion chamber wall
KR100372482B1 (en) * 1999-06-30 2003-02-17 스미토모 긴조쿠 고교 가부시키가이샤 Heat resistant Ni base alloy
DE19937577A1 (en) * 1999-08-09 2001-02-15 Abb Alstom Power Ch Ag Frictional gas turbine component

Also Published As

Publication number Publication date
US7141128B2 (en) 2006-11-28
AU2003285270A1 (en) 2004-03-03
CN100430499C (en) 2008-11-05
WO2004016819A1 (en) 2004-02-26
CN1708598A (en) 2005-12-14
US20060127660A1 (en) 2006-06-15
EP1529123A1 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
EP1076157B1 (en) Friction component of a thermal turbomachine
DE60021178T2 (en) ABRASION AND HIGH TEMPERATURE RESISTANT, ABRASIVE HEAT-DAMPING COMPOSITE COATING
DE69926858T2 (en) Abradable sealing layer and its method of manufacture
DE60010271T2 (en) COMPOSITE COATING FOR TURBINE COMPONENTS AND METHOD OF MANUFACTURING THEM
DE69732404T2 (en) Partial coating of gas turbine blades to increase fatigue strength
DE102011055246B4 (en) Process for manufacturing and coating components with re-entrant cooling channels
EP1529123B1 (en) Intermetallic material and use of said material
DE2637443C2 (en)
DE102009049707A1 (en) Method for producing a rotor or stator blade and such a blade
DE19859477B4 (en) Wear protection layer
EP1902160B1 (en) Ceramic heat insulating layer
DE2829369B2 (en) Process for forming hard, wear-resistant coatings containing metallic carbides
EP2544852B1 (en) Method for repairing sealing segments in the rotor/stator seal of a gas turbine
WO2000025005A1 (en) Product with a heat insulating layer and method for the production of a heat insulating layer
DE3103129A1 (en) THERMALLY LOADABLE MACHINE PART AND METHOD FOR THE PRODUCTION THEREOF
EP2122009A1 (en) Device for the protection of components having a flammable titanium alloy from titanium fire, and method for the production thereof
EP1447524A2 (en) Hybrid blade for thermal turbomachines
DE2842848A1 (en) COVERED OBJECT, IN PARTICULAR SUPER ALLOY GAS TURBINE BLADE
WO2006069823A2 (en) Nanoparticle containing plastic and coating made therefrom
EP1462617B1 (en) Blading for an axial-flow turbomachine
DE602005001990T2 (en) Heat resistant nickel base superalloy and single crystalline articles of this alloy
DE3036206A1 (en) WEAR-RESISTANT COATING, OXIDATION AND CORROSION PROTECTIVE COATING, CORROSION- AND WEAR-RESISTANT COATING ALLOY, ITEM PROVIDED WITH SUCH A COATING AND METHOD FOR PRODUCING SUCH A COATING
DE60203455T2 (en) Method for producing tabs of a labyrinth seal for moving parts of a turbine
EP2537959B1 (en) Multiple wear-resistant coating and method for its production
DE10356953A1 (en) Inlet lining for gas turbines and method for producing the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313988

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313988

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50313988

Country of ref document: DE

Effective date: 20111208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120706

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50313988

Country of ref document: DE

Effective date: 20120706

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313988

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313988

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313988

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170719

Year of fee payment: 15

Ref country code: DE

Payment date: 20170724

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50313988

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180724

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201