EP1529123A1 - Intermetallic material and use of said material - Google Patents

Intermetallic material and use of said material

Info

Publication number
EP1529123A1
EP1529123A1 EP03739941A EP03739941A EP1529123A1 EP 1529123 A1 EP1529123 A1 EP 1529123A1 EP 03739941 A EP03739941 A EP 03739941A EP 03739941 A EP03739941 A EP 03739941A EP 1529123 A1 EP1529123 A1 EP 1529123A1
Authority
EP
European Patent Office
Prior art keywords
intermetallic
felt
turbine blade
intermetallic felt
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03739941A
Other languages
German (de)
French (fr)
Other versions
EP1529123B1 (en
Inventor
Andreas KÜNZLER
Mohamed Nazmy
Markus E. Staubli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1529123A1 publication Critical patent/EP1529123A1/en
Application granted granted Critical
Publication of EP1529123B1 publication Critical patent/EP1529123B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249962Void-containing component has a continuous matrix of fibers only [e.g., porous paper, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/24997Of metal-containing material

Definitions

  • the invention relates to an intermetallic material according to claims 1 to 3 and the use of this material as a felt and as a high-temperature protective layer according to claims 4 and 5.
  • the guide and rotor blades of gas turbines are exposed to heavy loads.
  • the impeller of the gas turbine is fitted to the stator with a very small amount of play, so that it can be rubbed.
  • a honeycomb structure is attached to the stator of the gas turbine.
  • the honeycomb structure consists of a heat-resistant metal alloy.
  • Another design are smooth, coated or uncoated heat accumulation segments (WSS), which face the rotating blade radially on the outer radius. The blade tip then rubs against these heat accumulation segments. In order to prevent the blade tip itself from being rubbed off, it can be coated so that the heat accumulation segments can then be rubbed off to a greater extent.
  • a disadvantage of this embodiment is that the coating has only limited adhesion to the turbine blade. It is also disadvantageous that cooling air bores, with which either the heat accumulation segment and / or the blade can be provided, become blocked when rubbing. From documents DE-C2 32 35 230, EP-132 667 or DE-C2-32 03 869 it is known to use metal felts at various points in gas turbine components, for example at the tip of a turbine blade (DE-C2-32 03 869) , between a metal core or a ceramic outer skin (DE-C2 32 35 230) or as a jacket of the turbine blade (EP-B1-132 667). However, these designs have the disadvantage that the metal felt used has an insufficient resistance to oxidation.
  • metal felts which are composed of an intermetallic alloy , known. These felts consist of sintered and pressed intermetallic fibers. Materials significantly improved material properties in terms of strength, oxidation resistance, deformability and abrasion. Metallic high-temperature fibers have also been described in VDI report 1151, 1995 (Metallic high-temperature fibers by melt extraction - production, properties, applications).
  • the invention solves the problem of further improving the material properties of intermetallic alloys, so that they can be used as felt or as a high-temperature protective layer on thermally highly stressed gas turbine components.
  • the composition of the intermetallic alloy it should have sufficient strength, resistance to oxidation, deformability, abrasion and sufficient vibration-damping properties.
  • the present invention also relates to an intermetallic material consisting of the following composition (% by weight) 8-15% Al, 15-25% Cr, 20-40% Co, 0-5% Ta, 0-0.03% La, 0-0.5% Y, 0-1.5% Si, 0-1% Hf, 0-0.2% Zr, 0-0.2% B, 0.01% C, 0-4% Fe, balance Ni and inevitable impurities, especially from (wt .-%) 12% AI, 22% Cr, 36% Co, 0.2% Y, 0.2% Hf, 3% Fe, balance Ni and unavoidable impurities or from 10% AI, 22% Cr, 36% Co, 0.2% Y , 0.2% Hf, 2% Ta, 3% Fe, balance Ni and unavoidable impurities.
  • such an intermetallic material can advantageously be used as a high-temperature coating of, for example, the turbine blades or other components.
  • intermetallic felt on components subject to friction in thermal turbomachinery is also conceivable.
  • This can be, for example, the rotor or stator, the tip of a turbine blade, the heat accumulation segments arranged opposite the turbine blade, or the platform of the turbine blade.
  • a further advantage arises when the intermetallic felt is coated with a ceramic material, since the ceramic material has very good adhesion to the rough surface of the intermetallic felt. This provides, for example, the tip of the guide or rotor blade with good protection against thermal and mechanical influences caused by friction.
  • Another advantage arises from the fact that cooling air bores are not clogged by abrasion during operation, since it is a porous material.
  • the intermetallic felt also has sufficient vibration-absorbing properties.
  • 1 shows an embodiment of a turbine blade according to the invention with an intermetallic felt on the tip
  • 2 shows an embodiment of a gas turbine with heat accumulation segments, which are arranged opposite the guide or rotor blade and consist of an intermetallic felt
  • FIG 3 shows a second embodiment of a turbine blade according to the invention, the intermetallic felt being arranged on the platform of the turbine blade,
  • FIG. 4 shows a variant of the second embodiment of detail iv of FIG. 3, the intermetallic felt between the turbine blades being arranged on the platforms of the turbine blades on a supporting basic structure,
  • FIG. 5 shows a heat accumulation segment according to the invention with a load-bearing basic structure according to section V in FIG. 2,
  • FIG. 6 shows a section through the heat accumulation segment along the line VI-VI in FIG. 5
  • FIG. 7 shows the oxidation behavior of different materials at a temperature of 1050 ° C.
  • FIG. 1 shows a turbine blade 1 with a tip 11, an airfoil 14, a platform 12 and a blade root 13.
  • This can be, for example, a guide vane or a rotor blade of a gas turbine or a compressor.
  • An intermetallic felt 2 according to the invention is arranged at the tip 11 of this turbine blade 1.
  • the intermetallic felt 2 was produced on the basis of a Ni-Co aluminide. In order to achieve sufficient strength, resistance to oxidation and deformability, the elements Ta, Cr, Y, B and Zr added.
  • Tab. 1 shows the composition of Ni-Co-A! Uminides according to the invention.
  • composition of the intermetallic alloy according to the invention (an Ni-Co aluminide is indicated)
  • Nickel-cobalt aluminides (figures in% by weight)
  • intermetallic felts 2 is the significantly improved resistance to oxidation.
  • 7 and 8 show the oxidation of different materials in comparison with the commercial nickel-based alloys Hastelloy X, Haynes 230, Haynes 214 and the alloy SV349.
  • Table 2 shows the composition of the test alloys.
  • FIG. 8 shows the weight gain in [mg / cm] given in Table 2 over a period of 12 hours at a temperature of 1200 ° C.
  • the weight gain is representative of the oxidation of the materials. From Fig. 8 it can be seen that the comparison alloy Hastelloy X after a short time of about 100 minutes. up to approx. 300 min. has a double weight gain. As the time progresses, the weight gain of the Hastelloy X continues to increase, while the intermetallic felts IM14 and IM15 adjust to a constant value between 0.6 - 0.8 mg / cm 2 , while the two alloys IM 28 and 29 are still below.
  • the resistance to oxidation in the intermetallic felts is significantly improved since a constant oxide layer has formed.
  • the resistance to oxidation is one of the most important factors for the life of the entire component.
  • the two alloys IM 28 and 29 differ in their Co content in a range from 20 to 40%. This further increases the oxidation resistance of the intermetallic material.
  • FIG. 7 shows a representation comparable to FIG. 8, but the tests were carried out at a temperature of 1050 ° C.
  • the intermetallic felt 2 can be covered with a ceramic material 3, for example with a TBC (Thermal Barrier Coating).
  • TBC is a Zr oxide stabilized with Y. Equivalent materials are also conceivable.
  • the ceramic material 3 can be sprayed onto the intermetallic felt 2, because of the uneven surface of the intermetallic felt 2 it has a very good hold on it and good oxidation resistance.
  • the ceramic material 3 is good protection against thermal and mechanical, for example friction-related effects.
  • cooling air bores which may be present in the turbine blade 1 or on the rotor / stator 4, cannot become blocked, since the intermetallic felt 2 is a porous material. Another embodiment is shown in FIG. FIG.
  • FIG. 2 shows a schematic representation of a gas turbine with a rotor 4a, a stator 4b. Blades 6 are attached to the rotor 4a, and guide blades 7 are attached to the stator 7.
  • Heat accumulation segments 8 are usually arranged on the rotor 4a or on the stator 4b opposite the guide / rotor blades 6, 7. According to the invention, these heat accumulation segments 8 can also consist entirely or partially of an intermetallic felt. Due to the porous properties, an improved cooling at this point is also possible if there has been abrasion, since the porous structure of the intermetallic felt prevents clogging. As already described, the abrasion can be reduced by a layer of TBC. The component can also be cooled under the TBC layer, since the cooling medium can escape laterally through the porous felt.
  • FIG. 5 shows a heat accumulation segment 8 according to the invention in accordance with section V in FIG. 2.
  • the intermetallic felt 2 was attached to a load-bearing basic structure 5.
  • the load-bearing basic structure 5 has fastening means 9 which are used for fastening to the rotor 4a or stator 4b (not shown in FIG. 5).
  • the lateral fastening means 9 are connected to one another by struts 10.
  • the intermetallic felt 2 is inserted and mechanically connected to the struts 10 on the side facing the turbine blades. This can be done, for example, by soldering, welding or by casting. For reasons of durability, the felt should be cohesively attached to the load-bearing basic structure 5.
  • FIG. 6 shows the section VI-VI of FIG. 5.
  • the struts 10 connecting the two fastening means 9 do not penetrate the intermetallic felt 2, but rather the intermetallic felt 2 is only fastened to them.
  • the intermetallic felt 2 can in turn be coated with a ceramic material 3, for example with a TBC (Thermal Barrier Coating). Equivalent materials are also conceivable.
  • TBC Thermal Barrier Coating
  • the intermetallic felt in the exemplary embodiment in FIG. 3 is attached to the platform 12 of the turbine blade 1 of the thermal turbomachine.
  • the TBC also serves as protection against wear.
  • FIG. 4 shows a second variant of the exemplary embodiment of the detail iv from FIG. 3.
  • a supporting basic structure 5 consisting of a cast part or another metal, attached.
  • the supporting basic structure 5 can also consist of different chambers in order to ensure an optimal air supply to the intermetallic felt 2.
  • the intermetallic felt can also be used in places within the gas turbine that are subject to vibrations, since the felt also has very good vibration-damping properties in addition to the oxidation resistance mentioned.
  • an intermetallic material according to the invention can advantageously also be used as a high-temperature coating 15 on the turbine blades or other components.
  • the two alloys in contrast to the alloy SV 349, also have improved properties with regard to the oxidation.
  • various coating methods are known from the prior art in order to apply the protective layer, for example a plasma spraying method.
  • a metallic powder consisting of the material to be applied is introduced into a flame or a plasma jet. This pulse ver melts on the spot and is sprayed against the surface to be coated, where the material solidifies and forms a continuous layer.
  • a physical (or chemical) vapor deposition process is also possible.
  • solid coating material in block form is heated and evaporated (e.g. with a laser or an electron beam).
  • the vapor is deposited on the base material and forms a coating there after an adequate time.
  • Other, equivalent coating processes are also conceivable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The invention relates to an intermetallic material consisting of the following composition (wt. %) 8-15 % Al, 15-25 % Cr, 20-40 % Co, 0-5 % Ta, 0-0.03 % La, 0-0.5 % Y, 0-1.5 % Si, 0-1 % Hf, 0-0.2 % Zr, 0-0.2 % B, 0-0.1 % C, 0-4 % Fe, with Ni and unavoidable impurities constituting the remainder. The invention also relates to the use of said material as a high-temperature protective layer and on parts of thermal turbo machines that are affected by friction or vibrations.

Description

Intermetallisches Material und Verwendung dieses Materials Intermetallic material and use of this material
TECHNISCHES GEBIETTECHNICAL AREA
Die Erfindung betrifft ein intermetallisches Material gemäss den Ansprüchen 1 bis 3 und um die Verwendung dieses Material als Filz und als Hochtemperaturschutzschicht gemäss den Ansprüchen 4 und 5.The invention relates to an intermetallic material according to claims 1 to 3 and the use of this material as a felt and as a high-temperature protective layer according to claims 4 and 5.
STAND DER TECHNIKSTATE OF THE ART
Die Leit- und Laufschaufeln von Gasturbinen sind starken Belastungen ausgesetzt. Um die Leckageverluste der Gasturbine klein zu halten wird beispielsweise das Laufrad der Gasturbine mit einem sehr kleinen Spiel zum Stator eingepasst, so dass es zum Anstreifen kommt. An dem Stator der Gasturbine ist eine Honigwabenstrukur angebracht. Die Honigwabenstruktur besteht aus einer warmfesten Metallegierung. Eine weitere Bauart sind glatte, beschichtete oder unbeschichtete Wärmestausegmente (WSS), welche der rotierenden Schaufel am Aussenradius radial gegenüberstehen. Die Schaufelspitze reibt dann gegen diese Wärmestausegmente. Um zu verhindern, dass die Schaufelspitze selbst abgerieben wird, kann sie beschichtet sein, um dann in einem grösseren Masse die Wärmestausegmente abzureiben. Nachteilig ist aber bei dieser Ausführungsform, dass die Beschichtung nur eine begrenzte Haftbarkeit an der Turbinenschaufel hat. Zudem ist nachteilig, dass Kühlluftbohrungen, mit welchen entweder das Wärmestausegment und/oder die Schaufel versehen sein können, beim Reiben verstopft werden. Aus den Schriften DE-C2 32 35 230, EP-132 667 oder DE-C2-32 03 869 ist es bekannt, Metallfilze an verschiedenen Stellen von Gasturbinenkomponenten einzusetzen, so z.B. an der Spitze einer Turbinenschaufel (DE-C2-32 03 869), zwischen einem Metallkern oder einer keramischen Aussenhaut (DE-C2 32 35 230) oder als Mantel der Turbinenschaufel (EP-B1-132 667). Diese Ausführungen haben aber den Nachteil, dass der eingesetzte Metallfilz eine ungenügende Oxidationsbeständigkeit aufweist. Die Erhöhungen der Heissgastemperaturen, beispielsweise in heutigen Gasturbinen, führen dazu, dass die eingesetzten Materialien immer höheren Anforderungen genügen müssen. Die Metallfilze in den erwähnten Schriften erfüllen aber die Anforderung an heutige Massstäbe nicht mehr, insbesondere in bezug auf eine notwendiges Mass an Oxdationsbeständigkeit.The guide and rotor blades of gas turbines are exposed to heavy loads. In order to keep the leakage losses of the gas turbine small, for example, the impeller of the gas turbine is fitted to the stator with a very small amount of play, so that it can be rubbed. A honeycomb structure is attached to the stator of the gas turbine. The honeycomb structure consists of a heat-resistant metal alloy. Another design are smooth, coated or uncoated heat accumulation segments (WSS), which face the rotating blade radially on the outer radius. The blade tip then rubs against these heat accumulation segments. In order to prevent the blade tip itself from being rubbed off, it can be coated so that the heat accumulation segments can then be rubbed off to a greater extent. A disadvantage of this embodiment, however, is that the coating has only limited adhesion to the turbine blade. It is also disadvantageous that cooling air bores, with which either the heat accumulation segment and / or the blade can be provided, become blocked when rubbing. From documents DE-C2 32 35 230, EP-132 667 or DE-C2-32 03 869 it is known to use metal felts at various points in gas turbine components, for example at the tip of a turbine blade (DE-C2-32 03 869) , between a metal core or a ceramic outer skin (DE-C2 32 35 230) or as a jacket of the turbine blade (EP-B1-132 667). However, these designs have the disadvantage that the metal felt used has an insufficient resistance to oxidation. The increases in hot gas temperatures, for example in today's gas turbines, mean that the materials used have to meet ever higher requirements. However, the metal felts in the documents mentioned no longer meet the requirements of today's standards, particularly with regard to a necessary level of resistance to oxidation.
Aus US-BI-6,241 ,469, US-B1-6.312.218, DE-A1-199 12 701 , EP-A2-0 916 897 und EP-A2-1 076 157 sind Metallfilze, welche sich aus einer intermetallischen Legierung zusammensetzen, bekannt geworden. Diese Filze bestehen aus gesinterten und ge- pressten intermetallischen Fasern und weisen durch die intermetallischen Phasen gegenüber den o.g. Materialien deutlich verbesserte Materialeigenschaften in bezug auf Festigkeit, Oxidationbeständigkeit, Verformbarkeit und Abreibbarkeit auf. Metallische Hochtemperaturfasern sind auch im VDI-Bericht 1151, 1995 (Metallische Hochtemperaturfasern durch Schmelzextraktion - Herstellung, Eigenschaften, Anwendungen) beschrieben worden.From US-BI-6,241, 469, US-B1-6.312.218, DE-A1-199 12 701, EP-A2-0 916 897 and EP-A2-1 076 157 are metal felts which are composed of an intermetallic alloy , known. These felts consist of sintered and pressed intermetallic fibers. Materials significantly improved material properties in terms of strength, oxidation resistance, deformability and abrasion. Metallic high-temperature fibers have also been described in VDI report 1151, 1995 (Metallic high-temperature fibers by melt extraction - production, properties, applications).
DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION
Die Erfindung, wie sie in den unabhängigen Ansprüchen gekennzeichnet ist, löst die Aufgabe, die Materialeigenschaften von intermetallischen Legierungen noch weiter zu verbessern, so dass sie als Filz oder als Hochtemperaturschutzschicht an thermisch stark belasteten Gasturbinenbauteilen eingesetzt werden können. Durch eine entsprechende Wahl der Zusammensetzung der intermetallischen Legierung soll sie eine ausreichende Festigkeit, Oxidationsbeständigkeit, Verformbarkeit, Abreibbarkeit und ausreichende schwingungsdämpfende Eigenschaften besitzen. Die vorliegende Erfindung bezieht sich auch auf ein Intermetallisches Material bestehend aus folgender Zusammensetzung (Gew.-%) 8-15% AI, 15-25% Cr, 20-40% Co, 0-5%Ta, 0-0.03% La, 0-0.5% Y, 0-1.5% Si, 0-1% Hf, 0-0.2% Zr, 0-0.2% B, 0.01% C, 0-4% Fe, Rest Ni und unvermeidbare Verunreinigungen, insbesondere aus (Gew.-%) 12% AI, 22% Cr, 36% Co, 0.2% Y, 0.2% Hf, 3% Fe, Rest Ni und unvermeidbare Verunreinigungen oder aus 10% AI, 22% Cr, 36% Co, 0.2% Y, 0.2% Hf, 2% Ta, 3% Fe, Rest Ni und unvermeidbare Verunreinigungen.The invention, as characterized in the independent claims, solves the problem of further improving the material properties of intermetallic alloys, so that they can be used as felt or as a high-temperature protective layer on thermally highly stressed gas turbine components. By appropriate selection of the composition of the intermetallic alloy, it should have sufficient strength, resistance to oxidation, deformability, abrasion and sufficient vibration-damping properties. The present invention also relates to an intermetallic material consisting of the following composition (% by weight) 8-15% Al, 15-25% Cr, 20-40% Co, 0-5% Ta, 0-0.03% La, 0-0.5% Y, 0-1.5% Si, 0-1% Hf, 0-0.2% Zr, 0-0.2% B, 0.01% C, 0-4% Fe, balance Ni and inevitable impurities, especially from (wt .-%) 12% AI, 22% Cr, 36% Co, 0.2% Y, 0.2% Hf, 3% Fe, balance Ni and unavoidable impurities or from 10% AI, 22% Cr, 36% Co, 0.2% Y , 0.2% Hf, 2% Ta, 3% Fe, balance Ni and unavoidable impurities.
Ein solches intermetallisches Material kann aufgrund der Materialeigenschaften vor- teilhaft als Hochtemperaturbeschichtung von beispielsweise den Turbinenschaufeln oder anderen Bauteilen eingesetzt werden.Because of the material properties, such an intermetallic material can advantageously be used as a high-temperature coating of, for example, the turbine blades or other components.
Auch die Verwendung als intermetallischer Filz an reibungsbehafteten Komponenten in thermischen Turbomaschinen ist denkbar. Es kann sich dabei beispielsweise um den Rotor oder Stator, die Spitze einer Turbinenschaufel, um die der Turbinenschaufel gegenüberliegend angeordneten Wärmestausegmente oder um die Plattform der Turbinenschaufel handeln. Ein weiterer Vorteil entsteht, wenn der intermetallische Filz mit einem keramischen Material überzogen ist, da auf der rauhen Oberfläche des intermetallischen Filzes eine sehr gute Haftbarkeit des keramischen Mate- rials erzielt wird. Dadurch erhält beispielsweise die Spitze der Leit- oder Laufschaufel einen guten Schutz gegen thermische und gegen durch Reibung bedingte mechanische Einwirkungen. Ein weiterer Vorteil entsteht dadurch, dass Kühlluftbohrungen durch den Abrieb während des Betriebes nicht verstopfen, da es sich um ein poröses Material handelt. Zudem hat der intermetallische Filz auch ausreichende schwin- gungsabsorbierende Eigenschaften.The use as an intermetallic felt on components subject to friction in thermal turbomachinery is also conceivable. This can be, for example, the rotor or stator, the tip of a turbine blade, the heat accumulation segments arranged opposite the turbine blade, or the platform of the turbine blade. A further advantage arises when the intermetallic felt is coated with a ceramic material, since the ceramic material has very good adhesion to the rough surface of the intermetallic felt. This provides, for example, the tip of the guide or rotor blade with good protection against thermal and mechanical influences caused by friction. Another advantage arises from the fact that cooling air bores are not clogged by abrasion during operation, since it is a porous material. The intermetallic felt also has sufficient vibration-absorbing properties.
KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS
Die Erfindung wird an Hand der beiliegenden Zeichnungen erläutert, in denenThe invention is explained with reference to the accompanying drawings, in which
Fig. 1 eine Ausführungsform einer erfindungsgemässen Turbinenschaufel mit einem intermetallischen Filz an der Spitze zeigt, Fig. 2 eine Ausführungsform einer Gasturbine mit Wärmestausegmenten, welche der Leit- bzw. Laufschaufel gegenüberliegend angeordnet sind und aus einem intermetallischen Filz bestehen, darstellt,1 shows an embodiment of a turbine blade according to the invention with an intermetallic felt on the tip, 2 shows an embodiment of a gas turbine with heat accumulation segments, which are arranged opposite the guide or rotor blade and consist of an intermetallic felt,
Fig. 3 eine zweite Ausführungsform einer erfindungsgemässen Turbinenschaufel, wobei der intermetallische Filz auf der Plattform der Turbinenschaufel angeordnet ist, darstellt,3 shows a second embodiment of a turbine blade according to the invention, the intermetallic felt being arranged on the platform of the turbine blade,
Fig. 4 eine Variante der zweiten Ausführungsform des Details iv der Figur 3, wobei der intermetallische Filz zwischen den Turbinenschaufeln auf den Plattformen der Turbinenschaufeln auf einer tragenden Grundstruktur an- geordnet ist, darstellt,4 shows a variant of the second embodiment of detail iv of FIG. 3, the intermetallic felt between the turbine blades being arranged on the platforms of the turbine blades on a supporting basic structure,
Fig. 5 ein erfind ungsgemässes Wärmestausegment mit einer tragenden Grundstruktur gemäss dem Ausschnitt V in der Fig. 2 zeigt,5 shows a heat accumulation segment according to the invention with a load-bearing basic structure according to section V in FIG. 2,
Fig. 6 einen Schnitt durch das Wärmestausegment gemäss der Linie VI- VI in der Fig. 5 darstellt, Fig. 7 eine Darstellung des Oxidationsverhaltens von verschiedenen Materialien bei einer Temperatur von 1050°C zeigt undFIG. 6 shows a section through the heat accumulation segment along the line VI-VI in FIG. 5, FIG. 7 shows the oxidation behavior of different materials at a temperature of 1050 ° C. and
Fig. 8 eine Darstellung des Oxidationsverhaltens von verschiedenen Materialien bei einer Temperatur von 1200°C zeigt.8 shows a representation of the oxidation behavior of different materials at a temperature of 1200 ° C.
Es sind nur die für die Erfindung wesentlichen Elemente dargestellt. Gleiche Elemente sind in unterschiedlichen Figuren mit gleichen Bezugszeichen versehen.Only the elements essential to the invention are shown. The same elements are provided with the same reference symbols in different figures.
WEG ZUR AUSFÜHRUNG DER ERFINDUNGWAY OF CARRYING OUT THE INVENTION
In der Figur 1 ist eine Turbinenschaufel 1 mit einer Spitze 11 , einem Schaufelblatt 14, einer Plattform 12 und einem Schaufelfuss 13 dargestellt. Es kann sich dabei beispielsweise um eine Leit- oder eine Laufschaufel einer Gasturbine oder eines Verdichters handeln. An der Spitze 11 dieser Turbinenschaufel 1 ein erfindungsge- mässer intermetallischer Filz 2 angeordnet. Der intermetallische Filz 2 wurde auf der Basis eines Ni-Co-Aluminides hergestellt. Um eine ausreichende Festigkeit, Oxida- tionbeständigkeit und Verformbarkeit zu erreichen, sind die Elemente Ta, Cr, Y, B und Zr zugegeben. In der Tab. 1 ist die erfindungsgemässe Zusammensetzung des Ni-Co-A!uminides angegeben.FIG. 1 shows a turbine blade 1 with a tip 11, an airfoil 14, a platform 12 and a blade root 13. This can be, for example, a guide vane or a rotor blade of a gas turbine or a compressor. An intermetallic felt 2 according to the invention is arranged at the tip 11 of this turbine blade 1. The intermetallic felt 2 was produced on the basis of a Ni-Co aluminide. In order to achieve sufficient strength, resistance to oxidation and deformability, the elements Ta, Cr, Y, B and Zr added. Tab. 1 shows the composition of Ni-Co-A! Uminides according to the invention.
Zusammensetzung der erfindungsgemässen intermetallischen Legierung (angegeben ist eine Ni-Co-Aluminid)Composition of the intermetallic alloy according to the invention (an Ni-Co aluminide is indicated)
Nickel-Cobalt-Aluminide (Angaben in Gew. -%)Nickel-cobalt aluminides (figures in% by weight)
Ni AI Cr Co Ta Y Si c La Hf Zr B FeNi AI Cr Co Ta Y Si c La Hf Zr B Fe
15- 20- 0- 0-15- 20- 0- 0-
Rest 8-15% 0-5% 0-1.5% 0-0.1% 0-1% 0-0.2% 0-0.2% 0-4% 25% 40% 0.5% 0.03%Balance 8-15% 0-5% 0-1.5% 0-0.1% 0-1% 0-0.2% 0-0.2% 0-4% 25% 40% 0.5% 0.03%
Ta b. 1Ta b. 1
Der Vorteil der intermetallischen Filze 2 ist die deutlich verbesserte Oxidationsbe- ständigkeit. Aus den Fig. 7 und 8 ist die Oxidation verschiedener Materialien im Vergleich mit den kommerziellen Nickelbasislegierungen Hastelloy X, Haynes 230, Hay- nes 214 und der Legierung SV349 ersichtlich. Die Tab. 2 gibt die Zusammensetzung der Versuchslegierungen wieder.The advantage of intermetallic felts 2 is the significantly improved resistance to oxidation. 7 and 8 show the oxidation of different materials in comparison with the commercial nickel-based alloys Hastelloy X, Haynes 230, Haynes 214 and the alloy SV349. Table 2 shows the composition of the test alloys.
Zusammensetzung von Versuchslegierungen (Angaben in Gew.-%)Composition of test alloys (figures in% by weight)
Tab. 2Tab. 2
Die Figur 8 zeigt die Gewichtszunahme der in Tab. 2 angegebenen in [mg/cm ] über eine Zeit von 12 Stunden bei einer Temperatur von 1200° C. Die Gewichtszunahme ist stellvertretend für die Oxidation der Materialien aufgetragen. Aus der Fig. 8 wird ersichtlich, dass die Vergleichslegierung Hastelloy X schon nach einer kurzen Zeit von ca. 100 min. bis ca. 300 min. eine doppelte Gewichtszunahme aufweist. Mit fortschreitender Zeit steigt die Gewichtszunahme der Hastelloy X kontinuierlich weiter, während sich die intermetallischen Filze IM14 und IM15 auf einen konstanten Wert zwischen 0.6 - 0.8 mg/cm2 einstellen, während die beiden Legierungen IM 28 und 29 noch darunter liegen. Es wird deutlich, dass die Oxdiationbeständigkeit bei den intermetallischen Filzen wesentlich verbessert ist, da sich eine konstante Oxidschicht gebildet hat. Für die erfindungsgemässe Verwendung des intermetallischen Filzes an reibungsbehafteten Stellen einer thermischen Turbomaschine ist die Oxidationsbeständigkeit einer der wichtigsten Faktor für die Lebensdauer der ganzen Komponente. Die beiden Legierungen IM 28 und 29 unterscheiden sich durch einen Co- Anteil in einem Bereich von 20 bis 40%. Dies steigert die Oxidationsbeständigkeit des intermetallischen Material noch weiter.FIG. 8 shows the weight gain in [mg / cm] given in Table 2 over a period of 12 hours at a temperature of 1200 ° C. The weight gain is representative of the oxidation of the materials. From Fig. 8 it can be seen that the comparison alloy Hastelloy X after a short time of about 100 minutes. up to approx. 300 min. has a double weight gain. As the time progresses, the weight gain of the Hastelloy X continues to increase, while the intermetallic felts IM14 and IM15 adjust to a constant value between 0.6 - 0.8 mg / cm 2 , while the two alloys IM 28 and 29 are still below. It is clear that the resistance to oxidation in the intermetallic felts is significantly improved since a constant oxide layer has formed. For the use according to the invention of the intermetallic felt at points of a thermal turbomachine which are subject to friction, the resistance to oxidation is one of the most important factors for the life of the entire component. The two alloys IM 28 and 29 differ in their Co content in a range from 20 to 40%. This further increases the oxidation resistance of the intermetallic material.
Die Fig. 7 zeigt eine mit der Fig. 8 vergleichbare Darstellung, jedoch wurden die Versuche bei einer Temperatur von 1050°C durchgeführt.FIG. 7 shows a representation comparable to FIG. 8, but the tests were carried out at a temperature of 1050 ° C.
Um die Festigkeit dieser Turbinenschaufel 1 der Figur 1 an der Spitze 11 noch zu erhöhen, kann der intermetallische Filz 2 mit einem keramischen Material 3 überzogen werden, beispielsweise mit einem TBC (Thermal Barrier Coating). Es handelt sich bei TBC um ein mit Y stabilisiertes Zr-Oxid. Gleichwertige Materialien sind aber ebenso denkbar. Das keramische Material 3 kann auf den intermetallischen Filz 2 aufgespritzt werden, es hat durch die unebene Oberfläche des intermetallischen Fil- zes 2 einen sehr guten Halt auf ihm und eine gute Oxidationsbeständigkeit. Das keramische Material 3 ist ein guter Schutz gegen thermische und mechanische, beispielsweise reibungsbedingte Einwirkungen. Vorteilhaft können Kühlluftbohrungen, welche in der Turbinenschaufel 1 oder am Rotor/Stator 4 vorhanden sein können, nicht verstopfen, da es sich bei dem intermetallischen Filz 2 um ein poröses Material handelt. In der Figur 2 ist eine weitere Ausführungsform dargestellt. Die Figur 2 zeigt schematische eine Darstellung einer Gasturbine mit einem Rotor 4a, einem Stator 4b. An dem Rotor 4a sind Laufschaufeln 6, an dem Stator 7 sind Leitschaufeln 7 befestigt. Am Rotor 4a bzw. am Stator 4b sind üblicherweise dem Leit-/Laufschaufeln 6,7 ge- genüberliegend Wärmestausegmente 8 angeordnet. Erfindungsgemäss können diese Wärmestausegmente 8 ebenfalls ganz oder teilweise aus einem intermetallischen Filz bestehen. Durch die porösen Eigenschaften ist eine verbesserte Kühlung an dieser Stelle auch dann möglich, wenn es zu einem Abrieb gekommen ist, da die poröse Struktur des intermetallischen Filzes ein Verstopfen verhindert. Der Abrieb kann wie bereits beschrieben durch eine Schicht aus TBC verringert werden. Das Bauteil kann auch unter der TBC Schicht gekühlt sein, da das Kühlmedium seitlich durch den porösen Filz entweichen kann.In order to further increase the strength of this turbine blade 1 of FIG. 1 at the tip 11, the intermetallic felt 2 can be covered with a ceramic material 3, for example with a TBC (Thermal Barrier Coating). TBC is a Zr oxide stabilized with Y. Equivalent materials are also conceivable. The ceramic material 3 can be sprayed onto the intermetallic felt 2, because of the uneven surface of the intermetallic felt 2 it has a very good hold on it and good oxidation resistance. The ceramic material 3 is good protection against thermal and mechanical, for example friction-related effects. Advantageously, cooling air bores, which may be present in the turbine blade 1 or on the rotor / stator 4, cannot become blocked, since the intermetallic felt 2 is a porous material. Another embodiment is shown in FIG. FIG. 2 shows a schematic representation of a gas turbine with a rotor 4a, a stator 4b. Blades 6 are attached to the rotor 4a, and guide blades 7 are attached to the stator 7. Heat accumulation segments 8 are usually arranged on the rotor 4a or on the stator 4b opposite the guide / rotor blades 6, 7. According to the invention, these heat accumulation segments 8 can also consist entirely or partially of an intermetallic felt. Due to the porous properties, an improved cooling at this point is also possible if there has been abrasion, since the porous structure of the intermetallic felt prevents clogging. As already described, the abrasion can be reduced by a layer of TBC. The component can also be cooled under the TBC layer, since the cooling medium can escape laterally through the porous felt.
Die Figur 5 zeigt ein erfindungsgemässes Wärmestausegment 8 gemäss dem Aus- schnitt V in der Figur 2. Der intermetallische Filz 2 wurde an einer tragenden Grundstruktur 5 angebracht. Die tragenden Grundstruktur 5 weist Befestigungsmittel 9 auf, welche zur Befestigung am in der Figur 5 nicht dargestellten Rotor 4a bzw. Stator 4b dienen. Die seitlichen Befestigungsmittel 9 sind durch Streben 10 miteinander verbunden. Zwischen den Streben 10 ist auf der Seite, welche den Turbinenschaufeln zugewandt ist, der intermetallische Filz 2 eingesetzt und mit ihm mechanisch verbunden. Dies kann beispielsweise durch Löten, Schweissen oder durch Eingiessen geschehen. Aus Haltbarkeitsgründen sollte der Filz stoffschlüssig an der tragenden Grundstruktur 5 befestigt sein.FIG. 5 shows a heat accumulation segment 8 according to the invention in accordance with section V in FIG. 2. The intermetallic felt 2 was attached to a load-bearing basic structure 5. The load-bearing basic structure 5 has fastening means 9 which are used for fastening to the rotor 4a or stator 4b (not shown in FIG. 5). The lateral fastening means 9 are connected to one another by struts 10. The intermetallic felt 2 is inserted and mechanically connected to the struts 10 on the side facing the turbine blades. This can be done, for example, by soldering, welding or by casting. For reasons of durability, the felt should be cohesively attached to the load-bearing basic structure 5.
Die Figur 6 zeigt den Schnitt VI- VI der Figur 5. Dort ist ersichtlich, dass die die beiden Befestigungsmittel 9 verbindenden Streben 10 den intermetallischen Filz 2 nicht durchdringen, sondern der intermetallische Filz 2 lediglich an ihnen befestigt ist. Wie aus der Figur 6 ersichtlich ist, kann, um die Temperaturbeständigkeit des Wärmestausegments 8 noch zu erhöhen, der intermetallische Filz 2 wiederum mit einem keramischen Material 3 überzogen werden, beispielsweise mit einem TBC (Thermal Barrier Coating). Gleichwertige Materialien sind aber ebenso denkbar. Wie bei der Turbinenschaufel 1 der Figur 1 bleibt eine Kühlwirkung auch bei einem Abrieb erhalten, da es zu keinem Verstopfen des intermetallischen Filzes 2 kommt.FIG. 6 shows the section VI-VI of FIG. 5. There it can be seen that the struts 10 connecting the two fastening means 9 do not penetrate the intermetallic felt 2, but rather the intermetallic felt 2 is only fastened to them. As can be seen from FIG. 6, in order to further increase the temperature resistance of the heat accumulation segment 8, the intermetallic felt 2 can in turn be coated with a ceramic material 3, for example with a TBC (Thermal Barrier Coating). Equivalent materials are also conceivable. As with the The turbine blade 1 of FIG. 1 maintains a cooling effect even in the case of abrasion, since the intermetallic felt 2 is not clogged.
Zu verbesserten Kühlzwecken ist der intermetallische Filz im Ausführungsbeispiel in der Figur 3 auf der Plattform 12 der Turbinenschaufel 1 der thermischen Turbomaschine angebracht. Auch hier macht es Sinn, wie bereits bei den Figur 1 ,2,5 und 6 beschrieben, den Filz 2 mit einem keramischen Material 3 zu überziehen. Das hat den Vorteil, dass das TBC besonders gut auf dem intermetallischen Filz haftet und der Filz oxidationsbeständig ist. Es wird keine zusätzliche Bindeschicht (z.B. MCrAIY) benötigt. In der Figur 3 ist dies neben der rechten Turbinenschaufel 1 dargestellt. Das TBC dient auch als Schutz gegen Abnutzung.For improved cooling purposes, the intermetallic felt in the exemplary embodiment in FIG. 3 is attached to the platform 12 of the turbine blade 1 of the thermal turbomachine. Here too, as already described in FIGS. 1, 2, 5 and 6, it makes sense to coat the felt 2 with a ceramic material 3. This has the advantage that the TBC adheres particularly well to the intermetallic felt and the felt is resistant to oxidation. No additional binding layer (e.g. MCrAIY) is required. This is shown in FIG. 3 next to the right turbine blade 1. The TBC also serves as protection against wear.
Figur 4 zeigt eine zweite Variante des Ausführungsbeispiels des Details iv aus Figur 3. Zwischen zwei Turbinenschaufeln 1 - auf der Plattform 12 der Turbinen- schaufei 1 - ist der intermetallische Filz 2 auf einer tragenden Grundstruktur 5, bestehend aus einem Gussteil oder einem anderen Metall, befestigt. Die tragende Grundstruktur 5 kann auch aus verschiedenen Kammern bestehen, um eine optimale Luftzufuhr zum intermetallischen Filz 2 zu gewährleisten.FIG. 4 shows a second variant of the exemplary embodiment of the detail iv from FIG. 3. Between two turbine blades 1 - on the platform 12 of the turbine blade 1 - the intermetallic felt 2 is on a supporting basic structure 5, consisting of a cast part or another metal, attached. The supporting basic structure 5 can also consist of different chambers in order to ensure an optimal air supply to the intermetallic felt 2.
Der intermetallischen Filzes kann auch an Stellen innerhalb der Gasturbine eingesetzt werden, die schwingungsbehaftet sind, da der Filz neben der erwähnten Oxidationsbeständigkeit zudem sehr gute schwingungsdämpfende Eigenschaften besitzt.The intermetallic felt can also be used in places within the gas turbine that are subject to vibrations, since the felt also has very good vibration-damping properties in addition to the oxidation resistance mentioned.
Ein erfindungsgemässes intermetallisches Material kann aufgrund der Materialei- genschaften vorteilhaft auch als Hochtemperaturbeschichtung 15 an den Turbinenschaufeln oder anderen Bauteilen eingesetzt werden. Wie aus den beiden Fig. 8 und 7 ersichtlich, haben die beiden Legierungen im Gegensatz zu der Legierung SV 349 ebenfalls verbesserte Eigenschaften in bezug auf die Oxidation. Für eine solche Turbinenschaufel sind verschiedene Beschichtungsverfahren aus dem Stand der Technik bekannt, um die Schutzschicht aufzutragen, beispielsweise ist ein Plasma- Spritz-Verfahren. Dabei wird ein aus dem aufzutragenden Material bestehendes, metallisches Pulver in eine Flamme oder einen Plasmastrahl eingeführt. Dieses Pul- ver schmilzt auf der Stelle und wird gegen die zu beschichtende Oberfläche gespritzt, wo sich das Material verfestigt und eine durchgehende Schicht bildet.Because of the material properties, an intermetallic material according to the invention can advantageously also be used as a high-temperature coating 15 on the turbine blades or other components. As can be seen from the two FIGS. 8 and 7, the two alloys, in contrast to the alloy SV 349, also have improved properties with regard to the oxidation. For such a turbine blade, various coating methods are known from the prior art in order to apply the protective layer, for example a plasma spraying method. A metallic powder consisting of the material to be applied is introduced into a flame or a plasma jet. This pulse ver melts on the spot and is sprayed against the surface to be coated, where the material solidifies and forms a continuous layer.
Auch ein physikalisches (oder chemisches) Aufdampf-Verfahren ist möglich. Bei die- sem Verfahren wird festes Beschichtungsmaterial in blockförmiger Form erhitzt und evaporiert (z.B. mit einem Laser oder einem Elektronenstrahl). Der Dampf schlägt sich auf dem Grundmaterial nieder und bildet dort nach einer adäquaten Zeit eine Beschichtung. Andere, gleichwertige Beschichtungsverfahren sind ebenso denkbar.A physical (or chemical) vapor deposition process is also possible. In this process, solid coating material in block form is heated and evaporated (e.g. with a laser or an electron beam). The vapor is deposited on the base material and forms a coating there after an adequate time. Other, equivalent coating processes are also conceivable.
B E Z U G S Z E I C H E N L I S T EB E Z U G S Z E I C H E N L I S T E
1 Turbinenschaufel1 turbine blade
2 Intermetallischer Filz2 intermetallic felt
3 Keramischer Überzug 4 Rotor bzw. Stator3 Ceramic coating 4 Rotor or stator
4a Rotor4a rotor
4b Stator4b stator
5 Tragende Grundstruktur5 Basic structure
6 Laufschaufel 7 Leitschaufel6 moving blade 7 guide blade
8 Wärmestausegment8 heat accumulation segment
9 Befestigungsmittel9 fasteners
10 Streben10 struts
11 Spitze der Turbinenschaufel 1 12 Plattform11 Tip of the turbine blade 1 12 platform
13 Schaufelfuss der Turbinenschaufel 113 Blade root of the turbine blade 1
14 Schaufelblatt der Turbinenschaufel 114 Blade of the turbine blade 1
15 Hochtemperaturbeschichtung 15 high temperature coating

Claims

PATENTANSPRÜCHE
1. Intermetallisches Material bestehend aus folgender Zusammensetzung (Gew.-%) 8-15% AI, 15-25% Cr, 20-40% Co, 0-5%Ta, 0-0.03% La, 0-0.5% Y, 0-1.5% Si, 0- 1% Hf, 0-0.2% Zr, 0-0.2% B, 0-0.1% C, 0-4% Fe, Rest Ni und unvermeidbare1. Intermetallic material consisting of the following composition (% by weight) 8-15% Al, 15-25% Cr, 20-40% Co, 0-5% Ta, 0-0.03% La, 0-0.5% Y, 0-1.5% Si, 0- 1% Hf, 0-0.2% Zr, 0-0.2% B, 0-0.1% C, 0-4% Fe, balance Ni and unavoidable
Verunreinigungen.Impurities.
2. Intermetallisches Material nach Anspruch 1 , bestehend aus folgender Zusammensetzung (Gew.-%) 12% AI, 22% Cr, 36% Co, 0.2% Y, 0.2% Hf, 3% Fe, Rest Ni und unvermeidbare Verunreinigungen.2. Intermetallic material according to claim 1, consisting of the following composition (wt .-%) 12% Al, 22% Cr, 36% Co, 0.2% Y, 0.2% Hf, 3% Fe, balance Ni and unavoidable impurities.
3. Intermetallisches Material nach Anspruch 1 , bestehend aus folgender Zusammensetzung (Gew.-%) 10% AI, 22% Cr, 36% Co, 0.2% Y, 0.2% Hf, 2% Ta, 3% Fe, Rest Ni und unvermeidbare Verunreinigungen.3. Intermetallic material according to claim 1, consisting of the following composition (wt .-%) 10% Al, 22% Cr, 36% Co, 0.2% Y, 0.2% Hf, 2% Ta, 3% Fe, balance Ni and unavoidable impurities.
4. Verwendung eines intermetallischen Materials gemäss einem der Ansprüche 1 bis 3 als Hochtemperaturbeschichtung (15) in thermischen Turbomaschinen.4. Use of an intermetallic material according to one of claims 1 to 3 as a high-temperature coating (15) in thermal turbomachinery.
5. Verwendung eines intermetallischen Materials gemäss einem der Ansprüche 1 bis 3 als Filz an reibungsbehafteten Komponenten in thermischen Turbomaschinen.5. Use of an intermetallic material according to one of claims 1 to 3 as a felt on frictional components in thermal turbomachinery.
6. Verwendung eines intermetallischen Filzes gemäss Anspruch 5, dadurch gekennzeichnet, dass der intermetallische Filz an einem Rotor (4,4a) oder Stator (4,4b) angeordnet ist.6. Use of an intermetallic felt according to claim 5, characterized in that the intermetallic felt is arranged on a rotor (4,4a) or stator (4,4b).
7. Verwendung eines intermetallischen Filzes gemäss Anspruch 5, dadurch gekennzeichnet, dass die Komponente (1 , 8) eine Turbinenschaufel (1) ist und die Spitze (11) der Tur- binenschaufel (1) mit einem intermetallischen Filz (2) ausgestattet ist. 7. Use of an intermetallic felt according to claim 5, characterized in that the component (1, 8) is a turbine blade (1) and the tip (11) of the turbine blade (1) is equipped with an intermetallic felt (2).
8. Verwendung eines intermetallischen Filzes gemäss Anspruch 5, dadurch gekennzeichnet, dass die Komponente (1 , 8) eine Turbinenschaufel (1) ist und die Plattform (12) der Turbinenschaufel (1) mit einem intermetallischen Filz (2) ausgestattet ist.8. Use of an intermetallic felt according to claim 5, characterized in that the component (1, 8) is a turbine blade (1) and the platform (12) of the turbine blade (1) is equipped with an intermetallic felt (2).
9. Verwendung eines intermetallischen Filzes gemäss Anspruch 5, dadurch gekennzeichnet, dass die Komponente (1 , 8) ein Wärmestausegment (8) ist und das Wärmestausegment (8) ganz oder teilweise aus einem intermetallischen Filz (2) besteht.9. Use of an intermetallic felt according to claim 5, characterized in that the component (1, 8) is a heat accumulation segment (8) and the heat accumulation segment (8) consists entirely or partially of an intermetallic felt (2).
10.Verwendung eines intermetallischen Filzes gemäss einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass der intermetallische Filz (2) mit einem keramischen Material (3) überzogen ist.10.Use of an intermetallic felt according to one of claims 5 to 8, characterized in that the intermetallic felt (2) is covered with a ceramic material (3).
11.Verwendung eines intermetallischen Filzes gemäss Anspruch 5, dadurch gekennzeichnet, dass der Filz an schwingungssbehafteten Komponenten in thermischen Turbomaschinen eingesetzt wird. 11.Use of an intermetallic felt according to claim 5, characterized in that the felt is used on components subject to vibrations in thermal turbomachinery.
EP20030739941 2002-08-16 2003-07-24 Intermetallic material and use of said material Expired - Fee Related EP1529123B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH14062002 2002-08-16
CH140602 2002-08-16
PCT/CH2003/000503 WO2004016819A1 (en) 2002-08-16 2003-07-24 Intermetallic material and use of said material

Publications (2)

Publication Number Publication Date
EP1529123A1 true EP1529123A1 (en) 2005-05-11
EP1529123B1 EP1529123B1 (en) 2011-10-05

Family

ID=31722378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030739941 Expired - Fee Related EP1529123B1 (en) 2002-08-16 2003-07-24 Intermetallic material and use of said material

Country Status (5)

Country Link
US (1) US7141128B2 (en)
EP (1) EP1529123B1 (en)
CN (1) CN100430499C (en)
AU (1) AU2003285270A1 (en)
WO (1) WO2004016819A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7316850B2 (en) * 2004-03-02 2008-01-08 Honeywell International Inc. Modified MCrAlY coatings on turbine blade tips with improved durability
US7378132B2 (en) * 2004-12-14 2008-05-27 Honeywell International, Inc. Method for applying environmental-resistant MCrAlY coatings on gas turbine components
JP2006291307A (en) 2005-04-12 2006-10-26 Mitsubishi Heavy Ind Ltd Component of rotary machine, and rotary machine
EP1818419A1 (en) * 2006-01-16 2007-08-15 Siemens Aktiengesellschaft Alloy, protective layer and component
GB0807008D0 (en) * 2008-04-17 2008-05-21 Advanced Interactive Materials Helicoidal motors for use in down-hole drilling
US8273148B2 (en) 2009-01-30 2012-09-25 Untied Technologies Corporation Nickel braze alloy composition
EP2374909B1 (en) * 2010-03-30 2015-09-16 United Technologies Corporation Improved nickel braze alloy composition
CN107663605A (en) * 2016-07-29 2018-02-06 泰州市艾瑞克新型材料有限公司 Single crystal turbine blade sawtooth is preced with damping area wear-resistant coating and its preparation technology
EP3985138A1 (en) * 2020-10-14 2022-04-20 Siemens Energy Global GmbH & Co. KG Nicocral based alloy, a powder, a coating and a component
US11426822B2 (en) * 2020-12-03 2022-08-30 General Electric Company Braze composition and process of using
CN115747607B (en) * 2023-01-10 2023-04-14 西安稀有金属材料研究院有限公司 High-entropy alloy sheet for fiber metal laminate and preparation method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB607616A (en) 1945-11-28 1948-09-02 Harold Ernest Gresham Nickel base alloy
GB1456554A (en) 1973-03-28 1976-11-24 United Aircraft Corp High temperature abradable material
US3928026A (en) * 1974-05-13 1975-12-23 United Technologies Corp High temperature nicocraly coatings
US4101713A (en) * 1977-01-14 1978-07-18 General Electric Company Flame spray oxidation and corrosion resistant superalloys
US4447503A (en) * 1980-05-01 1984-05-08 Howmet Turbine Components Corporation Superalloy coating composition with high temperature oxidation resistance
US4615864A (en) * 1980-05-01 1986-10-07 Howmet Turbine Components Corporation Superalloy coating composition with oxidation and/or sulfidation resistance
DE3203869C2 (en) 1982-02-05 1984-05-10 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Turbine rotor blades for turbo machines, in particular gas turbine engines
JPS58153752A (en) * 1982-03-08 1983-09-12 Takeshi Masumoto Ni-cr alloy material
DE3235230A1 (en) 1982-09-23 1984-03-29 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Gas turbine blade having a metal core and a ceramic vane
DE3327218A1 (en) 1983-07-28 1985-02-07 MTU Motoren- und Turbinen-Union München GmbH, 8000 München THERMALLY HIGH-QUALITY, COOLED COMPONENT, IN PARTICULAR TURBINE BLADE
US5192625A (en) * 1990-02-28 1993-03-09 General Electric Company Cobalt-base wrought alloy compositions and articles
US5536022A (en) * 1990-08-24 1996-07-16 United Technologies Corporation Plasma sprayed abradable seals for gas turbine engines
US5455119A (en) * 1993-11-08 1995-10-03 Praxair S.T. Technology, Inc. Coating composition having good corrosion and oxidation resistance
AU2663797A (en) * 1996-04-10 1997-10-29 Penn State Research Foundation, The Improved superalloys with improved oxidation resistance and weldability
DE19750517A1 (en) 1997-11-14 1999-05-20 Asea Brown Boveri Heat shield
DE19848103A1 (en) * 1998-10-19 2000-04-20 Asea Brown Boveri Sealing arrangement
DE19848104A1 (en) * 1998-10-19 2000-04-20 Asea Brown Boveri Turbine blade
DE19912701B4 (en) 1999-03-20 2006-01-19 Alstom combustion chamber wall
KR100372482B1 (en) * 1999-06-30 2003-02-17 스미토모 긴조쿠 고교 가부시키가이샤 Heat resistant Ni base alloy
DE19937577A1 (en) 1999-08-09 2001-02-15 Abb Alstom Power Ch Ag Frictional gas turbine component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004016819A1 *

Also Published As

Publication number Publication date
WO2004016819A1 (en) 2004-02-26
CN1708598A (en) 2005-12-14
CN100430499C (en) 2008-11-05
AU2003285270A1 (en) 2004-03-03
US20060127660A1 (en) 2006-06-15
EP1529123B1 (en) 2011-10-05
US7141128B2 (en) 2006-11-28

Similar Documents

Publication Publication Date Title
DE69926858T2 (en) Abradable sealing layer and its method of manufacture
EP1076157B1 (en) Friction component of a thermal turbomachine
DE69732404T3 (en) Partial coating of gas turbine blades to increase fatigue strength
DE60021178T2 (en) ABRASION AND HIGH TEMPERATURE RESISTANT, ABRASIVE HEAT-DAMPING COMPOSITE COATING
DE60309819T2 (en) Thermal barrier coating (TBC) protected by a thermally glazed layer and method of making the same
DE19918900B4 (en) High temperature component for a gas turbine and process for its production
EP1902160B1 (en) Ceramic heat insulating layer
DE2829369B2 (en) Process for forming hard, wear-resistant coatings containing metallic carbides
EP2317078A2 (en) Abrasive single-crystal turbine blade
EP2465958B1 (en) Alloy, protective coating and component
WO2006103127A1 (en) Layered matrix and system
DE102009049707A1 (en) Method for producing a rotor or stator blade and such a blade
DE4126989A1 (en) SINGLE CRYSTALLINE, COMPREHENSIVE GAS TURBINE COVER
EP1529123B1 (en) Intermetallic material and use of said material
EP2122009A1 (en) Device for the protection of components having a flammable titanium alloy from titanium fire, and method for the production thereof
DE2842848A1 (en) COVERED OBJECT, IN PARTICULAR SUPER ALLOY GAS TURBINE BLADE
WO2007063091A1 (en) Alloy, protective layer for protecting a component against corrosion and oxidation at high temperatures and component
EP1798299B1 (en) Alloy, protective coating and component
DE602005001990T2 (en) Heat resistant nickel base superalloy and single crystalline articles of this alloy
DE3036206A1 (en) WEAR-RESISTANT COATING, OXIDATION AND CORROSION PROTECTIVE COATING, CORROSION- AND WEAR-RESISTANT COATING ALLOY, ITEM PROVIDED WITH SUCH A COATING AND METHOD FOR PRODUCING SUCH A COATING
EP1462617A2 (en) Blading for an axial-flow turbomachine
EP1790743A1 (en) Alloy, protective layer and component
WO2007051755A1 (en) Alloy, protective layer for protecting a component from corrosion and/or oxidation at high temperatures and component
DE10356953B4 (en) Inlet lining for gas turbines and method for producing the same
DE19733506B4 (en) Composite for thermal spraying and coating formed therefrom

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313988

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313988

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50313988

Country of ref document: DE

Effective date: 20111208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120706

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50313988

Country of ref document: DE

Effective date: 20120706

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313988

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313988

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313988

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170719

Year of fee payment: 15

Ref country code: DE

Payment date: 20170724

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50313988

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180724

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201