EP1516393B1 - Doppelpolarisations-doppelbandstrahlungseinrichtung - Google Patents

Doppelpolarisations-doppelbandstrahlungseinrichtung Download PDF

Info

Publication number
EP1516393B1
EP1516393B1 EP03760720A EP03760720A EP1516393B1 EP 1516393 B1 EP1516393 B1 EP 1516393B1 EP 03760720 A EP03760720 A EP 03760720A EP 03760720 A EP03760720 A EP 03760720A EP 1516393 B1 EP1516393 B1 EP 1516393B1
Authority
EP
European Patent Office
Prior art keywords
radiating element
dipole
dipoles
cavity
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03760720A
Other languages
English (en)
French (fr)
Other versions
EP1516393A1 (de
Inventor
Mostafa Jelloul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arialcom
Original Assignee
Arialcom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0207872A external-priority patent/FR2841390B1/fr
Application filed by Arialcom filed Critical Arialcom
Publication of EP1516393A1 publication Critical patent/EP1516393A1/de
Application granted granted Critical
Publication of EP1516393B1 publication Critical patent/EP1516393B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays

Definitions

  • the invention relates to antennas and their radiating elements that can be used in particular in the base stations of cellular radio communication networks of the GSM or UMTS type, for example.
  • a double polarization radiating element may be formed of two radiating dipoles, each dipole consisting of two collinear conductor strands. The length of each strand is substantially equal to one quarter of the working wavelength.
  • the dipoles are mounted on a structure allowing their feeding and their positioning above a reflector (plane-mass). This makes it possible, by reflection of the rear radiation of the dipoles, to refine the directivity of the radiation pattern of the assembly thus formed.
  • the dipoles can radiate or receive electromagnetic waves in two polarization paths, for example a horizontal polarization path and a vertical polarization path, or else two polarization paths offset by an angle of ⁇ 45 ° from horizontal or vertical.
  • the inter-band decoupling depends fundamentally on the relative orientation of the second radiating element placed in the center of the first.
  • the parallel dipoles of the elements operating in the frequency bands F1 and F2 are insufficiently decoupled in the upper frequency band of frequency F2 for which the peripheral dipoles have a large dimension relative to the wavelength corresponding to the frequency F2.
  • the interaction between the peripheral dipoles operating at the frequency F1 and the crossed dipoles operating at the frequency F2 is due to both the direct radiation, the dipoles being in line of sight, but also to the radiation reflected by the reflector.
  • the perpendicular paths of the two radiating elements are well decoupled by virtue of this geometrical orthogonality.
  • the invention aims to improve the situation.
  • the dual-polarization dual-band radiating device comprises a first radiating element operating in a first frequency band F1 which is formed of four dipoles arranged in a square and a second radiating element operating in a second frequency band F2 which is formed of at least one dipole disposed in the center of the square of the dipoles forming the first radiating element, each dipole being fed at its center by a balun.
  • the first and the second radiating elements are arranged above a reflector.
  • the dipoles forming the first radiating element and the baluns are made in the same metal plate, each balun of a dipole being formed by a short-circuit line cut into the metal plate in a direction perpendicular to the metal plate. axis of the dipole.
  • the second radiating element is formed by at least one dipole disposed inside a cavity opening at the center of the metal plate.
  • the metal plate and the cavity may be made in one piece, for example stamping.
  • the second radiating element operating in the frequency band F2 is then fixed inside and in the center of the cavity, the bottom of which serves as an electrical short-circuit plane to at least one balun or balun serving to supply the second element.
  • the first radiating element and the second radiating element have a very weak electromagnetic interaction. This is only due to the edge diffraction of the cavity. In this way the decoupling between the two frequency bands is very strong regardless of the relative orientation of the dipole or dipoles forming the second radiating element inside the cavity, that is to say its polarization.
  • the side of the square formed by each dipole has a typical length equal to the half wavelength of the frequency wave F1 radiated by the dipoles for a mid-power beam opening close to 65 ° in the horizontal plane.
  • the spacing (d) between two parallel dipoles of the radiating plate 5 and consequently the length of the sides of the square formed by the four dipoles 1 to 4 which largely determines the directivity of the radiation pattern in the horizontal plane of these dipoles, ie the half-power aperture of this diagram and that this aperture depends very little on the length (1) of the dipoles.
  • the length (1) of a dipole determines its impedance and can be greater or less depending on the thickness and width of the dipole. The larger this thickness is, the shorter the length of the dipole will be.
  • the side (d) of the square is determined as a function of the half-power opening which is sought and which may have a value other than 65 ° and the length of the dipoles is adjusted to ensure the adaptation of impedance, generally 50 Ohms, of the pair of associated parallel dipoles to form a directional pattern polarization channel.
  • the dipoles 1 to 4 and the cavity 7 can be made in one piece by cutting and stamping of the metal plate 5.
  • Each dipole 1 to 4 is fed by a balun referenced 8 to 11, respectively, of the "balun" type formed by a short-circuit line cut in the metal plate 5.
  • Each balun constitutes a support arm of the corresponding dipole.
  • the plate 5 is formed around the hole 6 through which the cavity 7 passes through a concentric ring 12 having on its outer periphery and along two right-angle directions, protuberances or arms 13 to 16 of shapes, for example, rectangular, chamfered or trapezoidal, respectively connecting the ring 12 to the dipoles 1 to 4.
  • the radial length (h) of the arms is preferably non-zero, for example greater than 0.05 ⁇ 1 so as to avoid direct contact of the inner edge of the dipoles with the outer edge of the ring 12 and thus minimize the interaction between the current flowing on the dipole and the currents flowing on the ring 12.
  • the average width (w) of the arms is typically 5 to 10 times the width of the slit line which is otherwise very small in front of the wavelength ⁇ 1 corresponding to the frequency F1.
  • the width of the ring 12 is determined to be sufficient both mechanically to support the dipoles and on the radioelectric plane to stabilize the directivity of the radiation patterns of the cavity 7 in the second frequency band F2, by making less fluctuating half-power aperture of radiation patterns as a function of frequency.
  • This width is preferably greater than 5/100-th of the wavelength ⁇ 2 corresponding to the frequency F2.
  • the dipoles 1 to 4 are fed at their base, that is to say at the open end of the slit lines of the baluns 8 to 11 by means for example of coaxial cables respectively referenced 17 to 20.
  • the geometrically parallel dipoles 2 and 4 on two opposite sides of the square are fed at equal phase and amplitude by two identical coaxial lines 18 and 20 and an association tee 21 to form a directional pattern polarization path, such as a classical network of two parallel dipoles.
  • the coaxial feed lines 17, 18, 19, 20 of the dipoles are respectively disposed along and on one side of the baluns 8, 9, 10, 11.
  • the outer conductive sheath of the coaxial lines 17 to 20 is in electrical contact with the base of the first half of the dipole it feeds and with the plate 5, and the central conductor is connected to the base of the other half of the same dipole.
  • Two orthogonal polarization paths are thus obtained whose radiation patterns are substantially identical.
  • this mode of association is not limiting, and other modes can be envisaged.
  • the baluns of the dipoles are slot lines cut into the meandering plate 5.
  • the meanders of each slot line must be in sufficient number for the slot line to have a length substantially equal to one quarter of the wavelength of the frequency wave F1 radiated by the first radiating element.
  • the slit lines can take other forms, they can for example as shown in FIG. figure 4 or the elements homologous to those of the figure 1 have the same references, be formed by a circular section followed by a rectilinear section leading to the feed base of a dipole.
  • the circular section may be anywhere on the crown 12. However, to avoid the coupling between the frequency waves F1 and F2, it is preferable that it is not near the edge of the hole 6 but rather in the middle of the crown. 12.
  • the radiating plate 5 is in electrical contact with the edge 7a of the cavity.
  • the cavity 7 is excited at its center by a radiating element 23 operating on the second frequency F2.
  • This radiating element 23 may be of simple dipole type for the case of operation in single polarization mode or cross dipole type, or turnstile commonly called in English "turnstile", for the case of operation in polarization mode orthogonal, or any other type of radiating elements suitable for other types of polarization including circular.
  • the bottom 7b of the cavity 7 is closed so that the radiation of the inner radiating element 23 is unidirectional and directional towards the front of the cavity 7.
  • balun balun means On the sectional view of the figure 2 each balun is formed by a first conductive tube 24 and a second conductive tube 25 of length substantially equal to one quarter of the wavelength of the frequency wave F2.
  • the conductors 24 and 25 are in electrical connection at their respective ends with the supply base of each half of a dipole of the radiating element 23 and the bottom 7b of the cavity.
  • the first tube 24 is traversed along its longitudinal axis by a central conductor 26, one end of which is connected to the supply base of the half-dipole opposite to that to which it is connected by one of its ends and whose other end can be connected to the central conductor of a power connector or possibly to the central conductor of a coaxial cable not shown.
  • the tubes 24 and 25 thus form with the central conductor 26 a coaxial line transforming impedance for the dipole to which they are connected.
  • the depth of the cavity 7 is close to a quarter of the wavelength ⁇ 2 of the radiated wave of frequency F2 of the radiating element 23 inside the cavity.
  • the height of the radiating element 23 with respect to the bottom 7b of the cavity is also close to a quarter of the wavelength ⁇ 2 while being less than the depth of the cavity 7.
  • the diameter of the cavity 7 can vary in large proportions, for example between 0.45 ⁇ 2 and ⁇ 2, for half-power openings less than 90 ° radiation diagrams in the diagonal planes inclined by ⁇ 45 ° with respect to the planes. main E and H of the dipole inside the cavity.
  • the necessary spacing between the dipoles 1 to 4 of the radiating plate 5 operating at the frequency F1 can limit the maximum diameter of the cavity 7.
  • a diameter of 80mm and a cavity depth of 40mm are suitable for producing a half-power aperture diagram of about 65 ° in the GSM1800 or UMTS band.
  • the cavity 7 which supports the plate 5 is fixed on a reflector 24 of sufficient size to allow the electromagnetic fields radiated at the rear of the dipoles on the reflector to be returned to the front.
  • the reflector 24 is intended to unidirectional radiation of the dipoles of the radiating structure.
  • the reflector 24 may comprise walls whose role is to stiffen the structure but also to act on the directivity of the radiated diagrams.
  • the height of the dipoles of the radiating plate 5 relative to the reflector 24 can vary typically from ⁇ 1 / 8 to ⁇ 1 / 4 in the frequency band F1 of wavelength ⁇ 1.
  • the dipoles 1 to 4 of the plate 5 are partially raised relative to the plane formed by the opening of the cavity 7, each dipole being divided into three parts, a lower part 1b respectively; 2b, 3b, 4b located in the plane of the plate 5 and two high parts respectively 1a, 1c; 2a, 2c; 3a, 3c; 4a, 4c located on either side of the lower part.
  • This elevation which preferably must retain the geometric symmetry of the structure, can also be done by tilting the parts of the dipoles located beyond the zones of the baluns 8 to 11 corresponding.
  • Geometric shapes can be envisaged to make dipoles, the only condition being the respect of the symmetry of the radiating structure, ie the identity of the dipoles, if not of the four at least two by two pairs of parallel dipoles.
  • the symmetry of the pairs of dipoles means that two parallel dipoles have the same total length so that they have the same impedance and their respective radiation is substantially the same.
  • the two pairs of dipoles are not necessarily identical because each pair of dipoles generates an independent polarization path.
  • the symmetry in question is a symmetry with respect to the center (O) of the square formed by the four dipoles.
  • the structures of the radiating elements of Figures 1 to 7 are very simple and make it possible to realize at low cost two-band radiating structures having two orthogonal polarization paths in each frequency band, inclined, for example, as shown by FIGS. figures 1 and 5 , of ⁇ 45 ° with respect to a vertical direction vv '.
  • the four channels thus formed are strongly decoupled from each other typically of 30 dB, and radiate in each frequency band according to unidirectional directivity diagrams having half-power openings less than 90 ° in the horizontal plane, for example 65 °.
  • collinear alignments of a plurality of such radiating structures may be made to form high gain vertical linear arrays, for example 18dBi, a dual band having two orthogonal polarization paths inclined by ⁇ 45 ° with respect to a vertical direction. vv 'in each frequency band.
  • the embodiment of the network shown in figure 8 comprises on the one hand bi-band and bipolarized radiating elements of the type described in figure 7 operating in the F1 (GSM900) and F2 (UMTS and / or DCS) bands and on the other hand of bipolarized mono-band radiating elements operating in the F2 band of the same type as the central elements of the figure 7 .
  • the network pitch for the F2 band is half the network pitch for the F1 band. It is thus possible to construct a highly directive, regular pitch, bi-band and bipolarized network having a good polarization purity and a strong decoupling between the different channels.
  • all the radiating elements operating in the band F2 have substantially the same phase center because of their identity, this being situated on the central axis of the cavity, which axis is perpendicular to the plane of the opening of the cavity. .
  • This property greatly facilitates the electrical pointing (or tilt) of the beam by acting on the phase shifts between radiating elements and also allows better alignment of the phases of the radiating elements in the frequency band for greater directivity of the antenna.
  • Radiating elements made in accordance with those of the invention described above and operating in the GSM1800, GSM 1900 and UMTS frequency bands have made it possible to obtain an insulation between the channels close to 30 dB, with standing wave ratios with respect to 50 Ohms for all radiating elements less than 1.7: 1 and half-power apertures of directivity patterns close to 65 ° in the horizontal plane for gains close to 9 dBi in both frequency bands.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Polarising Elements (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Claims (17)

  1. Strahlungsvorrichtung vom Typ mit einem ersten Strahlungselement, das in einem ersten Frequenzband F1 arbeitet, gebildet aus vier Dipolen (1, 2, 3, 4), die im Quadrat angeordnet sind, und einem zweiten Strahlungselement (23), das in einem zweiten Frequenzband F2 arbeitet, gebildet aus wenigstens einem Dipol, der im Zentrum des Dipolquadrats (1, 2, 3, 4) angeordnet ist, das das erste Strahlungselement bildet, wobei jeder Dipol in seiner Mitte durch ein Symmetrieglied versorgt wird, wobei die Anordnung der Strahlungselemente oberhalb eines Reflektors (24) angeordnet ist,
    dadurch gekennzeichnet, dass die Dipole (1, 2, 3, 4), die das erste Strahlungselement bilden und die Symmetrieglieder (8, 9, 10, 11), die ihm zugeordnet sind, in derselben Metallplatte (5) verwirklicht sind,
    dass das Symmetrieglied jedes Dipols des ersten Strahlungselements durch eine geschlitzte Kurzschlussleitung gebildet ist, die in die metallische Platte (5) in einer Richtung senkrecht zur Achse des Dipols eingeschnitten ist, und
    dass der Dipol des zweiten Strahlungselements (23) im Inneren einer metallischen Vertiefung (7) angeordnet ist, die im Zentrum der Metallplatte (5) angeordnet ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Vertiefung (7) von zylindrischer, konischer Form oder von polygonaler Querschnittsform ist, mit 2 hoch N gleichen Seiten, mit N = 2, 3, 4, ... usw.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Vertiefung durch Tiefziehen der metallischen Platte (5) verwirklicht ist.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Symmetrieglieder (8, 9, 10, 11) durch geschlitzte Kurzschlussleitungen gebildet sind, mit einer Länge, die im Wesentlichen gleich einem Viertel der Wirkungswellenlänge des ersten Strahlungselements ist.
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die geschlitzten Leitungen (8, 9, 10, 11) Meanderform aufweisen.
  6. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die geschlitzten Leitungen (8, 9, 10, 11) einen ersten geradlinigen Abschnitt gefolgt von einem zweiten kreisförmigen Abschnitt aufweisen.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass jeder Dipol (1, 2, 3, 4) des ersten Strahlungselements durch ein Koaxialkabel (17, 18, 19, 20) versorgt wird, das entlang dem ihm zugeordneten Symmetrieglied angeordnet ist, wobei der äußere Leitungskanal des sogenannten Kabels in elektrischem Kontakt mit einer ersten Hälfte des sogenannten Dipols verbunden ist, und wobei der zentrale Leiter des sogenannten Kabels mit der Basis der anderen Hälfte des gleichen Dipols verbunden ist.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Dipole (1, 2, 3, 4), die das erste Strahlungselement bilden, teilweise bezüglich, die von der Öffnung der Vertiefung (7) gebildet wird, erhöht sind.
  9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Vertiefung (7) einen Boden (7b) aufweist, auf dem der Dipol bzw. die Dipole des zweiten Strahlungselements (23) mittels Stützrohren (24, 25) ruht bzw. ruhen.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Stützrohre (24, 25) je eine zweiadrige Leitung von Typ "Balun" zur Versorgung eines jeweiligen Dipols des zweiten Strahlungselements (23) bilden.
  11. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das zweite Strahlungselement (23) aus zwei unter rechtem Winkel gekreuzten Dipolen gebildet ist.
  12. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Höhe des Strahlungselements (23) bezüglich des Bodens (7b) der Vertiefung (7) in der Nähe des Viertels der abgestrahlten Wellenlänge durch das zweite Strahlungselement ist, wobei sie geringer als die Tiefe der Vertiefung (7) ist.
  13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Tiefe der Vertiefung (7) im Wesentlichen gleich dem Viertel der Wellenlänge der durch das zweite Strahlungselement (23) abgestrahlten Welle ist.
  14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass für die zylindrischen Vertiefungen mit kreisförmigen Querschnitt, oder für die Vertiefungen mit polygonalem Querschnitt, der Durchmesser der Vertiefung (7) oder jener des Umfangskreises des polygonalen Abschnitts im Wesentlichen zwischen 0,45λ2 und λ2 beträgt, wobei λ2 die Wellenlänge der von dem zweiten Strahlungselement (23) abgestrahlten Welle bezeichnet.
  15. Vorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das erste Strahlungselement (1, 2, 3, 4) und das zweite Strahlungselement (23) räumlich ausgerichtet sind, um entsprechend zwei Wellen mit senkrechter Polarisation geneigt um ± 45° bezüglich einer Längsachse des Reflektors (24) abzustrahlen.
  16. Antennennetz, dadurch gekennzeichnet, dass es mehrere Vorrichtungen nach einem der Ansprüche 1 bis 15 aufweist, die auf einer selben geraden Linie liegen, und die an demselben Reflektor (14) derart angeordnet sind, dass sie zwei senkrechte Polarisationspfade geneigt um ± 45° bezüglich der geraden Linie bilden.
  17. Antennennetz nach Anspruch 16, dadurch gekennzeichnet, dass es zusätzlich eine Mehrheit von zweiten Strahlungselementen (23) aufweist, die in der Linie von mehreren Vorrichtungen zwischengestellt sind.
EP03760720A 2002-06-25 2003-06-11 Doppelpolarisations-doppelbandstrahlungseinrichtung Expired - Lifetime EP1516393B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR0207872 2002-06-25
FR0207872A FR2841390B1 (fr) 2002-06-25 2002-06-25 Dispositif rayonnant bi-bande a double polarisation
FR0215350A FR2841391B3 (fr) 2002-06-25 2002-12-05 Dispositif rayonnant bi-bande a double polarisation
FR0215350 2002-12-05
PCT/FR2003/001745 WO2004001902A1 (fr) 2002-06-25 2003-06-11 Dispositif rayonnant bi-bande a double polarisation

Publications (2)

Publication Number Publication Date
EP1516393A1 EP1516393A1 (de) 2005-03-23
EP1516393B1 true EP1516393B1 (de) 2010-01-20

Family

ID=29720859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03760720A Expired - Lifetime EP1516393B1 (de) 2002-06-25 2003-06-11 Doppelpolarisations-doppelbandstrahlungseinrichtung

Country Status (9)

Country Link
EP (1) EP1516393B1 (de)
CN (1) CN100570953C (de)
AT (1) ATE456168T1 (de)
AU (1) AU2003255660A1 (de)
DE (1) DE60331067D1 (de)
ES (1) ES2339764T3 (de)
FR (1) FR2841391B3 (de)
PT (1) PT1516393E (de)
WO (1) WO2004001902A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005015708U1 (de) 2005-10-06 2005-12-29 Kathrein-Werke Kg Dual polarisierte Dipolstrahler
US7358924B2 (en) 2005-10-07 2008-04-15 Kathrein-Werke Kg Feed network, and/or antenna having at least one antenna element and a feed network
US8525736B2 (en) 2007-07-05 2013-09-03 Mitsubishi Cable Industries, Ltd. Antenna device
CN101425626B (zh) 2007-10-30 2013-10-16 京信通信***(中国)有限公司 宽频带环状双极化辐射单元及线阵天线
EP2120293A1 (de) * 2008-05-16 2009-11-18 Kildal Antenna Consulting AB Verbesserte Breitband-Multi-Dipolantenne mit frequenzunabhängigen Strahlungseigenschaften
EP2343777B1 (de) 2009-05-26 2015-10-07 Huawei Technologies Co., Ltd. Antennenvorrichtung
CN102013560B (zh) 2010-09-25 2013-07-24 广东通宇通讯股份有限公司 一种宽带高性能双极化辐射单元及天线
CN102723577B (zh) * 2012-05-18 2014-08-13 京信通信***(中国)有限公司 宽频带环状双极化辐射单元及阵列天线
CN106099328A (zh) * 2016-06-27 2016-11-09 广州杰赛科技股份有限公司 一种双极化基站天线
TWI682585B (zh) * 2018-10-04 2020-01-11 和碩聯合科技股份有限公司 天線裝置
CN112582774B (zh) * 2019-09-30 2022-05-24 京信通信技术(广州)有限公司 天线及其辐射单元、辐射单元巴伦结构和制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789416A (en) * 1972-04-20 1974-01-29 Itt Shortened turnstile antenna
US3740754A (en) * 1972-05-24 1973-06-19 Gte Sylvania Inc Broadband cup-dipole and cup-turnstile antennas
DE2310672A1 (de) * 1973-03-03 1974-09-19 Fte Maximal Fernsehtech Zimmerantenne fuer den vhf- und/oder uhf-fernsehbereich
US4218685A (en) * 1978-10-17 1980-08-19 Nasa Coaxial phased array antenna
DE19823749C2 (de) * 1998-05-27 2002-07-11 Kathrein Werke Kg Dualpolarisierte Mehrbereichsantenne
WO2001084730A1 (en) * 2000-05-02 2001-11-08 Bae Systems Information And Electronic Systems Integration, Inc. Low profile, broadband, dual mode, modified notch antenna

Also Published As

Publication number Publication date
AU2003255660A1 (en) 2004-01-06
CN1663075A (zh) 2005-08-31
EP1516393A1 (de) 2005-03-23
ES2339764T3 (es) 2010-05-25
CN100570953C (zh) 2009-12-16
PT1516393E (pt) 2010-04-15
FR2841391A1 (fr) 2003-12-26
FR2841391B3 (fr) 2004-09-24
WO2004001902A1 (fr) 2003-12-31
ATE456168T1 (de) 2010-02-15
DE60331067D1 (de) 2010-03-11

Similar Documents

Publication Publication Date Title
FR2966986A1 (fr) Element rayonnant d'antenne
FR2960710A1 (fr) Element rayonnant a double polarisation d'antenne multibande
EP1690317B1 (de) Doppeltpolarisierte mehrband-gruppenantenne
FR2652453A1 (fr) Antenne coaxiale a fentes du type a alimentation a ondes progressives.
FR2863111A1 (fr) Antenne en reseau multi-bande a double polarisation
FR2826185A1 (fr) Antenne fil-plaque multifrequences
EP1516393B1 (de) Doppelpolarisations-doppelbandstrahlungseinrichtung
EP1228552A1 (de) Doppelbandige gedruckte antenne
EP2416449A1 (de) Parabolantenne
EP1550183A2 (de) Im wesentlichen quadratisches breitband-, doppelt polarisiertes strahlungselement
EP1181744B1 (de) Antenne mit vertikaler polarisation
EP1466384A1 (de) Einrichtung zum empfangen und/oder emittieren elektromagnetischer wellen mit strahlungs-diversity
EP2610966B1 (de) Kompakte Breitbandantenne von sehr geringer Dicke und mit doppelten orthogonalen linearen Polarisierungen, die für den V/UHF-Bandbereich konzipiert ist
EP2543111B1 (de) Antennenstruktur mit dipolen
EP1516392B1 (de) Drahtantenne
EP0934608B1 (de) Antennensystem für tragbares funkgerät
EP1649547B1 (de) Diversity-empfang-schlitz-flachplattenantenne
FR2841390A1 (fr) Dispositif rayonnant bi-bande a double polarisation
FR2980647A1 (fr) Antenne ultra-large bande
CN107706522B (zh) 一种微基站天线
EP2880712B1 (de) Verfahren zur elektromagnetischen entkopplung einer antenne und stützmast dafür sowie entsprechender stützmast
EP3618187A1 (de) Kompakte antennenvorrichtung
EP2889955B1 (de) Kompaktantennenstruktur für Telekommunikationen über Satelliten
WO2004006386A1 (fr) Dispositif rayonnant bi-bande a polarisations coplanaires
EP0831550A1 (de) Vielseitige Gruppenantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAX Requested extension states of the european patent have changed

Extension state: LV

Payment date: 20041223

Extension state: LT

Payment date: 20041223

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: LT LV

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60331067

Country of ref document: DE

Date of ref document: 20100311

Kind code of ref document: P

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20100407

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2339764

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100120

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 7160

Country of ref document: SK

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100420

26N No opposition filed

Effective date: 20101021

BERE Be: lapsed

Owner name: ARIALCOM

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: EE

Payment date: 20180523

Year of fee payment: 16

Ref country code: CZ

Payment date: 20180528

Year of fee payment: 16

Ref country code: PT

Payment date: 20180601

Year of fee payment: 16

Ref country code: SK

Payment date: 20180522

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180605

Year of fee payment: 16

Ref country code: RO

Payment date: 20180611

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180702

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190611

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190611

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191211

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E004257

Country of ref document: EE

Effective date: 20190630

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 7160

Country of ref document: SK

Effective date: 20190611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190612