EP1511870B1 - Hard metal substrate body and method for producing the same - Google Patents

Hard metal substrate body and method for producing the same Download PDF

Info

Publication number
EP1511870B1
EP1511870B1 EP03740063A EP03740063A EP1511870B1 EP 1511870 B1 EP1511870 B1 EP 1511870B1 EP 03740063 A EP03740063 A EP 03740063A EP 03740063 A EP03740063 A EP 03740063A EP 1511870 B1 EP1511870 B1 EP 1511870B1
Authority
EP
European Patent Office
Prior art keywords
hard metal
substrate body
phase
atmosphere
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03740063A
Other languages
German (de)
French (fr)
Other versions
EP1511870A1 (en
Inventor
Dieter Kassel
Werner Daub
Klaus Dreyer
Klaus RÖDIGER
Walter Lengauer
Mariann Lovonyak
Vera Ucakar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kennametal Widia Produktions GmbH and Co KG
Original Assignee
Kennametal Widia Produktions GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kennametal Widia Produktions GmbH and Co KG filed Critical Kennametal Widia Produktions GmbH and Co KG
Publication of EP1511870A1 publication Critical patent/EP1511870A1/en
Application granted granted Critical
Publication of EP1511870B1 publication Critical patent/EP1511870B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • B22F3/101Changing atmosphere
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a hard metal substrate body consisting of a WC hard material phase and a 3- to 25% by mass binder phase, which in addition to at least one of the binder metals Fe, Co and / or Ni still up to 15% by mass (based on the binder phase) contains dissolved dopants derived from the group Al, Cr, Mo, Ti, Zr, Hf, V, Nb, Ta.
  • the invention further relates to a method of such a hard metal substrate body, in which the starting mixture pretreated powder metallurgy, pre-pressed into a green compact and finally heated and sintered in an atmosphere of a furnace.
  • the dopants which are usually added in the form of carbides, nitrides or carbonitrides of the elements Ti, Zr, Hf, V, Ta or alloys of these elements, in particular Ti 2 AlN or Ti 2 AlC in the starting powder mixture, act as Grain growth inhibitors that ensure that the produced WC-Co base alloy remains fine-grained and uniform to ensure optimum hardness and wear resistance.
  • a surface coating is still not dispensable.
  • the problem of poor adhesion of the coating on the substrate body is, for example, too high a binder content on the substrate body surface.
  • a hard metal or cermet body having a hard material phase of WC and / or at least one carbide, nitride, carbonitride and / or oxicarbonitride at least one of the elements IVa, Va or VIa group of the Periodic Table and a binder metal phase of Fe, Co and / or Ni, the proportion of which is 3 to 25% by mass, proposed in which protrude from the body surface by 2 to 20 microns WC crystallites.
  • a nitrogen and optionally carbon-containing atmosphere with a pressure between 10 3 and 10 7 Pa is set, then optionally heated to sintering temperature and maintained over a holding time of at least 20 minutes or in this period of at least 20 min only a slight cooling of a maximum of 2 ° C / min performed and then cooled.
  • the set nitrogen atmosphere is maintained until at least 1000 ° C is reached in the cooling phase.
  • a mixture of hard materials and binder metals containing at least 0.2% by mass of nitrogen is pre-pressed and the green compact produced thereby is heated to sintering temperature, the inert gas or vacuum atmosphere set during heating at least temporarily starting from a temperature between 1200 ° C. and the sintering temperature is replaced by the entry of nitrogen-containing gases under a pressure of 10 3 to 10 7 Pa against this gas pressure atmosphere.
  • the sintering holding time is at least 30 minutes; when heating from 1200 ° C or later, the nitrogen pressure should be maintained until at least 1000 ° C are reached in the furnace atmosphere during cooling.
  • Such layers may e.g. consist of diamond, amorphous carbon, cubic boron nitride, carbon nitrides, oxides and metallic hard materials of carbides, nitrides, carbonitrides and oxicarbonitrides, in particular the elements of the IVa to VIa group of the Periodic Table.
  • the hard metal substrate body according to claim 1, wherein according to the invention, the sum of the binding metals to the substrate body at a depth of 0 to 1 micron drops to less than half the concentration of binder metals in the substrate body interior.
  • the percentage of dopants in the cemented carbide consisting of WC and a binder phase is according to the invention 4% limited by mass, likewise limited is the percentage of a possible third cubic phase to a maximum of 4% by volume.
  • the amount of the dopants should be limited to 15 mass% based on the binder metal phase, which in turn may be 3 mass% to 25 mass% of the total amount.
  • the remainder namely 75 to 97% by mass, consists of the pure WC hard material phase.
  • the concentration of the binder phase gradually decreases in said near-surface region, whereas the concentration of the dopants, the carbon and the nitrogen gradually increases.
  • the grain size of the WC in the carbide substrate body is a maximum of 1.5 microns.
  • the hard metal substrate body described above is suitable for layers of diamond, but also of carbides, nitrides and / or carbonitrides of titanium, zirconium and / or hafnium or of Al 2 O 3 , HfO 2 , ZrO 2 , mixtures of oxides, amorphous Carbon, cubic boron nitride or carbon nitrides.
  • nitrides of the metallic dopant e.g. TiN, CrN or VN, enriched.
  • the starting powder mixture of the desired hard metal composition is pretreated by powder metallurgy in a manner known in the art, pre-pressed into a green body and until heated to the sintering temperature, wherein in the heating phase after reaching the eutectic, but at the latest after reaching the sintering temperature, the vacuum or inert gas atmosphere replaced by an N 2 atmosphere with an N 2 pressure ⁇ 10 5 Pa and at least until reaching the sintering temperature or until is maintained at the end of the holding time, in which the body is kept at sintering temperature.
  • the nitrogen treatment after the final sintering by subjecting the finished sintered body below the eutectic temperature to an N 2 atmosphere under a pressure p of 10 5 Pa ⁇ p ⁇ 10 7 Pa over at least 10 min becomes.
  • This treatment can be connected either in the cooling phase after sintering or in a second step, possibly also following a grinding and / or blast treatment of the finished sintered body.
  • the nitrogen atmosphere may be introduced either by introducing nitrogen gas into the furnace atmosphere or by introducing precursors, i. N-containing gases are set, from which nitrogen forms at the corresponding temperature in the gas atmosphere in situ.
  • the body is heated to 1250 ° C and held this temperature for a period of at least 20 min, before proceeding with the heating to the sintering temperature. Further preferably, the body is heated in the warm-up first in a vacuum and only from about 1250 ° C in an inert gas atmosphere, for example of argon, to the sintering temperature, upon reaching the nitrogen atmosphere is set at a pressure of at least 10 4 Pa.
  • the heating and cooling rates are a maximum of 10 ° C / min, preferably, the corresponding rate is between 2 ° C / min and 5 ° C / min.
  • the starting mixture additionally up to 15% by weight, based on the binder phase, of carbides, nitrides, carbonitrides of the elements of the IVA, VA and VLA group of the Periodic Table or of Al or complexed carbides, complex nitrides and / or complex carbonitrides of the form Ti 2 AlC, Ti 2 AlN, Cr 2 AlN, contain Cr 2 AlC, but preferably only in each case in an amount as maximum in the binder phase can be solved.
  • This solubility limit is determined in each case by the sum of the dissolved elements and can change for each element by adding other soluble elements.
  • the dopants or their carbides, nitrides or carbonitrides in the direction of the substrate surface and displace by enrichment of corresponding hard particles, which additionally by the combination of existing nitrogen and at least one of the metals can be amplified, the binder phase into deeper regions, which thereby depleted at the surface.
  • the nitrogen treatment also acts on the carbon activity due to the fact that nitrogen is dissolved in the binder phase, which in turn affects the precipitation of hard material phases. This also allows a hard material phase enrichment in the surface to be controlled.
  • Table 1 sample composition sintered body Composition (mass%) A 92% WC, 7.5 Co, 0.5 Ti 2 AlC B 91.75% WC, 0.75% Cr 3 C 2 , 3.75% Co, 3.75% Ni C 91.75% WC, 0.75% Cr 3 C 2 , 4.5% Co, 1.5% Ni, 1.5% Fe D 91.75% WC, 0.75% Cr 3 C 2 , 7.5% Co e 91.4% WC, 0.75% Cr 3 C 2 , 0.35% Mo 2 C, 7.5% Co
  • the aforementioned alloy A was first heated to 1250 ° C at a heating rate of 5 ° C / min. This temperature was maintained for about 30 minutes, after which an argon gas atmosphere was set at a pressure of 5 ⁇ 10 3 Pa. At the same time, the heating of the sintered body has been continued at a heating rate of 5 ° C / min, wherein when reaching 1480 ° C, an N 2 pressure of 7 x 10 4 Pa was set, which maintained even after reaching the sintering temperature of 1480 ° C. remained. The sintering time was about 1 hour, after which the oven has been switched off.
  • the N 2 treatment influenced the near-surface regions at a depth of up to 1 ⁇ m such that there the binder phase, ie the sum of the binder metals, depleted and a marked accumulation of the hard material phase at the surface and in the near-surface regions (see Fig. 2a). This could both be detected in the metallographic cross section as well as purely optically by a color change.
  • 2b shows the ratio of the dopant Ti to the binder metal Co. It can be seen that the doping element in relation to the binder metal accumulates strongly towards the surface of the substrate body and a very thin Ti (C, N) layer is present on the surface.
  • FIG. 3a shows a semi-quantitative GDOS depth profile. It can be clearly seen that the sum of the binder metals (Fe, Co, Ni) on the outer surface decreases.
  • FIG. 3b shows a ratio Cr / (Co + Fe + Ni) which increases significantly to the surface at lower penetration depths (about 0.1 ⁇ m). This means that in the binder in the graded edge zone, which is affected by nitrogen, the Cr content in the binder phase is increased relative to the other elements of the binder phase over the non-nitrogen affected inner regions of the alloy. The nitrogen content increases strongly in the peripheral zone and the carbon and tungsten content increases slightly toward the surface.
  • Samples A to F of Table 1 were subjected to various annealing and sintering at elevated nitrogen pressure as shown in Table 2.
  • Table 2 Sintered profiles for Samples A to F of Table 1 sample sintering profile B Cycle 7 C Cycle 7 A Cycle 7 C php_1 A php_1 D php_2 e php_2 C php_2 e php_2 B php_2 D php_2a F php_2a D php_2b F php_2b.
  • the sintered profiles are shown in Table 3 and FIG. 4.
  • FIG. 5 shows the decrease in the sum of the binding metals in near-surface regions.
  • the sum of the binding metals again shows the same characteristics as in the case of the same vacuum-sintered variety.
  • the N and C contents are increased toward the surface as in the case of the reduced-pressure sintered alloy C.
  • Fig. 5b shows a marked increase in the Cr / (Co + Ni + Fe) concentration ratio to near-edge zones.
  • the edge zone of the finished cemented carbide sintered body can be adjusted so that not only an accumulation of dopants, but even the formation of a diffusion layer of nitrides is promoted. If, for example, Cr or a Cr compound is used as a doping, then no vacuum sintering with subsequent N 2 gas phase adjustment under small pressures ( ⁇ 105 Pa) results in no chromium nitride layer or enrichment because chromium nitrides do not form at low nitrogen pressures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The combined dopant (Al, Cr, V, Nb, Ta, Ti, Zr, Hf) content in the substrate is limited to 4 weight % at most. The cubic phase content in the substrate is less than 4 vol%. The binder metal content (Fe, Co, and/or Ni) in an edge zone of the substrate is up to 1 microns, preferably up to 0.5 microns, falling to less than 0.5 times the binder content in the substrate interior An Independent claim is included for the method of manufacture

Description

Die Erfindung betrifft einen Hartmetall-Substratkörper, bestehend aus einer WC-Hartstoffphase und einer 3- bis 25 Massen%igen Binderphase, die neben mindestens einem der Bindemetalle Fe, Co und/oder Ni noch bis zu 15 Massen% (bezogen auf die Binderphase) gelöste Dotierungsmittel enthält, die aus der Gruppe Al, Cr, Mo, Ti, Zr, Hf, V, Nb, Ta stammen.The invention relates to a hard metal substrate body consisting of a WC hard material phase and a 3- to 25% by mass binder phase, which in addition to at least one of the binder metals Fe, Co and / or Ni still up to 15% by mass (based on the binder phase) contains dissolved dopants derived from the group Al, Cr, Mo, Ti, Zr, Hf, V, Nb, Ta.

Die Erfindung betrifft ferner ein Verfahren eines solchen Hartmetall-Substratkörpers, bei dem die Ausgangsmischung pulvermetallurgisch vorbehandelt, zu einem Grünling vorgepreßt und abschließend in einer Atmosphäre eines Ofens erwärmt und gesintert wird.The invention further relates to a method of such a hard metal substrate body, in which the starting mixture pretreated powder metallurgy, pre-pressed into a green compact and finally heated and sintered in an atmosphere of a furnace.

In den genannten Hartmetallzusammensetzungen wirken die Dotierungen, die zumeist in Form von Carbiden, Nitriden oder Carbonitriden der Elemente Ti, Zr, Hf, V, Ta oder Legierungen aus diesen Elementen, insbesondere Ti2AlN oder Ti2AlC in der Ausgangspulvermischung zugegeben werden, als Kornwachstumshemmer, die gewährleisten, dass die hergestellte WC-Co-Basislegierung feinkörnig und gleichmäßig bleibt, um eine optimale Härte und Verschleißfestigkeit gewährleisten zu können.In the hard metal compositions mentioned, the dopants, which are usually added in the form of carbides, nitrides or carbonitrides of the elements Ti, Zr, Hf, V, Ta or alloys of these elements, in particular Ti 2 AlN or Ti 2 AlC in the starting powder mixture, act as Grain growth inhibitors that ensure that the produced WC-Co base alloy remains fine-grained and uniform to ensure optimum hardness and wear resistance.

Ebenso ist es seit langem bekannt, dass die Verschleißeigenschaften von Hartmetallkörpern durch Aufbringen einer oder mehrerer Oberflächenschichten aus Carbiden, Nitriden, Carbonitriden, Boriden und/oder Oxiden oder Diamant beeinflußt werden kann. Schon früh, nämlich in der DE-A 24 33 737 oder der DE-A-25 25 185 sind chemische oder physikalische Beschichtungsverfahren erwähnt worden.It has also been known for a long time that the wear characteristics of cemented carbide bodies can be influenced by applying one or more surface layers of carbides, nitrides, carbonitrides, borides and / or oxides or diamonds. Early on, namely in DE-A 24 33 737 or DE-A-25 25 185, chemical or physical coating processes have been mentioned.

In der DE 27 17 842 A1 wird hierzu ausgeführt, dass es zur Einsparung des getrennten Arbeitsganges, der zu Schichtaufbringung mittels CVD oder PVD erforderlich sei, sinnvoll wäre, den Hartmetallkörper nach dem Fertigsintern bei hohen Temperaturen einem Druck zwischen 2 bar (2 x 106 Pa) und 5000 bar (5 x 108 Pa) unter stickstoffhaltiger Atmosphäre auszusetzen. Die Behandlungstemperatur soll zwischen 800°C und einer oberen Grenze liegen, die mindestens 50°C unter der maximalen Sintertemperatur liegt. Mit dieser "Oberflächenaufstickung", die bis zu einer Tiefe von 300 µm wirksam sein soll, sollte ein verbessertes Verschleißverhalten sowie eine verbesserte Oxidationsbeständigkeit und eine Erniedrigung der Diffusions- und Klebeneigung des Hartmetalles bei seiner Wechselwirkung mit dem Verschleißpartner gewährleistet werden. Für viele praktische Anwendungen ist jedoch nach wie vor nicht auf eine Oberflächenbeschichtung verzichtbar. Insbesondere bei Diamantbeschichtungen, aber auch Beschichtungen anderer Zusammensetzung stellt sich das Problem der schlechten Haftfestigkeit der Beschichtung auf dem Substratkörper. Ursache für eine mangelhafte Haftung ist beispielsweise ein zu hoher Bindergehalt an der Substratkörperoberfläche.In DE 27 17 842 A1 it is stated that it is necessary to save the separate operation, the layer application by CVD or PVD it would be useful to suspend the cemented carbide body at a high pressure of between 2 bar (2 × 10 6 Pa) and 5000 bar (5 × 10 8 Pa) under nitrogen-containing atmosphere after the final sintering. The treatment temperature should be between 800 ° C and an upper limit that is at least 50 ° C below the maximum sintering temperature. With this "surface nitridation", which should be effective to a depth of 300 microns, an improved wear behavior and improved oxidation resistance and a reduction in the diffusion and tack of the cemented carbide should be ensured in its interaction with the wear partner. For many practical applications, however, a surface coating is still not dispensable. Especially with diamond coatings, but also coatings of other composition, the problem of poor adhesion of the coating on the substrate body. The reason for a defective adhesion is, for example, too high a binder content on the substrate body surface.

In der DE 199 22 059 A1 wird ein Hartmetall- oder Cermet-Körper mit einer Hartstoffphase aus WC und/oder mindestens einem Carbid, Nitrid, Carbonitrid und/oder Oxicarbonitrid mindestens eines der Elemente IVa-, Va- oder VIa-Gruppe des Periodensystems und einer Bindemetallphase aus Fe, Co und/oder Ni, deren Anteil 3 bis 25 Massen% beträgt, vorgeschlagen, bei der aus der Körperoberfläche um 2 bis 20 µm WC-Kristallite herausragen. Dies soll dadurch erreicht werden, indem entweder eine stickstofffreie Mischung aus Hartstoffen und Bindemetallen zu einem Grünling vorgepreßt und in einer Vakuum- oder Inertgasatmosphäre auf eine zwischen 1200°C und der Sintertemperatur liegende Temperatur aufgeheizt wird, wonach spätestens beiIn DE 199 22 059 A1, a hard metal or cermet body having a hard material phase of WC and / or at least one carbide, nitride, carbonitride and / or oxicarbonitride at least one of the elements IVa, Va or VIa group of the Periodic Table and a binder metal phase of Fe, Co and / or Ni, the proportion of which is 3 to 25% by mass, proposed in which protrude from the body surface by 2 to 20 microns WC crystallites. This is to be achieved by either a nitrogen-free mixture of hard materials and binder metals is pre-pressed into a green compact and heated in a vacuum or inert gas atmosphere to a temperature between 1200 ° C and the sintering temperature, after which at the latest

Erreichen der Sintertemperatur zumindest zeitweise eine stickstoff- und ggf. kohlenstoffhaltige Atmosphäre mit einem Druck zwischen 103 und 107 Pa eingestellt wird, anschließend ggf. auf Sintertemperatur aufgeheizt und diese über eine Haltezeit von mindestens 20 min aufrechterhalten oder in dieser Zeit von mindestens 20 min nur eine geringe Abkühlung von maximal 2°C/min durchgeführt und anschließend abgekühlt wird. Beim Aufheizen oder spätestens ab Erreichen der Sintertemperatur bleibt die eingestellte Stickstoffatmosphäre erhalten, bis in der Abkühlphase mindestens 1000°C erreicht wird.Reaching the sintering temperature, at least temporarily, a nitrogen and optionally carbon-containing atmosphere with a pressure between 10 3 and 10 7 Pa is set, then optionally heated to sintering temperature and maintained over a holding time of at least 20 minutes or in this period of at least 20 min only a slight cooling of a maximum of 2 ° C / min performed and then cooled. When heating or at the latest from reaching the sintering temperature remains the set nitrogen atmosphere is maintained until at least 1000 ° C is reached in the cooling phase.

Alternativ hierzu wird eine mindestens 0,2 Massen% Stickstoff enthaltende Mischung aus Hartstoffen und Bindermetallen vorgepreßt und der hierdurch hergestellte Grünling auf Sintertemperatur erwärmt, wobei die während des Aufheizens eingestellte Inertgas- oder Vakuumatmosphäre ab Erreichen einer Temperatur zwischen 1200°C und der Sintertemperatur zumindest zeitweise durch Einlaß von Stickstoff enthaltenden Gasen unter einem Druck von 103 bis 107 Pa gegen diese Gasdruckatmosphäre ausgetauscht wird. Die Sinterhaltezeit beträgt mindestens 30 min; bei Aufheizen ab 1200°C oder später soll der Stickstoff-Druck aufrechterhalten bleiben, bis in der Ofenatmosphäre bei der Abkühlung mindestens 1000°C erreicht sind.Alternatively, a mixture of hard materials and binder metals containing at least 0.2% by mass of nitrogen is pre-pressed and the green compact produced thereby is heated to sintering temperature, the inert gas or vacuum atmosphere set during heating at least temporarily starting from a temperature between 1200 ° C. and the sintering temperature is replaced by the entry of nitrogen-containing gases under a pressure of 10 3 to 10 7 Pa against this gas pressure atmosphere. The sintering holding time is at least 30 minutes; when heating from 1200 ° C or later, the nitrogen pressure should be maintained until at least 1000 ° C are reached in the furnace atmosphere during cooling.

Das vorstehende Verfahren setzt jedoch eine Hartstoffzusammensetzung voraus, bei der in erheblichem Maße neben WC und dem Binder noch erhebliche Mengen weiterer Carbide, Nitride oder Carbonitride anwesend sein müssen.However, the above method requires a hard material composition in which considerable amounts of other carbides, nitrides or carbonitrides must still be present in addition to WC and the binder to a considerable extent.

Es ist Aufgabe der vorliegenden Erfindung, einen verbesserten, im wesentlichen zweiphasigen Hartmetallkörper der eingangs genannten Art und ein Verfahren zu seiner Herstellung anzugeben, der gegenüber den nach dem Stand der Technik bekannten Substratkörpern eine bessere Haftung für Oberflächenbeschichtungen, die aus der Gasphase abgeschieden werden, liefert. Solche Schichten können z.B. aus Diamant, amorphem Kohlenstoff, kubischem Bornitrid, Kohlenstoffnitriden, Oxiden sowie metallischen Hartstoffen aus Carbiden, Nitriden, Carbonitriden und Oxicarbonitriden, insbesondere der Elemente der IVa- bis VIa-Gruppe des Periodensystems bestehen.It is an object of the present invention to provide an improved, substantially biphasic hard metal body of the type mentioned above and a method for its production, which provides over the known in the prior art substrate bodies better adhesion for surface coatings, which are deposited from the gas phase , Such layers may e.g. consist of diamond, amorphous carbon, cubic boron nitride, carbon nitrides, oxides and metallic hard materials of carbides, nitrides, carbonitrides and oxicarbonitrides, in particular the elements of the IVa to VIa group of the Periodic Table.

Diese Aufgabe wird durch den Hartmetall-Substratkörper nach Anspruch 1 gelöst, bei dem erfindungsgemäß die Summe der Bindemetalle zum Substratkörper hin in einer tiefe von 0 bis 1 µm auf weniger als die Hälfte der Konzentration der Bindemetalle im Substratkörperinneren abfällt. Der prozentuale Anteil an Dotierungsmitteln im Hartmetall, das aus WC und einer Binderphase besteht, ist erfindungsgemäß auf 4 Massen% begrenzt, Ebenso limitiert ist der prozentuale Anteil einer etwaigen dritten kubischen Phase auf maximal 4 Vol%.This object is achieved by the hard metal substrate body according to claim 1, wherein according to the invention, the sum of the binding metals to the substrate body at a depth of 0 to 1 micron drops to less than half the concentration of binder metals in the substrate body interior. The percentage of dopants in the cemented carbide consisting of WC and a binder phase is according to the invention 4% limited by mass, likewise limited is the percentage of a possible third cubic phase to a maximum of 4% by volume.

Im Unterschied zu den nach dem Stand der Technik geschaffenen Hartmetallkörpern wird nicht nur eine bloße Binder-Verarmung in den oberflächennahen Randzonen angestrebt, sondern eine Randzone, bei der die durch Binderverarmung geschaffenen "Freiräume" durch Dotierungsmittel "aufgefüllt" werden. Die Menge der Dotierungsmittel soll jedoch auf 15 Massen%, bezogen auf die Bindemetallphase, beschränkt werden, die ihrerseits 3 Massen% bis 25 Massen% der Gesamtmenge ausmachen kann. Der Rest, nämlich 75 bis 97 Massen%, besteht aus der reinen WC-Hartstoffphase. Vorzugsweise nimmt die Konzentration der Binderphase in dem genannten oberflächennahen Bereich graduell ab, wohingegen die Konzentration der Dotierungsmittel, des Kohlenstoffs und des Stickstoffs graduell zunehmen.In contrast to the carbide bodies created according to the prior art, not only a mere binder depletion in the near-surface edge zones is desired, but a marginal zone in which the "free spaces" created by binder depletion are "filled up" by dopants. However, the amount of the dopants should be limited to 15 mass% based on the binder metal phase, which in turn may be 3 mass% to 25 mass% of the total amount. The remainder, namely 75 to 97% by mass, consists of the pure WC hard material phase. Preferably, the concentration of the binder phase gradually decreases in said near-surface region, whereas the concentration of the dopants, the carbon and the nitrogen gradually increases.

Nach einer weiteren Ausgestaltung der Erfindung ist die Korngröße des WC im Hartmetall-Substratkörper maximal 1,5 µm.According to a further embodiment of the invention, the grain size of the WC in the carbide substrate body is a maximum of 1.5 microns.

Insbesondere eignet sich der vorstehend beschriebene Hartmetall-Substratkörper für Schichten aus Diamant, aber auch aus Carbiden, Nitriden und/oder Carbonitriden des Titans, Zirkoniums und/oder Hafniums oder aus Al2O3, HfO2, ZrO2, Mischungen aus Oxiden, amorphem Kohlenstoff, aus kubischem Bornitrid oder Kohlenstoffnitriden.In particular, the hard metal substrate body described above is suitable for layers of diamond, but also of carbides, nitrides and / or carbonitrides of titanium, zirconium and / or hafnium or of Al 2 O 3 , HfO 2 , ZrO 2 , mixtures of oxides, amorphous Carbon, cubic boron nitride or carbon nitrides.

Vorzugsweise sind in der oberflächennahen Randzone Nitride des metallischen Dotierungsmittels, z.B. TiN, CrN oder VN, angereichert.Preferably, in the near-surface edge zone, nitrides of the metallic dopant, e.g. TiN, CrN or VN, enriched.

Zur Herstellung des erfindungsgemäßen Hartmetall-Substratkörpers wird das Verfahren nach Anspruch 5 oder Anspruch 6 verwendet.For the production of the hard metal substrate body according to the invention, the method according to claim 5 or claim 6 is used.

In der ersten Ausführungsalternative wird die Ausgangspulvermischung der gewünschten Hartmetallzusammensetzung pulvermetallurgisch in nach dem Stand der Technik bekannter Weise vorbehandelt, zu einem Grünling vorgepreßt und bis zur Sintertemperatur erwärmt, wobei in der Aufheizphase nach Erreichen des Eutektikums, aber spätestens nach Erreichen der Sintertemperatur die Vakuum- oder Inertgasatmosphäre durch eine N2-Atmosphäre mit einem N2-Druck ≤ 105 Pa ersetzt und zumindest bis zum Erreichen der Sintertemperatur oder bis zum Ende der Haltezeit, in der der Körper auf Sintertemperatur gehalten wird, aufrechterhalten wird.In the first alternative embodiment, the starting powder mixture of the desired hard metal composition is pretreated by powder metallurgy in a manner known in the art, pre-pressed into a green body and until heated to the sintering temperature, wherein in the heating phase after reaching the eutectic, but at the latest after reaching the sintering temperature, the vacuum or inert gas atmosphere replaced by an N 2 atmosphere with an N 2 pressure ≤ 10 5 Pa and at least until reaching the sintering temperature or until is maintained at the end of the holding time, in which the body is kept at sintering temperature.

Alternativ hierzu ist es auch möglich, die Stickstoff-Behandlung nach dem Fertigsintern vorzunehmen, und zwar indem der fertiggesinterte Körper unterhalb der eutektischen Temperatur einer N2-Atmosphäre unter einem Druck p von 105 Pa < p < 107 Pa über mindestens 10 min ausgesetzt wird. Diese Behandlung kann entweder in der Abkühlphase nach dem Sintern oder in einem zweiten Arbeitsschritt, ggf. auch im Anschluß an eine Schleif- und/oder Strahlbehandlung des fertiggesinterten Körpers angeschlossen werden.Alternatively, it is also possible to carry out the nitrogen treatment after the final sintering, by subjecting the finished sintered body below the eutectic temperature to an N 2 atmosphere under a pressure p of 10 5 Pa <p <10 7 Pa over at least 10 min becomes. This treatment can be connected either in the cooling phase after sintering or in a second step, possibly also following a grinding and / or blast treatment of the finished sintered body.

Die Stickstoffatmosphäre kann entweder durch Einleitung von Stickstoffgas in die Ofenatmosphäre oder auch durch Einleitung von Präkursoren, d.h. N-haltigen Gasen, eingestellt werden, aus denen sich Stickstoff bei der entsprechenden Temperatur in der Gasatmosphäre in situ bildet.The nitrogen atmosphere may be introduced either by introducing nitrogen gas into the furnace atmosphere or by introducing precursors, i. N-containing gases are set, from which nitrogen forms at the corresponding temperature in the gas atmosphere in situ.

Es ist allgemein bekannt, dass mit der Zeitspanne und mit der Gaszusammensetzung, bei der sich der Sinterkörper oberhalb eutektischer Temperaturen befindet, die Größe der WC-Kristallite beeinflußt werden kann. Längere Behandlungszeiten führen zu größeren WC-Kristalliten.It is well known that with the length of time and with the gas composition in which the sintered body is above eutectic temperatures, the size of WC crystallites can be affected. Longer treatment times lead to larger WC crystallites.

In einer bevorzugten Ausführungsvariante wird der Körper auf 1250°C erwärmt und diese Temperatur über eine Zeitdauer von mindestens 20 min gehalten, bevor mit der Aufheizung auf die Sintertemperatur fortgefahren wird. Weiterhin vorzugsweise wird der Körper in der Aufwärmphase zunächst im Vakuum und erst ab ca. 1250°C in einer Inertgasatmosphäre, z.B. aus Argon, bis zur Sintertemperatur erwärmt, bei deren Erreichen die Stickstoffatmosphäre mit eine Druck von mindestens 104 Pa eingestellt wird. Vorzugsweise liegen die Aufheiz- und Abkühlraten maximal bei 10°C/min, bevorzugt liegt die entsprechende Rate zwischen 2°C/min und 5°C/min.In a preferred embodiment, the body is heated to 1250 ° C and held this temperature for a period of at least 20 min, before proceeding with the heating to the sintering temperature. Further preferably, the body is heated in the warm-up first in a vacuum and only from about 1250 ° C in an inert gas atmosphere, for example of argon, to the sintering temperature, upon reaching the nitrogen atmosphere is set at a pressure of at least 10 4 Pa. Preferably, the heating and cooling rates are a maximum of 10 ° C / min, preferably, the corresponding rate is between 2 ° C / min and 5 ° C / min.

Nach einer weiteren Ausgestaltung der Erfindung sind in der Ausgangsmischung zusätzlich bis zu 15 Massen%, bezogen auf die Binderphase, Carbide, Nitride, Carbonitride der Elemente der lva-, Va- und Vla-Gruppe des Periodensystems oder des Al oder Komplexcarbide, Komplexnitride und/oder Komplexcarbonitride der Form Ti2AlC, Ti2AlN, Cr2AlN, Cr2AlC enthalten, vorzugsweise jedoch nur jeweils in einer Menge wie maximal in der Binderphase gelöst werden kann. Diese Löslichkeitsgrenze ist jeweils durch Summe der gelösten Elemente bestimmt und kann sich für jedes Element durch Zugabe anderer lösbarer Elemente ändern.According to a further embodiment of the invention, in the starting mixture additionally up to 15% by weight, based on the binder phase, of carbides, nitrides, carbonitrides of the elements of the IVA, VA and VLA group of the Periodic Table or of Al or complexed carbides, complex nitrides and / or complex carbonitrides of the form Ti 2 AlC, Ti 2 AlN, Cr 2 AlN, contain Cr 2 AlC, but preferably only in each case in an amount as maximum in the binder phase can be solved. This solubility limit is determined in each case by the sum of the dissolved elements and can change for each element by adding other soluble elements.

Bei der vorbeschriebenen Behandlung der Sinterkörper in einer Stickstoffatmosphäre unter einem Druck von 102 Pa bis 107 Pa diffundieren die Dotierungsmittel bzw. deren Carbide, Nitride oder Carbonitride in Richtung der Substratoberfläche und verdrängen durch Anreicherung von entsprechenden Hartstoffpartikeln, die noch zusätzlich durch die Kombination des vorhandenen Stickstoffes und mindestens eines der Metalle verstärkt werden kann, die Bindephase in tiefere Regionen, die dadurch an der Oberfläche verarmt. Die Stickstoffbehandlung wirkt jedoch auch aufgrund der Tatsache, dass Stickstoff in der Binderphase gelöst wird, auf die Kohlenstoffaktivität, die wiederum die Ausscheidung von Hartstoffphasen beeinflußt. Auch hierdurch kann eine Hartstoffphasenanreicherung in der Oberfläche gesteuert werden.In the above-described treatment of the sintered body in a nitrogen atmosphere under a pressure of 10 2 Pa to 10 7 Pa diffuse the dopants or their carbides, nitrides or carbonitrides in the direction of the substrate surface and displace by enrichment of corresponding hard particles, which additionally by the combination of existing nitrogen and at least one of the metals can be amplified, the binder phase into deeper regions, which thereby depleted at the surface. However, the nitrogen treatment also acts on the carbon activity due to the fact that nitrogen is dissolved in the binder phase, which in turn affects the precipitation of hard material phases. This also allows a hard material phase enrichment in the surface to be controlled.

Die Erfindung wird im folgenden anhand von Ausführungsbeispielen erläutert.The invention will be explained below with reference to exemplary embodiments.

Es zeigen

Fig. 1
ein Sinterprofil für die Behandlung einer Probe,
Fig. 2a, b
jeweils ein halbquantitatives GDOS-Tiefenprofil der Probe A,
Fig. 3a, b
jeweils ein halbquantitatives GDOS-Tiefenprofil der Probe C,
Fig. 4
weitere Sinterprofile und
Fig. 5a, b
jeweils ein halbquantitatives GDOS-Tiefenprofil der Probe C, die gemäß einem Sinterprofil nach Fig. 4 unterzogen worden ist.
Show it
Fig. 1
a sintered profile for the treatment of a sample,
Fig. 2a, b
each a semiquantitative GDOS depth profile of the sample A,
Fig. 3a, b
each a semiquantitative GDOS depth profile of the sample C,
Fig. 4
further sintered profiles and
Fig. 5a, b
each a semiquantitative GDOS depth profile of the sample C, which has been subjected according to a sintered profile of Fig. 4.

Fünf Legierungen gemäß der in der folgenden Tabelle aufgeführten Zusammensetzung wurden in üblicher Weise gemahlen, gemischt und zu einem Grünling vorgepreßt sowie anschließend einer Sinterbehandlung unterzogen, deren Sinterprofil der Fig. 1 zu entnehmen ist. Tabelle 1 Probenzusammensetzung Sinterkörper Zusammensetzung (Masse%) A 92 % WC, 7,5 Co, 0,5 Ti2AlC B 91,75 % WC, 0,75 % Cr3C2, 3,75 % Co, 3,75 % Ni C 91,75 % WC, 0,75 % Cr3C2, 4,5 % Co, 1,5 % Ni, 1,5 % Fe D 91,75 % WC, 0,75 % Cr3C2, 7,5 % Co E 91,4 % WC, 0,75 % Cr3C2, 0,35 % Mo2C, 7,5 % Co Five alloys according to the composition shown in the following table were ground in a conventional manner, mixed and pre-pressed into a green compact and then subjected to a sintering treatment, the sintered profile of FIG. 1 can be seen. Table 1 sample composition sintered body Composition (mass%) A 92% WC, 7.5 Co, 0.5 Ti 2 AlC B 91.75% WC, 0.75% Cr 3 C 2 , 3.75% Co, 3.75% Ni C 91.75% WC, 0.75% Cr 3 C 2 , 4.5% Co, 1.5% Ni, 1.5% Fe D 91.75% WC, 0.75% Cr 3 C 2 , 7.5% Co e 91.4% WC, 0.75% Cr 3 C 2 , 0.35% Mo 2 C, 7.5% Co

Die vorgenannte Legierung A ist mit einer Aufwärmgeschwindigkeit von 5°C/min zunächst auf 1250°C erwärmt worden. Diese Temperatur wurde etwa 30 min gehalten, wonach eine Argon-Gasatmosphäre mit einem Druck von 5 x 103 Pa eingestellt wurde. Gleichzeitig ist die Erwärmung des Sinterkörpers mit einer Aufheizgeschwindigkeit von 5°C/min fortgesetzt worden, wobei bei Erreichen von 1480°C ein N2-Druck von 7 x 104 Pa eingestellt wurde, der auch nach Erreichen der Sintertemperatur von 1480°C aufrechterhalten blieb. Die Sinterdauer betrug ca. 1 Stunde, wonach der Ofen abgeschaltet worden ist.The aforementioned alloy A was first heated to 1250 ° C at a heating rate of 5 ° C / min. This temperature was maintained for about 30 minutes, after which an argon gas atmosphere was set at a pressure of 5 × 10 3 Pa. At the same time, the heating of the sintered body has been continued at a heating rate of 5 ° C / min, wherein when reaching 1480 ° C, an N 2 pressure of 7 x 10 4 Pa was set, which maintained even after reaching the sintering temperature of 1480 ° C. remained. The sintering time was about 1 hour, after which the oven has been switched off.

Bei dem Sinterkörper gemäß Probe A war festzustellen, dass durch die N2-Behandlung die oberflächennahen Regionen in einer Tiefe bis zu 1 µm derart beeinflußt wurden, dass dort die Binderphase, d.h. die Summe der Bindemetalle verarmte und eine deutliche Anreicherung der Hartstoffphase an der Oberfläche und in den oberflächennahen Bereichen erzeugt wurde (siehe Fig. 2a). Dies konnte sowohl im metallographischen Querschliff als auch rein optisch durch eine Farbveränderung festgestellt werden. Fig. 2b zeigt das Verhältnis des Dotierungsmittels Ti zum Bindemetall Co. Man erkennt, dass das Dotierungselement im Verhältnis zum Bindemetall sich zur Oberfläche des Substratkörpers hin stark anreichert und an der Oberfläche eine sehr dünne Ti(C,N)-Schicht vorliegt.In the case of the sintered body according to sample A, it was found that the N 2 treatment influenced the near-surface regions at a depth of up to 1 μm such that there the binder phase, ie the sum of the binder metals, depleted and a marked accumulation of the hard material phase at the surface and in the near-surface regions (see Fig. 2a). This could both be detected in the metallographic cross section as well as purely optically by a color change. 2b shows the ratio of the dopant Ti to the binder metal Co. It can be seen that the doping element in relation to the binder metal accumulates strongly towards the surface of the substrate body and a very thin Ti (C, N) layer is present on the surface.

Als weiteres Beispiel für den erzielten Effekt der Modifikation der Randzone zeigt Fig. 3a ein halbquantitatives GDOS-Tiefenprofil. Man erkennt deutlich, dass die Summe der Bindemetalle (Fe, Co, Ni) an der äußeren Oberfläche abnimmt. Fig. 3b zeigt ein zur Oberfläche in geringeren Eindringtiefen (ca. 0,1 µm) deutlich ansteigendes Verhältnis Cr/(Co + Fe + Ni). Dies bedeutet, dass im Binder in der gradierten Randzone, welche durch Stickstoff beeinflußt ist, der Cr-Anteil in der Binderphase relativ zu den anderen Elementen der Binderphase gegenüber der nicht durch Stickstoff beeinflußten, inneren Bereiche der Legierung erhöht ist. Der Stickstoffgehalt nimmt in der Randzone stark, der Kohlenstoff- und Wolfram-Gehalt geringfügig zur Oberfläche hin zu.As another example of the effect of modification of the edge zone, Fig. 3a shows a semi-quantitative GDOS depth profile. It can be clearly seen that the sum of the binder metals (Fe, Co, Ni) on the outer surface decreases. FIG. 3b shows a ratio Cr / (Co + Fe + Ni) which increases significantly to the surface at lower penetration depths (about 0.1 μm). This means that in the binder in the graded edge zone, which is affected by nitrogen, the Cr content in the binder phase is increased relative to the other elements of the binder phase over the non-nitrogen affected inner regions of the alloy. The nitrogen content increases strongly in the peripheral zone and the carbon and tungsten content increases slightly toward the surface.

Proben des Typs A bis F gemäß Tabelle 1 wurden verschiedenen Glühungen und Sinterungen bei erhöhtem Stickstoffdruck gemäß Tabelle 2 unterzogen. Tabelle 2 Sinterprofile für die Proben A bis F der Tabelle 1 Probe Sinterprofil B Zyklus 7 C Zyklus 7 A Zyklus 7 C php_1 A php_1 D php_2 E php_2 C php_2 E php_2 B php_2 D php_2a F php_2a D php_2b F php_2b. Samples A to F of Table 1 were subjected to various annealing and sintering at elevated nitrogen pressure as shown in Table 2. Table 2 Sintered profiles for Samples A to F of Table 1 sample sintering profile B Cycle 7 C Cycle 7 A Cycle 7 C php_1 A php_1 D php_2 e php_2 C php_2 e php_2 B php_2 D php_2a F php_2a D php_2b F php_2b.

Die Sinterprofile sind in Tabelle 3 sowie Fig. 4 wiedergegeben. Tabelle 3 Tabellarische Beschreibung der Sinterprofile Vorbehandlung p(N2) bar max. Temperatur Haltezeit bei max. Temperatur h Abkühlbedingungen Zyklus 8 dynamisches Vakuum bis max. Temperatur 5 1200°C 10 abkühlen lassen = 250°C/min Zyklus 7 dynamisches Vakuum bis max. Temperatur 25 1280°C 10 abkühlen lassen = 250°C/min php_1 dynamisches Vakuum bis max. Temperatur 25 1400°C 1 bis 1200°C mit 5°/min dann abkühlen lassen = 250°C/min php_2 dynamisches Vakuum bis 1200°C 25 bei 1200°C 1400°C 1 bis 1200°C mit 5°/min dann abkühlen lassen = 250°C/min php_2a dynamisches Vakuum bis 1200°C 25 bei 1200°C 1400°C 2 bis 1200°C mit 5°/min dann abkühlen lassen = 250°C/min php_2b dynamisches Vakuum bis 1200°C 25 bei 1200°C 1400°C 4 bis 1200°C mit 5°/min dann abkühlen lassen = 250°C/min The sintered profiles are shown in Table 3 and FIG. 4. Table 3 Tabular description of the sintered profiles preparation p (N 2 ) bar Max. temperature Holding time at max. Temperature h the cooling conditions Cycle 8 dynamic vacuum up to max. temperature 5 1200 ° C 10 Allow to cool = 250 ° C / min Cycle 7 dynamic vacuum up to max. temperature 25 1280 ° C 10 Allow to cool = 250 ° C / min php_1 dynamic vacuum up to max. temperature 25 1400 ° C 1 then allow to cool to 1200 ° C at 5 ° / min = 250 ° C / min php_2 dynamic vacuum up to 1200 ° C 25 at 1200 ° C 1400 ° C 1 then allow to cool to 1200 ° C at 5 ° / min = 250 ° C / min php_2a dynamic vacuum up to 1200 ° C 25 at 1200 ° C 1400 ° C 2 then allow to cool to 1200 ° C at 5 ° / min = 250 ° C / min php_2b dynamic vacuum up to 1200 ° C 25 at 1200 ° C 1400 ° C 4 then allow to cool to 1200 ° C at 5 ° / min = 250 ° C / min

Ein halbquantitatives GDOS-Tiefenprofil der Probe C ist in Fig. 5 dargestellt, welches die Abnahme der Summe der Bindemetalle in oberflächennahen Bereichen zeigt. Die Summe der Bindemetalle zeigt wieder die gleiche Charakteristik wie im Falle der gleichen vakuumgesinterten Sorte. Auch der N- und der C-Anteil ist wie im Falle der unter vermindertem Druck gesinterten Legierung C zur Oberfläche hin erhöht. Fig. 5b zeigt einen deutlichen Anstieg der Cr/(Co + Ni + Fe)-Konzentrationsverhältnisses zu randnahen Zonen.A semiquantitative GDOS depth profile of Sample C is shown in Figure 5, which shows the decrease in the sum of the binding metals in near-surface regions. The sum of the binding metals again shows the same characteristics as in the case of the same vacuum-sintered variety. Also, the N and C contents are increased toward the surface as in the case of the reduced-pressure sintered alloy C. Fig. 5b shows a marked increase in the Cr / (Co + Ni + Fe) concentration ratio to near-edge zones.

Durch die Wahl der Dotierungselemente bzw. deren Verbindungen und auch durch Wahl des Stickstoffdruckes kann die Randzone des fertigen Hartmetall-Sinterkörpers so eingestellt werden, dass nicht nur eine Anreicherung an Dotierungsmitteln, sondern sogar die Bildung einer Diffusionsschicht aus Nitriden gefördert wird. Wird beispielsweise Cr oder eine Cr-Verbindung als Dotierung eingesetzt, so entsteht bei einer Vakuumsinterung mit späterer N2-Gasphaseneinstellung unter kleinen Drücken (< 105 Pa) keine Chromnitrid-Schicht oder -Anreicherung, weil sich Chromnitride bei geringen Stickstoffdrücken nicht bilden. Hingegen kann mittels einer Dotierung einer V- oder Ti-haltigen Phase die Bildung von TiN oder VN oder von Ti(C,N) oder V(C,N) unter denselben Bedingungen hervorgerufen werden, weil Vanadiumnitride bzw. -carbonitride bereits bei geringen Stickstoffdrücken ausgebildet werden.By choosing the doping elements or their compounds and also by selecting the nitrogen pressure, the edge zone of the finished cemented carbide sintered body can be adjusted so that not only an accumulation of dopants, but even the formation of a diffusion layer of nitrides is promoted. If, for example, Cr or a Cr compound is used as a doping, then no vacuum sintering with subsequent N 2 gas phase adjustment under small pressures (<105 Pa) results in no chromium nitride layer or enrichment because chromium nitrides do not form at low nitrogen pressures. On the other hand, by doping a V- or Ti-containing phase, the formation of TiN or VN or of Ti (C, N) or V (C, N) can be induced under the same conditions, because vanadium nitrides or carbonitrides already at low nitrogen pressures be formed.

Claims (11)

  1. Hard metal substrate body comprised of a WC hard material phase and a binder phase of 3 to 25 mass % which apart from at least one of the binder metals Fe, Co and/or Ni contains up to 15 mass % (of the binder phase) dissolved doping agents selected from the group comprised of Al, Cr, V, Nb, Ta, Ti, Zr, Hf, characterized in that the percentage proportion of all doping agents in the hard metal is limited to a maximum of 4 mass % in that the proportion of a cubic phase in the hard metal is less that 4 volume % and in that the binder metal content in a hard metal-substrate body boundary zone falls from up to 1µm, preferably up to 0,5µm to less that 0,5 times the binder content in the substrate body interior, whereby the concentration of the binder phase falls gradually toward the substrate body surface and the concentration of the doping agents gradually increases in a corresponding manner.
  2. Hard metal substrate body according to claim 1 characterized in that the grain size of the WC is ≤1,5µm whereby the WC fine hard metal (grain size ≤0,8µm) and/or with WC ultrafine grain hard metal (grain size ≤0,5µm), preferably contain Cr, V and/or Ta as doping agent.
  3. Hard metal substrate body according to one of claims 1 or 2 characterized in that at least one layer is applied to the substrate body surface, the layer being comprised of a carbide, nitride and/or carbonitride of Ti, Zr and/or Hf and/or of Al2O3, HfO2, ZrO2, oxides, amorphous carbon, diamond, cubic boron nitride, carbon nitride (CNx) or another compound of at least one of the elements B, C, N and/or O.
  4. Hard metal substrate body according to one of claims 1 to 3 characterized in that in the boundary zone close to the surface there is an enrichment with nitride or carbonitride of the metal doping agents.
  5. Method of producing a hard metal substrate body according to one of claims 1 to 4 in which the starting mixture is pre-treated powder metallurgically, is prepressed to a green body and then in an atmosphere of a furnace is heated and sintered, characterized in that in the heating phase, after reaching the eutectic, but not later that reaching the sintering temperature the vaccum or inert gas atmosphere is replaced with a N2 atmosphere with a N2 pressure of ≤105 Pa and is maintained at least until the sintering temperature is reached.
  6. Method of making a hard metal substrate body according to one of claims 1 to 4 in which the starting mixture is powder metallurgically pre-treated, is pressed to a green body and finally heated in an atmosphere of a furnace and sintered, characterized in that after finish sintering or optionally in a final treatment below the eutectic temperature, the sintered body is maintained in a N2 atmosphere under a pressure (p) of 105 Pa < p < 107 Pa for at least 10 minutes.
  7. Method according to claim 5 or 6 characterized in that the nitrogen atmosphere is established by introducing precursors that is N-containing gases whereby the nitrogen is formed in situ in the gas atmosphere.
  8. Method according to one of claims 5 to 7 characterized in that the body is heated up to 1.250°C during the heating phase and this temperature is held for at least 20 minutes, preferably more than 1 hour, before the heating up is continued to the sintering temperature.
  9. Method according to one of claims 5, 7 or 8 characterized in that initially in the heating up phase at about 1.200°C the previously existing vaccum is replaced by an inert gas atmosphere, preferably with a pressure of 103 Pa to 104 Pa and only upon reaching the sintering temperature is a nitrogen containing atmosphere established with a higher pressure, preferably ≥ 104 Pa.
  10. Method according to one of claims 5 to 9 characterized in that the heating up rate and the cooling down rate amounts to up to 10°C/min, preferably between 2°C/min and 5°C/min.
  11. Method according to one of claims 5 to 10 characterized in that the starting mixture contains up to 15 mass % of the binder phase additional carbides, nitrides, carbonitrides of the elements of Group IVa or VIa of the periodic system or Al or complex carbides, complex nitrides and/or complex carbonitrides of the form Ti2AlC, Ti2AlN, Cr2AlN, Cr2AlC.
EP03740063A 2002-06-10 2003-06-04 Hard metal substrate body and method for producing the same Expired - Lifetime EP1511870B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10225521 2002-06-10
DE10225521A DE10225521A1 (en) 2002-06-10 2002-06-10 Hard tungsten carbide substrate with surface coatings, includes doped metallic binder
PCT/DE2003/001834 WO2003104507A1 (en) 2002-06-10 2003-06-04 Hard metal substrate body and method for producing the same

Publications (2)

Publication Number Publication Date
EP1511870A1 EP1511870A1 (en) 2005-03-09
EP1511870B1 true EP1511870B1 (en) 2007-04-11

Family

ID=29557684

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03740063A Expired - Lifetime EP1511870B1 (en) 2002-06-10 2003-06-04 Hard metal substrate body and method for producing the same

Country Status (7)

Country Link
US (1) US20050224958A1 (en)
EP (1) EP1511870B1 (en)
JP (1) JP2005529236A (en)
AT (1) ATE359381T1 (en)
DE (2) DE10225521A1 (en)
PT (1) PT1511870E (en)
WO (1) WO2003104507A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10342364A1 (en) * 2003-09-12 2005-04-14 Kennametal Widia Gmbh & Co.Kg Carbide or cermet body and process for its preparation
AT501801B1 (en) * 2005-05-13 2007-08-15 Boehlerit Gmbh & Co Kg Hard metal body with tough surface
SE529590C2 (en) * 2005-06-27 2007-09-25 Sandvik Intellectual Property Fine-grained sintered cemented carbides containing a gradient zone
JP4997561B2 (en) * 2005-08-04 2012-08-08 独立行政法人産業技術総合研究所 Tool or mold material in which a hard film is formed on a hard alloy for forming a high-hardness film, and a method for producing the same
DE102006045339B3 (en) * 2006-09-22 2008-04-03 H.C. Starck Gmbh metal powder
DE102008048967A1 (en) * 2008-09-25 2010-04-01 Kennametal Inc. Carbide body and process for its production
CN102424970A (en) * 2011-12-05 2012-04-25 嘉鱼县海鑫合金制造有限公司 Technology for preparing hard alloy coating on surface of wear resistant part with powder metallurgy method
US8834594B2 (en) 2011-12-21 2014-09-16 Kennametal Inc. Cemented carbide body and applications thereof
BR112015030091A2 (en) 2013-05-31 2017-07-25 Sandvik Intellectual Property new carbide manufacturing process and a product obtained from this
EP2821165A1 (en) * 2013-07-03 2015-01-07 Sandvik Intellectual Property AB A sintered cermet or cemented carbide body and method of producing it
JP6375636B2 (en) * 2014-02-14 2018-08-22 新日鐵住金株式会社 Carbide tool substrate and carbide tool, and carbide tool substrate and method of manufacturing carbide tool
JP6327102B2 (en) * 2014-10-10 2018-05-23 新日鐵住金株式会社 Carbide tool
CN109180187B (en) * 2018-08-31 2021-05-18 中国科学院金属研究所 Preparation method of highly oriented nanometer MAX phase ceramic and MAX phase in-situ authigenic oxide nanometer complex phase ceramic
CN110284038B (en) * 2019-04-26 2020-07-28 中南大学 PVD coating with strong (111) texture and preparation method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2684688B2 (en) * 1988-07-08 1997-12-03 三菱マテリアル株式会社 Surface-coated tungsten carbide based cemented carbide for cutting tools
DE3837006C3 (en) * 1988-10-31 1993-11-18 Krupp Widia Gmbh hard metal
JP2762745B2 (en) * 1989-12-27 1998-06-04 住友電気工業株式会社 Coated cemented carbide and its manufacturing method
JP3046336B2 (en) * 1990-09-17 2000-05-29 東芝タンガロイ株式会社 Sintered alloy with graded composition and method for producing the same
JP3158429B2 (en) * 1990-11-21 2001-04-23 三菱マテリアル株式会社 Cemented carbide members with excellent wear resistance and toughness
US5750247A (en) * 1996-03-15 1998-05-12 Kennametal, Inc. Coated cutting tool having an outer layer of TiC
JP3707223B2 (en) * 1998-01-19 2005-10-19 三菱マテリアル株式会社 Milling tool with excellent wear resistance
JPH11302767A (en) * 1998-04-21 1999-11-02 Toshiba Tungaloy Co Ltd Cemented carbide excellent in mechanical characteristic and its production
DE19845376C5 (en) * 1998-07-08 2010-05-20 Widia Gmbh Hard metal or cermet body
US6110603A (en) * 1998-07-08 2000-08-29 Widia Gmbh Hard-metal or cermet body, especially for use as a cutting insert
DE19922057B4 (en) * 1999-05-14 2008-11-27 Widia Gmbh Carbide or cermet body and process for its preparation
SE516071C2 (en) * 1999-04-26 2001-11-12 Sandvik Ab Carbide inserts coated with a durable coating
JP2000336451A (en) * 1999-05-28 2000-12-05 Toshiba Tungaloy Co Ltd Modified sintered alloy, coated sintered alloy, and their production
SE9903089D0 (en) * 1999-09-01 1999-09-01 Sandvik Ab Coated grooving or parting insert
US6575671B1 (en) * 2000-08-11 2003-06-10 Kennametal Inc. Chromium-containing cemented tungsten carbide body
SE518890C2 (en) * 2000-09-27 2002-12-03 Sandvik Ab Carbide tools for cold working operations
JP2001293603A (en) * 2001-02-28 2001-10-23 Mitsubishi Materials Corp Cutting tool coated with vapor phase synthetic diamond

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP1511870A1 (en) 2005-03-09
WO2003104507A1 (en) 2003-12-18
JP2005529236A (en) 2005-09-29
PT1511870E (en) 2007-06-28
DE50307024D1 (en) 2007-05-24
ATE359381T1 (en) 2007-05-15
US20050224958A1 (en) 2005-10-13
DE10225521A1 (en) 2003-12-18

Similar Documents

Publication Publication Date Title
EP1511870B1 (en) Hard metal substrate body and method for producing the same
DE2727250C2 (en) Surface coated cemented carbide article and method for making the same
DE69527124T3 (en) Hard composite material for tools
DE2717842C2 (en) Process for the surface treatment of sintered hard metal bodies
DE602004012521T2 (en) Cemented carbide insert and method for its production.
EP2010687B1 (en) Hard metal body and method for producing the same
EP1664363B1 (en) Hard metal or cermet body and method for producing the same
DE2658813C2 (en) High-speed steel containing nitrogen produced using the powder metallurgy process
DE2831293A1 (en) METHOD FOR PRODUCING SINTERED HARD METALS AND DEVICE FOR CARRYING OUT THIS METHOD
EP1095168B1 (en) Hard metal or ceramet body and method for producing the same
EP1957429B1 (en) Coated hard metal member
EP0758407B1 (en) Cermet and process for producing it
EP0558485B1 (en) Process for obtaining a coated cemented carbide cutting tool
AT392929B (en) METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF WORKPIECES OR TOOLS
DE2420768A1 (en) CARBONITRIDE ALLOYS FOR CUTTING TOOLS AND WEAR PARTS
DE2317447C2 (en) Cutting inserts
DE19752289C1 (en) Sintered hard metal article with a binder-enriched and/or cubic carbide-depleted surface zone
DE19922057B4 (en) Carbide or cermet body and process for its preparation
EP1625102A1 (en) Sintered part and the method for the production thereof
EP0149449B1 (en) Hard metal body, in particular a cutting tool
DE10297020T5 (en) Multi-component ceramic powder, method for producing multi-component ceramic powder, sintered body and method for producing a sintered body
DE102008048967A1 (en) Carbide body and process for its production
DE2303756A1 (en) PROCESS FOR GENERATING AN EXTREMELY HARD MIXED CARBIDE LAYER ON FERROUS MATERIALS TO INCREASE THE WEAR RESISTANCE
DE10117657B4 (en) Complex boride cermet body and use of this body
DE4440544C2 (en) Sintered hard material molded body and process for its production

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041001

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DAUB, WERNER

Inventor name: LENGAUER, WALTER

Inventor name: UCAKAR, VERA

Inventor name: ROEDIGER, KLAUS

Inventor name: DREYER, KLAUS

Inventor name: LOVONYAK, MARIANN

Inventor name: KASSEL, DIETER

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KENNAMETAL WIDIA PRODUKTIONS GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070417

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50307024

Country of ref document: DE

Date of ref document: 20070524

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070722

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: KENNAMETAL WIDIA PRODUKTIONS G.M.B.H. & CO. KG

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

26N No opposition filed

Effective date: 20080114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071012

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20110622

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120530

Year of fee payment: 10

Ref country code: CZ

Payment date: 20120517

Year of fee payment: 10

Ref country code: CH

Payment date: 20120612

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120619

Year of fee payment: 10

Ref country code: SE

Payment date: 20120612

Year of fee payment: 10

Ref country code: GB

Payment date: 20120530

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120618

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20120601

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120529

Year of fee payment: 10

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20131204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130604

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131204

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130605

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 359381

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130604

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130604

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50307024

Country of ref document: DE

Effective date: 20140101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130604

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130604

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130604