JP3707223B2 - Milling tool with excellent wear resistance - Google Patents

Milling tool with excellent wear resistance Download PDF

Info

Publication number
JP3707223B2
JP3707223B2 JP00772898A JP772898A JP3707223B2 JP 3707223 B2 JP3707223 B2 JP 3707223B2 JP 00772898 A JP00772898 A JP 00772898A JP 772898 A JP772898 A JP 772898A JP 3707223 B2 JP3707223 B2 JP 3707223B2
Authority
JP
Japan
Prior art keywords
layer
cemented carbide
milling tool
carbide substrate
forming component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00772898A
Other languages
Japanese (ja)
Other versions
JPH11197936A (en
Inventor
洋 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP00772898A priority Critical patent/JP3707223B2/en
Publication of JPH11197936A publication Critical patent/JPH11197936A/en
Application granted granted Critical
Publication of JP3707223B2 publication Critical patent/JP3707223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、切刃チップを構成する硬質被覆層の超硬合金基体表面に対する密着性にすぐれ、したがって苛酷な切削条件となる高速切削に用いても前記硬質被覆層に剥離の発生がないことから、すぐれた耐摩耗性を長期に亘って発揮するミーリング(フライス削り)工具に関するものである。
【0002】
【従来の技術】
従来、一般に、例えば図1に平面図で示されるように、鋼製または超硬合金製回転シャンク本体の先端部側面に形成された切り欠き部に、超硬合金基体の表面に硬質被覆層を形成してなる表面被覆超硬合金製切刃チップをネジ止めなどの固着手段により着脱自在に装着した形式のミーリング工具が知られている。また、上記切刃チップを構成する硬質被覆層が、通常の高温化学気相蒸着法(以下、HT−CVD法と云う)や、前記HT−CVD法の蒸着温度である1000〜1150℃に比して相対的に低温の700〜980℃で蒸着を行う中温化学気相蒸着法(以下、MT−CVD法と云う)にて形成されることも知られている。
【0003】
【発明が解決しようとする課題】
一方、近年の切削加工の省力化および省エネ化はめざましく、これに伴い、切削加工条件は一段と高速化の傾向にあるが、上記のミーリング工具においては、これを高速条件下で用いると、切刃チップを構成する硬質被覆層の超硬合金基体表面に対する密着性が不十分であるために、硬質被覆層に剥離が発生し易く、これが原因で摩耗進行が著しく促進され、比較的短時間で使用寿命に至るのが現状である。
【0004】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、ミーリング工具に着目し、これを構成する切刃チップにおける硬質被覆層の超硬合金基体表面に対する密着性向上を図るべく研究を行った結果、
(a)超硬合金基体が、重量%(以下、%は重量%を示す)で、
結合相形成成分としてCo:5〜20%、
同じく結合相形成成分としてCrおよびVのうちの1種または2種:0.1〜2%、
を含有し、残りが分散相形成成分としての炭化タングステン(以下、WCで示す)と不可避不純物からなる組成を有し、
かつ前記WCが平均粒径:0.1〜1.5μmの微細粒組織を有すること。
(b)上記(a)の超硬合金基体を、炭酸ガスまたは四塩化チタンを配合の水素雰囲気中、前記雰囲気圧力を100〜550torrとして、900〜1000℃の温度に〜10分間保持の条件で高温加熱処理すると、表面部に、最表面から所定深さに亘ってCoとWの複合炭化物(以下、Comn Cで示す)が反応生成した表面層が形成されること。
(c)表面部に上記(b)の反応生成Comn Cが分布する高温加熱形成表面層を有する超硬合金基体の表面に、いずれもMT−CVD法を用いて、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、窒酸化物層、および炭窒酸化物層(以下、それぞれTiC層、TiN層、TiCN層、TiCO層、TiNO層、およびTiCNO層で示す)のうちの1種または2種以上で構成されたTi化合物層、さらに必要に応じてMT−CVD法またはHT−CVD法にて形成した酸化アルミニウム(以下、Al2 3 で示す)層からなる硬質被覆層を0.5〜4.5μmの平均層厚で形成すると、前記Ti化合物層の前記超硬合金基体表面に対する密着性が、前記超硬合金基体表面部に形成した高温加熱形成表面層によって著しく向上するようになり、したがって、この結果の表面被覆超硬合金製切刃チップを取り付けたミーリング工具は、高速切削に用いても前記切刃チップの硬質被覆層に剥離の発生がないことから、長期に亘ってすぐれた耐摩耗性を発揮するようになること。
以上(a)〜(c)に示される研究結果を示したのである。
【0005】
この発明は、上記の研究結果に基づいてなされたものであって、鋼製または超硬合金製回転シャンク本体の先端部側面に形成された切り欠き部に、超硬合金基体の表面に硬質被覆層を形成してなる表面被覆超硬合金製切刃チップを着脱自在に装着した形式のミーリング工具において、
(A)上記表面被覆超硬合金製切刃チップにおける超硬合金基体を、
(a)結合相形成成分としてCo:5〜20%、
同じく結合相形成成分としてCrおよびVのうちの1種または2種:0.1〜2%、
を含有し、残りが分散相形成成分としてのWCと不可避不純物からなる組成を有し、
前記WCが平均粒径:0.1〜1.5μmの微細粒組織を有し、
(b)さらに表面部に、炭酸ガスまたは四塩化チタンを配合の水素雰囲気中、前記雰囲気圧力を100〜550torrとして、900〜1000℃の温度に1〜10分間保持の条件で、最表面から0.1〜2μmの深さに亘って反応生成Comn Cが分布する高温加熱形成表面層を形成してなる、超硬合金基体で構成すると共に、
(B)上記硬質被覆層を、いずれもMT−CVD法を用いて形成したTiC層、TiN層、TiCN層、TiCO層、TiNO層、およびTiCNO層のうちの1種または2種以上からなるTi化合物層、あるいは前記Ti化合物層とMT−CVD法またはHT−CVD法にて形成したAl2 3 層で構成し、かつその平均層厚を0.5〜4.5μmとした、耐摩耗性のすぐれたミーリング工具に特徴を有するものである。
【0006】
つぎに、この発明のミーリング工具において、これを構成する切刃チップにおける超硬合金基体の組成、WC粒の平均粒径、Comn Cの分布深さ、および硬質被覆層の平均層厚を上記の通りに限定した理由を説明する。
(a)Co含有量
Co成分には、焼結性を向上させ、もって超硬合金基体の靭性を向上させる作用があるが、その含有量が5%未満では所望の靭性向上効果が得られず、一方その含有量が20%を越えると、超硬合金基体自体の耐摩耗性が低下するようになるばかりでなく、高速切削時の発生熱によって変形が起り易くなることから、その含有量を5〜20%、望ましくは8〜12%と定めた。
【0007】
(b)CrおよびV
これらの成分は、光学顕微鏡で観察した結果に基づくと、結合相形成成分としてのCo中に固溶してこれを強化するほか、WC粒の微細化に寄与し、さらに前記高温加熱形成表面層中に分布する反応生成Comn Cの形成を促進し、もって前記反応生成Comn Cによる硬質被覆層の密着性を向上させる作用をもつが、その含有量が0.1%未満では前記作用に所望の効果が得られず、一方その含有量が2%を越えると、同じく光学顕微鏡による観察で析出したCrおよびVの炭化物が第3相として現れるようになり、靭性低下の原因となることから、その含有量を0.1〜2%、望ましくは0.4〜0.8%と定めた。
【0008】
(c)WCの平均粒径
WC粒の微細化により超硬合金基体の強化を図るものであり、この微細化には上記の通りCrおよび/またはVの結合相への固溶含有が不可欠であり、したがって、その平均粒径が1.5μmを越えると、所望の強度向上効果が得られず、一方その平均粒径が0.1μm未満になると耐摩耗性の低下が避けられないことから、その平均粒径を0.1〜1.5μm、望ましくは0.6〜1.0μmと定めた。
【0009】
(d)Comn Cの分布深さ
その分布深さが0.1μm未満では、高温加熱形成表面層中に占める分布割合が少な過ぎて硬質被覆層に対して所望のすぐれた密着性を確保することができず、一方その分布深さが2μmを越えると、超硬合金基体最表面部におけるComn Cの分布割合が多くなり過ぎ、これが原因で切刃チップにチッピング(微小欠け)が発生し易くなることから、その分布深さを0.1〜2μm、望ましくは0.5〜1.5μmと定めた。
【0010】
(e)硬質被覆層の平均層厚
その平均層厚が0.5μm未満では、所望のすぐれた耐摩耗性を切刃チップに確保することができず、一方その平均層厚が4.5μmを越えると、切刃チップに欠けやチッピングが発生し易くなることから、その平均層厚を0.5〜4.5μm、望ましくは1.5〜2.5μmと定めた。
【0011】
【発明の実施の形態】
この発明のミーリング工具を実施例により具体的に説明する。
まず、原料粉末として、0.1〜1.5μmの範囲内の所定の平均粒径を有するWC粉末、平均粒径:0.5μmのCr32 粉末、同0.5μmのVC粉末、および同0.5μmのCo粉末を用意し、これら原料粉末を所定の配合割合に配合し、ボールミルで72時間湿式混合し、乾燥した後、1ton/cm2 の圧力で圧粉体にプレス成形し、この圧粉体を1×10-3torrの真空中、1350〜1500℃の範囲内の所定の温度に1時間保持の条件で真空焼結して表1に示される成分組成を有し、かつ同じく表1に示される平均粒径のWCで構成された切刃チップを構成する超硬合金基体素材a〜を形成した。
【0012】
つぎに、これら超硬合金基体素材a〜のそれぞれの表面部に、表2に示される条件で同じく表2に示される深さに亘ってComn Cが分布する高温加熱形成表面層を形成することにより超硬合金基体A〜を製造した。
【0013】
引き続いて、これら超硬合金基体A〜のそれぞれの表面に、表3に示される条件で表4に示される組成および平均層厚の硬質被覆層を形成することにより長さ:28.9mm×幅:11.2mm×厚さ:5mmの寸法、並びに図1(b)に平面図および縦断面図で示される形状をもった本発明用切刃チップA〜を形成した。
【0014】
さらにこれら本発明用切刃チップA〜のそれぞれを、JIS・SCM440(硬さ:HR C40)の鋼、またはWC−6%Coの組成を有し、かつWCの平均粒径が1.5μmの超硬合金からなり、いずれも全長:200mm×前方半部長さ:120mm×後方半部長さ:80mm×前方半部径:30mm×後方半部径:32mmの寸法および図1(a)に平面図で示される形状をもった回転シャンク本体の先端部側面に形成された切り欠き部に、表6に示される組み合わせでネジ止めすることにより本発明ミーリング工具1〜19をそれぞれ製造した。
【0015】
また、比較の目的で、表5に示される通り、高温加熱形成表面層を有する超硬合金基体A〜に代わって、これの形成がない超硬合金基体素材a〜を用いて形成した比較用切刃チップa〜を用いる以外は同一の条件で、表6に示される比較ミーリング工具1〜19をそれぞれ製造した。
【0016】
ついで、この結果得られた本発明ミーリング工具1〜19および比較ミーリング工具1〜19について、
被削材:FCD400からなる角度:10度の傾斜材、
切削速度:1000m/min、
1刃当りの送り:0.4mm/刃、
軸方向の切り込み:0.2mm、
径方向の切り込み:0.35mm、
の条件で鋳鉄の乾式高速等高線フライス加工を行い、切刃チップにおける逃げ面摩耗幅が0.2mmに至るまでの切削時間を測定した。これらの測定結果を表6に示した。
【0017】
【表1】

Figure 0003707223
【0018】
【表2】
Figure 0003707223
【0019】
【表3】
Figure 0003707223
【0020】
【表4】
Figure 0003707223
【0021】
【表5】
Figure 0003707223
【0022】
【表6】
Figure 0003707223
【0023】
【発明の効果】
表6に示される結果から、本発明ミーリング工具1〜19は、いずれもこれを構成する切刃チップの硬質被覆層に剥離の発生なく、これによってすぐれた耐摩耗性を発揮するのに対して、比較ミーリング工具1〜19においては、いずれも切削途中で切刃チップの硬質被覆層に剥離が発生し、この剥離によって摩耗進行が著しく促進されるようになることが明らかである。
上述のように、この発明のミーリング工具は、これを構成する切刃チップの超硬合金基体表面に対する硬質被覆層の密着性が、基体表面部に形成した高温加熱形成表面層中に分布するComn Cによって著しく向上したものになっているので、これを通常の切削条件は勿論のこと、高速切削に用いても切刃チップの硬質被覆層に剥離の発生なく、すぐれた耐摩耗性を長期に亘って発揮するのである。
【図面の簡単な説明】
【図1】ミーリング工具の平面図(a)およびこれを構成する切刃チップの平面図および縦断面図(b)である。[0001]
BACKGROUND OF THE INVENTION
This invention is excellent in adhesion of the hard coating layer constituting the cutting edge tip to the cemented carbide substrate surface, and therefore, the hard coating layer does not peel even when used for high-speed cutting which is a severe cutting condition. The present invention relates to a milling tool that exhibits excellent wear resistance over a long period of time.
[0002]
[Prior art]
Conventionally, generally, as shown in a plan view in FIG. 1, for example, a hard coating layer is provided on the surface of a cemented carbide substrate at a notch formed on the side surface of the tip of a rotating shank body made of steel or cemented carbide. There is known a milling tool of a type in which a formed surface coated cemented carbide cutting blade tip is detachably mounted by fixing means such as screws. Further, the hard coating layer constituting the cutting edge tip is compared with a normal high temperature chemical vapor deposition method (hereinafter referred to as HT-CVD method) or 1000 to 1150 ° C. which is the deposition temperature of the HT-CVD method. It is also known that it is formed by a medium temperature chemical vapor deposition method (hereinafter referred to as MT-CVD method) in which vapor deposition is performed at a relatively low temperature of 700 to 980 ° C.
[0003]
[Problems to be solved by the invention]
On the other hand, in recent years, labor saving and energy saving of cutting work are remarkable, and along with this, cutting conditions tend to be further increased in speed. However, in the above milling tools, if this is used under high speed conditions, the cutting edge Due to insufficient adhesion of the hard coating layer that constitutes the chip to the surface of the cemented carbide substrate, the hard coating layer is likely to peel off. The current situation is that it reaches the end of its life.
[0004]
[Means for Solving the Problems]
Therefore, the present inventors have focused on the milling tool from the above viewpoint, and have conducted research to improve the adhesion of the hard coating layer to the cemented carbide substrate surface in the cutting edge tip constituting the milling tool. ,
(A) The cemented carbide substrate is wt% (hereinafter,% indicates wt%),
Co: 5 to 20% as a binder phase forming component,
Similarly , one or two of Cr and V as a binder phase forming component: 0.1 to 2 %,
And the balance is composed of tungsten carbide (hereinafter referred to as WC) as a dispersed phase forming component and unavoidable impurities,
The WC has a fine grain structure with an average particle diameter of 0.1 to 1.5 μm.
(B) The cemented carbide substrate of the above (a) is held at a temperature of 900 to 1000 ° C. for 1 to 10 minutes in a hydrogen atmosphere containing carbon dioxide or titanium tetrachloride and the atmospheric pressure is 100 to 550 torr. When a high temperature heat treatment is performed under conditions, a surface layer in which a composite carbide of Co and W (hereinafter referred to as Co m W n C) is generated by reaction over a predetermined depth from the outermost surface is formed on the surface portion.
(C) The carbide layer of Ti is formed on the surface of the cemented carbide substrate having the high-temperature heat-formed surface layer in which the reaction product Co m W n C of (b) is distributed on the surface portion by using MT-CVD method. , Nitride layer, carbonitride layer, carbonate layer, nitride oxide layer, and oxynitride layer (hereinafter referred to as TiC layer, TiN layer, TiCN layer, TiCO layer, TiNO layer, and TiCNO layer, respectively) A Ti compound layer composed of one or more of them, and an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer formed by MT-CVD or HT-CVD as required. When the hard coating layer is formed with an average layer thickness of 0.5 to 4.5 μm, the adhesion of the Ti compound layer to the surface of the cemented carbide substrate is a high-temperature heat-formed surface layer formed on the surface of the cemented carbide substrate. Significantly improved by Therefore, the milling tool having the surface-coated cemented carbide cutting edge tip attached as a result does not cause peeling in the hard coating layer of the cutting edge tip even when used for high-speed cutting. To show excellent wear resistance.
The research results shown in (a) to (c) above are shown.
[0005]
The present invention has been made based on the above research results, and a hard coating is applied to the surface of the cemented carbide substrate on the notch formed on the side surface of the tip of the rotating shank body made of steel or cemented carbide. In a milling tool of a type in which a surface-coated cemented carbide cutting blade tip formed by forming a layer is detachably attached,
(A) A cemented carbide substrate in the surface coated cemented carbide cutting blade tip,
(A) Co: 5 to 20% as a binder phase forming component,
Similarly , one or two of Cr and V as a binder phase forming component: 0.1 to 2 %,
And the remainder has a composition consisting of WC as a dispersed phase forming component and inevitable impurities,
The WC has a fine grain structure with an average particle size of 0.1 to 1.5 μm,
(B) Further, in the hydrogen atmosphere containing carbon dioxide gas or titanium tetrachloride on the surface portion, the atmosphere pressure is set to 100 to 550 torr, and the temperature is maintained at 900 to 1000 ° C. for 1 to 10 minutes. And comprising a cemented carbide substrate formed with a high-temperature heat-formed surface layer in which reaction product Co m W n C is distributed over a depth of 1 to 2 μm,
(B) Ti composed of one or more of TiC layers, TiN layers, TiCN layers, TiCO layers, TiNO layers, and TiCNO layers, all of which are formed using the MT-CVD method. Abrasion resistance comprising a compound layer or the Ti compound layer and an Al 2 O 3 layer formed by MT-CVD or HT-CVD and having an average layer thickness of 0.5 to 4.5 μm It is characterized by an excellent milling tool.
[0006]
Then, the milling tool of the present invention, the composition of the cemented carbide substrate in the cutting edge tip to configure this, the average particle size of the WC grains, Co m W n C distribution depth, and average layer thickness of the hard coating layer The reason why is limited as described above will be described.
(A) Co content The Co component has the effect of improving the sinterability and thereby improving the toughness of the cemented carbide substrate. However, if the content is less than 5%, the desired toughness improving effect cannot be obtained. On the other hand, if its content exceeds 20%, not only the wear resistance of the cemented carbide substrate itself is lowered, but also deformation is likely to occur due to heat generated during high-speed cutting. 5-20%, desirably 8-12%.
[0007]
(B) Cr and V
These components are based on the results of observation with an optical microscope. In addition to strengthening this by dissolving in Co as a binder phase forming component, these components contribute to refinement of WC grains, and the high-temperature heat-formed surface layer distributed to promote the formation of reaction product Co m W n C during, but has the effect of improving the adhesion of the hard coating layer of the reaction product Co m W n C with, the content is less than 0.1% In this case, the desired effect cannot be obtained in the above-mentioned action. On the other hand, if the content exceeds 2%, the carbides of Cr and V, which are also precipitated by observation with an optical microscope, appear as the third phase, which causes a decrease in toughness. Therefore, the content is determined to be 0.1 to 2%, desirably 0.4 to 0.8%.
[0008]
(C) The average particle diameter of WC is intended to strengthen the cemented carbide substrate by refining the WC grains, and for this refining, it is indispensable to contain solid solution of Cr and / or V in the binder phase as described above. Therefore, if the average particle size exceeds 1.5 μm, the desired strength improvement effect cannot be obtained, while if the average particle size is less than 0.1 μm, a decrease in wear resistance is unavoidable. The average particle size was determined to be 0.1 to 1.5 μm, desirably 0.6 to 1.0 μm.
[0009]
(D) Depth of distribution of Co m W n C If the depth of distribution is less than 0.1 μm, the distribution ratio in the high-temperature heat-formed surface layer is too small, and the desired excellent adhesion to the hard coating layer is obtained. It can not be ensured, whereas if the distribution depth exceeds 2 [mu] m, the distribution ratio of Co m W n C in the cemented carbide substrate outermost surface becomes too much, which chipping the cutting edge chip due (small chipping ) Is likely to occur, the distribution depth is set to 0.1 to 2 μm, preferably 0.5 to 1.5 μm.
[0010]
(E) Average layer thickness of hard coating layer If the average layer thickness is less than 0.5 μm, the desired excellent wear resistance cannot be ensured in the cutting edge tip, while the average layer thickness is 4.5 μm. If it exceeds, chipping and chipping are likely to occur in the cutting edge tip, so the average layer thickness is set to 0.5 to 4.5 μm, preferably 1.5 to 2.5 μm.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The milling tool of the present invention will be specifically described with reference to examples.
First, as a raw material powder, a WC powder having a predetermined average particle size within a range of 0.1 to 1.5 μm, an average particle size: 0.5 μm Cr 3 C 2 powder, the same 0.5 μm VC powder, and Co powder of 0.5 μm was prepared, these raw material powders were blended at a predetermined blending ratio, wet-mixed for 72 hours by a ball mill, dried, and then pressed into a compact at a pressure of 1 ton / cm 2 . The green compact was vacuum-sintered in a vacuum of 1 × 10 −3 torr at a predetermined temperature in the range of 1350 to 1500 ° C. for 1 hour, and had the component composition shown in Table 1, and Similarly, cemented carbide base materials a to s constituting cutting edge tips made of WC having an average particle diameter shown in Table 1 were formed.
[0012]
Then, these respective surface portion of the cemented carbide base material a to s, high-temperature heat forming surface layer Co m W n C are distributed over the depth shown also in Table 2 under the conditions shown in Table 2 Cemented carbide substrates A to S were manufactured by forming
[0013]
Subsequently, by forming a hard coating layer having the composition and average layer thickness shown in Table 4 on the surface of each of these cemented carbide substrates A to S under the conditions shown in Table 3, length: 28.9 mm × Cutting blade tips A to S of the present invention having dimensions of width: 11.2 mm × thickness: 5 mm, and a shape shown in a plan view and a longitudinal sectional view in FIG.
[0014]
Furthermore, each of these cutting edge tips A to S of the present invention has a composition of JIS SCM440 (hardness: H R C40) steel or WC-6% Co, and the average particle diameter of WC is 1. It consists of a 5 μm cemented carbide, and the length is 200 mm × front half length: 120 mm × rear half length: 80 mm × front half diameter: 30 mm × rear half diameter: 32 mm and FIG. 1 (a). The present invention milling tools 1 to 19 were respectively manufactured by screwing in the notches formed on the side surface of the tip of the rotating shank body having the shape shown in the plan view in the combinations shown in Table 6.
[0015]
Further, for comparison purposes, as shown in Table 5, instead of the cemented carbide substrate A to S having a high-temperature heat-formed surface layer, the cemented carbide substrate material a to s without this was formed. Comparative milling tools 1 to 19 shown in Table 6 were produced under the same conditions except that the comparative cutting edge tips a to s were used.
[0016]
Next, the present invention milling tool 1-19 and Comparative milling tool 1-19 of the resulting,
Work material: Angle made of FCD400: inclined material of 10 degrees,
Cutting speed: 1000 m / min,
Feed per tooth: 0.4 mm / tooth,
Axial cut: 0.2 mm,
Radial incision: 0.35 mm,
Under these conditions, dry high-speed contour milling of cast iron was performed, and the cutting time until the flank wear width of the cutting edge tip reached 0.2 mm was measured. These measurement results are shown in Table 6.
[0017]
[Table 1]
Figure 0003707223
[0018]
[Table 2]
Figure 0003707223
[0019]
[Table 3]
Figure 0003707223
[0020]
[Table 4]
Figure 0003707223
[0021]
[Table 5]
Figure 0003707223
[0022]
[Table 6]
Figure 0003707223
[0023]
【The invention's effect】
From the results shown in Table 6, the milling tools 1 to 19 of the present invention exhibit excellent wear resistance without any occurrence of peeling on the hard coating layer of the cutting edge tip constituting the milling tools 1 to 19 . In the comparative milling tools 1 to 19 , it is clear that peeling occurs in the hard coating layer of the cutting edge tip during cutting, and the wear progress is remarkably accelerated by this peeling.
As described above, in the milling tool of the present invention, the cohesiveness of the hard coating layer to the cemented carbide substrate surface of the cutting edge tip constituting the Co is distributed in the high-temperature heat-formed surface layer formed on the substrate surface portion. Since m W n C is a significant improvement, not only the normal cutting conditions, but also high-speed cutting, the hard coating layer of the cutting edge tip does not peel off and has excellent wear resistance. For a long time.
[Brief description of the drawings]
FIG. 1A is a plan view of a milling tool, and FIG. 1B is a plan view and a longitudinal sectional view of a cutting edge chip constituting the milling tool.

Claims (2)

鋼製または超硬合金製回転シャンク本体の先端部側面に形成された切り欠き部に、超硬合金基体の表面に硬質被覆層を形成してなる表面被覆超硬合金製切刃チップを着脱自在に装着した形式のミーリング工具において、
(A)上記表面被覆超硬合金製切刃チップにおける超硬合金基体を、
(a)結合相形成成分としてCo:5〜20重量%、
同じく結合相形成成分としてCrおよびVのうちの1種または2種:0.1〜2重量%、
を含有し、残りが分散相形成成分としての炭化タングステンと不可避不純物からなる組成を有し、
前記炭化タングステンが平均粒径:0.1〜1.5μmの微細粒組織を有し、
(b)さらに表面部に、炭酸ガスまたは四塩化チタンを配合の水素雰囲気中、前記雰囲気圧力を100〜550torrとして、900〜1000℃の温度に1〜10分間保持の条件で、最表面から0.1〜2μmの深さに亘ってCoとWの反応生成複合炭化物が分布する高温加熱形成表面層を形成してなる、超硬合金基体で構成すると共に、
(B)上記硬質被覆層を、いずれも中温化学気相蒸着法にて形成したTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、窒酸化物層、および炭窒酸化物層のうちの1種または2種以上からなるTi化合物層で構成し、かつその平均層厚を0.5〜4.5μmとしたことを特徴とする、耐摩耗性のすぐれたミーリング工具。
A surface-coated cemented carbide cutting blade tip formed by forming a hard coating layer on the surface of the cemented carbide substrate at the notch formed on the side of the tip of the steel or cemented carbide rotating shank body is removable. In the type of milling tool attached to
(A) A cemented carbide substrate in the surface coated cemented carbide cutting blade tip,
(A) Co: 5 to 20% by weight as a binder phase forming component,
Similarly , one or two of Cr and V as a binder phase forming component: 0.1 to 2 % by weight,
And the remainder has a composition consisting of tungsten carbide and inevitable impurities as a dispersed phase forming component,
The tungsten carbide has a fine grain structure with an average particle size of 0.1 to 1.5 μm,
(B) Further, in the hydrogen atmosphere containing carbon dioxide gas or titanium tetrachloride on the surface portion, the atmosphere pressure is set to 100 to 550 torr, and the temperature is maintained at 900 to 1000 ° C. for 1 to 10 minutes. .Composed of a cemented carbide substrate formed with a high-temperature heat-forming surface layer in which reaction-generated composite carbides of Co and W are distributed over a depth of 1 to 2 μm,
(B) Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, nitride oxide layer, and carbonitride oxide layer, all of which are formed by the intermediate temperature chemical vapor deposition method. A milling tool having excellent wear resistance, characterized in that it is composed of one or more of these Ti compound layers and the average layer thickness is 0.5 to 4.5 μm.
鋼製または超硬合金製回転シャンク本体の先端部側面に形成された切り欠き部に、超硬合金基体の表面に硬質被覆層を形成してなる表面被覆超硬合金製切刃チップを着脱自在に装着した形式のミーリング工具において、
(A)上記表面被覆超硬合金製切刃チップにおける超硬合金基体を、
(a)結合相形成成分としてCo:5〜20重量%、
同じく結合相形成成分としてCrおよびVのうちの1種または2種:0.1〜2重量%、
を含有し、残りが分散相形成成分としての炭化タングステンと不可避不純物からなる組成を有し、
前記炭化タングステンが平均粒径:0.1〜1.5μmの微細粒組織を有し、
(b)さらに表面部に、炭酸ガスまたは四塩化チタンを配合の水素雰囲気中、前記雰囲気圧力を100〜550torrとして、900〜1000℃の温度に1〜10分間保持の条件で、最表面から0.1〜2μmの深さに亘ってCoとWの反応生成複合炭化物が分布する高温加熱形成表面層を形成してなる、超硬合金基体で構成すると共に、
(B)上記硬質被覆層を、いずれも中温化学気相蒸着法にて形成したTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、窒酸化物層、および炭窒酸化物層のうちの1種または2種以上からなるTi化合物層と、中温化学気相蒸着法または高温化学気相蒸着法にて形成した酸化アルミニウム層で構成し、かつその平均層厚を0.5〜4.5μmとしたことを特徴とする、耐摩耗性のすぐれたミーリング工具。
A surface-coated cemented carbide cutting blade tip formed by forming a hard coating layer on the surface of the cemented carbide substrate at the notch formed on the side of the tip of the steel or cemented carbide rotating shank body is removable. In the type of milling tool attached to
(A) A cemented carbide substrate in the surface coated cemented carbide cutting blade tip,
(A) Co: 5 to 20% by weight as a binder phase forming component,
Similarly , one or two of Cr and V as a binder phase forming component: 0.1 to 2 % by weight,
And the remainder has a composition consisting of tungsten carbide and inevitable impurities as a dispersed phase forming component,
The tungsten carbide has a fine grain structure with an average particle size of 0.1 to 1.5 μm,
(B) Further, in the hydrogen atmosphere containing carbon dioxide gas or titanium tetrachloride on the surface portion, the atmosphere pressure is set to 100 to 550 torr, and the temperature is maintained at 900 to 1000 ° C. for 1 to 10 minutes. .Composed of a cemented carbide substrate formed with a high-temperature heat-forming surface layer in which reaction-generated composite carbides of Co and W are distributed over a depth of 1 to 2 μm,
(B) Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, nitride oxide layer, and carbonitride oxide layer, all of which are formed by the intermediate temperature chemical vapor deposition method. And a Ti compound layer composed of one or more of them, and an aluminum oxide layer formed by a medium temperature chemical vapor deposition method or a high temperature chemical vapor deposition method, and an average layer thickness of 0.5 to A milling tool with excellent wear resistance, characterized by being 4.5 μm.
JP00772898A 1998-01-19 1998-01-19 Milling tool with excellent wear resistance Expired - Fee Related JP3707223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00772898A JP3707223B2 (en) 1998-01-19 1998-01-19 Milling tool with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00772898A JP3707223B2 (en) 1998-01-19 1998-01-19 Milling tool with excellent wear resistance

Publications (2)

Publication Number Publication Date
JPH11197936A JPH11197936A (en) 1999-07-27
JP3707223B2 true JP3707223B2 (en) 2005-10-19

Family

ID=11673785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00772898A Expired - Fee Related JP3707223B2 (en) 1998-01-19 1998-01-19 Milling tool with excellent wear resistance

Country Status (1)

Country Link
JP (1) JP3707223B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10760345B2 (en) 2015-12-11 2020-09-01 Smith International, Inc. Cutting elements with wear resistant surfaces

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6554548B1 (en) 2000-08-11 2003-04-29 Kennametal Inc. Chromium-containing cemented carbide body having a surface zone of binder enrichment
US6612787B1 (en) 2000-08-11 2003-09-02 Kennametal Inc. Chromium-containing cemented tungsten carbide coated cutting insert
US6575671B1 (en) 2000-08-11 2003-06-10 Kennametal Inc. Chromium-containing cemented tungsten carbide body
KR20020019888A (en) * 2000-09-07 2002-03-13 오카무라 가네오 Cutting tool
DE10225521A1 (en) * 2002-06-10 2003-12-18 Widia Gmbh Hard tungsten carbide substrate with surface coatings, includes doped metallic binder
US20070151769A1 (en) * 2005-11-23 2007-07-05 Smith International, Inc. Microwave sintering
EP2392688A1 (en) * 2010-06-07 2011-12-07 Sandvik Intellectual Property AB Coated cutting tool
CN104994979B (en) * 2013-02-27 2018-04-17 京瓷株式会社 Cutting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10760345B2 (en) 2015-12-11 2020-09-01 Smith International, Inc. Cutting elements with wear resistant surfaces

Also Published As

Publication number Publication date
JPH11197936A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
JP3402146B2 (en) Surface-coated cemented carbide end mill with a hard coating layer with excellent adhesion
JP4019246B2 (en) Surface coated cemented carbide cutting tools with excellent chipping resistance
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
JP3707223B2 (en) Milling tool with excellent wear resistance
JPH09174304A (en) Surface coated cemented carbide-made cutting tool excellent in pitching resistance
JP2001239404A (en) Cutting tool made of surface coated cemented carbide having good chipping resistance
JP3250414B2 (en) Method for producing cutting tool coated with titanium carbonitride layer surface
JP3460571B2 (en) Milling tool with excellent wear resistance
JP3707195B2 (en) Surface coated cemented carbide end mill with excellent adhesion of hard coating layer
JP3419140B2 (en) Surface coated cutting tool
JP3994590B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer
JP3460565B2 (en) Milling tool with excellent wear resistance
JP3451949B2 (en) Surface-coated cemented carbide end mill with high toughness of substrate
JP3451950B2 (en) Surface-coated cemented carbide end mill with high toughness of substrate
JPH11229143A (en) End mill made of surface-coated cemented carbide excellent in chipping resistance
JPH10310878A (en) Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3451878B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP3371796B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP3358530B2 (en) Slow-away cutting insert made of surface-coated cemented carbide with excellent fracture resistance
JP4507308B2 (en) Surface coated cemented carbide milling tool throwaway tip with excellent fracture resistance
JP2000246509A (en) Throw-awy cutting tip made of surface sheathed super hard alloy exhibiting excellent initial tipping resistant property at its hard coated layer
JPH10315033A (en) Surface-covered cemented carbide end mill having hard covering layer with excellent adhesion
JP3543255B2 (en) Surface coated cemented carbide end mill with hard coating layer showing excellent adhesion
JP3906476B2 (en) A surface-coated cemented carbide drill in which the surface coating layer is composed of a cemented carbide sputter-deposited film having an ultrafine grain structure and excellent adhesion

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees