EP1475813B1 - Method and apparatus for controlling switching devices in electrical switchgear - Google Patents

Method and apparatus for controlling switching devices in electrical switchgear Download PDF

Info

Publication number
EP1475813B1
EP1475813B1 EP03405322A EP03405322A EP1475813B1 EP 1475813 B1 EP1475813 B1 EP 1475813B1 EP 03405322 A EP03405322 A EP 03405322A EP 03405322 A EP03405322 A EP 03405322A EP 1475813 B1 EP1475813 B1 EP 1475813B1
Authority
EP
European Patent Office
Prior art keywords
current
mess
contact
switchgear
measuring signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03405322A
Other languages
German (de)
French (fr)
Other versions
EP1475813A1 (en
Inventor
Wimmer Wolfgang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Technology AG
Original Assignee
ABB Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Technology AG filed Critical ABB Technology AG
Priority to AT03405322T priority Critical patent/ATE456853T1/en
Priority to ES03405322T priority patent/ES2338543T3/en
Priority to DE50312381T priority patent/DE50312381D1/en
Priority to EP03405322A priority patent/EP1475813B1/en
Priority to US10/837,576 priority patent/US7123461B2/en
Publication of EP1475813A1 publication Critical patent/EP1475813A1/en
Application granted granted Critical
Publication of EP1475813B1 publication Critical patent/EP1475813B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0015Means for testing or for inspecting contacts, e.g. wear indicator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/04Means for indicating condition of the switching device
    • H01H2071/044Monitoring, detection or measuring systems to establish the end of life of the switching device, can also contain other on-line monitoring systems, e.g. for detecting mechanical failures

Definitions

  • the invention relates to the field of secondary technology for electrical switchgear, in particular the monitoring of switches in high, medium or low voltage switchgear. It is based on a method, a computer program and a device for determining the contact wear of circuit breakers in an electrical switchgear and of a switchgear with such a device according to the preamble of the independent claims.
  • a method for determining contact wear in a trip unit is disclosed.
  • a cumulative energy converted in the circuit breaker contacts, which is proportional to contact wear, is calculated.
  • the contact current I is sampled during the contact separation period, squared, multiplied by a fixed time T between samples and summed for each pair of contacts based on each type of error or as a total value.
  • the time delay between the tripping of the circuit breaker and the contact movement in the Circuit breaker can be measured or estimated based on typical or manufacturer-reported mechanism times.
  • a warning signal or alarm signal can be output or a circuit breaker or maintenance of the circuit breaker can be triggered.
  • the arc energy can also be determined from voltage times current or approximately from current I times T.
  • the disadvantage is that current measurement errors in overcurrents for the determination of arc energy and contact erosion are disregarded.
  • Another disadvantage is the relatively large measurement and computational effort.
  • the EP 0 193 732 A1 discloses a monitoring and control device for switchgear and switchgear assemblies for determining the required maintenance times. For this purpose, wear states of the switching devices are measured or calculated by a plurality of sensors and generated according to urgency stepped alarm or maintenance information.
  • the Kunststoffabbrand can directly, z.
  • encoders, encoders or photocells detected or indirectly determined by the combination of current level, switching voltage, phase angle, number of circuits, switching instants, current gradient or time constants.
  • the contact erosion is determined indirectly via the evaluation of current and temperature of the respective current path. Disadvantages are high measurement requirements and complex signal processing. Also, measurement errors due to saturation of the current transformer are ignored.
  • DE 199 28 192 shows a method for reconstructing a current signal based on a Nelder-Mead Simplex algorithm. The preferred choice of support points for reconstruction is discussed and a circuit breaker contact rating mentioned.
  • Object of the present invention is to provide a method, a computer program, a device and a switchgear with such a device for improved and simplified monitoring of switches in electrical switchgear. This object is achieved according to the invention by the features of the independent claims.
  • the invention relates to a method for determining contact wear in an electrical switch, in particular in electrical switchgear for high or medium voltage, wherein a current flowing through the switch during a switching operation contact current is detected by means of a current transformer and evaluated with respect to contact wear in which, for determining a state quantity characterizing the contact wear, a current measurement signal of the current transformer is measured as a function of time; if deviations occur between the expected contact current and the current measurement signal, the presence of a measurement error is detected and upon detection of the measurement error from the current measurement signal at least one characteristic current value is determined and used to determine the state variable.
  • the state variable should be selected so that it represents a reliable measure of contact erosion.
  • the expected contact current is characterized in particular by the temporal contact current profile, in particular by reaching an absolute maximum current at the end of a quarter or three quarter period of the mains frequency of the nominal current applied to the switch.
  • other expected contact currents are also conceivable.
  • a contact wear can be determined with great reliability even if the relevant for the contact erosion fault or arc current is not measured correctly or can be.
  • the use of the characteristic current value instead of the full current measurement signal simplifies and clarifies the calculation of contact wear. Overall, contact wear can be calculated more accurately, and the maintenance of circuit breakers and similar switchgear can be performed on demand rather than periodically, with no loss of operational safety, thereby reducing the cost Maintenance costs are reduced accordingly.
  • a saturation of the current measurement signal is detected as a measurement error and it is used as a characteristic current value, a maximum current measurement signal of the current transformer, if it occurs before reaching a quarter period of an alternating current applied to the switch and in particular is detected.
  • the saturation of conventional current transformers often makes it impossible to accurately measure the arc overcurrent and thereby falsifies the contact erosion calculation, especially for the fault cases that bring the most contact erosion. This can now be corrected by calculation.
  • the embodiment according to claim 3 has the advantage that high fault currents can be detected and the state variable represents a reliable, well-calculable measure of contact erosion.
  • the embodiment according to claim 4 has the advantage that a very simple calculation rule for Maisabbrandbetician is specified.
  • the embodiment according to claim 5 has the advantage that the reliability of the contact erosion calculation is improved by the exact determination of the arc start.
  • the embodiment according to claim 6 has the advantage that a selection of functions for calculating the contact erosion is specified and, if appropriate, a specific function can be selected for specific switches or residual current events.
  • the embodiment according to claim 7 has the advantage that manufacturer's information can be used for improved contact erosion calculation.
  • the embodiment according to claim 8 has the advantage that an additional, independent calculation of the contact wear can be performed.
  • the embodiment according to claim 9 has the advantage that the contact erosion permanently monitored and / or off archived data can be subsequently determined. In particular, fault record data can be used, as described for. B. in a fault record system, also called station monitoring system or SMS, are available.
  • the invention relates to a computer program for determining contact wear in an electrical switch, wherein the method steps according to claims 1-9 are implemented by program code, further comprising an apparatus for carrying out the method and a switchgear comprising the apparatus.
  • Circuit breakers are designed for a certain number of mechanical switching operations or operations. Be with them z. B. in case of failure larger currents switched off, As a result, the resulting arc causes the contacts to burn off more than is taken into account during normal switching operations. For the circuit breaker to remain functional, the contacts must be replaced before they are completely burned out. The degree of burning per switching action depends on the energy of the arc occurring. This energy is proportional to the integral ⁇ I 2 dt, where I denotes the current flowing during the arc duration and t denotes the time.
  • switches 3 in electrical switchgear 1 are monitored for contact wear by detecting a current flowing through the switch 3 during a switching operation contact current I f at least approximately by a current measurement signal I mess of a current transformer 30 or current sensor 30 as a function of time t, in case of deviations between expected Kotaktstrom I f and current measurement signal I mess a measurement error ⁇ is detected and from the current measurement signal I mess at least one characteristic current value I char determines and is used to determine a contact wear characterizing state variable. Often this estimate is a bit too conservative, but always on the safe side.
  • the method can be part of a power system monitoring system.
  • Fig. 1 shows an embodiment in which a largely sinusoidal fault current I f is present.
  • the current measurement signal I mess saturation occurs and it is at time t max within a quarter period of the fault current signal I f or the voltage applied to the switch 3 mains frequency through a current maximum I.
  • the occurrence of the current maximum I max is detected when the deviation or the measurement error ⁇ between the fault current profile I f (t) and the current measurement signal waveform I mess (t) exceeds a tolerance value ⁇ min .
  • the contact current I f is typically an overcurrent or short-circuit current I f during a shutdown, the timing of which is known quite accurately in advance.
  • a current maximum I max which occurs in the current measurement signal I mess before reaching a quarter period of the mains frequency, a sure indication of a measurement error ⁇ .
  • the current maximum I max is now defined as a characteristic current value I char and used to calculate the contact erosion state variable.
  • the state variable should preferably be a measure of an arc power during the switching operation and in particular a contact current time integral.
  • I mess is the current measurement signal I mess from a first time t 0 at the beginning of the current half-wave in which the switching action occurs until a second time t max , at which a maximum current measurement signal I max occurs detected, and from the second time t max up to a third time t 0 at the end of the current half-wave approximated by the maximum current measurement signal I max .
  • the accuracy of the contact erosion calculation depends on how accurately the starting time of the arc can be determined.
  • the first time t 0 should be defined as the start time of the arc of the contact current I f .
  • the calculation is most accurate when t o is known as a binary indication in the fault record; t o can also be determined with a time delay based on empirical values from an opening command, a protective trigger command or a contact movement of the switch 3. Any fluctuations in this time value are of lesser importance compared to other factors and irregularities in contact erosion. Systematic errors due to too large or too small values of the starting time t 0 can be corrected if z. B. on the occasion of maintenance, the expected burn-up compared with the actual and the time delay is corrected accordingly.
  • a time integral ⁇ f (I mess ) dt is then calculated by way of a function f (I mess ) of the section-wise and section-wise approximated Current measuring signal I mess formed.
  • the integral ⁇ I mess 2 dt or ⁇ I mess is 1.6 dt with the according to Fig. 1 Approximated current measurement signal I mess determined for approximate determination of Maisabbrands.
  • Other functions f (I mess ) are also possible.
  • the time integral ⁇ f (I mess ) dt via the function f (I mess ) can be approximated by a summation of function values at interpolation points, wherein the interpolation points z. B. are given by scanning the current measuring signal I mess .
  • the state variable is selected equal to the time integral ⁇ f (I mess ) dt times a contact erosion constant c and the contact erosion constant c from manufacturer specifications, in particular from curves over number of permitted switching operations N (I eff ) as a function of an effective turn-off current per switching operation I eff , and / or from empirical values for a switch type and switch application location.
  • a sample sample (cnt) of the current measuring signal is read for each cnt value and the condition sample (cnt ) ⁇ I max checked. If the condition is met, an auxiliary variable CWI and equal to sample (cnt) are set.
  • Fig. 3 shows an example of a curve of a circuit breaker manufacturer, which curve the maximum number of allowed switching operations N with an effective turn-off current per switching operation I eff and thus correlate with a certain cumulative effective cut-off.
  • an effective switch-off current I eff can additionally be determined from a curve over the number of permitted switching operations N (I eff ) as a function of the effective switch-off current I eff as a percentage of the performed switching operations relative to the total number of allowed switching actions
  • This effective breaking current I eff be determined and the percentages for all relevant executed switching operations are added to a cumulative contact wear.
  • the cumulative percentage value represents a control variable for the contact wear state variable Cwsum determined according to the invention.
  • Fig. 4 shows a schematic representation of a data acquisition system for the inventive determination of Maisabbrandzustungsiere Cwsum and / or the cumulative percentage of N (I eff ).
  • the switchgear 1 has switches 3, typically circuit breakers 3, which are equipped with current transformers 30 or current sensors 30, typically conventional current transformers 30 with saturable core. For example, 1% accuracy and offset converters are saturated with 0.1% -0.5% accuracy at the high currents that cause the most contact wear.
  • the current transformers 30 are connected to means 4 for data acquisition at electrical switches 3, in particular with fault recorders 4, protective devices 4 or control devices 4. These data acquisition means 4 are connected via a serial communication 5 or via data carrier 5 with a central detection unit 6 for contact erosion calculation as well preferably connected to a database 7 for contact wear data. With the aid of this device 2 for contact erosion calculation, the method presented above can be implemented. In particular, contact wear can be monitored on-line, ie continuously during operation, or evaluated retroactively from archived data, in particular with a function f (I mess ) of the current measurement signal I mess adapted to a switch type or switch application location .
  • the contact wear from records of turn-off currents I mess from disturbance recorder 4 or protection and control devices 4 are determined with Störschreibfunktion, all records of the Abschaltströme I mess a switchgear 1 are collected centrally, especially in an existing or specifically designed for this purpose Störschreiber-collecting system -6, also called SMS or station monitoring system.
  • the invention also extends to such a device 2 for contact erosion calculation, which is integrated, for example, in the system control system (not shown) of the switchgear 1, and to an electrical switchgear 1, which comprises such a device 2. Overall, there is an improved conditional controlled instead of periodic maintenance of switches 3 and their switch contacts.

Landscapes

  • Keying Circuit Devices (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

The method involves detecting contact current during switching with a current converter and evaluating for contact wear. A state parameter characteristic of contact wear is determined by measuring the current converter measurement signal (I mess) as a function of time (t), detecting a measurement error (delta) if it deviates from the anticipated contact current (I f) and if so deriving a characteristic current value (I char) from the measurement signal and using it to determine the state parameter. Independent claims are also included for the following: (a) a computer program for determining switching device contact wear in electrical switching systems (b) an arrangement for implementing the inventive method (c) and an electrical switching system with an inventive arrangement.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die Erfindung bezieht sich auf das Gebiet der Sekundärtechnik für elektrische Schaltanlagen, insbesondere der Überwachung von Schaltern in Hoch-, Mittel- oder Niederspannungsschaltanlagen. Sie geht aus von einem Verfahren, einem Computerprogramm und einer Vorrichtung zur Ermittlung des Kontaktabbrands von Leistungsschaltern in einer elektrischen Schaltanlage sowie von einer Schaltanlage mit einer solchen Vorrichtung gemäss Oberbegriff der unabhängigen Patentansprüche.The invention relates to the field of secondary technology for electrical switchgear, in particular the monitoring of switches in high, medium or low voltage switchgear. It is based on a method, a computer program and a device for determining the contact wear of circuit breakers in an electrical switchgear and of a switchgear with such a device according to the preamble of the independent claims.

STAND DER TECHNIKSTATE OF THE ART

In den meisten Elektrizitätsversorgungsunternehmen wird heutzutage die Leistungsschalterwartung periodisch vorgenommen, gelegentlich mit vorgezogener Wartung, wenn Schutzabschaltungen mit möglicherweise hohen Strömen aufgetreten sind. Damit wird in der Regel der Schalter viel zu häufig gewartet mit dem zusätzlichen Risiko, dass bei der Wartung Schäden verursacht werden.
In der DE 102 04 849 A1 wird ein Verfahren zur Bestimmung der Kontaktabnutzung in einer Auslöseeinheit offenbart. Es wird eine kumulative, in den Leistungsschalterkontakten umgesetzte Energie berechnet, die proportional zur Kontaktabnutzung ist. Hierfür wird der Kontaktstrom I während der Kontakttrenndauer abgetastet, quadriert, mit einer festen Zeit T zwischen Abtastungen multipliziert und für jedes Kontaktpaar bezogen auf jeden Fehlertyp oder als Gesamtwert aufsummiert. Die Zeitverzögerung zwischen Auslösen des Leistungsschalters und der Kontaktbewegung im Leistungsschalter kann auf Basis typischer oder vom Hersteller veröffentlichter Mechanismuszeiten gemessen oder geschätzt werden. Bei Überschreiten einstellbarer Schwellwerte für den Kontaktabbrand können ein warnsignal oder Alarmsignal ausgegeben werden oder eine Abschaltung oder Wartung des Leistungsschalters ausgelöst werden. Alternativ zur I2T-Messung kann die Lichtbogenenergie auch aus Spannung mal Strom oder approximativ aus Strom I mal Zeit T bestimmt werden. Nachteilig ist, dass Strommessfehler bei Überströmen für die Bestimmung von Lichtbogenenergie und Kontaktabbrand unberücksichtigt bleiben. Nachteilig ist auch der relativ grosse Mess- und Rechenaufwand.
Most utility companies nowadays perform circuit breaker maintenance periodically, sometimes with early maintenance, when high-cut protection has occurred. As a result, the switch is usually over-maintained with the added risk of causing damage during maintenance.
In the DE 102 04 849 A1 A method for determining contact wear in a trip unit is disclosed. A cumulative energy converted in the circuit breaker contacts, which is proportional to contact wear, is calculated. For this purpose, the contact current I is sampled during the contact separation period, squared, multiplied by a fixed time T between samples and summed for each pair of contacts based on each type of error or as a total value. The time delay between the tripping of the circuit breaker and the contact movement in the Circuit breaker can be measured or estimated based on typical or manufacturer-reported mechanism times. If adjustable threshold values for contact erosion are exceeded, a warning signal or alarm signal can be output or a circuit breaker or maintenance of the circuit breaker can be triggered. As an alternative to the I 2 T measurement, the arc energy can also be determined from voltage times current or approximately from current I times T. The disadvantage is that current measurement errors in overcurrents for the determination of arc energy and contact erosion are disregarded. Another disadvantage is the relatively large measurement and computational effort.

Die EP 0 193 732 A1 offenbart eine Überwachungs- und Kontrolleinrichtung für Schaltgeräte und Schaltgerätekombinationen zur Ermittlung der erforderlichen Wartungszeitpunkte. Hierfür werden von einer Mehrzahl von Sensoren Abnutzungszustände der Schaltgeräte gemessen oder errechnet und nach Dringlichkeit gestufter Alarm oder Wartungsinformation generiert. Der Kontaktabbrand kann dabei direkt, z. B. durch Weggeber, Drehwinkelgeber oder Lichtschranken, erfasst oder indirekt durch Verknüpfung von Stromhöhe, Schaltspannung, Phasenwinkel, Anzahl Schaltungen, Schaltaugenblicke, Stromsteilheit oder Zeitkonstanten bestimmt werden. Insbesondere wird der Kontaktabbrand indirekt über die Bewertung von Strom und Temperatur der jeweiligen Strombahn bestimmt. Nachteilig sind hoher Messbedarf und aufwendige Signalverarbeitung. Auch bleiben Messfehler durch Sättigung des Stromwandlers unbeachtet.The EP 0 193 732 A1 discloses a monitoring and control device for switchgear and switchgear assemblies for determining the required maintenance times. For this purpose, wear states of the switching devices are measured or calculated by a plurality of sensors and generated according to urgency stepped alarm or maintenance information. The Kontaktabbrand can directly, z. As by encoders, encoders or photocells, detected or indirectly determined by the combination of current level, switching voltage, phase angle, number of circuits, switching instants, current gradient or time constants. In particular, the contact erosion is determined indirectly via the evaluation of current and temperature of the respective current path. Disadvantages are high measurement requirements and complex signal processing. Also, measurement errors due to saturation of the current transformer are ignored.

DE 199 28 192 zeigt ein Verfahren zur Rekonstruktion eines Stromsignals basierend auf einem Nelder-Mead Simplex Algorithmus. Die bevorzugte Wahl der Stützstellen für die Rekonstruktion wird diskutiert und eine Leistungsschalterkontaktbewertung erwähnt. DE 199 28 192 shows a method for reconstructing a current signal based on a Nelder-Mead Simplex algorithm. The preferred choice of support points for reconstruction is discussed and a circuit breaker contact rating mentioned.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren, ein Computerprogramm, eine Vorrichtung und eine Schaltanlage mit einer solchen Vorrichtung zur verbesserten und vereinfachten Überwachung von Schaltern in elektrischen Schaltanlagen anzugeben. Diese Aufgabe wird erfindungsgemäss durch die Merkmale der unabhängigen Ansprüche gelöst.Object of the present invention is to provide a method, a computer program, a device and a switchgear with such a device for improved and simplified monitoring of switches in electrical switchgear. This object is achieved according to the invention by the features of the independent claims.

In einem ersten Aspekt besteht die Erfindung in einem Verfahren zur Bestimmung von Kontaktabnutzung in einem elektrischen Schalter, insbesondere in elektrischen Schaltanlagen für Hoch- oder Mittelspannung, wobei ein während einer Schalthandlung durch den Schalter fliessender Kontaktstrom mit Hilfe eines Stromwandlers erfasst wird und hinsichtlich Kontaktabnutzung ausgewertet wird, wobei zur Bestimmung einer die Kontaktabnutzung charakterisierenden Zustandsgrösse zunächst ein Strommesssignal des Stromwandlers als Funktion der Zeit gemessen wird, bei Auftreten von Abweichungen zwischen dem erwarteten Kontaktstrom und dem Strommesssignal das Vorhandensein eines Messfehlers detektiert wird und bei Detektion des Messfehlers aus dem Strommesssignal mindestens ein charakteristischer Stromwert bestimmt wird und zur Bestimmung der Zustandsgrösse verwendet wird. Die Zustandsgrösse ist so zu wählen, dass sie ein zuverlässiges Mass für den Kontaktabbrand darstellt. Der erwartete Kontaktstrom ist besonders durch den zeitlichen Kontaktstromverlauf charakterisiert, insbesondere durch Erreichen eines betragsmässigen Strommaximums am Ende einer Viertel- oder Dreiviertelperiode der Netzfrequenz des am Schalter anliegenden Nennstroms. Je nach Schalthandlung und Fehlerart sind auch andere erwartete Kontaktströme denkbar. Durch das Verfahren kann eine Kontaktabnutzung auch dann mit grosser Zuverlässigkeit bestimmt werden, wenn der für den Kontaktabbrand relevante Fehler- oder Lichtbogenstrom nicht korrekt gemessen wird oder werden kann. Dabei stellt die Verwendung des charakteristischen Stromwerts anstelle des vollständigen Strommesssignals eine Vereinfachung und Präzisierung der Berechnung der Kontaktabnutzung dar. Insgesamt kann der Kontaktverschleiss genauer berechnet werden und die Wartung von Leistungsschaltern und ähnlichen Schaltgeräten kann statt periodisch ohne Verlust an Betriebssicherheit nach Bedarf durchgeführt werden, wodurch die Wartungskosten entsprechend gesenkt werden.In a first aspect, the invention relates to a method for determining contact wear in an electrical switch, in particular in electrical switchgear for high or medium voltage, wherein a current flowing through the switch during a switching operation contact current is detected by means of a current transformer and evaluated with respect to contact wear in which, for determining a state quantity characterizing the contact wear, a current measurement signal of the current transformer is measured as a function of time; if deviations occur between the expected contact current and the current measurement signal, the presence of a measurement error is detected and upon detection of the measurement error from the current measurement signal at least one characteristic current value is determined and used to determine the state variable. The state variable should be selected so that it represents a reliable measure of contact erosion. The expected contact current is characterized in particular by the temporal contact current profile, in particular by reaching an absolute maximum current at the end of a quarter or three quarter period of the mains frequency of the nominal current applied to the switch. Depending on the switching operation and type of fault, other expected contact currents are also conceivable. By the method, a contact wear can be determined with great reliability even if the relevant for the contact erosion fault or arc current is not measured correctly or can be. In this case, the use of the characteristic current value instead of the full current measurement signal simplifies and clarifies the calculation of contact wear. Overall, contact wear can be calculated more accurately, and the maintenance of circuit breakers and similar switchgear can be performed on demand rather than periodically, with no loss of operational safety, thereby reducing the cost Maintenance costs are reduced accordingly.

In einem ersten Ausführungsbeispiel wird als Messfehler eine Sättigung des Strommesssignals detektiert und es wird als charakteristischer Stromwert ein maximales Strommesssignal des Stromwandlers verwendet, falls es vor Erreichen einer Viertelperiode eines am Schalter anliegenden Wechselstroms auftritt und insbesondere detektiert wird. Die Sättigung konventioneller Stromwandler verunmöglicht oftmals eine genaue Messung des Lichtbogenüberstroms und verfälscht dadurch die Kontaktabbrandberechnung gerade für die Fehlerfälle, die am meisten Kontaktabbrand bringen. Dies kann nun rechnerisch korrigiert werden.
Das Ausführungsbeispiel gemäss Anspruch 3 hat den Vorteil, dass hohe Fehlerströme erfassbar sind und die Zustandgrösse ein zuverlässiges, gut berechenbares Mass für Kontaktabbrand darstellt.
Das Ausführungsbeispiel gemäss Anspruch 4 hat den Vorteil, dass eine sehr einfache Rechenvorschrift zur Kontaktabbrandberechnung angegeben wird.
Das Ausführungsbeispiel gemäss Anspruch 5 hat den Vorteil, dass durch die exakte Bestimmung des Lichtbogenstarts die Zuverlässigkeit der Kontaktabbrandberechnung verbessert wird.
Das Ausführungsbeispiel gemäss Anspruch 6 hat den Vorteil, dass eine Auswahl von Funktionen zur Berechnung des Kontaktabbrands angegeben wird und gegebenenfalls für spezifische Schalter oder Fehlerstromereignisse eine spezielle Funktion gewählt werden kann.
Das Ausführungsbeispiel gemäss Anspruch 7 hat den Vorteil, dass auch Herstellerangaben zur verbesserten Kontaktabbrandberechnung herangezogen werden können.
Das Ausführungsbeispiel gemäss Anspruch 8 hat den Vorteil, dass eine zusätzliche, unabhängige Berechnung der Kontaktabnutzung durchgeführt werden kann.
Das Ausführungsbeispiel gemäss Anspruch 9 hat den Vorteil, dass der Kontaktabbrand permanent überwacht und/oder aus archivierten Daten nachträglich bestimmt werden kann. Insbesondere können Störschrieb-Daten verwendet werden, wie sie z. B. in einem Störschreiber-Sammelsystem, auch Stations-Monitoring-System oder SMS genannt, vorhanden sind.
In weiteren Aspekten betrifft die Erfindung ein Computerprogramm zur Bestimmung von Kontaktabnutzung in einem elektrischen Schalter, wobei die Verfahrenschritte gemäss den Ansprüchen 1-9 durch Programmcode implementiert sind, desweiteren eine Vorrichtung zur Ausführung des Verfahrens und eine Schaltanlage umfassend die Vorrichtung.
Weitere Ausführungen, Vorteile und Anwendungen der Erfindung ergeben sich aus abhängigen Ansprüchen sowie aus der nun folgenden Beschreibung und den Figuren.
In a first embodiment, a saturation of the current measurement signal is detected as a measurement error and it is used as a characteristic current value, a maximum current measurement signal of the current transformer, if it occurs before reaching a quarter period of an alternating current applied to the switch and in particular is detected. The saturation of conventional current transformers often makes it impossible to accurately measure the arc overcurrent and thereby falsifies the contact erosion calculation, especially for the fault cases that bring the most contact erosion. This can now be corrected by calculation.
The embodiment according to claim 3 has the advantage that high fault currents can be detected and the state variable represents a reliable, well-calculable measure of contact erosion.
The embodiment according to claim 4 has the advantage that a very simple calculation rule for Kontaktabbrandberechnung is specified.
The embodiment according to claim 5 has the advantage that the reliability of the contact erosion calculation is improved by the exact determination of the arc start.
The embodiment according to claim 6 has the advantage that a selection of functions for calculating the contact erosion is specified and, if appropriate, a specific function can be selected for specific switches or residual current events.
The embodiment according to claim 7 has the advantage that manufacturer's information can be used for improved contact erosion calculation.
The embodiment according to claim 8 has the advantage that an additional, independent calculation of the contact wear can be performed.
The embodiment according to claim 9 has the advantage that the contact erosion permanently monitored and / or off archived data can be subsequently determined. In particular, fault record data can be used, as described for. B. in a fault record system, also called station monitoring system or SMS, are available.
In other aspects, the invention relates to a computer program for determining contact wear in an electrical switch, wherein the method steps according to claims 1-9 are implemented by program code, further comprising an apparatus for carrying out the method and a switchgear comprising the apparatus.
Further embodiments, advantages and applications of the invention will become apparent from the dependent claims and from the following description and the figures.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1
eine schematische Darstellung zur Stromapproximation bei der erfindungsgemässen Kontaktabbrandberechnung für Leistungsschalter;
Fig. 2
ein Algorithmus zur erfindungsgemässen Kontaktabbrandberechnung in Nassi-Schneiderman Diagramdarstellung;
Fig. 3
eine Kurvendarstellung der Anzahl erlaubter Schalthandlungen als Funktion des effektiven Abschaltstroms pro Schalthandlung;
Fig. 4
ein schematisch dargestelltes erfindungsgemässes Datenerfassungssystem für die Kontaktabnutzung in einer elektrischen Schaltanlage.
In den Figuren sind gleiche Teile mit gleichen Bezugszeichen versehen.
Fig. 1
a schematic representation of the current approximation in the novel contact erosion calculation for circuit breakers;
Fig. 2
an algorithm for novel contact erosion calculation in Nassi-Schneiderman diagram representation;
Fig. 3
a graph of the number of allowed switching operations as a function of the effective cut-off current per switching action;
Fig. 4
a schematically illustrated inventive data acquisition system for contact wear in an electrical switchgear.
In the figures, like parts are given the same reference numerals.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS FOR CARRYING OUT THE INVENTION

Leistungsschalter sind für eine bestimmte Anzahl mechanischer Schalthandlungen oder Schaltspiele ausgelegt. Werden mit ihnen z. B. im Fehlerfall grössere Ströme abgeschaltet, so werden durch den entstehenden Lichtbogen die Kontakte stärker abgebrannt als bei normalen Schalthandlungen einberechnet. Damit der Leistungsschalter funktionsfähig bleibt, müssen die Kontakte ersetzt werden, bevor sie vollkommen abgebrannt sind. Der Grad des Abbrands pro Schalthandlung hängt von der Energie des dabei auftretenden Lichtbogens ab. Diese Energie ist proportional zum Integral ∫I2dt, wobei I den während der Lichtbogendauer fliessenden Strom und t die Zeit bezeichnet.
Gemäss der Erfindung werden Schalter 3 in elektrischen Schaltanlagen 1 hinsichtlich Kontaktabnutzung überwacht, indem ein während einer Schalthandlung durch den Schalter 3 fliessender Kontaktstrom If mindestens näherungsweise durch ein Strommesssignal Imess eines Stromwandlers 30 oder Stromsensors 30 als Funktion der Zeit t erfasst wird, bei Abweichungen zwischen erwartetem Kotaktstrom If und Strommesssignal Imess ein Messfehler Δ detektiert wird und aus dem Strommesssignal Imess mindestens ein charakteristischer Stromwert Ichar bestimmt und zur Bestimmung einer Kontaktabnutzung charakterisierenden Zustandsgrösse verwendet wird. Diese Abschätzung ist zwar häufig etwas zu konservativ, aber immer auf der sicheren Seiten. Das Verfahren kann Bestandteil eines Power System Monitoring Systems sein.
Fig. 1 zeigt hierzu ein Ausführungsbeispiel, bei dem ein weitgehend sinusförmiger Fehlerstrom If vorliegt. Im Strommesssignal Imess tritt eine Sättigung auf und es wird zum Zeitpunkt tmax innerhalb einer Viertelperiode des Fehlerstromsignals If oder der am Schalter 3 anliegenden Netzfrequenz ein Strommaximum I durchlaufen. Das Auftreten des Strommaximums Imax wird detektiert, wenn die Abweichung oder der Messfehler Δ zwischen dem Fehlerstromverlauf If(t) und dem Strommesssignalverlauf Imess(t) einen Toleranzwert Δmin überschreitet. Der Kontaktstrom If ist typischerweise ein Überstrom oder Kurzschlussstrom If während einer Abschalthandlung, dessen Zeitverlauf recht genau im vorhinein bekannt ist. Insbesondere ist ein Strommaximum Imax, das im Strommesssignal Imess vor Erreichen einer Viertelperiode der Netzfrequenz auftritt, ein sicheres Indiz für einen Messfehler Δ. Das Strommaximum Imax wird nun als charakteristischer Stromwert Ichar definiert und zur Berechnung der Kontaktabbrand-Zustandsgrösse verwendet. Die Zustandsgrösse soll vorzugsweise ein Mass für eine Lichtbogenleistung während der Schalthandlung und insbesondere ein Kontaktstrom-Zeitintegral sein.
Im Beispiel gemäss Fig. 1 wird das Strommesssignal Imess von einem ersten Zeitpunkt t0 zu Beginn der Stromhalbwelle, in welcher die Schalthandlung auftritt, bis zu einem zweiten Zeitpunkt tmax, zu dem ein maximales Strommesssignal Imax auftritt, erfasst, und ab dem zweiten Zeitpunkt tmax bis zu einem dritten Zeitpunkt t0 am Ende der Stromhalbwelle durch das maximale Strommesssignal Imax approximiert. Die Genauigkeit der Kontaktabbrandberechnung ist abhängig davon, wie genau der Anfangszeitpunkt des Lichtbogens bestimmt werden kann. Der erste Zeitpunkt t0 soll als Anfangszeit des Lichtbogens des Kontaktstroms If definiert werden. Die Berechnung ist am genauesten, wenn to als Binärindikation im Störschrieb bekannt ist; to kann auch mit einer auf Erfahrungswerten basierenden Zeitverzögerung aus einem Öffnungsbefehl, einem Schutztriggerbefehl oder einer Kontaktbewegung des Schalters 3 bestimmt werden. Eventuelle Schwankungen dieses Zeitwerts sind von untergeordneter Bedeutung im Vergleich zu anderen Einflussgrössen und zu Unregelmässigkeiten beim Kontaktabbrand. Systematische Fehler durch zu grosse oder zu kleine Werte des Anfangszeitpunkts t0 können korrigiert werden, wenn z. B. anlässlich einer Wartung der erwartete Abbrand mit dem tatsächlichen verglichen und die Zeitverzögerung entsprechend korrigiert wird. Aus Sicherheitsgründen sollte zu Beginn einer Kontaktabbrandgeschichte eher ein zu kleiner Wert der Zeitverzögerung als ein zu grosser Wert benutzt werden, so dass der Kontaktabbrand in der Berechnung zunächst überschätzt wird.
Zur Bestimmung der Zustandsgrösse wird dann ein Zeitintegral ∫f(Imess)dt über eine Funktion f(Imess) des streckenweise erfassten und streckenweise approximierten Strommesssignals Imess gebildet. Bevorzugt wird als Funktion f(Imess) des Strommesssignals Imess eine Potenzfunktion f(Imess)=Imess a mit a=1, 2 ... 2,2, insbesondere a=1,6 ... 2,0, verwendet. Beispielsweise wird das Integral ∫Imess 2 dt oder ∫Imess 1,6dt mit dem gemäss Fig. 1 approximierten Strommesssignal Imess zur näherungsweisen Bestimmung der Kontaktabbrands bestimmt. Als Funktion f(Imess) kann auch eine einen effektiven Abschaltstrom Ieff definierende Quadratwurzelfunktion f(Imess) = (Imess 2)1/2 verwendet werden. Andere Funktionen f(Imess) sind ebenfalls möglich. Das Zeitintegral ∫f(Imess) dt über die Funktion f(Imess) kann durch eine Summation von Funktionswerten an Stützstellen approximiert werden, wobei die Stützstellen z. B. durch Abtastung des Strommesssignals Imess gegeben sind. Insbesondere wird die Zustandsgrösse gleich dem Zeitintegral ∫f(Imess) dt mal einer Kontaktabbrandkonstanten c gewählt und die Kontaktabbrandkonstante c aus Herstellerangaben, insbesondere aus Kurven über Anzahl erlaubter Schalthandlungen N(Ieff) in Funktion eines effektiven Abschaltstroms pro Schalthandlung Ieff, und/oder aus Erfahrungswerten für einen Schaltertyp und Schaltereinsatzort bestimmt.
Fig. 2 zeigt in Nassi-Schneidermanndarstellung einen Software-Algorithmus zur Implementierung des Verfahrens in einem Computerprogramm und Computerprogrammprodukt. Zunächst werden die Grössen Cwsum (=Zustandsgrösse zur Charakterisierung des Kontaktabbrands), Imax, cnt (=Zählervariable) und saturation (Konstante) initialisiert. Dann wird in einer While-Schlaufe, die durch cnt in einer positiven (oder alternativ negativen, hier nicht dargestellten) Halbperiode der Netzwechselspannung bedingt ist, für jeden cnt-Wert ein Abtastwert sample(cnt) des Strommesssignals eingelesen und auf die Bedingung sample(cnt)≥Imax geprüft. Falls die Bedingung erfüllt ist, werden eine Hilfsvariable CWI und gleich sample(cnt) gesetzt. Falls die Bedingung nicht erfüllt ist, wird, falls cnt kleiner als die Mitte der positiven (oder negativen, hier nicht dargestellten) Halbperiode MidthPositivePeriod ist, saturation true und CWI gleich Imax gesetzt; falls cnt≥MidthPositivePeriod ist, wird für saturation=true CWI gleich Imax und für saturation=false CWI gleich sample(cnt) gesetzt. Schliesslich wird der Zähler cnt um 1 inkrementiert und zur Kontaktabbrand-Zustandsgrösse Cwsum die Hilfsvariable CWI zum Quadrat addiert. Am Ende der Halbperiode ist die Summation oder Integration von Cwsum abgeschlossen. Cwsum stellt dabei, gemäss Fig. 1, genau das Zeitintegral über das Quadrat des approximierten Stromes dar, der im Zeitintervall t0 bis tmax durch das Strommesssignal Imess, entsprechend den Abtastwerten sample(cnt), gegeben ist und im Zeitintervall tmax bis zum nächsten t0 durch das Strommaximum Imax approximiert wird.
Fig. 3 zeigt ein Beispiel einer Kurve eines Leistungsschalterherstellers, welche Kurve die maximale Zahl erlaubter Schalthandlungen N mit einem effektiven Abschaltstrom pro Schalthandlung Ieff und somit mit einem bestimmten kumulierten effektiven Abschaltstrom korrelieren. Soll der Kontaktabbrand mit Hilfe des Integrals ∫I2dt bestimmt werden, muss noch eine schalterspezifische oder schaltertypspezifische Proportionalitätskonstante c zwischen dem Integral und dem Kontaktabbrand berücksichtigt werden, die vom Schalterhersteller angegeben und/oder über Vergleich von Messungen mit Berechnungen des Kontaktabbrands bestimmt werden kann.
Gemäss einer bevorzugten Ausführungsform der Erfindung kann ergänzend für jede Schalthandlung ein effektiver Ausschaltstrom Ieff bestimmt werden, aus einer Kurve über Anzahl erlaubter Schalthandlungen N(Ieff) in Funktion des effektiven Ausschaltstroms Ieff eine Kontaktabnutzung als Prozentwert der ausgeführten relativ zur Gesamtzahl erlaubter Schalthandlungen bei diesem effektiven Ausschaltstrom Ieff bestimmt werden und die Prozentwerte für alle relevanten ausgeführten Schalthandlungen zu einer kumulierten Kontaktabnutzung aufsummiert werden. Der kumulierte Prozentwert stellt eine Kontrollgrösse für die erfindungsgemäss bestimmte Kontaktabbrandzustandsgrösse Cwsum dar.
Circuit breakers are designed for a certain number of mechanical switching operations or operations. Be with them z. B. in case of failure larger currents switched off, As a result, the resulting arc causes the contacts to burn off more than is taken into account during normal switching operations. For the circuit breaker to remain functional, the contacts must be replaced before they are completely burned out. The degree of burning per switching action depends on the energy of the arc occurring. This energy is proportional to the integral ∫I 2 dt, where I denotes the current flowing during the arc duration and t denotes the time.
According to the invention, switches 3 in electrical switchgear 1 are monitored for contact wear by detecting a current flowing through the switch 3 during a switching operation contact current I f at least approximately by a current measurement signal I mess of a current transformer 30 or current sensor 30 as a function of time t, in case of deviations between expected Kotaktstrom I f and current measurement signal I mess a measurement error Δ is detected and from the current measurement signal I mess at least one characteristic current value I char determines and is used to determine a contact wear characterizing state variable. Often this estimate is a bit too conservative, but always on the safe side. The method can be part of a power system monitoring system.
Fig. 1 shows an embodiment in which a largely sinusoidal fault current I f is present. In the current measurement signal I mess saturation occurs and it is at time t max within a quarter period of the fault current signal I f or the voltage applied to the switch 3 mains frequency through a current maximum I. The occurrence of the current maximum I max is detected when the deviation or the measurement error Δ between the fault current profile I f (t) and the current measurement signal waveform I mess (t) exceeds a tolerance value Δ min . The contact current I f is typically an overcurrent or short-circuit current I f during a shutdown, the timing of which is known quite accurately in advance. In particular, a current maximum I max , which occurs in the current measurement signal I mess before reaching a quarter period of the mains frequency, a sure indication of a measurement error Δ. The current maximum I max is now defined as a characteristic current value I char and used to calculate the contact erosion state variable. The state variable should preferably be a measure of an arc power during the switching operation and in particular a contact current time integral.
In the example according to Fig. 1 is the current measurement signal I mess from a first time t 0 at the beginning of the current half-wave in which the switching action occurs until a second time t max , at which a maximum current measurement signal I max occurs detected, and from the second time t max up to a third time t 0 at the end of the current half-wave approximated by the maximum current measurement signal I max . The accuracy of the contact erosion calculation depends on how accurately the starting time of the arc can be determined. The first time t 0 should be defined as the start time of the arc of the contact current I f . The calculation is most accurate when t o is known as a binary indication in the fault record; t o can also be determined with a time delay based on empirical values from an opening command, a protective trigger command or a contact movement of the switch 3. Any fluctuations in this time value are of lesser importance compared to other factors and irregularities in contact erosion. Systematic errors due to too large or too small values of the starting time t 0 can be corrected if z. B. on the occasion of maintenance, the expected burn-up compared with the actual and the time delay is corrected accordingly. For safety reasons, too small a value of the time delay should be used at the beginning of a contact erosion history as too large a value, so that the contact erosion in the calculation is initially overestimated.
In order to determine the state variable, a time integral ∫f (I mess ) dt is then calculated by way of a function f (I mess ) of the section-wise and section-wise approximated Current measuring signal I mess formed. Preferably, the function f (I mess ) of the current measurement signal I mess is a power function f (I mess ) = I mess a with a = 1, 2 ... 2.2, in particular a = 1.6 ... 2.0, used. For example, the integral ∫I mess 2 dt or ∫I mess is 1.6 dt with the according to Fig. 1 Approximated current measurement signal I mess determined for approximate determination of Kontaktabbrands. As function f (I mess ), a square root function f (I mess ) = (I mess 2 ) 1/2 defining an effective turn-off current I eff can also be used. Other functions f (I mess ) are also possible. The time integral ∫f (I mess ) dt via the function f (I mess ) can be approximated by a summation of function values at interpolation points, wherein the interpolation points z. B. are given by scanning the current measuring signal I mess . In particular, the state variable is selected equal to the time integral ∫f (I mess ) dt times a contact erosion constant c and the contact erosion constant c from manufacturer specifications, in particular from curves over number of permitted switching operations N (I eff ) as a function of an effective turn-off current per switching operation I eff , and / or from empirical values for a switch type and switch application location.
Fig. 2 shows in Nassi-Schneidermann representation a software algorithm for implementing the method in a computer program and computer program product. Initially, the quantities Cwsum (= state variable for characterizing the contact erosion), I max , cnt (= counter variable) and saturation (constant) are initialized. Then in a while loop, which is caused by cnt in a positive (or alternatively negative, not shown here) half-cycle of the AC line voltage, a sample sample (cnt) of the current measuring signal is read for each cnt value and the condition sample (cnt ) ≥I max checked. If the condition is met, an auxiliary variable CWI and equal to sample (cnt) are set. If the condition is not met, if cnt is less than the middle of the positive (or negative) half-period MidthPositivePeriod, saturation becomes true and CWI set equal to I max ; if cnt≥MidthPositivePeriod, for saturation = true CWI is set equal to I max and for saturation = false CWI is set equal to sample (cnt). Finally, the counter cnt is incremented by 1, and the auxiliary variable CWI is added to the square of the contact erosion state quantity Cwsum. At the end of the half period, the summation or integration of cwsum is complete. Cwsum is doing according to Fig. 1 , exactly the time integral over the square of the approximated current, which is given in the time interval t 0 to t max by the current measurement signal I mess, according to the samples sample (cnt), and in the time interval t max until the next t 0 by the current maximum I max is approximated.
Fig. 3 shows an example of a curve of a circuit breaker manufacturer, which curve the maximum number of allowed switching operations N with an effective turn-off current per switching operation I eff and thus correlate with a certain cumulative effective cut-off. If the contact erosion is to be determined with the aid of the integral ∫I 2 dt, then a switch-specific or switch type-specific proportionality constant c between the integral and the contact erosion must be taken into account, which can be specified by the switch manufacturer and / or determined by comparison of measurements with calculations of the contact erosion.
According to a preferred embodiment of the invention, an effective switch-off current I eff can additionally be determined from a curve over the number of permitted switching operations N (I eff ) as a function of the effective switch-off current I eff as a percentage of the performed switching operations relative to the total number of allowed switching actions This effective breaking current I eff be determined and the percentages for all relevant executed switching operations are added to a cumulative contact wear. The cumulative percentage value represents a control variable for the contact wear state variable Cwsum determined according to the invention.

Beispielsweise kann eine Wartung des Schalters 3 zum ersten Zeitpunkt veranlasst werden, an dem die Zustandsgrösse Cwsum einen Grenzwert überschreitet oder der kumulierte Prozentsatz 100% minus einer Restsicherheitsmarge für die nächsten ein bis zwei Abschalthandlungen mit dem maximalen für diesen Schalter 3 zulässigen Ieff erreicht.
Fig. 4 zeigt eine schematische Darstellung eines Datenerfassungssystems zur erfindungsgemässen Bestimmung der Kontaktabbrandzustandsgrösse Cwsum und/oder des kumulierten Prozentwerts aus N(Ieff). Die Schaltanlage 1 weist Schalter 3, typischerweise Leistungsschalter 3, auf, die mit Stromwandlern 30 oder Stromsensoren 30, typischerweise konventionellen Stromwandlern 30 mit sättigbarem Kern, ausgestattet sind. Beispielsweise werden Messwandler mit 1% Genauigkeit und Verrechnungswandler mit 0,1% - 0,5% Genauigkeit bei den hohen Strömen gesättigt, die am meisten Kontaktabbrand bringen. Dadurch werden herkömmliche Kontaktabbrandschätzungen mit dem Integral ∫Imess 2dt sehr ungenau und auf jeden Fall zu klein und dadurch ungeeignet oder riskant für die Bestimmung bedarfsbedingter Wartungszeitpunkte. Hingegen haben klassische Schutzwandler für Überstromfunktionen einen grossen Messbereich ohne Sättigung, sind jedoch für kleine Ströme relativ ungenau, so dass sie typischerweise einer Genauigkeitsklasse von 2% - 5% angehören. Auch für diese Wandler kann durch die Erfindung eine verbesserte Kontaktabbrandberechnung erzielt werden, indem ein charakteristischer Stromwert Ichar gewählt wird, mit dem der Messfehler Δ im Strommesssignal Imess so korrigiert werden kann, dass eine möglichst genaue Bestimmung der Zustandsgrösse Cwsum und insbesondere einer kontaktabbrandrelevanten Lichtbogenleistung erreicht wird. Die Stromwandler 30 sind mit Mitteln 4 zur Datenerfassung an elektrischen Schaltern 3, insbesondere mit Störschreibern 4, Schutzgeräten 4 oder Steuergeräten 4 verbunden. Diese Datenerfassungsmittel 4 sind über eine serielle Kommunikation 5 oder über Datenträger 5 mit einer zentralen Erfassungseinheit 6 zur Kontaktabbrandberechnung sowie vorzugsweise mit einer Datenbank 7 für Daten über Kontaktabnutzung verbunden.
Mit Hilfe dieser Vorrichtung 2 zur Kontaktabbrandberechnung kann das oben dargestellte Verfahren implementiert werden. Insbesondere kann die Kontaktabnutzung on-line, d. h. laufend während des Betriebes, überwacht werden oder rückwirkend aus archivierten Daten, insbesondere mit einer an einen Schaltertyp oder Schaltereinsatzort angepassten Funktion f(Imess) des Strommesssignals Imess, ausgewertet werden. Dabei kann die Kontaktabnutzung aus Aufzeichnungen von Abschaltströmen Imess aus Störschreibern 4 oder Schutz- und Steuergeräten 4 mit Störschreibfunktion bestimmt werden, wobei alle Aufzeichnungen der Abschaltströme Imess einer Schaltanlage 1 zentral gesammelt werden, insbesondere in einem existierenden oder hierfür speziell konzipierten Störschreiber-Sammelsystem 4-6, auch SMS oder Stations-Monitoring-System genannt. Die Erfindung erstreckt sich auch auf eine solche Vorrichtung 2 zur Kontaktabbrandberechnung, die beispielsweise im Anlagenleitsystem (nicht dargestellt) der Schaltanlage 1 integriert ist, und auf eine elektrische Schaltanlage 1, die eine solche Vorrichtung 2 umfasst. Insgesamt ergibt sich eine verbesserte bedingungsgesteuerte statt periodische Wartung von Schaltern 3 und deren Schalterkontakten.
For example, maintenance of the switch 3 may be caused at the first time that the state quantity Cwsum exceeds a threshold or the accumulated percentage reaches 100% minus a residual safety margin for the next one to two shutdown operations with the maximum I eff allowed for that switch 3.
Fig. 4 shows a schematic representation of a data acquisition system for the inventive determination of Kontaktabbrandzustungsgröße Cwsum and / or the cumulative percentage of N (I eff ). The switchgear 1 has switches 3, typically circuit breakers 3, which are equipped with current transformers 30 or current sensors 30, typically conventional current transformers 30 with saturable core. For example, 1% accuracy and offset converters are saturated with 0.1% -0.5% accuracy at the high currents that cause the most contact wear. As a result, conventional contact wear estimates with the integral ∫I mess 2 dt become very inaccurate and in any case too small, making it unsuitable or risky for determining on-demand maintenance times. By contrast, classical overcurrent protection transformers have a large saturation-free range, but are relatively inaccurate for small currents, so they typically have an accuracy class of 2% -5%. Also for these transducers improved Kontaktabbrandberechnung can be achieved by the invention by a characteristic current value is selected char I, with the measurement error Δ in the current measuring signal I measurement can be corrected so that the most accurate determination of the state variable Cwsum and in particular a kontaktabbrandrelevanten arc power is reached. The current transformers 30 are connected to means 4 for data acquisition at electrical switches 3, in particular with fault recorders 4, protective devices 4 or control devices 4. These data acquisition means 4 are connected via a serial communication 5 or via data carrier 5 with a central detection unit 6 for contact erosion calculation as well preferably connected to a database 7 for contact wear data.
With the aid of this device 2 for contact erosion calculation, the method presented above can be implemented. In particular, contact wear can be monitored on-line, ie continuously during operation, or evaluated retroactively from archived data, in particular with a function f (I mess ) of the current measurement signal I mess adapted to a switch type or switch application location . In this case, the contact wear from records of turn-off currents I mess from disturbance recorder 4 or protection and control devices 4 are determined with Störschreibfunktion, all records of the Abschaltströme I mess a switchgear 1 are collected centrally, especially in an existing or specifically designed for this purpose Störschreiber-collecting system -6, also called SMS or station monitoring system. The invention also extends to such a device 2 for contact erosion calculation, which is integrated, for example, in the system control system (not shown) of the switchgear 1, and to an electrical switchgear 1, which comprises such a device 2. Overall, there is an improved conditional controlled instead of periodic maintenance of switches 3 and their switch contacts.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
Elektrische SchaltanlageElectrical switchgear
22
Datenerfassungssystem für KontaktabnutzungData acquisition system for contact wear
33
Elektrischer Schalter, LeistungsschalterElectric switch, circuit breaker
3030
Stromwandler, StromsensorCurrent transformer, current sensor
44
Mittel zur Datenerfassung an elektrischen Schaltern; Störschreiber, Schutzgerät, SteuergerätMeans for acquiring data on electrical switches; Disturbance recorder, protection device, control unit
55
Serielle Kommunikation, DatenträgerSerial communication, data carriers
66
Zentrale Datenerfassung; Mittel zur Berechnung von KontaktabnutzungCentral data acquisition; Means for calculating contact wear
77
Datenbank für Daten über KontaktabnutzungDatabase for contact wear data
II
Kontaktstrom, LichtbogenstromContact current, arc current
Ichar I char
charakteristischer Stromwertcharacteristic current value
Ieff I eff
effektiver Stromeffective electricity
If I f
Fehlerstromfault current
Imax I max
maximaler Strommaximum current
Imess I mess
StrommesssignalCurrent measurement signal
t, t0, tmax Zeitt, t 0 , t max time
cnt, CWI, Cwsum, Sample Variablen PositivePeriod, MidthPositivePeriod, saturation Konstantencnt, CWI, Cwsum, Sample Variables PositivePeriod, MidthPositivePeriod, saturation Constants
NN
Anzahl erlaubter SchalthandlungenNumber of allowed switching operations

Claims (13)

  1. A method for determining contact wear in an electrical switchgear (3), especially in electric switchgear assemblies (1) for high and medium voltage, wherein a contact current (If) flowing through the switchgear (3) during a switching action is recorded using a current transformer (30) and is evaluated with regard to contact wear, wherein
    a) in order to determine a status variable characterising the contact wear (Cwsum), a current measuring signal (Imess) of the current transformer (30) is first measured as a function of the time (t),
    b) in the event of deviations between the predicted contact current (If) and the current measuring signal (Imess), the presence of a measurement error (Δ) is detected,
    characterised in that
    c) in the event of detection of the measurement error (Δ) at least one maximum current measuring signal (Imax) is determined from the current measuring signal (Imess) as a characteristic current value (Ichar) and is used to determine the status variable (Cwsum).
  2. The method according to claim 1, characterised in that
    a) a saturation of the current measuring signal (Imess) is detected as the measurement error (Δ) and
    b) a maximum current measuring signal (Imax) of the current transformer (30), which occurs before reaching a quarter period of an alternating current applied to the switchgear (3), is used as the characteristic current value (Ichar).
  3. The method according to any one of the preceding claims, characterised in that
    a) the contact current (If) is an overcurrent or a short-circuit current (If) during a switch-off action and/or
    b) the status variable (Cwsum) is a measure for an arcing power during the switching action, especially a contact current time integral.
  4. The method according to any one of the preceding claims, characterised in that
    a) the current measuring signal (Imess) is recorded from a first time point (t0) at the beginning of the current half-wave in which the switching action occurs, until a second time point (tmax), at which the maximum current measuring signal (Imax) occurs, and from the second time point (tmax) until a third time point (t0) at the end of the current half-wave, is approximated by the maximum current measuring signal (Imax) and
    b) in order to determine the status variable (Cwsum) a time integral ∫f(Imess) dt is formed over a function f(Imess) of the recorded and approximated current measuring signal (Imess) .
  5. The method according to claim 4, characterised in that
    a) the first time point (t0) is defined as the starting time of an arc of the contact current (If) and is known as a binary indication in fault notation or is determined with a time delay based on empirical values from an opening command, a protection trigger command or a contact movement of the switchgear (3) and
    b) especially that the time delay is corrected by comparing actual values with predicted values of the contact wear.
  6. The method according to any one of claims 4-5, characterised in that a power function f(Imess)=Imess a where a=1.2 ... 2.2, especially a=1.6 ... 2.0, or a square root function f(Imess)=(Imess 2)1/2 defining an effective switch-off current (Ieff) is used as the function f(Imess) of the current measuring signal (Imess).
  7. The method according to any one of claims 4-6, characterised in that
    a) the status variable (Cwsum) is selected to be equal to the time integral ∫f(Imess)dt times a contact wear constant c and
    b) the contact wear constant c is determined from manufacturer's data, especially from curves giving the number of permitted switching actions as a function of an effective switch-off current per switching action (Ieff), and/or from empirical values for a type of switchgear and switchgear usage location.
  8. The method according to any one of the preceding claims, characterised in that
    a) an effective switch-off current (Ieff) is determined for each switching action,
    b) from a curve (N(Ieff)) giving the number of permitted switching actions (N) as a function of the effective switch-off current (Ieff), a contact wear is determined as a percentage of the switching actions executed relative to the total number permitted for this effective switch-off current (Ieff) and
    c) the percentages for all the relevant switching actions executed are summed to give a cumulative contact wear.
  9. The method according to any one of the preceding claims, characterised in that
    a) the contact wear is monitored on-line or is evaluated with reference to archived data, especially using a matched function f(Imess) of the current measuring signal (Imess), and/or
    b) the contact wear is determined from recordings of switch-off currents (Imess) from fault recorders (4) or protection and control equipment (4) having a fault recording function, wherein all recordings of the switch-off currents (Imess) of a switchgear assembly (1) are collected in a central data acquisition system (6), especially via data carrier (5) or via communication (5) or in a fault recorder collecting system (4-6).
  10. A computer program product with a computer program for determining contact wear in an electrical switchgear (3), especially in electric switchgear assemblies (1) for high or medium voltage which can be loaded and executed on a data processing unit (6), especially in a plant control system of the switchgear assembly (1), characterised in that the computer program executes the steps of the method according to any one of claims 1-9 during implementation.
  11. A device (2) for implementing the method according to any one of claims 1-9.
  12. The device (2) according to claim 11, characterised in that
    a) the electric switchgear (3) is a circuit breaker (3) and/or
    b) the current transformer (30) is a conventional current transformer (30) with a saturable core.
  13. An electrical switchgear assembly (1), especially a high- or medium-voltage switchgear assembly (1), characterised by a device (2) according to any one of claims 11-12.
EP03405322A 2003-05-07 2003-05-07 Method and apparatus for controlling switching devices in electrical switchgear Expired - Lifetime EP1475813B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT03405322T ATE456853T1 (en) 2003-05-07 2003-05-07 METHOD AND DEVICE FOR MONITORING SWITCHING DEVICES IN ELECTRICAL SWITCHGEARS
ES03405322T ES2338543T3 (en) 2003-05-07 2003-05-07 PROCEDURE AND DEVICE FOR SUPERVISION OF SWITCHES IN ELECTRICAL SWITCHING FACILITIES.
DE50312381T DE50312381D1 (en) 2003-05-07 2003-05-07 Method and device for monitoring switching devices in electrical switchgear
EP03405322A EP1475813B1 (en) 2003-05-07 2003-05-07 Method and apparatus for controlling switching devices in electrical switchgear
US10/837,576 US7123461B2 (en) 2003-05-07 2004-05-04 Method and device for monitoring switchgear in electrical switchgear assemblies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03405322A EP1475813B1 (en) 2003-05-07 2003-05-07 Method and apparatus for controlling switching devices in electrical switchgear

Publications (2)

Publication Number Publication Date
EP1475813A1 EP1475813A1 (en) 2004-11-10
EP1475813B1 true EP1475813B1 (en) 2010-01-27

Family

ID=32982022

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03405322A Expired - Lifetime EP1475813B1 (en) 2003-05-07 2003-05-07 Method and apparatus for controlling switching devices in electrical switchgear

Country Status (5)

Country Link
US (1) US7123461B2 (en)
EP (1) EP1475813B1 (en)
AT (1) ATE456853T1 (en)
DE (1) DE50312381D1 (en)
ES (1) ES2338543T3 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7596459B2 (en) * 2001-02-28 2009-09-29 Quadlogic Controls Corporation Apparatus and methods for multi-channel electric metering
DE102004020045A1 (en) * 2004-04-21 2005-11-10 Siemens Ag Method for determining a residual shift play value indicating wear of switch contacts of a circuit breaker
DE102004062266A1 (en) * 2004-12-23 2006-07-13 Siemens Ag Method and device for safe operation of a switching device
CN101317244B (en) * 2005-11-28 2012-11-21 施恩禧电气有限公司 Fault interrupting and reclosing device
EP1793235A1 (en) * 2005-11-30 2007-06-06 ABB Technology AG Monitoring System for High-Voltage Switch Gears
US8560255B2 (en) * 2008-12-12 2013-10-15 Schneider Electric USA, Inc. Power metering and merging unit capabilities in a single IED
FR2945661A1 (en) * 2009-05-18 2010-11-19 Schneider Electric Ind Sas EVALUATION OF THE WEAR OF CONTACTS ENFONCES BY THE VARIATION OF THE ROTATION OF THE TREE OF POLES
US20110062960A1 (en) * 2009-09-15 2011-03-17 Lenin Prakash Device and method to monitor electrical contact status
EP2328159B1 (en) * 2009-11-25 2012-01-04 ABB Research Ltd. Method and device for determining the wear on a contact element
US20110133743A1 (en) * 2010-04-30 2011-06-09 Werner Barton Fault detection device and method for detecting an electrical fault
WO2012072810A1 (en) 2010-12-02 2012-06-07 Abb Research Ltd Method and device for monitoring switching devices
DE102011080826B4 (en) * 2011-08-11 2016-01-21 Siemens Aktiengesellschaft Method for determining the arc performance of a switch, method for triggering a switch based on the arc power and method for determining the load of the contacts of a switch based on the arc energy
DE102013219243B4 (en) 2013-09-25 2018-01-18 Robert Bosch Gmbh Method and device for determining the aging of an electronic interruption element, in particular a power contactor
FR3060758B1 (en) 2016-12-16 2021-01-08 Schneider Electric Ind Sas METHOD AND DEVICE FOR DIAGNOSING THE WEAR OF AN ELECTRIC SWITCHING APPARATUS, AND ELECTRICAL APPARATUS INCLUDING SUCH A DEVICE
FR3082005B1 (en) * 2018-06-01 2020-11-27 Schneider Electric Ind Sas METHOD AND DEVICE FOR DIAGNOSING THE WEAR OF AN ELECTRIC SWITCHING APPARATUS, AND ELECTRICAL APPARATUS INCLUDING SUCH A DEVICE
ES2878274T3 (en) * 2018-08-03 2021-11-18 Rittal Gmbh & Co Kg Device and procedure for checking a control cabinet content after planning-based assembly
CN111505496B (en) * 2020-05-08 2021-02-02 西安交通大学 Vacuum circuit breaker electric service life evaluation method based on arc energy
FR3112651B1 (en) * 2020-07-20 2023-05-12 Schneider Electric Ind Sas Methods for estimating a property of an electrical switching device, devices for carrying out these methods
CN113552436A (en) * 2021-07-27 2021-10-26 中船九江精达科技股份有限公司 Method for detecting assembly quality of small and medium-sized precision mechanical system
CN114076868B (en) * 2021-11-18 2022-08-02 广东电网有限责任公司广州供电局 Switch defect identification method, device, equipment and readable storage medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE439692B (en) * 1983-10-24 1985-06-24 Asea Ab DEVICE FOR MONITORING THE CONDITION OF AN ELECTRIC APPLIANCE WITH POWER SWITCHING CONNECTORS, IN PARTICULAR A HIGH VOLTAGE SWITCH
DE3505818A1 (en) 1985-02-20 1986-08-21 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt MONITORING AND CONTROL DEVICE FOR SWITCHGEAR
FR2602610B1 (en) * 1986-08-08 1994-05-20 Merlin Et Gerin STATIC TRIGGER OF AN ELECTRIC CIRCUIT BREAKER WITH CONTACT WEAR INDICATOR
US6466023B2 (en) * 1998-12-28 2002-10-15 General Electric Company Method of determining contact wear in a trip unit
DE19928192B4 (en) 1999-06-19 2005-08-25 Abb Patent Gmbh Process for the reconstruction of a stream

Also Published As

Publication number Publication date
ES2338543T3 (en) 2010-05-10
DE50312381D1 (en) 2010-03-18
US20040223276A1 (en) 2004-11-11
ATE456853T1 (en) 2010-02-15
US7123461B2 (en) 2006-10-17
EP1475813A1 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
EP1475813B1 (en) Method and apparatus for controlling switching devices in electrical switchgear
EP2017867B1 (en) Measuring device for measuring a periodic analogue signal
EP1002325B1 (en) Method for determining switchgear-related data in switchgear contacts and/or operation-related data in a connected network
DE112012001189B4 (en) Methods, systems and devices for the detection of parallel electrical arcing faults
EP0694937B1 (en) Method and apparatus for determining the residual life of contacts in switching devices
EP0193732B1 (en) Device for monitoring and controlling switching devices and combinations of switching devices
DE102015108538A1 (en) Detection method and detection device for fault arcs
DE202007018709U1 (en) Determination and display of the contact abrasion on a high-power switch
DE102014200946B4 (en) Overload monitoring device and method for overload monitoring
DE2406197C3 (en) Method and device for the detection of short circuits
DE102008012605A1 (en) Protective switching device for monitoring the electrical current flow to an electrical consumption or method for monitoring the electrical current flow to an electrical consumer by a protective switching device
WO2012072810A1 (en) Method and device for monitoring switching devices
DE19901119B4 (en) Monitoring system for a gas-insulated high-voltage switchgear
DE102007006564A1 (en) Line safety switch or circuit-breaker comprise input terminal and output terminal, which are connected by current path, where device measures phase of alternating current
DE102012215166B4 (en) Switching device for a single-phase motor and a three-phase motor
EP0696830A1 (en) Locating earth faults in electric networks with grounding coil
DE10117372B4 (en) Protective device, protective device and protection method for an electric cable
DE4111831A1 (en) Release method for overcurrent protection switch - using measured current values and corresponding current gradients obtained by differentiation to trigger switch
EP1986203A1 (en) Method to detect a contact isolation layer in a switching element having contacts and a switch having such a switching element
EP0239965B1 (en) Method and circuit for excitation of a multiphase distance protection
DE102020216428A1 (en) Protective switching device and method
DE3905335C2 (en)
DE2708844B2 (en) Protection device for a generator-turbine unit against overloading of the WeUe
EP3913382B1 (en) Method and device for determining the location of a three-pole assymetrical fault on a line of a three-phase electrical energy supply network
DE102021203218B4 (en) Method for monitoring the functionality of a high-voltage switch, high-voltage switch, computer program product and computer-readable medium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050414

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070420

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50312381

Country of ref document: DE

Date of ref document: 20100318

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2338543

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100527

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

BERE Be: lapsed

Owner name: ABB TECHNOLOGY A.G.

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20101028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160512

Year of fee payment: 14

Ref country code: GB

Payment date: 20160520

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160519

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50312381

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50312381

Country of ref document: DE

Owner name: ABB SCHWEIZ AG, CH

Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50312381

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 50312381

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50312381

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170507

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170508

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ABB SCHWEIZ AG, CH

Effective date: 20180912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50312381

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 50312381

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50312381

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50312381

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220523

Year of fee payment: 20

Ref country code: DE

Payment date: 20220519

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50312381

Country of ref document: DE