EP1465453B1 - Réglage automatique d'un système de microphone directionnel avec au moins trois microphones - Google Patents

Réglage automatique d'un système de microphone directionnel avec au moins trois microphones Download PDF

Info

Publication number
EP1465453B1
EP1465453B1 EP04004215A EP04004215A EP1465453B1 EP 1465453 B1 EP1465453 B1 EP 1465453B1 EP 04004215 A EP04004215 A EP 04004215A EP 04004215 A EP04004215 A EP 04004215A EP 1465453 B1 EP1465453 B1 EP 1465453B1
Authority
EP
European Patent Office
Prior art keywords
microphone
microphones
directional
omnidirectional
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04004215A
Other languages
German (de)
English (en)
Other versions
EP1465453A3 (fr
EP1465453A2 (fr
Inventor
Torsten Dr. Niederdränk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos GmbH
Original Assignee
Siemens Audioligische Technik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Audioligische Technik GmbH filed Critical Siemens Audioligische Technik GmbH
Publication of EP1465453A2 publication Critical patent/EP1465453A2/fr
Publication of EP1465453A3 publication Critical patent/EP1465453A3/fr
Application granted granted Critical
Publication of EP1465453B1 publication Critical patent/EP1465453B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/356Amplitude, e.g. amplitude shift or compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/004Monitoring arrangements; Testing arrangements for microphones
    • H04R29/005Microphone arrays
    • H04R29/006Microphone matching

Definitions

  • the invention relates to a method for automatic microphone adjustment in a directional microphone system having at least three omnidirectional microphones, wherein for generating a directional characteristic in each case two omnidirectional microphones are connected to a first and a second directional microphone first order.
  • the invention relates to a directional microphone system having at least a first, a second and a third omnidirectional microphone, wherein the first and the second omnidirectional microphone to a first directional microphone first order and the second and the third omnidirectional microphone to a second directional microphone of the first order are interconnected ,
  • a hearing aid with three omnidirectional microphones known. From two microphones in each case a directional microphone of the first order is formed by inverting and delaying the microphone signal generated by a microphone and then adding both microphone signals. Similarly, by delaying and inverting the microphone signal formed by a first order directional microphone and then adding one to another Directional microphone formed first order microphone signal a directional microphone with directional characteristics of the second order (directional microphone second order) are formed.
  • a hearing aid with automatic microphone adjustment and a method for operating such a hearing aid known.
  • a difference element for subtracting mean values of the output signals of the microphones and a differential element downstream analysis / control unit for controlling the amplification of the output signal of at least one microphone is provided.
  • the regulation of the amplification takes place in such a way that the mean values of the microphone signals are brought into agreement.
  • the microphone adjustment only the amplitudes of the microphones are adjusted.
  • a hearing aid with directional microphone characteristic known.
  • the microphones downstream high passes are adjusted in their lower limit frequencies.
  • the lower limit frequency of a microphone is adjusted by a microphone connected downstream high pass of the cutoff frequency of the other microphone.
  • a hearing device and an adaptive method for adjusting the microphones of a directional microphone system in the hearing device are known.
  • characteristics of the signals of both microphones are detected via a comparison element, a control element and an actuator and aligned with each other at a detected deviation.
  • a disadvantage of the known method for microphone adjustment in directional microphones is their insufficient effect in microphone mismatches, which are caused in particular by aging and pollution effects.
  • Object of the present invention is therefore to provide a method for automatic microphone adjustment in a directional microphone system and a directional microphone system that allow without external intervention during normal operation of the directional microphone system to adapt the amplitude response as well as the phase response of the microphones of the directional microphone system.
  • a directional microphone system having at least a first, a second and a third omnidirectional microphone, wherein two omnidirectional microphones are connected to a first directional microphone first order and a second directional microphone first order, wherein level measuring means for determining the time-averaged signal level are provided by the omnidirectional microphones and the microphone signals generated by the first-order directional microphones, wherein an amplitude control means for adjusting the amplitudes in at least two of the three microphone signals generated by the omnidirectional microphones in dependence of the detected signal levels and wherein a phase control means for adjusting the phase of the microphone signal generated by at least one omnidirectional microphone as a function of the signal detected by the level measuring devices in the directional microphones of the first order level is present.
  • directional microphones with directional characteristics of second and higher order By electrically interconnecting at least three omnidirectional microphones directional microphones with directional characteristics of second and higher order (directional microphones of the second and higher order) can be formed.
  • a directional microphone of the first order can be built up by electrically interconnecting two omnidirectional microphones
  • a directional microphone of the second order can be set up by electrically interconnecting two directional microphones of the first order.
  • electrical interconnection usually a microphone signal is inverted and delayed in time and added to a further microphone signal of the same order.
  • the invention provides an amplitude adjustment of the microphone signals generated by the omnidirectional microphones of the microphone system.
  • a measure of the time-averaged sound field energy is respectively obtained from the microphone signals in the case of the microphone signals.
  • the microphone signals are then adjusted so that after the adjustment, the time-averaged Sound field energy in all microphone signals at least approximately coincident.
  • a measure of the time-averaged sound field energy is preferably the signal level.
  • other dimensions eg the RMS value, can also be used.
  • a control or regulation of the respectively obtained from a microphone signal measure of the time-averaged sound field energy can be done. For example, individual microphone signals are multiplied or filtered by a factor. Furthermore, the gain in the microphones downstream amplifiers can be changed.
  • the first method step or the entire method according to the invention can be performed in narrowband in several channels or broadband.
  • the first method step causes the amplitudes of the microphone signals to be adjusted at a certain point in the signal paths of the microphones.
  • phase position of the individual microphones must also be taken into account in directional microphones of higher order. It is less the absolute phase of the microphone signals, but rather their relative phase shift from each other of interest.
  • At least two first order directional microphones are required to form a second order directional microphone system. These in turn can be constructed by pairing at least three omnidirectional microphones. The amplitudes of the three omnidirectional microphones are adjusted as described above in a first method step. In a second method step, the amplitudes of the directional microphones are matched first order. For this purpose too, a measure of the time-averaged sound field energy, for example the signal level, is obtained and matched from the microphone signals of the directional microphones of the first order. In difference However, to the omnidirectional microphone signals, the adjustment is done not by an amplitude or gain adjustment of the microphone signals of the directional microphones of the first order, but by phase shifting at least one microphone signal generated by an omnidirectional microphone.
  • the phase of this microphone signal is varied until the directional microphones of the first order in their amplitude response match as exactly as possible. Since the omnidirectional microphones are already matched in their amplitudes, the amplitudes of the directional microphones of the first order only match exactly when the phase shift between each two omnidirectional microphones, which are connected to a directional microphone system of the first order, match. This results in their signal transmission behavior largely symmetrical directional microphones of the first order.
  • the invention offers the advantage that the phasing of individual microphones required in a directional microphone system of higher order is attributed to a relatively easy amplitude balance to be realized. Furthermore, the microphone adjustment can be done during normal operation of the directional microphone system. In addition, several signal sources may be present during the microphone adjustment and arranged arbitrarily in the room.
  • the method described for a second-order directional microphone system can analogously also be extended to directional microphone systems of higher order.
  • the method is also not limited to three omnidirectional microphones as signal inputs.
  • directional microphones of the first (and higher) order can be formed and aligned.
  • the method can be broadband or narrowband in only one frequency range or multiple parallel frequency channels.
  • a directional microphone system constructed symmetrically with respect to the external geometry facilitates the implementation of a method according to the invention.
  • the sound inlet openings of the omnidirectional microphones are advantageously located on a straight line, wherein adjacent sound inlet openings each have the same distance from each other. Then, e.g. Due to the geometry-related transit time differences of the individual microphone signals for microphone matching are not excluded. Since in the method according to the invention the time-averaged sound field energy is determined and adjusted from the microphone signals, runtime differences play no role, which arise, for example, in that a microphone with a sound inlet located further forward with respect to a signal source receives a sound signal earlier than a microphone with a rearward sound inlet opening.
  • the method for adjusting the relative phase error between individual pairs of microphones can be extended to the effect that the absolute phase of individual microphones or directional microphones is matched with the same order. This shall be described below without limiting the generality in the case of directional microphones of the first order which have been adjusted according to the method described above.
  • a first and a second directional microphone of the first order are adjusted according to the method described above. Furthermore, it is assumed that at least one source of interference is present in the rear region of a hearing device wearer, ie in the range between 90 ° and 270 ° with respect to the straight-ahead viewing direction (0 ° direction), which can almost always be assumed in real environmental situations. Then the phase in the microphone signal of an omnidirectional Microphones of the first directional microphone in a limited range of values changed so that the amplitude of the microphone signal of the first directional microphone of the first order decreases with respect to the amplitude of the microphone signal of the second directional microphone first order.
  • the limited value range of the phase shift is determined so that the incision of the sensitivity of the directional microphone (Notch) by the phase shift in the rear region between 90 ° and 270 ° remains.
  • the phase is adjusted so that the amplitude of the microphone system of the first directional microphone of the first order has a minimum compared to the amplitude of the microphone signal of the second directional microphone of the first order.
  • the two directional microphones of the first order are reconciled by also in the second directional microphone first order a phase shift in the microphone signal of an omnidirectional microphone of the second directional microphone first order is adjusted so that the two directional microphones are aligned again.
  • the above-described approach may also be modified such that the phase in the microphone signal of an omnidirectional microphone of the first directional microphone is changed only a small step in the direction that reduces the amplitude of the first directional microphone of the first order compared to the amplitude of the second directional microphone ,
  • the step size can be set to shift the notch by 2 ° with each step.
  • the two directional microphones of the first order are adjusted again as described above. This procedure is repeated until the amplitude in the microphone signal of the first directional microphone of the first order compared to the amplitude of the microphone signal of the second directional microphone first order only insignificantly reduce. Both directional microphones are then optimally aligned to the interference signal or the interference signals.
  • This procedure leads to a comparison of the absolute phase position of the omnidirectional microphones. Also, this phase adjustment is advantageously attributed to a relatively easy to implement amplitude balance.
  • FIG. 1 shows a constructed of three omnidirectional microphones 1, 2 and 3 directional microphone system with directional characteristics of the second order (directional microphone system second order).
  • the two omnidirectional microphones 1 and 2 form a first directional microphone of the first order.
  • the resulting from the omnidirectional microphone 2 microphone signal is delayed in a delay element 4 and inverted in an inverter 5, before being added by the summer 8 to the microphone signal of the omnidirectional microphone 1.
  • the microphone signal of the omnidirectional microphone 3 is delayed in a delay element 6, inverted in an inverter 7 and added in a summer 9 to the microphone signal of the omnidirectional microphone 2.
  • the microphone signal of the second directional microphone of the first order formed by the two omnidirectional microphones 2 and 3 is subsequently delayed in a delay element 10, in an inverter 11 inverted and finally added in a summer 12 to the microphone signal of the first directional microphone of the first and the second omnidirectional microphone formed first order.
  • the precise expression of the directional characteristic which can be illustrated in a directional diagram, can be varied by different settings of the signal delays in the delay elements 4, 6 and 10.
  • FIG. 1 also shows FIG. 2 a directional microphone system second order, which is composed of only three omnidirectional microphones 21, 22 and 23 and thereby takes into account in particular the limited space for use in a hearing aid.
  • a first directional microphone of the first order is formed in the summer 25 by delaying the microphone signal generated by the omnidirectional microphone 22 and inverting it in a delay and inverter unit 24 and then summing it to the microphone signal produced by the omnidirectional microphone 21.
  • the microphone pair 22, 23 also forms a second directional microphone of first order by delaying and inverting the microphone signal generated by the omnidirectional microphone 23 in the delay and inverter unit 26 and then adding the microphone signal generated by the omnidirectional microphone 22 in the summer 27.
  • the signal delays in the delay and inverter units 24 and 26 are initially set equal.
  • a first method step of the method according to the invention firstly the amplitudes of the microphone signals generated by the three omnidirectional microphones 21, 22 and 23 are adjusted.
  • the time-averaged signal levels are first obtained from the microphone signals in the level measuring devices 28, 29 and 30.
  • the measured signal levels are fed to an amplitude control device 31. This controls in at least two of the three microphone signal paths existing multipliers 32 and 33, so that deviations from the Microphone signals detected time-averaged signal level can be compensated.
  • the amplitude response of the three omnidirectional microphones 21, 22 and 23 is aligned.
  • the time-averaged signal levels of the microphone signals generated by the two directional microphones of the first order are obtained by level measuring means 34 and 35. These signal levels are supplied to a control unit 36.
  • the control unit 36 controls a phase compensation filter 38, by which a phase shift in the microphone signal generated by the omnidirectional microphone 22 is adjusted such that the same time-averaged signal levels are measured by the two level measuring devices 34 and 35. This means that the phase error present in the two microphone pairs becomes equal (relative phase adjustment). Due to the same signal transmission behavior, the two microphone pairs are therefore ideally suited for the formation of a directional microphone of the second order.
  • the microphone signal generated by the second directional microphone of the first order can be delayed in the delay and inverter unit 39 and added in the summer 40 to the microphone signal of the first directional microphone of the first order.
  • the invention has the advantage that the phase alignment of the microphones has been attributed to an amplitude balance that is easy to implement.
  • the adjustment can be done under real environmental conditions, with any number of sound sources may be present.
  • a continuation of the method according to the invention provides that, following the previously performed microphone adjustment, the phase of the microphone signal generated by the omnidirectional microphone 21 is adjusted by controlling the phase compensation unit 37 by the control unit 36 such that the one measured by the level measuring devices 34 and 35 Signal level of the first-order directional microphones reduces the signal level of the first directional microphone compared to the signal level of the second directional microphone.
  • this reduction is due to the fact that the notch of the first directional microphone of the first order, that is, the incision in the directional characteristic, which shows the direction of least sensitivity, is better aligned with the one or more interferers present in the respective environmental situation.
  • the phase variation is limited to a range of values, so that the Notch can be adjusted only in a certain angular range, e.g. Between 90 ° and 270 ° relative to the straight-ahead viewing direction of a hearing device wearer (0 ° direction).
  • phase compensation unit 38 is adjusted so that the signal levels of the microphone signals of the directional microphones of the first order again match as closely as possible, that is, the second directional microphone of the first order is adapted again to the first directional microphone of the first order.
  • an alternative embodiment provides that the notch of the first directional microphone first order is gradually rotated in small steps, for example 2 °, in the direction in which a reduction of the signal level with respect to the signal level of the microphone signal of the second directional microphone results first order. Then the two directional microphones of the first order are adjusted again as described above. This procedure is repeated until at most a slight reduction in the signal level of the microphone signal of the first directional microphone of the first order can be achieved.
  • this continuous cyclic algorithm represents a three-stage control loop, with the aid of which the three omnidirectional microphones can be adjusted according to magnitude and phase. It can be a uniform small step size or an adaptive step size can be used.
  • the realization of the phase compensation units can be done for example by delay elements or digital filters. By means of digital filters, it is possible to achieve a broadband or different phase compensation for different frequency ranges.
  • the last-described absolute phasing of the microphones is performed only when the signal levels in the current environmental situation exceed a certain threshold. Then, as a rule, it can be assumed that interference signals are also present. However, this is not a disadvantage, since in ambient situations with only very low signal levels, a directivity and thus obtained noise removal are only of minor importance anyway.
  • the second-order directional microphone system formed for the embodiment of a three-omnidirectional microphones can also be analogously transmitted to directional microphone systems with more than three omnidirectional microphones and higher than second order.
  • FIG. 3 shows a behind the ear portable hearing aid 50 with a directional microphone system according to the invention.
  • the hearing aid 50 includes a battery chamber 51 for arranging a battery 52 for powering the hearing aid 50, a signal processing electronics 53 and an MTO switch 54 for switching off the hearing aid 50 (switch position 0) and for switching on and switching the reception between the directional microphone system (switch position M ) and a telecoil (switch position T).
  • the directional microphone system of the hearing aid device 50 comprises three omnidirectional microphones 55, 56 and 57, to each of which a sound inlet opening 58, 59 and 60 is assigned.
  • the sound inlet openings 58-60 are arranged laterally on the hearing aid 50 in the embodiment. They are at least approximately on a straight line 61 and have approximately the same distance from each other. Unlike in the exemplary embodiment shown, the sound inlet openings 58-60 could also be arranged on the upper side of the housing, as is usual with hearing aids that can be worn behind the ear.
  • the microphone adjustment can be carried out with the hearing aid worn in real environmental conditions. As a result, in particular dirt and aging phenomena of the microphones 55-57 in the hearing aid 50 are compensated.
  • the hearing aid 50 is provided in a known manner with a support hook 62.
  • An acoustic input signal supplied to the hearing aid 50 is converted into electrical input signals in the microphones 55-57, processed in the signal processing electronics 53, and finally converted back into an acoustic signal in a receiver 63 and (not shown) by the wearing hook 62 and a sound tube connected thereto Auditory hearing aid wearer supplied.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Neurosurgery (AREA)
  • Circuit For Audible Band Transducer (AREA)

Claims (14)

  1. Procédé de réglage automatique de microphones dans un système de microphones directionnel comprenant au moins trois microphones ( 21, 22, 23 ; 55, 56, 57 ) omnidirectionnels, dans lequel, pour produire une caractéristique directionnelle, on relie respectivement deux microphones ( 21, 22 ; 22, 23 ; 55, 56 ; 56, 57 ) omnidirectionnels en un premier et respectivement en un deuxième microphone directionnel du premier ordre, comprenant les stades de procédé suivants :
    - on règle les amplitudes des signaux des microphones produits par les microphones ( 21, 22, 23 ; 55, 56, 57 ) omnidirectionnels,
    - on règle les amplitudes des signaux des microphones produits par les microphones directionnels du premier ordre par déphasage d'au moins l'un des signaux de microphones produits par l'un des trois microphones ( 21, 22, 23 ; 55, 56, 57 ) omnidirectionnels.
  2. Procédé suivant la revendication 1, dans lequel les microphones ( 55, 56, 57 ) omnidirectionnels ont respectivement une ouverture ( 58, 59, 60 ) d'entrée du son et ceux-ci sont disposés au moins approximativement le long d'une droite ( 61 ) et à un même intervalle les uns par rapport aux autres.
  3. Procédé suivant la revendication 1 ou 2, dans lequel pour régler les amplitudes des signaux de microphones produits par les microphones ( 21, 22, 23 ; 55, 56, 57 ) omnidirectionnels, on obtient respectivement une mesure de l'énergie du champ sonore dont on fait la moyenne dans le temps à partir des signaux de microphone et on adapte les fonctions de transfert de signal des microphones ( 21, 22, 23 ; 55, 56, 57 ) omnidirectionnels par des moyens de réglage en aval des microphones ( 21, 22, 23 ; 55, 56, 57 ) en ce sens que la mesure déterminée respectivement, à partir d'un signal de microphone, de l'énergie du champ sonore dont on a fait la moyenne dans mle temps coïncide pour tous les trois signaux de microphone au moins approximativement.
  4. Procédé suivant la revendication 3, dans lequel on détermine le niveau du signal comme mesure de l'énergie du champ sonore dont on fait la moyenne dans le temps.
  5. Procédé suivant la revendication 3 ou 4, dans lequel on règle les fonctions de transfert du signal des microphones ( 21, 22, 23 ; 55, 56, 57 ) omnidirectionnels en multipliant respectivement les signaux de microphones par un facteur.
  6. Procédé suivant l'une des revendications 1 à 5, dans lequel, pour régler les amplitudes des signaux de microphones produits par les microphones directionnels du premier ordre, on obtient une mesure de l'énergie du champ sonore dont on a fait la moyenne dans le temps à partir des signaux des microphones directionnels du premier ordre et on la règle.
  7. Procédé suivant la revendication 6, caractérisé en ce que l'on détermine le niveau du signal comme mesure de l'énergie du champ sonore dont a fait la moyenne dans le temps.
  8. Procédé suivant l'une des revendications 1 à 7, comprenant un premier, un deuxième et un troisième microphones ( 21, 22, 23 ; 55, 56, 57 ) omnidirectionnels, dans lequel, pour la production d'une caractéristique directionnelle, on relie le premier et le deuxième microphones ( 21, 22, 23 ; 55, 56, 57 ) omnidirectionnels en un premier microphone directionnel du premier ordre, ainsi que le deuxième et le troisième microphones ( 21, 22 ; 55, 56 ) omnidirectionnel en un deuxième microphone directionnel du premier ordre, dans lequel on effectue un déphasage du signal de microphone produit par le premier ou par le deuxième microphone ( 21, 22 ; 56, 57 ) omnidirectionnel, en ce que l'on diminue l'amplitude du signal de microphone produit par le premier microphone directionnel du premier ordre par rapport à l'amplitude du signal de microphone produit par le deuxième microphone directionnel du premier ordre et dans lequel on règle ensuite les amplitudes des microphones directionnels du premier ordre par déphasage du signal de microphone produit par le deuxième ou par le troisième microphone ( 22, 23 ; 56, 57 ) omnidirectionnel.
  9. Procédé suivant la revendication 8, dans lequel on effectue le déphasage dans une plage de valeur pouvant être prescrite de manière à minimiser l'amplitude du signal de microphone produit par le premier microphone directionnel du premier ordre par rapport à l'amplitude du signal de microphone produit par le deuxième microphone directionnel du premier ordre.
  10. Procédé suivant la revendication 8, dans lequel on répète les stades du procédé jusqu'à ce qu'un critère d'anormalité soit atteint.
  11. Procédé suivant l'une des revendications 1 à 10, dans lequel on effectue un classement des signaux du microphone produits par les microphones ( 21, 22, 23 ; 55, 56, 57 ) omnidirectionnels en bandes de fréquence et on effectue le réglage des microphones respectivement dans une bande de fréquence.
  12. Système de microphones directionnel, comprenant au moins un premier, un deuxième et un troisième microphones ( 21, 22, 23 ; 55, 56, 57 ) omnidirectionnels, respectivement deux microphones ( 21, 22, 23 ; 55, 56, 57 ) omnidirectionnels étant reliés entre eux en un premier microphone directionnel du premier ordre et en un deuxième microphone directionnel du premier ordre, caractérisé en ce qu'il y a des dispositifs ( 28, 29, 30 ; 34, 35 ) de mesure de niveau pour la détermination du niveau des signaux, dont on fait la moyenne dans le temps, des microphones ( 21, 22, 23 ; 55, 56, 57 ) omnidirectionnels et des signaux de microphones produits par les microphones directionnels du premier ordre, dans lequel il y a un dispositif ( 31 ) de commande d'amplitude, pour le réglage des amplitudes pour au moins deux des trois signaux de microphone produits par les microphones ( 21, 22, 23 ; 55, 56, 57 ) omnidirectionnels en fonction du niveau du signal dont on a fait la moyenne et dans lequel il y a un dispositif de réglage de phase du signal de microphone produit par au moins un microphone ( 21, 22 ; 55, 56 ) en fonction du niveau du signal déterminé par les dispositifs ( 34, 35 ) de mesure du niveau pour les microphones directionnels du premier ordre.
  13. Système de microphones directionnel suivant la revendication 12, dans lequel il y a un dispositif ( 36 ) de commande de phase pour régler les phases des signaux de microphones produits par au moins deux microphones ( 21, 22 ; 55, 56 ) omnidirectionnels en fonction du niveau du signal déterminé par les dispositifs ( 34, 35 ) de mesure du niveau pour les microphones directionnels du premier ordre.
  14. Agencement d'un système de microphone directionnel suivant la revendication 12 ou 13 dans une prothèse ( 50 ) auditive.
EP04004215A 2003-03-11 2004-02-25 Réglage automatique d'un système de microphone directionnel avec au moins trois microphones Expired - Lifetime EP1465453B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10310579 2003-03-11
DE10310579A DE10310579B4 (de) 2003-03-11 2003-03-11 Automatischer Mikrofonabgleich bei einem Richtmikrofonsystem mit wenigstens drei Mikrofonen

Publications (3)

Publication Number Publication Date
EP1465453A2 EP1465453A2 (fr) 2004-10-06
EP1465453A3 EP1465453A3 (fr) 2009-12-16
EP1465453B1 true EP1465453B1 (fr) 2011-01-26

Family

ID=32842150

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04004215A Expired - Lifetime EP1465453B1 (fr) 2003-03-11 2004-02-25 Réglage automatique d'un système de microphone directionnel avec au moins trois microphones

Country Status (4)

Country Link
US (1) US7474755B2 (fr)
EP (1) EP1465453B1 (fr)
DE (2) DE10310579B4 (fr)
DK (1) DK1465453T3 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004010867B3 (de) * 2004-03-05 2005-08-18 Siemens Audiologische Technik Gmbh Verfahren und Vorrichtung zum Anpassen der Phasen von Mikrofonen eines Hörgeräterichtmikrofons
EP1614528A1 (fr) 2004-07-01 2006-01-11 Alcan Technology & Management Ltd. Procédé de fabrication d'un matériau d'emballage
US7542580B2 (en) * 2005-02-25 2009-06-02 Starkey Laboratories, Inc. Microphone placement in hearing assistance devices to provide controlled directivity
EP1989777A4 (fr) * 2006-03-01 2011-04-27 Softmax Inc Système et procédé permettant de produire un signal séparé
DE102006049870B4 (de) * 2006-10-23 2016-05-19 Sivantos Gmbh Differentielles Richtmikrofonsystem und Hörhilfsgerät mit einem solchen differentiellen Richtmikrofonsystem
US8103030B2 (en) 2006-10-23 2012-01-24 Siemens Audiologische Technik Gmbh Differential directional microphone system and hearing aid device with such a differential directional microphone system
JP2010519602A (ja) * 2007-02-26 2010-06-03 クゥアルコム・インコーポレイテッド 信号分離のためのシステム、方法、および装置
US8160273B2 (en) * 2007-02-26 2012-04-17 Erik Visser Systems, methods, and apparatus for signal separation using data driven techniques
DK2071873T3 (en) * 2007-12-11 2017-08-28 Bernafon Ag A hearing aid system comprising a custom filter and a measurement method
US8175291B2 (en) * 2007-12-19 2012-05-08 Qualcomm Incorporated Systems, methods, and apparatus for multi-microphone based speech enhancement
US8321214B2 (en) * 2008-06-02 2012-11-27 Qualcomm Incorporated Systems, methods, and apparatus for multichannel signal amplitude balancing
DE102008049086B4 (de) * 2008-09-26 2011-12-15 Siemens Medical Instruments Pte. Ltd. Hörhilfegerät mit einem Richtmikrofonsystem sowie Verfahren zum Betrieb eines derartigen Hörhilfegerätes
US9648421B2 (en) * 2011-12-14 2017-05-09 Harris Corporation Systems and methods for matching gain levels of transducers
EP3629602A1 (fr) 2018-09-27 2020-04-01 Oticon A/s Appareil auditif et système auditif comprenant une multitude de beamformers adaptatifs à deux canaux
US11303994B2 (en) * 2019-07-14 2022-04-12 Peiker Acustic Gmbh Reduction of sensitivity to non-acoustic stimuli in a microphone array
CN113689875B (zh) * 2021-08-25 2024-02-06 湖南芯海聆半导体有限公司 一种面向数字助听器的双麦克风语音增强方法和装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK164349C (da) * 1989-08-22 1992-11-02 Oticon As Hoereapparat med tilbagekoblingskompensation
AT407815B (de) 1990-07-13 2001-06-25 Viennatone Gmbh Hörgerät
US5463694A (en) * 1993-11-01 1995-10-31 Motorola Gradient directional microphone system and method therefor
US5515445A (en) * 1994-06-30 1996-05-07 At&T Corp. Long-time balancing of omni microphones
US5757933A (en) * 1996-12-11 1998-05-26 Micro Ear Technology, Inc. In-the-ear hearing aid with directional microphone system
DE19810043A1 (de) * 1998-03-09 1999-09-23 Siemens Audiologische Technik Hörgerät mit einem Richtmikrofon-System
DE19822021C2 (de) 1998-05-15 2000-12-14 Siemens Audiologische Technik Hörgerät mit automatischem Mikrofonabgleich sowie Verfahren zum Betrieb eines Hörgerätes mit automatischem Mikrofonabgleich
US6654468B1 (en) * 1998-08-25 2003-11-25 Knowles Electronics, Llc Apparatus and method for matching the response of microphones in magnitude and phase
DE19849739C2 (de) * 1998-10-28 2001-05-31 Siemens Audiologische Technik Adaptives Verfahren zur Korrektur der Mikrofone eines Richtmikrofonsystems in einem Hörgerät sowie Hörgerät
US6741713B1 (en) * 1998-12-17 2004-05-25 Sonionmicrotronic Nederlan B.V. Directional hearing device
DE19918883C1 (de) * 1999-04-26 2000-11-30 Siemens Audiologische Technik Hörhilfegerät mit Richtmikrofoncharakteristik
DE60012316T2 (de) * 1999-04-28 2005-07-21 Gennum Corp., Burlington Programmierbares multi-mode, multi-mikrofon system
EP1192838B2 (fr) * 1999-06-02 2013-09-04 Siemens Audiologische Technik GmbH Prothese auditive a systeme de microphone directionnel et procede permettant de faire fonctionner ladite prothese
AU4776999A (en) * 1999-06-24 2001-01-31 Topholm & Westermann Aps Hearing aid with controllable directional characteristics
DE69908662T2 (de) * 1999-08-03 2004-05-13 Widex A/S Hörgerät mit adaptiver anpassung von mikrofonen
EP1091615B1 (fr) * 1999-10-07 2003-01-08 Zlatan Ribic Procédé et dispositif pour la prise de signaux sonores
US7092537B1 (en) * 1999-12-07 2006-08-15 Texas Instruments Incorporated Digital self-adapting graphic equalizer and method
DE10195933T1 (de) * 2000-03-14 2003-04-30 Audia Technology Inc Adaptiver Mikrophonabgleich in einem Richtsystem mit mehreren Mikrophonen
DE10045197C1 (de) * 2000-09-13 2002-03-07 Siemens Audiologische Technik Verfahren zum Betrieb eines Hörhilfegerätes oder Hörgerätessystems sowie Hörhilfegerät oder Hörgerätesystem
US7065220B2 (en) * 2000-09-29 2006-06-20 Knowles Electronics, Inc. Microphone array having a second order directional pattern

Also Published As

Publication number Publication date
DK1465453T3 (da) 2011-05-16
US20040240683A1 (en) 2004-12-02
EP1465453A3 (fr) 2009-12-16
DE10310579B4 (de) 2005-06-16
DE10310579A1 (de) 2004-09-23
EP1465453A2 (fr) 2004-10-06
DE502004012137D1 (de) 2011-03-10
US7474755B2 (en) 2009-01-06

Similar Documents

Publication Publication Date Title
EP1465453B1 (fr) Réglage automatique d'un système de microphone directionnel avec au moins trois microphones
DE102011006471B4 (de) Hörhilfegerät sowie Hörgerätesystem mit einem Richtmikrofonsystem sowie Verfahren zum Einstellen eines Richtmikrofons bei einem Hörhilfegerät
EP2180726B2 (fr) Localisation du son avec des prothèses auditives binauriculaires
DE10331956C5 (de) Hörhilfegerät sowie Verfahren zum Betrieb eines Hörhilfegerätes mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteistiken einstellbar sind
EP1192838B1 (fr) Prothese auditive a systeme de microphone directionnel et procede permettant de faire fonctionner ladite prothese
DE10249416B4 (de) Verfahren zum Einstellen und zum Betrieb eines Hörhilfegerätes sowie Hörhilfegerät
EP1489885B1 (fr) Procédé pour l'opération d'une prothèse auditive ainsi qu'une prothèse auditive avec un système de microphone dans lequel différents caractéristiques de directivité sont sélectionnables
EP1489884B1 (fr) Procédé de commande d'une prothèse auditive et prothèse auditive avec système de microphone dans lequel différentes caractéristiques directionnelles sont réglables
DE60004863T2 (de) EINE METHODE ZUR REGELUNG DER RICHTWIRKUNG DER SCHALLEMPFANGSCHARAkTERISTIK EINES HÖRGERÄTES UND EIN HÖRGERÄT ZUR AUSFÜHRUNG DER METHODE
EP2840809A2 (fr) Commande de l'intensité d'effet d'un microphone directionnel binaural
DE102006047986A1 (de) Verarbeitung eines Eingangssignals in einer Hörhilfe
DE102013201043B4 (de) Verfahren und Vorrichtung zum Bestimmen eines Verstärkungsfaktors eines Hörhilfegeräts
EP2595414B1 (fr) Dispositif auditif avec un système pour réduire un bruit de microphone et procédé de réduction d'un bruit de microphone
EP1503612B1 (fr) Prothèse auditive et méthode à l'opération d'une prothèse auditive avec un système de microphone dans lequel de différentes caractéristiques directionnelles sont sélectionnables
EP1269576B1 (fr) Procede pour predeterminer la caracteristique de transmission d'un ensemble microphone et ensemble microphone
DE102014218672B3 (de) Verfahren und Vorrichtung zur Rückkopplungsunterdrückung
DE10310580A1 (de) Vorrichtung und Verfahren zur Adaption von Hörgerätemikrofonen
DE102013207161A1 (de) Verfahren zur Nutzsignalanpassung in binauralen Hörhilfesystemen
EP1916872B1 (fr) Système de microphone directionnel différentiel et appareil auditif doté d'un tel système de microphone directionnel différentiel
EP1309225B1 (fr) Procédé pour déterminer le seuil de couplage dans une prothèse auditive
EP2169984B1 (fr) Prothèse auditive avec système de microphone directif et procédé de fonctionnement d'une telle prothèse auditive
DE102015205488A1 (de) Audioverarbeitungseinheit und Verfahren zur Verarbeitung eines Audiosignals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20091120

17Q First examination report despatched

Effective date: 20091208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

AKX Designation fees paid

Designated state(s): CH DE DK FR GB LI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004012137

Country of ref document: DE

Date of ref document: 20110310

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004012137

Country of ref document: DE

Effective date: 20110310

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111027

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004012137

Country of ref document: DE

Effective date: 20111027

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004012137

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004012137

Country of ref document: DE

Owner name: SIVANTOS GMBH, DE

Free format text: FORMER OWNER: SIEMENS AUDIOLOGISCHE TECHNIK GMBH, 91058 ERLANGEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220221

Year of fee payment: 19

Ref country code: DK

Payment date: 20220221

Year of fee payment: 19

Ref country code: DE

Payment date: 20220217

Year of fee payment: 19

Ref country code: CH

Payment date: 20220221

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220221

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004012137

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20230228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230225

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230901