EP1444059B1 - Control method for a production line for rolling hot-rolled metal strips disposed upstream of a cooling stretch - Google Patents

Control method for a production line for rolling hot-rolled metal strips disposed upstream of a cooling stretch Download PDF

Info

Publication number
EP1444059B1
EP1444059B1 EP02776880A EP02776880A EP1444059B1 EP 1444059 B1 EP1444059 B1 EP 1444059B1 EP 02776880 A EP02776880 A EP 02776880A EP 02776880 A EP02776880 A EP 02776880A EP 1444059 B1 EP1444059 B1 EP 1444059B1
Authority
EP
European Patent Office
Prior art keywords
control method
strip
model
temperature
finishing train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP02776880A
Other languages
German (de)
French (fr)
Other versions
EP1444059A1 (en
Inventor
Klaus Weinzierl
Michael Metzger
Matthias Kurz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Germany GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7705771&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1444059(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1444059A1 publication Critical patent/EP1444059A1/en
Application granted granted Critical
Publication of EP1444059B1 publication Critical patent/EP1444059B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49771Quantitative measuring or gauging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • Y10T29/49991Combined with rolling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53526Running-length work

Definitions

  • the present invention relates to a control method for a cooling line preceded finishing line for rolling metal hot strip.
  • a control method for a cooling line is known, which is preceded by a finishing train for rolling metal hot strip.
  • band points and their initial temperatures are detected and individual setpoint temperature profiles are assigned to the detected band points.
  • the band points, their initial temperatures and their desired temperature curves are fed to a model for the cooling section.
  • the band points are tracked as they pass through the cooling section.
  • the hot strip is subjected to temperature influencing by means of temperature influencing devices.
  • the tracking and the temperature changes are also fed to the model.
  • the model determines in real time expected actual temperatures of the recorded band points and assigns them to the band points.
  • the temperature as a function of the strip thickness is available for each band point at any time. Furthermore, it determines control values for the temperature-influencing devices on the basis of the setpoint temperature profiles assigned to the detected band points and the expected actual temperatures, and supplies the control values to them.
  • the temperature control is used in particular for targeted adjustment of material and structural properties of the metal hot strip. As a rule, the temperature control is carried out in such a way that a predetermined reel temperature curve is achieved as well as possible from the outlet of the cooling section.
  • Finishing roads like those in the DE 199 63 186 A1 mentioned finishing streets are also well known. They are usually driven - controlled by a pass schedule - such that at the end of the finishing mill predetermined final dimensions and a predetermined Endwalztemperatur of the metal strip can be achieved. Rolling also influences the material properties, in particular the structural properties of the hot strip.
  • the basis of the finishing line control is usually one or more setup calculations, by means of which individual band segments are calculated without direct temporal reference to the events in the cooling section.
  • the belt speed of the finishing train is varied by means of a PI controller or another classical control. Cooling between individual stands of the finishing train is only pre-controlled.
  • the object of the present invention is therefore to provide a control method which can be realized in a simple manner, by means of which the maintenance of a desired temperature profile can also be ensured in the upstream finishing train.
  • the energy content descriptive quantity may alternatively be the temperature or the enthalpy of the metal hot strip.
  • the model is easily modeled on the actual behavior of the model Finishing line adaptable.
  • the model is determined in addition to the expected actual temperatures functional dependencies of the expected actual temperatures of the correction factor and the expected actual temperatures of the already recorded band points are corrected by the correction factor, the expected actual temperatures of the already recorded band points easily correctable, especially without further model calculations.
  • control values for temperature influencing devices are determined by the model on the basis of the setpoint values assigned to the detected band points and the expected actual temperatures, by means of which the actual temperature of the hot strip can be influenced without deformation, and the control values are supplied to the temperature influencing devices, targeted temperature control of the hot strip is also possible.
  • At least one of the drive values is compared with a set drive value and a comparison value for a belt speed of the hot strip is determined on the basis of the comparison, it is easily possible to set the drive value such that the corresponding temperature influencing device is operated in a medium drive range. This makes it particularly easy to correct short-term temperature fluctuations by means of the temperature influencing device.
  • control method only a change in a rolling speed is used to control the deformation-free temperature influencing within the finishing train.
  • the control values can, for. B. are determined such that the deviation of the expected for the band points actual temperatures is minimized from a predetermined position temperature at least one point of the finishing train.
  • the material properties of the hot strip are thereby adjustable in a simpler manner. This is especially true when the point is between two stands of the finishing train and in the hot strip at the setting temperature, a phase transformation takes place.
  • the setpoints can be the same for all band points. Preferably, however, they are individually assigned to the band points.
  • the setpoint values can only be individual values to be aimed for at specific locations or at specific times, that is, location or time-specific. Preferably, however, they form a desired value course.
  • control method If the control method is executed clocked, it is particularly easy to implement.
  • the cycle is usually between 0.1 and 0.5 s, typically 0.2 to 0.3 s.
  • control concept according to the invention can be expanded as required.
  • an oven, a continuous casting or cooling line is controlled.
  • a single continuous, common control method from the generation of the slab or the heating of the slab to reeling of the rolled hot strip can be realized.
  • the model can also be designed cross-street.
  • FIG. 1 includes a plant for the production of steel hot strip 6 a continuous casting 1, a roughing 2, a finishing train 3 and a cooling section 4. Behind the cooling section 4, a reel 5 is arranged. From him the produced by the continuous casting 1, rolled in the streets 2, 3 and the cooling section 4 cooled hot strip 6 is reeled.
  • the entire system is controlled by means of a uniform control method, which is executed by a real-time computer 7.
  • the real-time computer 7 is connected to the individual components 1 to 5 of the plant for the production of steel hot strip 6 control technology. Furthermore, it is programmed with a control program 8, on the basis of which it carries out the control procedure.
  • the control program 8 contains inter alia a - preferably common - physical model 9. This is thus implemented in the real-time computing device 7.
  • the real-time computing device 7 may have one or more computers, in particular process computers.
  • the common model 9 at least the behavior of the finishing train 3 and the cooling section 4, preferably also the behavior of the roughing train 2 and the continuous casting plant 1, is modeled.
  • FIG. 2 shows a similar attachment as FIG. 1 , In contrast to FIG. 1 is the roughing 2 but not the continuous casting 1 upstream, but instead a furnace 1 ', are heated in the slab to be rolled 6' previously. Also in the system according to FIG. 2 But there is a continuous control by the real-time computing device. 7
  • the finishing train 3 has several rolling stands 3 '. But this is not necessary. In individual cases, the finishing train 3 can also have only one rolling stand 3 '. This applies in particular if, by means of the continuous casting 1 according to FIG. 1 already close to the final dimensions Casting takes place, the hot strip 6 can therefore be rolled in a single stitch to its final dimension.
  • FIG. 3 and 4 now show schematically the common control method for the finishing train 3 and the cooling section 4.
  • the division into two figures is made only for the sake of clarity.
  • the model 9 is (at least) the finishing train 3 and the cooling section 4 in common.
  • an intermediate temperature measuring station 10, according to FIG. 3 is arranged at the outlet end of the finishing train 3, identical to the temperature measuring station 10 at the inlet of the cooling section 4 according to FIG. 4 , For this reason the temperature measuring station is in FIG. 4 also provided with the same reference numerals as in FIG. 3 ,
  • each a band point 101 and at least its initial temperature T1 is detected and assigned corresponding model points 101 '.
  • other sizes such.
  • the time clock ⁇ t is usually between 0.1 and 0.5 s, typically 0.2 to 0.3 s. Due to the clocked detection of the band points 101 and their initial temperatures T1, the entire control process is performed clocked.
  • the band points 101 and their initial temperatures T1 are supplied to the common model 9.
  • the initial temperatures T1 define within the model 9 first actual temperatures T2.
  • the band points 101 are also assigned individual setpoint values T * for an energy-content-describing variable, which are also supplied to the model 9.
  • the setpoint values T * for a quantity describing the energy content may, for example, be: B. temporal set temperature curves T * (t).
  • the model 9 determines real-time expected actual temperatures T2 of the detected band points 101, ie for all band points 101 which are located in the finishing line 3 or the cooling section 4 at this time.
  • the determined actual temperatures T2 are assigned to the corresponding model points 101 'as new actual temperatures T2. This is especially clear FIG. 5 according to which the expected actual temperatures T2 are again supplied to the model 9 as input variables.
  • the model 9 is additionally functional Dependencies f (k) of the (new) actual temperatures T2 are determined by a correction factor k.
  • the hot strip 6 is subjected to temperature changes ⁇ T in the finishing train 3 and the cooling section 4.
  • a liquid or gaseous cooling medium for example water or air
  • the temperature influences ⁇ T are also supplied to the model 9 and of course taken into account in the determination of the actual temperatures T2. How out FIG. 3 it can be seen, 3 'cooling devices 12 are also arranged between rolling stands.
  • the hot strip 6 is still heated by rolling in the rolling stands 3 'as such. Also for this characteristic sizes -. As the power consumption of the rolling stands 3 'and the temperatures of the work rolls - are fed to the model 9.
  • the expected actual temperatures T2 are determined in the model 9 by solving a one-dimensional, transient heat equation.
  • the heat equation for an insulated rod which only at the beginning and at the end - according to the top and bottom of the hot strip 6 - performs a heat exchange with the environment, assumed. It is therefore assumed that the heat conduction in the strip in the longitudinal and transverse direction disappears or is negligible.
  • This approach and its solutions are familiar to any person skilled in the art.
  • the (expected) actual temperature T2 is available as a function of the strip thickness at any time.
  • control values ⁇ T * for the temperature-influencing devices 12 are then determined on the basis of the setpoint values T * for the band points 101 and their expected actual temperatures T2.
  • the control values ⁇ T * are the temperature influencing devices 12 according to FIG. 5 supplied via lower-level controller 12 '.
  • the regulators 12 ' are designed in particular as prediction controllers if a specific end temperature of the hot strip 6 is to be set at the end of the cooling section 4.
  • the detection of the initial temperatures T1 also occur sooner, z. B. when entering the roughing 2. Then, the determination of the expected actual temperatures T2 course must be made from this location and from this point in time.
  • the temperature profile is controlled by the model 9 and the real-time computer 7.
  • the model 9 therefore, only the expected actual temperature T2 can be calculated. It is not possible to check whether the actual temperature T2 expected on the basis of the model calculation agrees with an actual belt temperature T3.
  • the actual actual temperature T3 at this point ie when leaving the cooling section 4 and thus in particular after leaving the finishing train 3, detectable.
  • This final temperature T3 can be compared by a correction factor determiner 9 'with the final temperature T2 calculated on the basis of the model 9 and expected for this time. Based on the comparison, the correction factor k for the model 9 can then be determined.
  • the determination of the correction factor k is also known to experts, for example from the already mentioned DE 199 63 186 A1 , expected Actual temperatures T2 for newly detected band points 101 can therefore be determined immediately on the basis of the correspondingly adapted and corrected model 9.
  • the functional dependencies f (k) of the expected actual temperatures T2 have already been determined by the correction factor k for the already detected band points 101, the expected actual temperatures T2 for the band points 101 already detected can also be corrected in a simple manner on the basis of the correction factor k.
  • an intermediate temperature measuring station 10 is arranged.
  • the intermediate temperature measuring station 10 it is already possible when reaching the intermediate temperature measuring station 10 to detect the actual temperature T3 of the hot strip 6.
  • a correction of the model 9 and the previously calculated expected actual temperatures T2 is already possible.
  • any measurement of the actual temperature T3 for adapting the model 9 or for determining or correcting at least one correction factor k for the model 9 can be used.
  • the control values ⁇ T * supplied to the temperature influencing devices 12 are additionally compared in a speed controller 12 "with target drive values ⁇ T * Based on the comparison, a correction value ⁇ v is determined for the final rolling speed v.
  • the correction of the rolling speed v thus serves to compensate for long-term and global effects, while short-term and local effects are compensated by means of the control values ⁇ T *. It is even possible to vary only the initial rolling speed v to control the deformation-free temperature influencing within the finishing train 3.
  • the setpoint values T * are generally predefined as functions of the time t, ie as desired time temperature curves T * (t). But it is also possible to specify the desired temperature curves T * as a function of the place.
  • the guidance of the cooling of the hot strip 6 by the model 9 and the real-time computing device 7 is such that the deviation of the expected actual temperatures T2 for the band points 101 from a predetermined position temperature at least one point of the cooling section 4 and the finishing line. 3 is minimized. As a rule, these are the temperatures at the final temperature measuring station 13 and at the intermediate temperature measuring station 10.
  • the hot strip 6 Due to the continuous calculation of the expected actual temperatures T2 in real time, it is also possible to set certain temperatures at locations where an actual detection of the temperature of the hot strip 6 is not possible or not done for other reasons. Due to the continuous temperature calculation by the model 9 in real time, it is particularly possible to ensure that at a point between two rolling stands 3 ', z. B. between the penultimate and the last roll stand 3 'of the finishing train 3, the hot strip 6 reaches a predetermined limit temperature TG.
  • the limit temperature TG may be such that a phase transformation takes place in the hot strip 6 at precisely this limit temperature TG. From this way, a so-called two-phase rolling can be achieved even without real temperature measurement at this point.
  • the temperature was used as the energy content descriptive quantity.
  • the calculation can alternatively be done with the enthalpy.
  • the phase components of the individual band points 101 on austenite, ferrite, martensite, etc. can also be calculated in real time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Metal Rolling (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

According to a method, initial temperatures (T 1 ) of strip points ( 101 ) are detected when the hot-rolled strip ( 6 ) is fed to the production line. The strip points ( 101 ) are monitored on their way through the production line. The hot-rolled strip ( 6 ) is subjected to temperature influences (delta T) in the production line ( 3 ). The strip points ( 101 ), the initial temperatures (T 1 ), the monitored values (W(t)) and the temperature influences (delta T) are supplied to a model ( 9 ) for the production line ( 3 ). The model ( 9 ) determines expected actual temperatures (T 2 ) of the strip points ( 101 ) in real time and allocates them to the strip points as the new actual temperatures (T 2 ).

Description

Die vorliegende Erfindung betrifft ein Steuerverfahren für eine einer Kühlstrecke vorgeordnete Fertigstraße zum Walzen von Metall-Warmband.The present invention relates to a control method for a cooling line preceded finishing line for rolling metal hot strip.

Aus der DE 199 63 186 A1 ist ein Steuerverfahren für eine Kühlstrecke bekannt, der eine Fertigstraße zum Walzen von Metall-Warmband vorgeordnet ist. Bei diesem Steuerverfahren werden beim Einlaufen des Warmbandes in die Kühlstrecke Bandpunkte und deren Anfangstemperaturen erfasst und den erfassten Bandpunkten individuell Solltemperaturverläufe zugeordnet. Die Bandpunkte, deren Anfangstemperaturen und deren Solltemperaturverläufe werden einem Modell für die Kühlstrecke zugeführt. Die Bandpunkte werden beim Durchlaufen der Kühlstrecke wegverfolgt. In der Kühlstrecke wird das Warmband mittels Temperaturbeeinflussungseinrichtungen Temperaturbeeinflussungen unterworfen. Die Wegverfolgungen und die Temperaturbeeinflussungen werden ebenfalls dem Modell zugeführt. Das Modell ermittelt in Echtzeit erwartete Isttemperaturen der erfassten Bandpunkte und ordnet diese den Bandpunkten zu. Dadurch steht für jeden Bandpunkt zu jedem Zeitpunkt die Temperatur als Funktion über die Banddicke zur Verfügung. Ferner ermittelt es anhand der den erfassten Bandpunkten zugeordneten Solltemperaturverläufe und der erwarteten Isttemperaturen Ansteuerwerte für die Temperaturbeeinflussungseinrichtungen und führt die Ansteuerwerte diesen zu. Die Temperaturführung dient insbesondere zum gezielten Einstellen von Material- und Gefügeeigenschaften des Metall-Warmbandes. In der Regel wird dabei die Temperaturführung derart durchgeführt, dass ein vorbestimmter Haspeltemperaturverlauf vom Ausgang der Kühlstrecke möglichst gut erreicht wird.From the DE 199 63 186 A1 a control method for a cooling line is known, which is preceded by a finishing train for rolling metal hot strip. In this control method, when the hot strip enters the cooling section, band points and their initial temperatures are detected and individual setpoint temperature profiles are assigned to the detected band points. The band points, their initial temperatures and their desired temperature curves are fed to a model for the cooling section. The band points are tracked as they pass through the cooling section. In the cooling section, the hot strip is subjected to temperature influencing by means of temperature influencing devices. The tracking and the temperature changes are also fed to the model. The model determines in real time expected actual temperatures of the recorded band points and assigns them to the band points. As a result, the temperature as a function of the strip thickness is available for each band point at any time. Furthermore, it determines control values for the temperature-influencing devices on the basis of the setpoint temperature profiles assigned to the detected band points and the expected actual temperatures, and supplies the control values to them. The temperature control is used in particular for targeted adjustment of material and structural properties of the metal hot strip. As a rule, the temperature control is carried out in such a way that a predetermined reel temperature curve is achieved as well as possible from the outlet of the cooling section.

Fertigstraßen wie die in der DE 199 63 186 A1 erwähnte Fertigstraßen sind ebenfalls allgemein bekannt. Sie werden in der Regel - gesteuert durch einen Stichplan - derart gefahren, dass am Ende der Fertigstraße vorbestimmte Endabmessungen und eine vorbestimmte Endwalztemperatur des Metallbandes erreicht werden. Auch das Walzen beeinflusst die Materialeigenschaften, insbesondere die Gefügeeigenschaften des Warmbandes.Finishing roads like those in the DE 199 63 186 A1 mentioned finishing streets are also well known. They are usually driven - controlled by a pass schedule - such that at the end of the finishing mill predetermined final dimensions and a predetermined Endwalztemperatur of the metal strip can be achieved. Rolling also influences the material properties, in particular the structural properties of the hot strip.

Im Stand der Technik sind Basis der Fertigstraßenregelung zumeist eine oder mehrere Setup-Berechnungen, mittels derer einzelne Bandsegmente ohne direkten zeitlichen Bezug zum Geschehen in der Kühlstrecke voraus berechnet werden. Anhand der gemessenen Endwalztemperatur und einer vorausberechneten Wirkung der Bandgeschwindigkeit auf die Endwalztemperatur wird die Bandgeschwindigkeit der Fertigstraße mittels eines PI-Reglers oder einer anderen klassischen Regelung variiert. Eine Kühlung zwischen einzelnen Gerüsten der Fertigstraße wird nur vorgesteuert.In the prior art, the basis of the finishing line control is usually one or more setup calculations, by means of which individual band segments are calculated without direct temporal reference to the events in the cooling section. On the basis of the measured final rolling temperature and a predicted effect of the belt speed on the final rolling temperature, the belt speed of the finishing train is varied by means of a PI controller or another classical control. Cooling between individual stands of the finishing train is only pre-controlled.

Je höher die Anforderungen an das Metall-Warmband werden, desto genauer müssen die Fertigungsbedingungen, unter anderem der Temperaturverlauf, eingehalten werden. Dies gilt ganz besonders für sogenannte neue Werkstoffe wie z. B. Mehrphasenstähle, TRIP-Stähle und dergleichen. Denn diese Werkstoffe fordern eine genau definierte Wärmebehandlung, das heißt eine Vorgabe und Überwachung eines Temperaturverlaufs.The higher the requirements for the metal hot strip, the more accurate the manufacturing conditions, including the temperature profile, must be adhered to. This is especially true for so-called new materials such. B. multiphase steels, TRIP steels and the like. Because these materials require a well-defined heat treatment, that is a specification and monitoring of a temperature profile.

Aufgabe der vorliegenden Erfindung ist daher, ein auf einfache Weise realisierbares Steuerverfahren anzugeben, mittels dessen die Einhaltung eines gewünschten Temperaturverlaufs auch in der vorgeordneten Fertigstraße gewährleistet werden kann.The object of the present invention is therefore to provide a control method which can be realized in a simple manner, by means of which the maintenance of a desired temperature profile can also be ensured in the upstream finishing train.

Die Aufgabe wird durch ein Steuerverfahren für eine einer Kühlstrecke vorgeordnete Fertigstraße zum Walzen von Metall-Warmband gelöst,

  • wobei spätestens beim Einlaufen des Warmbandes in die Fertigstraße Bandpunkte und zumindest deren Anfangstemperaturen erfasst werden,
  • wobei die Bandpunkte und als Isttemperaturen die Anfangstemperaturen einem Modell für die Fertigstraße zugeführt werden,
  • wobei die Bandpunkte beim Durchlaufen der Fertigstraße wegverfolgt werden,
  • wobei das Warmband in der Fertigstraße Temperaturbeeinflussungen unterworfen wird,
  • wobei die Wegverfolgungen und die Temperaturbeeinflussungen ebenfalls dem Modell zugeführt werden,
  • wobei von dem Modell anhand der Isttemperaturen in Echtzeit erwartete Isttemperaturen der erfassten Bandpunkte ermittelt und den erfassten Bandpunkten als neue Isttemperaturen zugeordnet werden.
The object is achieved by a control method for a finishing line upstream of a cooling section for rolling metal hot strip,
  • wherein band points and at least their initial temperatures are detected at the latest when the hot strip enters the finishing train
  • wherein the band points and as actual temperatures the initial temperatures are fed to a model for the finishing train,
  • wherein the band points are traced while passing through the finishing train,
  • wherein the hot strip is subjected to temperature influences in the finishing train,
  • the tracking and the temperature effects are also fed to the model,
  • wherein expected from the model on the basis of the actual temperatures expected real temperatures of the detected band points and the detected band points are assigned as new actual temperatures.

Die energieinhaltsbeschreibende Größe kann alternativ die Temperatur oder die Enthalpie des Metall-Warmbandes sein.The energy content descriptive quantity may alternatively be the temperature or the enthalpy of the metal hot strip.

Wenn nach dem Auslaufen der Bandpunkte aus der Fertigstraße deren Endtemperaturen erfasst werden, die erfassten Endtemperaturen mit anhand des Modells ermittelten erwarteten Endtemperaturen verglichen werden und anhand des Vergleichs mindestens ein Korrekturfaktor für das Modell bestimmt wird, ist das Modell auf einfache Weise an das tatsächliche Verhalten der Fertigstraße adaptierbar.If, after the end of the strip lines from the finishing train, their final temperatures are recorded, the detected final temperatures are compared with the expected final temperatures determined using the model, and the comparison determines at least one correction factor for the model, the model is easily modeled on the actual behavior of the model Finishing line adaptable.

Wenn den erfassten Bandpunkten Sollwerte für eine energieinhaltsbeschreibende Größe zugeordnet und dem Modell zugeführt werden, von dem Modell zusätzlich zu den erwarteten Isttemperaturen funktionale Abhängigkeiten der erwarteten Isttemperaturen von dem Korrekturfaktor ermittelt werden und die erwarteten Isttemperaturen der bereits erfassten Bandpunkte anhand des Korrekturfaktors korrigiert werden, sind die erwarteten Isttemperaturen der bereits erfassten Bandpunkte leicht korrigierbar, insbesondere ohne weitere Modellrechnungen.If set values for an energy descriptive quantity are assigned to the detected band points and fed to the model, the model is determined in addition to the expected actual temperatures functional dependencies of the expected actual temperatures of the correction factor and the expected actual temperatures of the already recorded band points are corrected by the correction factor, the expected actual temperatures of the already recorded band points easily correctable, especially without further model calculations.

Wenn von dem Modell anhand der den erfassten Bandpunkten zugeordneten Sollwerte und der erwarteten Isttemperaturen Ansteuerwerte für Temperaturbeeinflussungseinrichtungen ermittelt werden, mittels derer die Isttemperatur des Warmbandes umformungsfrei beeinflussbar ist, und die Ansteuerwerte den Temperaturbeeinflussungseinrichtungen zugeführt werden, ist auch eine gezielte Temperaturführung des Warmbandes möglich.If control values for temperature influencing devices are determined by the model on the basis of the setpoint values assigned to the detected band points and the expected actual temperatures, by means of which the actual temperature of the hot strip can be influenced without deformation, and the control values are supplied to the temperature influencing devices, targeted temperature control of the hot strip is also possible.

Wenn mindestens einer der Ansteuerwerte mit einem Sollansteuerwert verglichen wird und anhand des Vergleichs ein Korrekturwert für eine Bandgeschwindigkeit des Warmbandes ermittelt wird, ist es auf einfache Weise möglich, den Ansteuerwert derart einzustellen, dass die korrespondierende Temperaturbeeinflussungseinrichtung in einem mittleren Aussteuerbereich betrieben wird. Damit ist es insbesondere leicht möglich, kurzfristig auftretende Temperaturschwankungen mittels der Temperaturbeeinflussungseinrichtung auszuregeln.If at least one of the drive values is compared with a set drive value and a comparison value for a belt speed of the hot strip is determined on the basis of the comparison, it is easily possible to set the drive value such that the corresponding temperature influencing device is operated in a medium drive range. This makes it particularly easy to correct short-term temperature fluctuations by means of the temperature influencing device.

In einer möglichen Ausgestaltung des Steuerverfahrens wird zur Regelung der umformungsfreien Temperaturbeeinflussung innerhalb der Fertigstraße ausschließlich eine Änderung einer Walzgeschwindigkeit herangezogen.In one possible embodiment of the control method, only a change in a rolling speed is used to control the deformation-free temperature influencing within the finishing train.

Die Ansteuerwerte können z. B. derart ermittelt werden, dass die Abweichung der für die Bandpunkte erwarteten Isttemperaturen von einer vorbestimmten Stellentemperatur an mindestens einer Stelle der Fertigstraße minimiert wird. In manchen Fällen sind hierdurch die Materialeigenschaften des Warmbandes auf einfachere Weise einstellbar. Dies gilt insbesondere dann, wenn die Stelle zwischen zwei Walzgerüsten der Fertigstraße liegt und sich im Warmband bei der Stellentemperatur eine Phasenumwandlung vollzieht. Mittels des erfindungsgemäßen Steuerverfahrens ist es dabei möglich, dies auch dann zu gewährleisten, wenn an der Stelle keine Erfassung der Isttemperatur des Warmbandes erfolgt.The control values can, for. B. are determined such that the deviation of the expected for the band points actual temperatures is minimized from a predetermined position temperature at least one point of the finishing train. In some cases, the material properties of the hot strip are thereby adjustable in a simpler manner. This is especially true when the point is between two stands of the finishing train and in the hot strip at the setting temperature, a phase transformation takes place. By means of the control method according to the invention, it is possible to ensure this even if there is no detection of the actual temperature of the hot strip at the point.

Die Sollwerte können für alle Bandpunkte gleich sein. Vorzugsweise sind sie aber den Bandpunkten individuell zugeordnet.The setpoints can be the same for all band points. Preferably, however, they are individually assigned to the band points.

Die Sollwerte können nur einzelne, an bestimmten Orten oder zu bestimmten Zeiten anzustrebende Werte, also orts- oder zeitspezifisch, sein. Vorzugsweise aber bilden sie einen Sollwertverlauf.The setpoint values can only be individual values to be aimed for at specific locations or at specific times, that is, location or time-specific. Preferably, however, they form a desired value course.

Wenn mittels des Modells auch eine Ermittlung von Phasenanteilen der jeweiligen Bandpunkte erfolgt, ist eine noch bessere Modellierung des Verhaltens des Warmbandes möglich.If a determination of phase fractions of the respective band points is also carried out by means of the model, an even better modeling of the behavior of the hot strip is possible.

Wenn das Steuerverfahren getaktet ausgeführt wird, ist es besonders einfach realisierbar. Der Takt beträgt dabei in der Regel zwischen 0,1 und 0,5 s, typisch 0,2 bis 0,3 s.If the control method is executed clocked, it is particularly easy to implement. The cycle is usually between 0.1 and 0.5 s, typically 0.2 to 0.3 s.

Das erfindungsgemäße Steuerkonzept ist nach Bedarf erweiterbar. Insbesondere ist es möglich, dass von ihm auch mindestens eine der Fertigstraße vor- oder nachgeordnete Anlage, z. B. eine Vorstraße, ein Ofen, ein Stranggießanlage oder eine Kühlstrecke, gesteuert wird. Damit ist in der Praxis ein einziges durchgängiges, gemeinsames Steuerverfahren von der Erzeugung der Bramme bzw. dem Aufheizen der Bramme bis zum Haspeln des gewalzten Warmbandes realisierbar. Auch das Modell kann fertigstraßenübergreifend ausgebildet sein.The control concept according to the invention can be expanded as required. In particular, it is possible that from him at least one of the finishing train upstream or downstream plant, z. As a roughing, an oven, a continuous casting or cooling line is controlled. Thus, in practice, a single continuous, common control method from the generation of the slab or the heating of the slab to reeling of the rolled hot strip can be realized. The model can also be designed cross-street.

Weitere Vorteile und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels in Verbindung mit den Zeichnungen. Dabei zeigen in Prinzipdarstellung

FIG 1
eine Anlage zur Erzeugung von Metall-Warmband,
FIG 2
eine weitere Anlage zur Erzeugung von Metall-Warm- band,
FIG 3
eine Fertigstrasse,
FIG 4
eine Kühlstrecke und
FIG 5
ein Blockschaltbild eines Modells.
Further advantages and details emerge from the following description of an embodiment in conjunction with the drawings. This show in a schematic representation
FIG. 1
a plant for the production of metal hot strip,
FIG. 2
another plant for the production of metal hot strip,
FIG. 3
a finishing road,
FIG. 4
a cooling section and
FIG. 5
a block diagram of a model.

Gemäß FIG 1 umfasst eine Anlage zur Erzeugung von Stahl-Warmband 6 eine Stranggießanlage 1, eine Vorstraße 2, eine Fertigstraße 3 und eine Kühlstrecke 4. Hinter der Kühlstrecke 4 ist ein Haspel 5 angeordnet. Von ihm wird das von der Stranggießanlage 1 erzeugte, in den Straßen 2, 3 gewalzte und der Kühlstrecke 4 gekühlte Warmband 6 aufgehaspelt.According to FIG. 1 includes a plant for the production of steel hot strip 6 a continuous casting 1, a roughing 2, a finishing train 3 and a cooling section 4. Behind the cooling section 4, a reel 5 is arranged. From him the produced by the continuous casting 1, rolled in the streets 2, 3 and the cooling section 4 cooled hot strip 6 is reeled.

Die gesamte Anlage wird mittels eines einheitlichen Steuerverfahrens gesteuert, das von einer Echtzeit-Recheneinrichtung 7 ausgeführt wird. Hierzu ist die Echtzeit-Recheneinrichtung 7 mit den einzelnen Komponenten 1 bis 5 der Anlage zur Erzeugung von Stahl-Warmband 6 steuerungstechnisch verbunden. Ferner ist sie mit einem Steuerprogramm 8 programmiert, aufgrund dessen sie das Steuerverfahren ausführt.The entire system is controlled by means of a uniform control method, which is executed by a real-time computer 7. For this purpose, the real-time computer 7 is connected to the individual components 1 to 5 of the plant for the production of steel hot strip 6 control technology. Furthermore, it is programmed with a control program 8, on the basis of which it carries out the control procedure.

Das Steuerprogramm 8 enthält unter anderem ein - vorzugsweise gemeinsames - physikalisches Modell 9. Dieses ist also in der Echtzeit-Recheneinrichtung 7 implementiert. Die Echtzeit-Recheneinrichtung 7 kann einen Rechner oder mehrere Rechner, insbesondere Prozessrechner, aufweisen. Mittels des gemeinsamen Modells 9 wird zumindest das Verhalten der Fertigstraße 3 und der Kühlstrecke 4, vorzugsweise auch das Verhalten der Vorstraße 2 und der Stranggießanlage 1, modelliert.The control program 8 contains inter alia a - preferably common - physical model 9. This is thus implemented in the real-time computing device 7. The real-time computing device 7 may have one or more computers, in particular process computers. By means of the common model 9, at least the behavior of the finishing train 3 and the cooling section 4, preferably also the behavior of the roughing train 2 and the continuous casting plant 1, is modeled.

FIG 2 zeigt eine ähnliche Anlage wie FIG 1. Im Unterschied zu FIG 1 ist der Vorstraße 2 aber nicht die Stranggießanlage 1 vorgeordnet, sondern statt dessen ein Ofen 1', in dem zu walzende Brammen 6' zuvor aufgeheizt werden. Auch bei der Anlage gemäß FIG 2 erfolgt aber eine durchgängige Steuerung durch die Echtzeit-Recheneinrichtung 7. FIG. 2 shows a similar attachment as FIG. 1 , In contrast to FIG. 1 is the roughing 2 but not the continuous casting 1 upstream, but instead a furnace 1 ', are heated in the slab to be rolled 6' previously. Also in the system according to FIG. 2 But there is a continuous control by the real-time computing device. 7

Gemäß den FIG 1 und 2 weist die Fertigstraße 3 mehrere Walzgerüste 3' auf. Dies ist aber nicht erforderlich. Im Einzelfall kann die Fertigstraße 3 auch nur ein einziges Walzgerüst 3' aufweisen. Dies gilt insbesondere dann, wenn mittels der Stranggießanlage 1 gemäß FIG 1 bereits ein endabmessungsnahes Gießen erfolgt, das Warmband 6 also in einem einzigen Stich auf seine Endabmessung gewalzt werden kann.According to the 1 and 2 the finishing train 3 has several rolling stands 3 '. But this is not necessary. In individual cases, the finishing train 3 can also have only one rolling stand 3 '. This applies in particular if, by means of the continuous casting 1 according to FIG. 1 already close to the final dimensions Casting takes place, the hot strip 6 can therefore be rolled in a single stitch to its final dimension.

Die FIG 3 und 4 zeigen nun schematisch das gemeinsame Steuerverfahren für die Fertigstraße 3 und die Kühlstrecke 4. Die Aufteilung in zwei Figuren ist dabei nur der Übersichtlichkeit halber vorgenommen.The FIG. 3 and 4 now show schematically the common control method for the finishing train 3 and the cooling section 4. The division into two figures is made only for the sake of clarity.

Insbesondere das Modell 9 ist (zumindest) der Fertigstraße 3 und der Kühlstrecke 4 gemeinsam. Auch ist ein Zwischentemperaturmessplatz 10, der gemäß FIG 3 am auslaufseitigen Ende der Fertigstraße 3 angeordnet ist, identisch mit dem Temperaturmessplatz 10 am Einlauf der Kühlstrecke 4 gemäß FIG 4. Aus diesem Grund ist der Temperaturmessplatz in FIG 4 auch mit dem gleichen Bezugszeichen versehen wie in FIG 3.In particular, the model 9 is (at least) the finishing train 3 and the cooling section 4 in common. Also, an intermediate temperature measuring station 10, according to FIG. 3 is arranged at the outlet end of the finishing train 3, identical to the temperature measuring station 10 at the inlet of the cooling section 4 according to FIG. 4 , For this reason the temperature measuring station is in FIG. 4 also provided with the same reference numerals as in FIG. 3 ,

Gemäß FIG 3 wird beim Einlaufen des Warmbandes 6 in die Fertigstraße 3 mittels eines Anfangstemperaturmessplatzes 11 in einem Zeittakt δt jeweils ein Bandpunkt 101 und zumindest dessen Anfangstemperatur T1 erfasst und korrespondierenden Modellpunkten 101' zugeordnet. Gegebenenfalls können auch weitere Größen wie z. B. eine Banddicke d erfasst und dem Modell 9 zugeführt werden. Der Zeittakt δt liegt in der Regel zwischen 0,1 und 0,5 s, typisch bei 0,2 bis 0,3 s. Aufgrund der getakteten Erfassung der Bandpunkte 101 und deren Anfangstemperaturen T1 wird das gesamte Steuerverfahren getaktet ausgeführt.According to FIG. 3 When entering the hot strip 6 in the finishing mill 3 by means of an initial temperature measuring station 11 in a time clock δt each a band point 101 and at least its initial temperature T1 is detected and assigned corresponding model points 101 '. Optionally, other sizes such. B. a band thickness d detected and fed to the model 9. The time clock δt is usually between 0.1 and 0.5 s, typically 0.2 to 0.3 s. Due to the clocked detection of the band points 101 and their initial temperatures T1, the entire control process is performed clocked.

Die Bandpunkte 101 und deren Anfangstemperaturen T1 werden dem gemeinsamen Modell 9 zugeführt. Die Anfangstemperaturen T1 definieren dabei innerhalb des Modells 9 zunächst Isttemperaturen T2. Den Bandpunkten 101 werden ferner individuell Sollwerte T* für eine energieinhaltsbeschreibende Größe zugeordnet, die ebenfalls dem Modell 9 zugeführt werden. Die Sollwerte T* für eine energieinhaltsbeschreibende Größe können z. B. zeitliche Solltemperaturverläufe T*(t) sein. Schließlich werden der Echtzeit-Recheneinrichtung 7 noch eine Anfangswalzgeschwindigkeit v sowie - explizit oder implizit - von den einzelnen Gerüsten 3' der Fertigstraße 3 bewirkte Stichabnahmen zugeführt.The band points 101 and their initial temperatures T1 are supplied to the common model 9. The initial temperatures T1 define within the model 9 first actual temperatures T2. The band points 101 are also assigned individual setpoint values T * for an energy-content-describing variable, which are also supplied to the model 9. The setpoint values T * for a quantity describing the energy content may, for example, be: B. temporal set temperature curves T * (t). Finally, the real-time computing device 7 is still fed an initial rolling speed v and - explicitly or implicitly - by the individual stands 3 'of the finishing train 3 effected Stichabnahmen.

Aufgrund der Stichabnahmen und der bekannten Anlagenkonfiguration kann aus der Anfangswalzgeschwindigkeit v die Geschwindigkeit hinter den jeweils nachgeordneten Gerüsten 3' und in der Kühlstrecke 4 ermittelt werden. Somit ist auch eine Wegverfolgung der Bandpunkte 101 beim Durchlaufen der Fertigstraße 3 und der Kühlstrecke 4 möglich. Die so errechenbare Wegverfolgung W(t) wird ebenfalls dem Modell 9 zugeführt, wo sie den korrespondierenden Modellpunkten 101' zugeordnet wird.Due to the Stichabnahmen and the known system configuration can be determined from the initial rolling speed v, the speed behind the respective downstream stands 3 'and in the cooling section 4. Thus, a tracking of the band points 101 when passing through the finishing train 3 and the cooling section 4 is possible. The path trace W (t) that can be calculated in this way is likewise fed to the model 9, where it is assigned to the corresponding model points 101 '.

Während des Zeittakts δt zwischen der Erfassung zweier Bandpunkte 101 werden von dem Modell 9 in Echtzeit erwartete Isttemperaturen T2 der erfassten Bandpunkte 101 ermittelt, also für alle Bandpunkte 101, die sich zu diesem Zeitpunkt in der Fertigstraße 3 oder der Kühlstrecke 4 befinden. Die ermittelten Isttemperaturen T2 werden den korrespondierenden Modellpunkten 101' als neue Isttemperaturen T2 zugeordnet. Dies geht besonders deutlich aus FIG 5 hervor, gemäß der die erwarteten Isttemperaturen T2 dem Modell 9 wieder als Eingangsgrößen zugeführt werden.During the time clock δt between the detection of two band points 101, the model 9 determines real-time expected actual temperatures T2 of the detected band points 101, ie for all band points 101 which are located in the finishing line 3 or the cooling section 4 at this time. The determined actual temperatures T2 are assigned to the corresponding model points 101 'as new actual temperatures T2. This is especially clear FIG. 5 according to which the expected actual temperatures T2 are again supplied to the model 9 as input variables.

Mit jedem Zeittakt δt wird also ein neuer Modellpunkt 101' generiert, dem die momentan am Anfangstemperaturmessplatz 11 erfasste Isttemperatur T1 als Isttemperatur T2 zugeordnet wird. Der Modellpunkt 101' wird im Zeittakt δt durch die Fertigstraße 3 und die Kühlstrecke 4 wegverfolgt. Seine erwartete Isttemperatur T2 wird durch das Modell 9 dabei aktualisiert. Wenn der korrespondierende Bandpunkt 101 die Messplätze 10, 13 erreicht, kann eine Überprüfung und Korrektur des Modells 9 erfolgen. Wenn der korrespondierende Bandpunkt 101 die Kühlstrecke 4 verlässt, wird der Modellpunkt 101' gelöscht. Ferner werden von dem Modell 9 zusätzlich funktionale Abhängigkeiten f(k) der (neuen) Isttemperaturen T2 von einem Korrekturfaktor k ermittelt.With each time clock Δt, therefore, a new model point 101 'is generated, to which the instantaneous temperature T1 currently detected at the initial temperature measuring point 11 is assigned as the actual temperature T2. The model point 101 'is tracked through the finishing line 3 and the cooling section 4 at a time interval Δt. Its expected actual temperature T2 is updated by the model 9 thereby. If the corresponding belt point 101 reaches the measuring stations 10, 13, a review and correction of the model 9 can take place. When the corresponding belt point 101 leaves the cooling section 4, the model point 101 'is deleted. Furthermore, the model 9 is additionally functional Dependencies f (k) of the (new) actual temperatures T2 are determined by a correction factor k.

Das Warmband 6 wird in der Fertigstraße 3 und der Kühlstrecke 4 Temperaturbeeinflussungen δT unterworfen. Beispielsweise kann mittels Temperaturbeeinflussungseinrichtungen 12 ein flüssiges oder gasförmiges Kühlmedium (z. B. Wasser oder Luft) auf das Warmband 6 aufgebracht werden. Die Temperaturbeeinflussungen δT werden ebenfalls dem Modell 9 zugeführt und bei der Ermittlung der Isttemperaturen T2 selbstverständlich berücksichtigt. Wie aus FIG 3 ersichtlich ist, sind dabei auch zwischen Walzgerüsten 3' Kühleinrichtungen 12 angeordnet.The hot strip 6 is subjected to temperature changes δT in the finishing train 3 and the cooling section 4. For example, a liquid or gaseous cooling medium (for example water or air) can be applied to the hot strip 6 by means of temperature-influencing devices 12. The temperature influences δT are also supplied to the model 9 and of course taken into account in the determination of the actual temperatures T2. How out FIG. 3 it can be seen, 3 'cooling devices 12 are also arranged between rolling stands.

Eine weitere Möglichkeit zur umformungsfreien Temperaturbeeinflussung des Warmbandes 6 ist die Walzgeschwindigkeit v. Auch diese wird dem Modell 9 zugeführt.Another possibility for deformation-free temperature influencing of the hot strip 6 is the rolling speed v. This is also fed to the model 9.

Schließlich wird das Warmband 6 noch durch das Walzen in den Walzgerüsten 3' als solches erwärmt. Auch hierfür charakteristische Größen - z. B. die Leistungsaufnahme der Walzgerüste 3' und die Temperaturen von deren Arbeitswalzen - werden dem Modell 9 zugeführt.Finally, the hot strip 6 is still heated by rolling in the rolling stands 3 'as such. Also for this characteristic sizes -. As the power consumption of the rolling stands 3 'and the temperatures of the work rolls - are fed to the model 9.

Die Ermittlung der erwarteten Isttemperaturen T2 erfolgt im Modell 9 durch Lösung einer eindimensionalen, instationären Wärmeleitungsgleichung. Bei der mathematischen Beschreibung wird also die Wärmeleitungsgleichung für einen isolierten Stab, der nur am Anfang und am Ende - entsprechend der Ober- und der Unterseite des Warmbandes 6 - einen Wärmeaustausch mit der Umgebung ausführt, ausgegangen. Es wird also angenommen, dass die Wärmeleitung im Band in Längs- und Querrichtung verschwindet bzw. vernachlässigbar ist. Dieser Lösungsansatz und auch seine Lösungen sind jedem Fachmann geläufig. Es steht also für jeden Bandpunkt 101 zu jedem Zeitpunkt die (erwartete) Isttemperatur T2 als Funktion über die Banddicke zur Verfügung.The expected actual temperatures T2 are determined in the model 9 by solving a one-dimensional, transient heat equation. In the mathematical description, therefore, the heat equation for an insulated rod, which only at the beginning and at the end - according to the top and bottom of the hot strip 6 - performs a heat exchange with the environment, assumed. It is therefore assumed that the heat conduction in the strip in the longitudinal and transverse direction disappears or is negligible. This approach and its solutions are familiar to any person skilled in the art. Thus, for each band point 101, the (expected) actual temperature T2 is available as a function of the strip thickness at any time.

Von dem Modell 9 werden dann anhand der Sollwerte T* für die Bandpunkte 101 und deren erwarteter Isttemperaturen T2 Ansteuerwerte δT* für die Temperaturbeeinflussungseinrichtungen 12 ermittelt. Die Ansteuerwerte δT* werden den Temperaturbeeinflussungseinrichtungen 12 gemäß FIG 5 über unterlagerte Regler 12' zugeführt. Die Regler 12' sind in der Regel insbesondere dann als Prädiktionsregler ausgebildet, wenn am Ende der Kühlstrecke 4 eine bestimmte Endtemperatur des Warmbandes 6 eingestellt werden soll.From the model 9, control values ΔT * for the temperature-influencing devices 12 are then determined on the basis of the setpoint values T * for the band points 101 and their expected actual temperatures T2. The control values δT * are the temperature influencing devices 12 according to FIG. 5 supplied via lower-level controller 12 '. As a rule, the regulators 12 'are designed in particular as prediction controllers if a specific end temperature of the hot strip 6 is to be set at the end of the cooling section 4.

Gegebenenfalls kann die Erfassung der Anfangstemperaturen T1 auch eher erfolgen, z. B. beim Einlaufen in die Vorstraße 2. Dann muss die Ermittlung der erwarteten Isttemperaturen T2 selbstverständlich ab diesem Ort und ab diesem Zeitpunkt erfolgen.Optionally, the detection of the initial temperatures T1 also occur sooner, z. B. when entering the roughing 2. Then, the determination of the expected actual temperatures T2 course must be made from this location and from this point in time.

Bis der erste erfasste Bandpunkt 101 einen Temperaturmessplatz 10, 13 erreicht, der zwischen der Fertigstraße 3 und dem Haspel 5 angeordnet ist, erfolgt durch das Modell 9 und die Echtzeit-Recheneinrichtung 7 eine Steuerung des Temperaturverlaufs. Mittels des Modells 9 kann also nur die erwartete Isttemperatur T2 errechnet werden. Eine Kontrolle, ob die aufgrund der Modellrechnung erwartete Isttemperatur T2 mit einer tatsächlichen Bandtemperatur T3 übereinstimmt, ist nicht möglich.Until the first detected belt point 101 reaches a temperature measuring station 10, 13 which is arranged between the finishing train 3 and the reel 5, the temperature profile is controlled by the model 9 and the real-time computer 7. By means of the model 9, therefore, only the expected actual temperature T2 can be calculated. It is not possible to check whether the actual temperature T2 expected on the basis of the model calculation agrees with an actual belt temperature T3.

Wenn aber der erste Bandpunkt 101 z. B. den Endtemperaturmessplatz 13 erreicht, ist die tatsächliche Isttemperatur T3 an dieser Stelle, also beim Auslaufen aus der Kühlstrecke 4 und damit insbesondere auch nach dem Auslaufen aus der Fertigstraße 3, erfassbar. Diese Endtemperatur T3 kann von einem Korrekturfaktorermittler 9' mit der anhand des Modells 9 errechneten, für diesen Zeitpunkt erwarteten Endtemperatur T2 verglichen werden. Anhand des Vergleichs kann dann der Korrekturfaktor k für das Modell 9 bestimmt werden. Auch die Bestimmung des Korrekturfaktors k ist Fachleuten bekannt, beispielsweise aus der bereits erwähnten DE 199 63 186 A1 . Erwartete Isttemperaturen T2 für neu zu erfassende Bandpunkte 101 können also sofort anhand des entsprechend angepassten und korrigierten Modells 9 ermittelt werden. Da ferner für die bereits erfassten Bandpunkte 101 bereits zuvor die funktionalen Anhängigkeiten f(k) der erwarteten Isttemperaturen T2 vom Korrekturfaktor k ermittelt wurden, können auch die erwarteten Isttemperaturen T2 für die bereits erfassten Bandpunkte 101 auf einfache Weise anhand des Korrekturfaktors k korrigiert werden.But if the first band point 101 z. B. reaches the Endtemperaturmessplatz 13, the actual actual temperature T3 at this point, ie when leaving the cooling section 4 and thus in particular after leaving the finishing train 3, detectable. This final temperature T3 can be compared by a correction factor determiner 9 'with the final temperature T2 calculated on the basis of the model 9 and expected for this time. Based on the comparison, the correction factor k for the model 9 can then be determined. The determination of the correction factor k is also known to experts, for example from the already mentioned DE 199 63 186 A1 , expected Actual temperatures T2 for newly detected band points 101 can therefore be determined immediately on the basis of the correspondingly adapted and corrected model 9. Furthermore, since the functional dependencies f (k) of the expected actual temperatures T2 have already been determined by the correction factor k for the already detected band points 101, the expected actual temperatures T2 for the band points 101 already detected can also be corrected in a simple manner on the basis of the correction factor k.

Wie bereits erwähnt, ist bei der Ausgestaltung gemäß den FIG 3 und 4 auch zwischen der Fertigstraße 3 und der Kühlstrecke 4 ein Zwischentemperaturmessplatz 10 angeordnet. Somit ist es bereits bei Erreichen des Zwischentemperaturmessplatzes 10 möglich, die Isttemperatur T3 des Warmbandes 6 zu erfassen. Somit ist bereits eine Korrektur des Modells 9 sowie der bisher berechneten erwarteten Isttemperaturen T2 möglich. Allgemein gilt, dass jede Messung der Isttemperatur T3 zur Adaption des Modells 9 bzw. zur Ermittlung oder Korrektur mindestens eines Korrekturfaktors k für das Modell 9 herangezogen werden kann.As already mentioned, in the embodiment according to the FIG. 3 and 4 also between the finishing train 3 and the cooling section 4, an intermediate temperature measuring station 10 is arranged. Thus, it is already possible when reaching the intermediate temperature measuring station 10 to detect the actual temperature T3 of the hot strip 6. Thus, a correction of the model 9 and the previously calculated expected actual temperatures T2 is already possible. In general, any measurement of the actual temperature T3 for adapting the model 9 or for determining or correcting at least one correction factor k for the model 9 can be used.

Unter Umständen ist es sogar möglich, bezüglich der Modelladaption eine völlige Trennung zwischen einem Teilmodell für die Fertigstraße 3 und einem Teilmodell für die Kühlstrecke 4 durchzuführen. Auch kann mittels der am Zwischentemperaturmessplatz 10 erfassten Isttemperatur T3 eine Vorermittlung des Korrekturfaktors k für ein etwaiges Teilmodell der Kühlstrecke 4 erfolgen. Dies ist aber zweitrangig. Entscheidend ist, dass im Rahmen des Modells 9 die Berechnung der Temperaturen T2 für die Bandpunkte 101 bereits beim Durchlaufen der Fertigstraße 3 erfolgt und einfach an die Kühlstrecke 4 weitergegeben wird. Dadurch kann auf besonders einfache Weise eine durchgängige Modellierung für die Fertigstraße 3 und die Kühlstrecke 4 realisiert werden. Aufgrund der durchgängigen Modellierung ist es ferner auf einfache Weise möglich, auch ein gemeinsames Steuerverfahren für die Fertigstraße 3 und die Kühlstrecke 4, ggf. auch die weiteren Anlagenteile 1, 1' und/oder 2, zu realisieren.Under certain circumstances, it is even possible to perform a complete separation between a submodel for the finishing train 3 and a submodel for the cooling section 4 with regard to the model adaptation. Also, by means of the actual temperature T3 detected at the intermediate temperature measuring station 10, a pre-determination of the correction factor k for a possible partial model of the cooling section 4 can take place. But this is secondary. It is crucial that in the context of the model 9, the calculation of the temperatures T2 for the band points 101 already takes place when passing through the finishing train 3 and is simply passed on to the cooling section 4. As a result, a continuous modeling of the finishing train 3 and the cooling section 4 can be realized in a particularly simple manner. Due to the continuous modeling, it is also possible in a simple manner, and a common control method for the finishing train 3 and the cooling section 4, possibly also the other system parts 1, 1 'and / or 2 to realize.

Die den Temperaturbeeinflussungseinrichtungen 12 zugeführten Ansteuerwerte δT* werden zusätzlich in einem Geschwindigkeitsregler 12" mit Sollansteuerwerten ΔT* verglichen. Anhand des Vergleichs wird ein Korrekturwert δv für die Endwalzgeschwindigkeit v ermittelt. Somit ist es auf einfache Weise möglich, die Temperaturbeeinflussungseinrichtungen 12 in einem mittleren Stellbereich zu betreiben. Das Ermitteln des Korrekturwerts δv erfolgt dabei selbstverständlich unter Berücksichtigung der übrigen Fertigungsbedingungen und der Anlagenauslegung sowie dem gefahrenen Walzprogramm. Die Korrektur der Walzgeschwindigkeit v dient somit dem Ausgleich langfristiger und globaler Effekte, während über die Ansteuerwerte δT* kurzfristige und lokale Effekte ausgeregelt werden. Es ist sogar möglich, zur Regelung der umformungsfreien Temperaturbeeinflussung innerhalb der Fertigstraße 3 ausschließlich die Anfangswalzgeschwindigkeit v zu variieren.The control values δT * supplied to the temperature influencing devices 12 are additionally compared in a speed controller 12 "with target drive values ΔT * Based on the comparison, a correction value δv is determined for the final rolling speed v. Thus, it is easily possible for the temperature influencing devices 12 to be in a middle setting range The correction of the rolling speed v thus serves to compensate for long-term and global effects, while short-term and local effects are compensated by means of the control values ΔT *. It is even possible to vary only the initial rolling speed v to control the deformation-free temperature influencing within the finishing train 3.

Die Sollwerte T* werden in der Regel als Funktionen der Zeit t, also als zeitliche Solltemperaturverläufe T*(t) vorgegeben. Es ist aber auch möglich, die Solltemperaturverläufe T* als Funktion des Ortes vorzugeben. In diesem Fall erfolgt die Führung der Kühlung des Warmbandes 6 durch das Modell 9 und die Echtzeit-Recheneinrichtung 7 derart, dass die Abweichung der erwarteten Isttemperaturen T2 für die Bandpunkte 101 von einer vorbestimmten Stellentemperatur an mindestens einer Stelle der Kühlstrecke 4 bzw. der Fertigstraße 3 minimiert wird. In der Regel sind dies die Temperaturen am Endtemperaturmessplatz 13 und am Zwischentemperaturmessplatz 10.The setpoint values T * are generally predefined as functions of the time t, ie as desired time temperature curves T * (t). But it is also possible to specify the desired temperature curves T * as a function of the place. In this case, the guidance of the cooling of the hot strip 6 by the model 9 and the real-time computing device 7 is such that the deviation of the expected actual temperatures T2 for the band points 101 from a predetermined position temperature at least one point of the cooling section 4 and the finishing line. 3 is minimized. As a rule, these are the temperatures at the final temperature measuring station 13 and at the intermediate temperature measuring station 10.

Es ist auch möglich, nicht örtlich oder zeitlich kontinuierliche Verläufe als Sollwerte T* vorzugeben. Auch eine Vorgabe von Solltemperaturen T* nur für bestimmte Orte oder Zeitpunkte ist möglich. Auch muss nicht unbedingt die Temperatur die Sollgröße sein. Alternativ könnte auch die Enthalpie herangezogen werden.It is also possible to specify non-local or temporal continuous courses as setpoint values T *. It is also possible to specify target temperatures T * only for specific locations or times. Also does not necessarily have the temperature Target size. Alternatively, the enthalpy could be used.

Aufgrund der kontinuierlichen Mitrechnung der erwarteten Isttemperaturen T2 in Echtzeit ist es aber auch möglich, bestimmte Temperaturen an Stellen einzustellen, an denen eine tatsächliche Erfassung der Temperatur des Warmbandes 6 nicht möglich ist oder aus anderen Gründen nicht erfolgt. Aufgrund der kontinuierlichen Temperaturberechnung durch das Modell 9 in Echtzeit ist es insbesondere möglich, zu gewährleisten, dass an einer Stelle zwischen zwei Walzgerüsten 3', z. B. zwischen dem vorletzten und dem letzten Walzgerüst 3' der Fertigstraße 3, das Warmband 6 eine vorbestimmte Grenztemperatur TG erreicht. Die Grenztemperatur TG kann dabei derart liegen, dass sich im Warmband 6 bei genau dieser Grenztemperatur TG eine Phasenumwandlung vollzieht. Aus diese Weise kann auch ohne echte Temperaturmessung an dieser Stelle ein sogenanntes Zweiphasenwalzen erzielt werden.Due to the continuous calculation of the expected actual temperatures T2 in real time, it is also possible to set certain temperatures at locations where an actual detection of the temperature of the hot strip 6 is not possible or not done for other reasons. Due to the continuous temperature calculation by the model 9 in real time, it is particularly possible to ensure that at a point between two rolling stands 3 ', z. B. between the penultimate and the last roll stand 3 'of the finishing train 3, the hot strip 6 reaches a predetermined limit temperature TG. The limit temperature TG may be such that a phase transformation takes place in the hot strip 6 at precisely this limit temperature TG. From this way, a so-called two-phase rolling can be achieved even without real temperature measurement at this point.

Mittels des erfindungsgemäßen Steuerverfahrens ist also eine flexible und komfortable Wärmebehandlung für moderne Stähle erreichbar. Insbesondere erfolgt die Wärmesteuerung übergreifend. Es kann also nicht nur in der Kühlstrecke 4 oder in der Fertigstraße 3 für sich gesehen, sondern übergreifend gezielt ein vorgegebener Solltemperaturverlauf T*(t) eingestellt werden.By means of the control method according to the invention, therefore, a flexible and convenient heat treatment for modern steels can be achieved. In particular, the heat control takes place across. It can therefore not only in the cooling section 4 or in the finishing train 3 seen for themselves, but overarching targeted a predetermined setpoint temperature T * (t) can be set.

Bei dem oben stehend beschriebenen Steuerverfahren wurde die Temperatur als energieinhaltsbeschreibende Größe verwendet. Die Berechnung kann alternativ aber auch mit der Enthalpie erfolgen. Ferner können im Rahmen des Modells 9 auch die Phasenanteile der einzelnen Bandpunkte 101 an Austenit, Ferrit, Martensit usw. in Echtzeit mitberechnet werden.In the control method described above, the temperature was used as the energy content descriptive quantity. The calculation can alternatively be done with the enthalpy. Furthermore, in the context of the model 9, the phase components of the individual band points 101 on austenite, ferrite, martensite, etc. can also be calculated in real time.

Auch müssen nicht notwendigerweise örtliche oder zeitliche Temperaturverläufe als Sollwerte T* vorgegeben werden. Eine Vorgabe für bestimmte Orte und/oder Zeiten kann ausreichen.Also, it is not necessary to specify local or temporal temperature profiles as setpoint values T *. A specification for specific locations and / or times may be sufficient.

Claims (18)

  1. Control method for a finishing train (3), arranged upstream of a cooling section (4), for rolling hot metal strip (6),
    - in which at the latest when the hot strip (6) enters the finishing train (3), strip points (101) and at least their starting temperatures (T1) are recorded,
    - in which the strip points (101) and, as actual temperatures, the starting temperatures (T1) are fed to a model (9) for the finishing train (3),
    - in which the displacement of the strip points (101) as they pass through the finishing train (3) is monitored,
    - in which the hot strip (6) is subjected to temperature influences (δT) in the finishing train (3),
    - in which the displacement monitorings (W(t)) and the temperature influences (δT) are likewise fed to the model (9),
    - in which the model (9) uses the actual temperatures (T2) to determine actual temperatures (T2) that are expected in real time for the recorded strip points (101) and assigns these temperatures to the recorded strip points (101) as new actual temperatures (T2).
  2. Control method according to Claim 1, characterized in that after the strip points (101) have left the finishing train (3), their final temperatures (T3) are recorded, in that the recorded final temperatures (T3) are compared with expected final temperatures (T2) determined on the basis of the model (9), and in that at least one correction factor (k) for the model (9) is determined on the basis of the comparison.
  3. Control method according to Claim 2, characterized in that in addition to the expected actual temperatures (T2), the model (9) also determines functional relationships (f(k)) between the expected actual temperatures (T2) and the correction factor (k), and in that the expected actual temperatures (T2) of the strip points (101) which have already been recorded are corrected on the basis of the correction factor (k).
  4. Control method according to Claim 1, 2 or 2, characterized in that the recorded strip points (101) are assigned desired values (T*) for a variable which describes the energy content and these desired values are fed to the model (9), in that the model (9) uses the desired values (T*) assigned to the recorded strip points (101) and the actual temperatures (T2) to determine control values (δT*) for temperature-influencing devices (12), by means of which the actual temperature (T3) of the hot strip (6) can be influenced without deformation, and in that the control values (δT*) are fed to the temperature-influencing devices (12).
  5. Control method according to Claim 4, characterized in that at least one of the control values (δT*) is compared with a desired control value (ΔT*), and in that a correction value (δv) for a strip velocity (v) of the hot strip (6) is determined on the basis of the comparison.
  6. Control method according to Claim 4, characterized in that exclusively a change in a rolling velocity (v) is used to regulate the deformation-free temperature influencing within the finishing train (3).
  7. Control method according to Claim 4, 5 or 6, characterized in that the control values (δT*) are determined in such a manner that the deviation of the actual temperatures (T2) expected for the strip points (101) from a predetermined location temperature (TG) at at least one location of the finishing train (3) is minimized.
  8. Control method according to Claim 7, characterized in that the location is between two rolling stands (3') of the finishing train (3), and in that a phase transformation takes place in the hot strip (6) at the location temperature (TG).
  9. Control method according to Claim 7 or 8, characterized in that there is no recording of the actual temperature (T3) of the hot strip (6) at the location.
  10. Control method according to one of Claims 4 to 9, characterized in that the desired values (T*) are individually assigned to the strip points (101).
  11. Control method according to one of Claims 4 to 10, characterized in that the desired values (T*) are position- or time-specific.
  12. Control method according to one of Claims 4 to 11, characterized in that the desired values (T*) form a desired value curve (T*(t)).
  13. Control method according to one of the preceding claims, characterized in that the model (9) is also used to determine phase components of the respective strip points (101).
  14. Control method according to one of the preceding claims, characterized in that it is carried out cyclically.
  15. Control method according to one of the preceding claims, characterized in that it is also used to control at least one installation (1, 1', 2, 4') arranged upstream or downstream of the finishing train (3), e.g. a roughing train (2), a furnace (1'), a continuous casting installation (1) and/or a cooling section (4).
  16. Control method according to Claim 15, characterized in that the control method for the finishing train (3) and for the installation (1, 1', 2, 4') arranged upstream or downstream of the finishing train (3) are a common control method.
  17. Control method according to Claim 15 or 16, characterized in that the model (9) is designed to cover more than just the finishing train.
  18. Finishing train (3), arranged upstream of a cooling section (4), for rolling hot metal strip (6), having a real-time calculation device (7), which is connected to the finishing train (3) in terms of control technology and is programmed in such a manner that it can be used to carry out the control method according to one of Claims 1 to 17.
EP02776880A 2001-11-15 2002-11-07 Control method for a production line for rolling hot-rolled metal strips disposed upstream of a cooling stretch Revoked EP1444059B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10156008 2001-11-15
DE10156008A DE10156008A1 (en) 2001-11-15 2001-11-15 Control method for a finishing train upstream of a cooling section for rolling hot metal strip
PCT/DE2002/004125 WO2003045599A1 (en) 2001-11-15 2002-11-07 Control method for a production line for rolling hot-rolled metal strips disposed upstream of a cooling stretch

Publications (2)

Publication Number Publication Date
EP1444059A1 EP1444059A1 (en) 2004-08-11
EP1444059B1 true EP1444059B1 (en) 2009-08-26

Family

ID=7705771

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02776880A Revoked EP1444059B1 (en) 2001-11-15 2002-11-07 Control method for a production line for rolling hot-rolled metal strips disposed upstream of a cooling stretch

Country Status (8)

Country Link
US (1) US7197802B2 (en)
EP (1) EP1444059B1 (en)
JP (1) JP2005510359A (en)
CN (1) CN1267216C (en)
AT (1) ATE440681T1 (en)
DE (2) DE10156008A1 (en)
RU (1) RU2291750C2 (en)
WO (1) WO2003045599A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104289523A (en) * 2014-09-15 2015-01-21 首钢京唐钢铁联合有限责任公司 Control method for improving belt breakage in flying gauge change process
EP3099430B1 (en) 2014-01-28 2017-11-01 Primetals Technologies Germany GmbH Cooling section with dual cooling to a particular target value

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10156008A1 (en) * 2001-11-15 2003-06-05 Siemens Ag Control method for a finishing train upstream of a cooling section for rolling hot metal strip
US7031797B2 (en) * 2002-03-15 2006-04-18 Siemens Aktiengesellschaft Computer-aided method for determining desired values for controlling elements of profile and surface evenness
DE10310357A1 (en) * 2003-03-10 2004-09-30 Siemens Ag Casting mill for producing a steel strip
DE502004005051D1 (en) * 2004-04-06 2007-10-31 Siemens Ag METHOD OF MANUFACTURING A METAL
JP4767544B2 (en) * 2005-01-11 2011-09-07 新日本製鐵株式会社 Steel sheet cooling control method
CN100371097C (en) * 2005-05-26 2008-02-27 上海宝信软件股份有限公司 Control method of multiple material flow tracing
DE102006047718A1 (en) * 2006-10-09 2008-04-17 Siemens Ag Method for tracking the physical condition of a hot plate or hot strip as part of the control of a plate rolling mill for processing a hot plate or hot strip
CN100457306C (en) * 2006-12-15 2009-02-04 鞍山市第三轧钢有限公司 Rolling process of male connecting plate for bridge truss
CN100457305C (en) * 2006-12-15 2009-02-04 鞍山市第三轧钢有限公司 Rolling process of female connecting plate for bridge truss
CN100444980C (en) * 2006-12-15 2008-12-24 鞍山市第三轧钢有限公司 Rolling process of brake steel splint for speed reducer in large railway vehicle
CN100503062C (en) * 2006-12-28 2009-06-24 鞍钢股份有限公司 Shape control method for pipeline steel hot rolled slab
DE102007007560A1 (en) * 2007-02-15 2008-08-21 Siemens Ag Method for supporting at least partially manual control of a metalworking line
DE102008011303B4 (en) * 2008-02-27 2013-06-06 Siemens Aktiengesellschaft Operating method for a cooling line for cooling a rolling stock with temperature-separated cooling to a final enthalpy value
US8935945B2 (en) * 2008-11-19 2015-01-20 Toshiba Mitsubishi-Electic Industrial Systems Corporation Control system
JP4997263B2 (en) * 2009-03-19 2012-08-08 株式会社日立製作所 Hot rolling simulation apparatus and rolling history simulation method
EP2287345A1 (en) * 2009-07-23 2011-02-23 Siemens Aktiengesellschaft Method for controlling and/or regulating an induction oven for a roller assembly, control and/or regulating device for a roller assembly and roller assembly for producing rolled goods
EP2301685A1 (en) * 2009-09-23 2011-03-30 Siemens Aktiengesellschaft Control method for a treatment assembly for an elongated milling product
EP2353742A1 (en) * 2010-02-05 2011-08-10 Siemens Aktiengesellschaft Heat rolling train for rolling hot rolled strips, method for operating same to roll hot rolled strips, control and/or regulating device
JP5462358B2 (en) 2010-04-09 2014-04-02 東芝三菱電機産業システム株式会社 Rolled material cooling control device, rolled material cooling control method, rolled material cooling control program
EP2386365A1 (en) * 2010-05-06 2011-11-16 Siemens Aktiengesellschaft Operational method for a finishing train with prediction of transport speed
EP2431105A1 (en) * 2010-09-16 2012-03-21 Siemens Aktiengesellschaft Method for determining the temperature and geometry of a hot rolled metal strip in a finishing train in real time
EP2431104A1 (en) 2010-09-16 2012-03-21 Siemens Aktiengesellschaft Method for determining the temperature and geometry of a hot rolled metal strip in a finishing train in real time
CN102151694B (en) * 2010-12-17 2013-04-24 武汉钢铁(集团)公司 Method for recording real-time state curve of heavy rail during rolling process
CN102581034B (en) * 2011-01-18 2013-09-25 宝山钢铁股份有限公司 Method for controlling multi-frame back finish-rolling unit
DE112011104849B4 (en) * 2011-02-07 2019-05-09 Primetals Technologies Austria GmbH Method for controlling a temperature of a strand by positioning a movable cooling nozzle in a strand guide of a continuous casting plant
EP2527054A1 (en) 2011-05-24 2012-11-28 Siemens Aktiengesellschaft Operating method for a mill train
EP2527053A1 (en) 2011-05-24 2012-11-28 Siemens Aktiengesellschaft Operating method for a mill train
EP2527052A1 (en) * 2011-05-24 2012-11-28 Siemens Aktiengesellschaft Operating method for a mill train
EP2540404A1 (en) 2011-06-27 2013-01-02 Siemens Aktiengesellschaft Operating method for a hot strip mill
CN104254408B (en) * 2012-04-27 2016-11-09 普锐特冶金技术德国有限公司 Compensate band characteristic by the prefabricated band cooling device related to width
CN103406369A (en) * 2013-02-19 2013-11-27 新疆八一钢铁股份有限公司 Method for improving strip steel head roll force precision by utilizing temperature function
CN103499946B (en) * 2013-09-30 2016-05-04 武汉钢铁(集团)公司 A kind of section bar hot finisher rolled piece position tracking device and tracking
DE102013221710A1 (en) 2013-10-25 2015-04-30 Sms Siemag Aktiengesellschaft Aluminum hot strip rolling mill and method for hot rolling an aluminum hot strip
EP2873469A1 (en) * 2013-11-18 2015-05-20 Siemens Aktiengesellschaft Operating method for a cooling section
DE102014224461A1 (en) * 2014-01-22 2015-07-23 Sms Siemag Ag Process for the optimized production of metallic steel and iron alloys in hot rolling and heavy plate mills by means of a microstructure simulator, monitor and / or model
JP6435234B2 (en) 2015-05-20 2018-12-05 株式会社日立製作所 Hot roll finishing mill outlet temperature control device and control method thereof
JP6399985B2 (en) * 2015-09-08 2018-10-03 株式会社日立製作所 Winding temperature control device and winding temperature control method
CA3047511C (en) * 2016-12-20 2022-04-26 Arcelormittal A method of dynamical adjustment for manufacturing a thermally treated steel sheet
DE102019203088A1 (en) * 2019-03-06 2020-09-10 Sms Group Gmbh Process for the production of a metallic strip or sheet
EP3714999B1 (en) * 2019-03-28 2022-09-28 Primetals Technologies Germany GmbH Determination of the adjustment of a roll stand
EP3825789A1 (en) 2019-11-20 2021-05-26 Primetals Technologies Germany GmbH Remote control of a plant for producing and / or treating a metal rolled product
DE102019132029A1 (en) * 2019-11-26 2021-05-27 Thyssenkrupp Steel Europe Ag Production of a desired metal workpiece from a flat metal product

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779054A (en) * 1972-03-02 1973-12-18 Wean United Inc Coolant control for hot strip mill
JPS55158816A (en) * 1979-05-29 1980-12-10 Mitsubishi Electric Corp Controlling method for temperature of hot rolled material on discharging side of tandem rolling mill
DE3638330A1 (en) 1986-11-10 1988-05-19 Schloemann Siemag Ag ROLLING DEVICES WITH A DEVICE FOR THE AXIAL SHIFTING OF ADJUSTABLE ROLLERS
JPS63168211A (en) * 1986-12-27 1988-07-12 Sumitomo Metal Ind Ltd Temperature control method for hot rolling process
JP2692544B2 (en) * 1993-09-20 1997-12-17 日本鋼管株式会社 Method and device for controlling temperature of hot rolling mill
JPH0929317A (en) * 1995-07-18 1997-02-04 Nippon Steel Corp Finish temp. control method in hot strip mill
DE19850253A1 (en) * 1998-10-31 2000-05-04 Schloemann Siemag Ag Method and system for controlling cooling sections
JP2000167615A (en) * 1998-12-03 2000-06-20 Toshiba Corp Method for controlling coiling temperature and controller
JP2000210708A (en) * 1999-01-21 2000-08-02 Toshiba Corp Rolling material temperature control method and rolling material temperature controller in roll mill outlet side
DE19963186B4 (en) * 1999-12-27 2005-04-14 Siemens Ag Method for controlling and / or regulating the cooling section of a hot strip mill for rolling metal strip and associated device
DE10156008A1 (en) * 2001-11-15 2003-06-05 Siemens Ag Control method for a finishing train upstream of a cooling section for rolling hot metal strip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3099430B1 (en) 2014-01-28 2017-11-01 Primetals Technologies Germany GmbH Cooling section with dual cooling to a particular target value
CN104289523A (en) * 2014-09-15 2015-01-21 首钢京唐钢铁联合有限责任公司 Control method for improving belt breakage in flying gauge change process

Also Published As

Publication number Publication date
RU2004117867A (en) 2005-06-10
CN1589184A (en) 2005-03-02
DE10156008A1 (en) 2003-06-05
JP2005510359A (en) 2005-04-21
US20040205951A1 (en) 2004-10-21
WO2003045599A1 (en) 2003-06-05
EP1444059A1 (en) 2004-08-11
DE50213800D1 (en) 2009-10-08
US7197802B2 (en) 2007-04-03
RU2291750C2 (en) 2007-01-20
CN1267216C (en) 2006-08-02
ATE440681T1 (en) 2009-09-15

Similar Documents

Publication Publication Date Title
EP1444059B1 (en) Control method for a production line for rolling hot-rolled metal strips disposed upstream of a cooling stretch
DE19963186B4 (en) Method for controlling and / or regulating the cooling section of a hot strip mill for rolling metal strip and associated device
EP1624982B2 (en) Method for regulating the temperature of a metal strip, especially for rolling a metal hot strip in a finishing train
EP2566633B1 (en) Operating method for a production line with prediction of the command speed
EP2603333B1 (en) Real-time determination method for temperature and geometry of a hot metal strip in a finishing train
EP2712332B1 (en) Method for controlling a hot strip rolling line
EP1732716B1 (en) Method for producing a metal
DE102006047718A1 (en) Method for tracking the physical condition of a hot plate or hot strip as part of the control of a plate rolling mill for processing a hot plate or hot strip
EP1596999B1 (en) Method for regulating the temperature of a metal strip, especially in a cooling path
EP2753439B1 (en) Casting method, more particularly continuous casting method
EP2697001A1 (en) Control method for a rolling train
EP2697002A1 (en) Control method for a mill train
WO2012034875A2 (en) Method for determining control variables of a rolling train comprising a plurality of roll stands for rolling a metal strip
EP2480351B1 (en) Control method for a processing line for a stretched rolling stock
EP2121209B1 (en) Method for assisting at least partially manual control of a metal processing line
EP3642372A1 (en) Method for operating an annealing surface
EP2998040A1 (en) Width adjustment in a finishing train
DE10321791A1 (en) Process for controlling and/or regulating the temperature of a metal strip, especially in a finishing train, comprises comparing a theoretical temperature gradient with an actual temperature gradient to acquire adjusting signals
DE10321792A1 (en) Process for controlling and/or regulating the temperature of a metal strip in a metallurgical installation comprises comparing a temperature gradient to an actual temperature gradient to determine adjusting signals for a cooling path
WO2018024693A1 (en) Method for operating an annealing furnace for annealing a metal strip
WO2022106707A1 (en) Method for adjusting the properties of a hot-rolled strip having a specific chemical composition in a hot strip mill
DE102019203088A1 (en) Process for the production of a metallic strip or sheet
EP4364867A1 (en) Rolling of steel with metrological detection of phase transformation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040330

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FI FR IT

REF Corresponds to:

Ref document number: 50213800

Country of ref document: DE

Date of ref document: 20091008

Kind code of ref document: P

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SMS SIEMAG AG

Effective date: 20100526

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20121113

Year of fee payment: 11

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20121010

Year of fee payment: 11

Ref country code: FR

Payment date: 20121214

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20121217

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131127

Year of fee payment: 12

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20131130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 440681

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131107

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131107

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50213800

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141107

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAH Information related to despatch of examination report in opposition + time limit modified

Free format text: ORIGINAL CODE: EPIDOSCORE2

R26 Opposition filed (corrected)

Opponent name: SMS GROUP GMBH

Effective date: 20100526

PLAH Information related to despatch of examination report in opposition + time limit modified

Free format text: ORIGINAL CODE: EPIDOSCORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50213800

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: PRIMETALS TECHNOLOGIES GERMANY GMBH, 91052 ERLANGEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211118

Year of fee payment: 20

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50213800

Country of ref document: DE

APBY Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2O

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 50213800

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 50213800

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20230930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 440681

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230930