EP1420075A1 - Nickel-Basis-Superlegierung - Google Patents

Nickel-Basis-Superlegierung Download PDF

Info

Publication number
EP1420075A1
EP1420075A1 EP03104108A EP03104108A EP1420075A1 EP 1420075 A1 EP1420075 A1 EP 1420075A1 EP 03104108 A EP03104108 A EP 03104108A EP 03104108 A EP03104108 A EP 03104108A EP 1420075 A1 EP1420075 A1 EP 1420075A1
Authority
EP
European Patent Office
Prior art keywords
ppm
nickel
alloy
phase
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03104108A
Other languages
English (en)
French (fr)
Other versions
EP1420075B1 (de
Inventor
Robert Baumann
David Duhl
Andreas KÜNZLER
Mohamed Yousef Nazmy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31946562&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1420075(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1420075A1 publication Critical patent/EP1420075A1/de
Application granted granted Critical
Publication of EP1420075B1 publication Critical patent/EP1420075B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Definitions

  • the invention relates to the field of materials technology. It affects a nickel-based superalloy, especially for the production of Single crystal components, such as blades for gas turbines.
  • Such nickel-based superalloys are known. Single-crystal components of these alloys exhibit a high temperature very good material strength. This can, for. B. the inlet temperature of Gas turbines are increased, which increases the efficiency of the gas turbine.
  • Nickel-based superalloys for single crystal components such as those from US 4,643,782, EP 0 208 645 and US 5,270,123 are known mixed crystal strengthening alloy elements, for example Re, W, Mo, Co, Cr, and ⁇ '-phase-forming elements, for example Al, Ta, and Ti. Der Content of high melting alloy elements (W, Mo, Re) in the Basic matrix (austenitic ⁇ phase) increases continuously with the increase the stress temperature of the alloy. So contain z. B. usual Nickel-based superalloys for single crystals 6-8% W, up to 6% Re and up 2% Mo (figures in% by weight). The in the above mentioned publications Alloys disclosed have high creep resistance, good LCF (Fatigue with low number of load cycles) - and HCF (fatigue with high Number of load cycles) properties and a high oxidation resistance.
  • the alloys known, for example, from US Pat. No. 5,270,123 also have comparable disadvantages.
  • This lattice distortion prevents dislocations when sliding or cutting the ⁇ 'grains.
  • the lattice distortion causes an increase in the short-term strength, but with prolonged stress, the structure becomes coarser and then a degradation of the ⁇ 'structure and thus a long-term mechanical weakening of the alloy.
  • This disadvantage is overcome with the alloy known from EP 0 914 483 B1 eliminated.
  • This nickel-based superalloy consists essentially of (measured in% by weight) 6.0-6.8% Cr, 8.0-10.0% Co, 0.5-0.7% Mo, 6.2-6.6% W, 2.7-3.2% Re, 5.4-5.8% Al, 0.5-0.9% Ti, 7.2-7.8% Ta, 0.15-0.3% Hf, 0.02-0.04% C, 40-100 ppm B, 0-400 ppm Y, balance Ni with impurities, where the ratio of (Ta + 1.5 Hf + 0.5 Mo - 0.5 Ti) / (W + 1.2 Re) ⁇ 0.7 is.
  • these alloys Due to the ratio mentioned, these alloys have the Alloy elements at operating temperature no lattice offset between the ⁇ -phase and the ⁇ '-phase, which ensures high long-term stability moderate load is reached. It also has rhenium alloyed nickel-based superalloy excellent castability and great phase stability combined with the best mechanical Characteristics. It is also characterized by high fatigue strength and Creep stability even with long-term exposure.
  • the aim of the invention is to avoid the disadvantages mentioned.
  • the object of the invention is to provide a nickel-based superalloy develop which on the one hand has a solid and strong ⁇ phase as a matrix and which on the other hand only a small proportion, i.e. less than 50%, has ⁇ '-phase, and is therefore very resistant to oxidation and a exhibits good creep behavior.
  • the advantages of the invention are that the alloy is a good one Has degradation behavior.
  • the ⁇ phase (matrix) is determined by the Alloying of ruthenium solidifies, despite the absence of Rhenium, which according to the known prior art is particularly good Mixed crystal strengthener applies and therefore the properties of the ⁇ matrix strongly improved.
  • the alloy according to the invention is characterized by good ones Creep rupture strength, stable structure and good castability.
  • the oxidation resistance of the alloy is very good. she is excellently suited for the production of single crystal components, for example, blades for gas turbines.
  • Nickel-based superalloys with the chemical composition given in Table 1 were examined (data in% by weight): Chemical composition of the alloys examined L1 (AMN1) L2 (AMN3) VL (PW 1483) Ni rest rest rest Cr 9.96 12:34 12.8 Co 8.86 8.84 9 Mo 1:47 1.85 1.9 W 3:45 3.76 3.8 Ta 4 4.96 4 al 3:57 3:45 3.8 Ti 3.83 3.96 4 Hf 0.5 00:48 - C 0025 0033 - B 86 ppm 79 ppm - Si 10 ppm 10 ppm - Ru 1:07 00:28 -
  • Alloys L1 and L2 are alloys whose composition is below the claims of the present invention fall.
  • the alloy VL is a comparison alloy, which is called PW 1483 is known prior art. It differs from the Alloys according to the invention especially in that they are not Ruthenium is alloyed and there is no significant Si content.
  • the alloys L2 and VL are almost identical. This applies to the Cr content also towards the alloy L1. With L1 the Cr content is approx. 3% by weight less than with the comparison alloy VL.
  • the Vickers hardness HV2 was measured. The results listed in Table 2 were achieved. Vickers hardness for the alloys examined L1 VL HV2 447 403
  • the alloy L1 thus has a hardness that is more than 10% higher than that Comparative alloy VL.
  • the ⁇ phase (matrix) of the Alloys are mainly solidified by the alloyed ruthenium.
  • FIG. 1 shows the structure of the comparative alloy VL1
  • FIG. 2 shows that Structure of the alloy L1 according to the invention shows.
  • alloy L1 is clearly the lower Proportion of ⁇ '-phase (dark particles) can be seen.
  • the ⁇ 'phase (secondary, intermetallic phase formed by precipitation hardening) has in the Alloy VL has an approximately square shape and is strip-shaped in the matrix arranged.
  • the ⁇ 'phase in L1 has a spherical shape, what an indication of a very slight lattice offset between the ⁇ and the ⁇ 'phase represents.
  • This slight lattice offset and, above all, the small one Volume fraction of ⁇ '-phase (less than 50%) have an effect on this positive that there is no ⁇ / ⁇ 'inversion of the microstructure, i.e. the ⁇ '-phase is embedded in the ⁇ -phase and does not form a continuous network.
  • a good degradation behavior of the inventive Alloys achieved.
  • the ⁇ 'phase is embedded in the ⁇ phase and does not form a continuous network.
  • the alloy L1AD shows predominantly round to oval forms of the ⁇ '-phase, while in the Alloy L2AD the ⁇ '-phase is very stretched.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft eine Nickel-Basis-Superlegierung zur Herstellung von Einkristall-Komponenten. Die erfindungsgemässe Legierung ist gekennzeichnet durch folgende chemische Zusammensetzung (Angaben in Gew.-%): 7-13 Cr, 4-10 Co, 0.5-2 Mo, 2-8 W, 4-6 Ta, 3-6 Al, 1-4 Ti, 0.1-6 Ru, 0.01-0.5 Hf, 0.001-0.15 Si, 0-700 ppm C, 0-300 ppm B, Rest Ni und herstellungsbedingte Verunreinigungen. <IMAGE>

Description

Technisches Gebiet
Die Erfindung bezieht sich auf das Gebiet der Werkstofftechnik. Sie betrifft eine Nickel-Basis-Superlegierung, insbesondere zur Herstellung von Einkristall-Komponenten, wie beispielsweise Schaufeln für Gasturbinen.
Stand der Technik
Derartige Nickel-Basis-Superlegierungen sind bekannt. Einkristall-Komponenten aus diesen Legierungen weisen bei hohen Temperaturen eine sehr gute Materialfestigkeit auf. Dadurch kann z. B. die Einlasstemperatur von Gasturbinen erhöht werden, wodurch die Effizienz der Gasturbine steigt.
Nickel-Basis-Superlegierungen für Einkristall-Komponenten, wie sie aus US 4,643,782, EP 0 208 645 und US 5,270,123 bekannt sind, enthalten dazu mischkristallverfestigende Legierungselemente, beispielsweise Re, W, Mo, Co, Cr, sowie γ'-Phasen bildende Elemente, beispielsweise Al, Ta, und Ti. Der Gehalt an hochschmelzenden Legierungselementen (W, Mo, Re) in der Grundmatrix (austenitische γ-Phase) nimmt kontinuierlich zu mit der Zunahme der Beanspruchungstemperatur der Legierung. So enthalten z. B. übliche Nickel-Basis-Superlegierungen für Einkristalle 6-8 % W, bis zu 6 % Re und bis zu 2 % Mo (Angaben in Gew.- %). Die in den oben genannten Druckschriften offenbarten Legierungen weisen eine hohe Kriechfestigkeit, gute LCF (Ermüdung bei niedriger Lastspielzahl)- und HCF(Ermüdung bei hoher Lastspielzahl)-Eigenschaften sowie einen hohen Oxidationswiderstand auf.
Diese bekannten Legierungen wurden für Flugzeugturbinen entwickelt und deshalb optimiert auf den Kurz- und Mittelzeiteinsatz, d.h. die Beanspruchungsdauer wird auf bis zu 20 000 Stunden ausgelegt. Im Gegensatz dazu müssen industrielle Gasturbinen-Komponenten auf eine Beanspruchungsdauer von bis zu 75 000 Stunden ausgelegt werden.
Nach einer Beanspruchungsdauer von 300 Stunden zeigt z. B. die Legierung CMSX-4 aus US 4,643,782 beim versuchsweisen Einsatz in einer Gasturbine bei einer Temperatur oberhalb von 1000 °C eine starke Vergröberung der γ'-Phase, die nachteilig mit einer Erhöhung der Kriechgeschwindigkeit der Legierung einhergeht.
Auch die z.B. aus US 5,270,123 bekannten Legierungen weisen vergleichbare Nachteile auf. Durch die dort gewählten Zulegierungselemente wird in den oben genannten Legierungen ein positiver oder ein negativer Gitterversatz zwischen der die Matrix bildenden γ-Phase und der γ'-Phase, d.h. der sekundären intermetallischen Phase Ni3Al, bei der Ta, Ti, Hf teilweise Al und Co, und Cr teilweise Ni ersetzen können, hervorgerufen. Durch diese Gitterverzerrung werden Versetzungen beim Gleiten oder Schneiden der γ'-Körner behindert. Die Gitterverzerrung bewirkt zwar eine Erhöhung der Kurzzeitfestigkeit, aber bei längerer Beanspruchung wird eine Vergröberung des Gefüges und anschliessend eine Degradation der γ'-Struktur und damit eine langfristige mechanische Schwächung der Legierung bewirkt.
Dieser Nachteil wird mit der aus EP 0 914 483 B1 bekannten Legierung beseitigt. Diese Nickel-Basis-Superlegierung besteht im wesentlichen aus (gemessen in Gew.- %) 6.0-6.8 % Cr, 8.0-10.0 % Co, 0.5-0.7 % Mo, 6.2-6.6 % W, 2.7-3.2 % Re, 5.4-5.8 % Al, 0.5-0.9 % Ti, 7.2-7.8 % Ta, 0.15-0.3 % Hf, 0.02-0.04 % C, 40-100 ppm B, 0-400 ppm Y, Rest Ni mit Verunreinigungen, wobei das Verhältnis von (Ta + 1.5 Hf + 0.5 Mo - 0.5 Ti) / (W + 1.2 Re) ≥ 0.7 ist. Diese Legierungen weisen auf Grund des genannten Verhältnisses der Legierungselemente bei Betriebstemperatur keinen Gitterversatz zwischen der γ-Phase und der γ'-Phase auf, wodurch eine hohe Langzeitstabilität bei mässiger Belastung erreicht wird. Ausserdem besitzt diese mit Rhenium legierte Nickel-Basis-Superlegierung eine hervorragende Giessbarkeit und eine grosse Phasenstabilität kombiniert mit besten mechanischen Eigenschaften. Sie zeichnet sich zudem durch hohe Dauerfestigkeit und Kriechstabilität auch bei Langzeitbelastung aus.
Es wurde weiterhin festgestellt, dass es beim Vorliegen einer mechanischen Belastung und einer langzeitigen Hochtemperaturbeanspruchung zu einer gerichteten Vergröberung der γ'-Teilchen, der sogenannten Flossbildung (rafting) kommt und, bei hohen γ'-Gehalten (d.h. bei einem γ'-Volumenanteil von mindestens 50%), zur Invertierung der Mikrostruktur, d.h. γ' wird zur durchgehenden Phase, in der die frühere γ-Matrix eingebettet ist. Da die intermetallische γ'-Phase zur Umgebungsversprödung (environmental embrittlement) neigt, führt dies unter bestimmten Belastungsbedingungen zu massivem Abfall der mechanischen Eigenschaften, vor allem der Streckgrenze, bei Raumtemperatur (Degradation der Eigenschaften). Die Umgebungsversprödung tritt insbesondere dann auf, wenn Feuchtigkeit und lange Haltezeiten unter Zugbelastung vorliegen.
Darstellung der Erfindung
Ziel der Erfindung ist es, die genannten Nachteile zu vermeiden. Der Erfindung liegt die Aufgabe zu Grunde, eine Nickel-Basis-Superlegierung zu entwickeln, welche einerseits eine feste und starke γ-Phase als Matrix aufweist und welche andererseits nur einen geringen Anteil, d.h. weniger als 50 %, an γ'-Phase aufweist, und dadurch sehr oxidationsbeständig ist und ein gutes Zeitstandverhalten aufweist.
Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass die erfindungsgemässe Nickel-Basis-Superlegierung durch folgende chemische Zusammensetzung (Angaben in Gew.- %) gekennzeichnet ist:
  • 7-13 Cr
  • 4-10 Co
  • 0.5-2 Mo
  • 2-8 W
  • 4-6 Ta
  • 3-6 Al
  • 1-4 Ti
  • 0.1-6 Ru
  • 0.01-0.5 Hf
  • 0.001-0.15 Si
  • 0-700 ppm C
  • 0-300 ppm B
  • Rest Nickel und herstellungsbedingte Verunreinigungen.
    Die Vorteile der Erfindung bestehen darin, dass die Legierung ein gutes Degradationsverhalten aufweist. Die γ-Phase (Matrix) wird durch das Zulegieren von Ruthenium verfestigt, und dies trotz der Abwesenheit von Rhenium, das gemäss bekanntem Stand der Technik als besonders guter Mischkristallverfestiger gilt und daher die Eigenschaften der γ-Matrix stark verbessert. Die erfindungsgemässe Legierung zeichnet sich durch gute Zeitstandfestigkeit, stabile Gefüge und eine gute Giessbarkeit aus.
    Ausserdem ist der Oxidationswiderstand der Legierung sehr gut. Sie ist hervorragend geeignet zur Herstellung von Einkristall-Komponenten, beispielsweise Schaufeln für Gasturbinen.
    Auf Grund des geringen Anteils an sekundärer ausscheidungshärtender γ'-Phase, welche in der stark verfestigten γ-Phase eingelagert ist, ist das Degradationsverhalten der erfindungsgemässen Legierung gut. Es gibt kein Einkristall-Risswachstum und keinen starken Abfall der Streckgrenze bei Raumtemperatur im degradierten Zustand im Vergleich zum nicht degradierten Zustand.
    Bevorzugte Bereiche der erfindungsgemässen Nickel-Basis-Superlegierung sind (Angaben in Gew.-%):
  • 10-13 Cr
  • 8-9 Co
  • 1.5-2 Mo
  • 3-5 W
  • 4-5 Ta
  • 3-5 Al
  • 2-4 Ti
  • 0.3-4 Ru
  • 0.01-0.5 Hf
  • 0.001-0.15 Si
  • 0-700 ppm C
  • 0-300 ppm B
  • Rest Nickel und herstellungsbedingte Verunreinigungen.
    Ein besonders bevorzugter Bereich der erfindungsgemässen Nickel-Basis-Superlegierung ist folgender:
  • 10-13 Cr
  • 8-9 Co
  • 1.5-2 Mo
  • 3.5-4 W
  • 4-5 Ta
  • 3.5-5 Al
  • 3-4 Ti
  • 0.3-1.5 Ru
  • 0.5 Hf
  • 10-500 ppm Si
  • 250-350 ppm C
  • 80-100 ppm B
  • Rest Nickel und herstellungsbedingte Verunreinigungen.
    Eine weitere erfindungsgemässe Nickel-Basis-Superlegierung weist folgende chemische Zusammensetzung (Angaben in Gew.-%) auf:
  • 7-9 Cr
  • 8-9 Co
  • 1.5-2 Mo
  • 3-5 W
  • 5-6 Ta
  • 3-5 Al
  • 1-2 Ti
  • 0.5-1.5 Ru
  • 0.5 Hf
  • 700 ppm C
  • 100 ppm B
  • 500 ppm Si
  • Rest Nicckel und herstellungsbedingte Verunreinigungen.
    Kurze Beschreibung der Zeichnungen
    In den Zeichnungen sind zwei Ausführungsbeispiele der Erfindung dargestellt. Es zeigen:
    Fig. 1
    ein Gefügebild der Vergleichslegierung VL;
    Fig. 2
    ein Gefügebild der erfindungsgemässen Legierung L1;
    Fig. 3
    ein Gefügebild der erfindungsgemässen Legierung L1 nach Degradierung;
    Fig. 4
    ein Gefügebild der erfindungsgemässen Legierung L2 nach Degradierung;
    Fig. 5
    ein Diagramm, welches die Gewichtsänderung der Legierungen VL, L1 und L2 in Abhängigkeit von der Zeit angibt;
    Fig. 6
    ein Diagramm, welches die 0,2%-Streckgrenze der Legierungen VL, L1 und L2 in Abhängigkeit vom Degradations-Parameter angibt und
    Fig. 7
    ein Diagramm, welches die Spannung (1%-Dehngrenze) der Legierungen VL, L1 und L2 in Abhängigkeit vom Larson Miller-Parameter angibt.
    Wege zur Ausführung der Erfindung
    Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und der Fig. 1 bis 7 näher erläutert.
    Es wurden Nickel-Basis-Superlegierungen mit der in Tabelle 1 angegebenen chemischen Zusammensetzung untersucht (Angaben in Gew.-%):
    Chemische Zusammensetzung der untersuchten Legierungen
    L1 (AMN1) L2 (AMN3) VL (PW 1483)
    Ni Rest Rest Rest
    Cr 9.96 12.34 12.8
    Co 8.86 8.84 9
    Mo 1.47 1.85 1.9
    W 3.45 3.76 3.8
    Ta 4 4.96 4
    Al 3.57 3.45 3.8
    Ti 3.83 3.96 4
    Hf 0.5 0.48 -
    C 0.025 0.033 -
    B 86 ppm 79 ppm -
    Si 10 ppm 10 ppm -
    Ru 1.07 0.28 -
    Die Legierungen L1 und L2 sind Legierungen, deren Zusammensetzung unter die Patentansprüche der vorliegenden Erfindung fällt. Im Gegensatz dazu ist die Legierung VL eine Vergleichslegierung, die unter der Bezeichnung PW 1483 bekannter Stand der Technik ist. Sie unterscheidet sich von den erfindungsgemässen Legierungen vor allem darin, dass sie nicht mit Ruthenium legiert ist und kein erwähnenswerter Si-Anteil vorhanden ist. In der Zusammensetzung bezüglich der Elemente Cr, Co, Mo, Ta, Al, Ti und Ni sind die Legierungen L2 und VL nahezu identisch. Das trifft bis auf den Cr-Gehalt auch auf die Legierung L1 zu. Bei L1 ist der Cr-Gehalt um ca. 3 Gew.-% geringer als bei der Vergleichslegierung VL.
    Alle drei Legierungen wurden folgender Wärmebehandlung unterzogen: 1 h/1204 °C + 1 h/1265 °C + 4 h 1080 °C.
    Es wurde die Vickers-Härte HV2 gemessen. Dabei wurden die in der Tabelle 2 aufgeführten Resultate erzielt.
    Vickers-Härte für die untersuchten Legierungen
    L1 VL
    HV2 447 403
    Die Legierung L1 weist somit eine um über 10 % höhere Härte auf als die Vergleichslegierung VL. Die γ-Phase (Matrix) der erfindungsgemässen Legierungen wird vor allem durch das zulegierte Ruthenium verfestigt.
    Die Figur 1 zeigt das Gefüge der Vergleichslegierung VL1, während Fig. 2 das Gefüge der erfindungsgemässen Legierung L1 zeigt.
    Im Vergleich zur Legierung VL ist bei der Legierung L1 deutlich der geringere Anteil an γ'-Phase (dunkle Teilchen) zu erkennen. Die γ'-Phase (sekundäre, durch Ausscheidungshärtung gebildete intermetallische Phase) hat in der Legierung VL eine etwa viereckige Form und ist streifenförmig in der Matrix angeordnet. Demgegenüber hat die γ'-Phase in L1 eine kugelige Form, was ein Hinweis auf einen sehr geringen Gitterversatz zwischen der γ- und der γ'-Phase darstellt. Dieser geringe Gitterversatz und vor allem der geringe Volumenanteil an γ'-Phase (weniger als 50 %) wirken sich dahingehend positiv aus, dass es zu keiner γ/γ'-Inversion der Mikrostruktur kommt, d.h. die γ'-Phase ist in der γ-Phase eingebettet und bildet kein durchgehendes Netz. Somit wird ein gutes Degradationsverhalten der erfindungsgemässen Legierungen erzielt.
    Die Figuren 3 und 4 zeigen Gefügebilder der erfindungsgemässen Legierungen L1AD (Fig. 3) und L2AD (Fig. 4) im degradierten Zustand (T = 1000 °C, σ = 80 MPa, t = 747 h). Die γ'-Phase ist in der γ-Phase eingebettet und bildet kein durchgehendes Netz. Die Legierung L1AD zeigt dabei überwiegend runde bis ovale Formen der γ'-Phase, während bei der Legierung L2AD die γ'-Phase sehr gestreckt ausgebildet ist.
    Dies hat Auswirkungen auf die Eigenschaften. In Fig. 5 ist die Gewichtsänderung in Abhängigkeit von der Zeit für die drei Legierungen dargestellt. Die erfindungsgemässen Legierungen weisen nach Degradierung eine deutlich geringere Gewichtsänderung auf als die aus dem Stand der Technik bekannte Vergleichslegierung, d.h. sie haben eine wesentlich bessere Oxidationsbeständigkeit.
    Fig. 6 zeigt die Abhängigkeit der 0,2% Streckgrenze bei Raumtemperatur vom Degradations-Parameter P mit P = (T-800) t1/2 σ1/5.
    Während sich die Vergleichslegierung VL und die Legierung L2AD fast gleich verhalten, liegt für L1AD die Spannung um ca. 200 MPa unterhalb der Werte für VL und L2AD.
    Trägt man die 0,1 Dehngrenze über dem Larson Miller Parameter LM, mit LM = T(log t + 20) auf, so ergeben sich die in Fig. 7 dargestellten Abhängigkeiten. Die Legierung L2AD weist über den gesamten Bereich höhere Dehngrenzen auf als die Vergleichslegierung (bei besserem Oxidationsverhalten). Zwar weist die Legierung L1AD nur geringere Dehngrenzen als die Vergleichslegierung VL auf, hat aber dafür ebenfalls eine wesentlich bessere Oxidationsbeständigkeit.
    Selbstverständlich ist die Erfindung nicht auf die beschriebenen Ausführungsbeispiele beschränkt.

    Claims (4)

    1. Nickel-Basis-Superlegierung zur Herstellung von Einkristall-Komponenten gekennzeichnet durch folgende chemische Zusammensetzung (Angaben in Gew.-%):
      7-13 Cr
      4-10 Co
      0.5-2 Mo
      2-8 W
      4-6 Ta
      3-6 Al
      1-4 Ti
      0.1-6 Ru
      0.01-0.5 Hf
      0.001-0.15 Si
      0-700 ppm C
      0-300 ppm B
      Rest Nickel und herstellungsbedingte Verunreinigungen.
    2. Nickel-Basis-Superlegierung nach Anspruch 1, gekennzeichnet durch folgende chemische Zusammensetzung (Angaben in Gew.-%):
      10-13 Cr
      8-9 Co
      1.5-2 Mo
      3-5 W
      4-5 Ta
      3-5 Al
      2-4 Ti
      0.3-4 Ru
      0.01-0.5 Hf
      0.001-0.15 Si
      0-700 ppm C
      0-300 ppm B
      Rest Nickel und herstellungsbedingte Verunreinigungen.
    3. Nickel-Basis-Superlegierung nach Anspruch 2, gekennzeichnet durch folgende chemische Zusammensetzung (Angaben in Gew.-%):
      10-13 Cr
      8-9 Co
      1.5-2 Mo
      3.5-4 W
      4-5 Ta
      3.5-5 Al
      3-4 Ti
      0.3-1.5 Ru
      0.5 Hf
      10-500 ppm Si
      250-350 ppm C
      80-100 ppm B
      Rest Nickel und herstellungsbedingte Verunreinigungen.
    4. Nickel-Basis-Superlegierung nach Anspruch 1, gekennzeichnet durch folgende chemische Zusammensetzung (Angaben in Gew.-%),
      7-9 Cr
      8-9 Co
      1.5-2 Mo
      3-5 W
      5-6 Ta
      3-5 Al
      1-2 Ti
      0.5-1.5 Ru
      0.5 Hf
      500 ppm Si
      700 ppm C
      100 ppm B
      Rest Nickel und herstellungsbedingte Verunreinigungen.
    EP03104108A 2002-11-12 2003-11-06 Nickel-Basis-Superlegierung Expired - Fee Related EP1420075B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    US291392P 2002-11-12
    US10/291,392 US6706241B1 (en) 2002-11-12 2002-11-12 Nickel-base superalloy

    Publications (2)

    Publication Number Publication Date
    EP1420075A1 true EP1420075A1 (de) 2004-05-19
    EP1420075B1 EP1420075B1 (de) 2006-02-22

    Family

    ID=31946562

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP03104108A Expired - Fee Related EP1420075B1 (de) 2002-11-12 2003-11-06 Nickel-Basis-Superlegierung

    Country Status (4)

    Country Link
    US (1) US6706241B1 (de)
    EP (1) EP1420075B1 (de)
    JP (1) JP4523264B2 (de)
    DE (1) DE50302468D1 (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2145968A1 (de) * 2008-07-14 2010-01-20 Siemens Aktiengesellschaft Gamma-Strich-verstärkte Superlegierung auf Nickelbasis

    Families Citing this family (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP5186215B2 (ja) * 2004-11-18 2013-04-17 アルストム テクノロジー リミテッド ニッケルベース超合金
    US20060182649A1 (en) * 2005-02-16 2006-08-17 Siemens Westinghouse Power Corp. High strength oxidation resistant superalloy with enhanced coating compatibility
    US20100008790A1 (en) * 2005-03-30 2010-01-14 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
    US8920937B2 (en) * 2007-08-05 2014-12-30 United Technologies Corporation Zirconium modified protective coating
    US20130230405A1 (en) * 2007-08-31 2013-09-05 Kevin Swayne O'Hara Nickel base superalloy compositions being substantially free of rhenium and superalloy articles
    US8876989B2 (en) 2007-08-31 2014-11-04 General Electric Company Low rhenium nickel base superalloy compositions and superalloy articles
    US8216509B2 (en) * 2009-02-05 2012-07-10 Honeywell International Inc. Nickel-base superalloys
    US20110076180A1 (en) * 2009-09-30 2011-03-31 General Electric Company Nickel-Based Superalloys and Articles
    US8708659B2 (en) * 2010-09-24 2014-04-29 United Technologies Corporation Turbine engine component having protective coating
    US9783873B2 (en) 2012-02-14 2017-10-10 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
    US9752215B2 (en) 2012-02-14 2017-09-05 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
    US20160214350A1 (en) 2012-08-20 2016-07-28 Pratt & Whitney Canada Corp. Oxidation-Resistant Coated Superalloy
    GB2587635B (en) * 2019-10-02 2022-11-02 Alloyed Ltd A Nickel-based alloy

    Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4719080A (en) * 1985-06-10 1988-01-12 United Technologies Corporation Advanced high strength single crystal superalloy compositions
    JPH10330872A (ja) * 1997-05-29 1998-12-15 Toshiba Corp Ni基耐熱超合金及びNi基耐熱超合金部品

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1520630A (en) * 1974-07-08 1978-08-09 Johnson Matthey Co Ltd Platinum group metal-containing alloys
    US4643782A (en) 1984-03-19 1987-02-17 Cannon Muskegon Corporation Single crystal alloy technology
    CA1315572C (en) * 1986-05-13 1993-04-06 Xuan Nguyen-Dinh Phase stable single crystal materials
    US5270123A (en) 1992-03-05 1993-12-14 General Electric Company Nickel-base superalloy and article with high temperature strength and improved stability
    DE19624055A1 (de) 1996-06-17 1997-12-18 Abb Research Ltd Nickel-Basis-Superlegierung
    EP1204776B1 (de) * 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils
    US6468367B1 (en) * 1999-12-27 2002-10-22 General Electric Company Superalloy weld composition and repaired turbine engine component

    Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4719080A (en) * 1985-06-10 1988-01-12 United Technologies Corporation Advanced high strength single crystal superalloy compositions
    JPH10330872A (ja) * 1997-05-29 1998-12-15 Toshiba Corp Ni基耐熱超合金及びNi基耐熱超合金部品

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    PATENT ABSTRACTS OF JAPAN vol. 1999, no. 03 31 March 1999 (1999-03-31) *

    Cited By (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2145968A1 (de) * 2008-07-14 2010-01-20 Siemens Aktiengesellschaft Gamma-Strich-verstärkte Superlegierung auf Nickelbasis
    WO2010006974A1 (en) * 2008-07-14 2010-01-21 Siemens Aktiengesellschaft Nickel base gamma prime strengthened superalloy
    RU2450067C1 (ru) * 2008-07-14 2012-05-10 Сименс Акциенгезелльшафт Суперсплав на никелевой основе с упрочняющей гамма-штрих-фазой
    CN102089449B (zh) * 2008-07-14 2012-09-05 西门子公司 镍基γ'相强化的超合金
    US8431073B2 (en) 2008-07-14 2013-04-30 Siemens Aktiengesellschaft Nickel base gamma prime strengthened superalloy

    Also Published As

    Publication number Publication date
    JP4523264B2 (ja) 2010-08-11
    EP1420075B1 (de) 2006-02-22
    DE50302468D1 (de) 2006-04-27
    US6706241B1 (en) 2004-03-16
    JP2004285472A (ja) 2004-10-14

    Similar Documents

    Publication Publication Date Title
    DE3023576C2 (de)
    EP2163656B1 (de) Hochtemperaturbeständige Kobaltbasis-Superlegierung
    DE69208538T2 (de) Hitzebeständige Legierung auf Nickelbasis
    DE2415074C2 (de) Verwendung einer Superlegierung auf Nickelbasis zur Herstellung von Gasturbinenteilen
    EP0914484B1 (de) Nickel-basis-superlegierung
    DE69903224T2 (de) Monokristalline Superlegierung auf Nickelbasis mit hoher Gamma-prime-phase
    EP3175008B1 (de) Kobaltbasissuperlegierung
    EP1420075A1 (de) Nickel-Basis-Superlegierung
    CH699205A1 (de) Schutzrohre für Thermoelemente.
    EP1359231B1 (de) Nickel-Basis-Superlegierung
    EP1815035A2 (de) Nickel-basis-superlegierung
    EP2402473A2 (de) Verfahren zur Herstellung einer aus einer Nickel-Basis-Superlegierung bestehenden Einkristallkomponente
    EP1900839B1 (de) Verfahren zur Wärmebehandlung von Nickel-Basis-Superlegierungen
    DE2741271A1 (de) Superlegierung auf nickelbasis sowie gusskoerper daraus
    EP2196550B1 (de) Hochtemperatur- und oxidationsbeständiges Material auf der Basis von NiAl
    DE2458540A1 (de) Gegossener artikel aus einer superlegierung auf nickelbasis
    EP1589122A1 (de) NiAl-Beta-Phase enthaltende Beschichtung
    DE3248134C2 (de)
    WO2003040419A1 (de) Verfahren zur entwicklung einer nickel-basis-superlegierung
    EP2354261B1 (de) Nickel-Basis Superlegierung mit verbessertem Degradationsverhalten
    EP2451986B2 (de) Nickel-basis-superlegierung
    DE2821524C2 (de) Verfahren zur Wärmebehandlung eines einkristallinen Körpers aus einer Nickel-Superlegierung
    EP3133178B1 (de) Optimierte nickelbasis-superlegierung
    EP1568795B1 (de) Hitzebeständige Superlegierung und ihre Verwendung
    DE60127286T2 (de) Hitzebeständige co-ni-basis-legierung und entsprechende herstellung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK

    17P Request for examination filed

    Effective date: 20041106

    AKX Designation fees paid

    Designated state(s): DE FR GB

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 50302468

    Country of ref document: DE

    Date of ref document: 20060427

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20060411

    ET Fr: translation filed
    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    26 Opposition filed

    Opponent name: SIEMENS, AKTIENGESELLSCHAFT

    Effective date: 20061018

    R26 Opposition filed (corrected)

    Opponent name: SIEMENS AKTIENGESELLSCHAFT ABT. CT IP PG

    Effective date: 20061018

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

    Free format text: ORIGINAL CODE: EPIDOSCOBS2

    PLBB Reply of patent proprietor to notice(s) of opposition received

    Free format text: ORIGINAL CODE: EPIDOSNOBS3

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    PLCK Communication despatched that opposition was rejected

    Free format text: ORIGINAL CODE: EPIDOSNREJ1

    APBM Appeal reference recorded

    Free format text: ORIGINAL CODE: EPIDOSNREFNO

    APBP Date of receipt of notice of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA2O

    APBM Appeal reference recorded

    Free format text: ORIGINAL CODE: EPIDOSNREFNO

    APBP Date of receipt of notice of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA2O

    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    APAW Appeal reference deleted

    Free format text: ORIGINAL CODE: EPIDOSDREFNO

    APAY Date of receipt of notice of appeal deleted

    Free format text: ORIGINAL CODE: EPIDOSDNOA2O

    APBU Appeal procedure closed

    Free format text: ORIGINAL CODE: EPIDOSNNOA9O

    PLBN Opposition rejected

    Free format text: ORIGINAL CODE: 0009273

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: OPPOSITION REJECTED

    27O Opposition rejected

    Effective date: 20110907

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R100

    Ref document number: 50302468

    Country of ref document: DE

    Effective date: 20110907

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20151118

    Year of fee payment: 13

    Ref country code: DE

    Payment date: 20151119

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20151119

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50302468

    Country of ref document: DE

    Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50302468

    Country of ref document: DE

    Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

    Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    Owner name: ALSTOM TECHNOLOGY LTD, CH

    Effective date: 20161110

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50302468

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20161106

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20170731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20161130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20161106

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170601