EP1418248A1 - Heat resistant magnesiun alloy - Google Patents

Heat resistant magnesiun alloy Download PDF

Info

Publication number
EP1418248A1
EP1418248A1 EP03025817A EP03025817A EP1418248A1 EP 1418248 A1 EP1418248 A1 EP 1418248A1 EP 03025817 A EP03025817 A EP 03025817A EP 03025817 A EP03025817 A EP 03025817A EP 1418248 A1 EP1418248 A1 EP 1418248A1
Authority
EP
European Patent Office
Prior art keywords
alloy
heat resistant
amount
mass
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03025817A
Other languages
German (de)
French (fr)
Inventor
Katsufumi Tanaka
Eiji Kishi
Motoharu Tanizawa
Yuki Okamoto
Manabu Miyoshi
Takayuki Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Publication of EP1418248A1 publication Critical patent/EP1418248A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium

Definitions

  • the present invention relates to a low-cost heat resistant magnesium (Mg) alloy.
  • Mg alloy which is more lightweight than aluminum (Al) alloy, has recently attracted attention.
  • Mg alloy is the most lightweight among suitable materials used to construct airplanes and automobiles. Mg alloy is used, for example, for wheels and head covers of engines of the automobiles.
  • Mg alloy In recent years, making automobiles more lightweight has been environmentally important. Therefore, use of Mg alloy is considered even in equipment and apparatus for use in high-temperature environments. In this case, it is the heat resistance of Mg alloy that matters.
  • Prior art Mg alloy is characterized by a lack of high-temperature strength and is unsuitable for use in high-temperature environments. Additionally, when prior art Mg alloy is used for a structural material to which relatively large stress is applied, it is susceptible to creep deformation.
  • Japanese Unexamined Patent Publication No. 9-272945 discloses Mg-Al-Ca-Si series alloy where Ca and Si respectively denote calcium and silicon.
  • Japanese Unexamined Patent Publication No. 9-291332 which corresponds to United States Patent No. 3,229,954, discloses Mg-Al-Ca-RE-Mn series alloy where RE and Mn respectively denote a rare-earth element and manganese.
  • Japanese Unexamined Patent Publication No. 2002-157979 discloses Mg-Al-Zn series alloy where Zn denotes zinc.
  • heat resistant Mg alloy such as Mg-Al-Zn-Mn series alloy, Mg-Al-Si-Mn series alloy, Mg-Zn-Ca series alloy, and Mg-RE-Zn series alloy in such a manner that the heat resistant Mg alloy contains various elements and amounts of the elements.
  • the present invention is directed to a heat resistant magnesium alloy excellent in heat resistance, which is produced using a low-cost element and by appropriately adjusting an amount of the element.
  • a heat resistant magnesium alloy contains about 1 to about 6 percentage by mass of aluminum, about 0.5 to about 3 by mass ratio of calcium to aluminum, and the remainder made from magnesium and unavoidable impurities.
  • the Mg alloy contains 1 to 6 percentage (%) by mass of aluminum (Al), 0.5 to 3 by mass ratio of calcium (Ca) to Al, and remainder being Mg and unavoidable impurities.
  • the heat resistant Mg alloy essentially contains only Al and Ca together with Mg so as to improve heat resistance of the Mg alloy. Since only a few kinds of elements that are low cost and commonplace are used, not only the material cost of the heat resistant Mg alloy but also the total manufacturing cost is reduced. Therefore, a competitive heat resistant Mg alloy is obtained.
  • a Mg alloy excellent in heat resistance is obtained by restricting Ca content and Al content respectively in the above ranges.
  • Al is an element that is dissolved in the crystal grain of Mg so as to improve the strength of the Mg alloy at room temperature. Also, Al lowers the melting point of the Mg alloy and improves the casting performance thereof. At the same time, Al narrows the temperature range of coagulation of the Mg alloy and reduces stress caused by solidification shrinkage of the Mg alloy, and thereby prevents casting crack. Therefore, when the Mg alloy can be formed not only by metal mold casting but also by die casting whose cooling speed is relatively high, Al is an useful element for improving the casting performance of the Mg alloy.
  • Mg alloy preferably contains 2 to 4% by mass of Al.
  • Al-rich phase is thermally unstable, if temperature of Mg alloy is raised to a predetermined value, Al-rich phase and Mg alloy change to Mg-Al compound such as Mg 17 Al 12 and separates from Mg matrix and Mg crystal grain boundary. If Mg alloy is left to stand in a range of high temperature for an extended period, intermetallic compound coheres and becomes coarse. Thereby, creep deformation of Mg alloy is increased. That is, heat resistance of Mg alloy is reduced.
  • a proper amount of Ca is contained in the Mg alloy in accordance with Al content.
  • Ca inhibits deterioration of the heat resistance of the Mg alloy accompanied by increase of Al content.
  • the reason is considered as follows. Ca reacts with the Mg-Al compound and the Mg alloy matrix and thereby reduces the amount of Mg 17 Al 12 , which causes an increase of creep deformation to Mg alloy, while forming Ca-Al compound and Mg-Ca compound, which are stable in a range of high temperature, together with Al and Mg.
  • intermetallic components are crystallized or separated mainly from grain boundary so as to form a network. Thereby, it is considered that the intermetallic components serve as a wedge for preventing transposition of Mg alloy. For these reasons, when proper amounts of Al and Ca are contained in the Mg alloy according to the first preferred embodiment of the present invention, it is considered that the Mg alloy excellent in heat resistance with very little creep deformation even in a range of high temperature is produced.
  • the mass ratio of Ca to Al is preferably 1 to 2.
  • the Mg alloy contains the same elements of the first preferred embodiment and the same amounts thereof.
  • the Mg alloy further contains 0.2 to 1% by mass of Manganese (Mn). More preferably, the Mg alloy contains 0.5 to 0.7% by mass of Mn.
  • Mn is an element that is also dissolved in the crystal grain of Mg so as to improve the strength of the Mg alloy. Mn also reacts with Al so as to prevent separation of Mg 17 Al 12 , which causes an increase of creep deformation of the Mg alloy while forming a thermally stable intermetallic compound together with Al. Thus, Mn is an element that improves not only the strength of the Mg alloy at room temperature but also the strength thereof in high temperature. Further, Mn settles out impurities such as iron (Fe), which causes corrosion, in order to remove the impurities. If the amount of Mn is less than 0.2% by mass, the above effect is not sufficiently achieved. Even if the amount of Mn is more than 1% by mass, the above effect is not improved. In this case, it is not economical either.
  • compositional range of each element is indicated in a form of x to y% by mass of the element.
  • the compositional range of the element includes a minimum value or x% by mass itself.
  • the compositional range of the element also includes a maximum value or y% by mass itself.
  • the heat resistance is estimated by a mechanical property of Mg alloy in a high-temperature environment.
  • the heat resistance is estimated, for example, by creep characteristics or high-temperature strength resulting from a test such as a relaxation test or an axial force retaining test.
  • the manufacturing process of the Mg alloy is not restricted. Therefore, the Mg alloy may be obtained by any method of sand-cast, metal mould cast and die-cast.
  • the materials used are also not restricted. That is, pure metallic materials such as Mg, Al, Ca and Mn may be used.
  • a relatively low-cost alloy such as Mg-Al alloy may be used.
  • Mg alloy according to the present invention is used in various fields, such as space, military affairs, aviation, automobile and household electrical apparatus. It is further preferable if Mg alloy according to the present invention is applied to a product used in a high-temperature environment in order to utilize its heat resistance.
  • the product is, for example, an engine, a transmission, a compressor for an air conditioner and an associated product that is placed in an engine compartment.
  • specimens of the Mg alloy are produced as follows.
  • a halide flux is applied to an inner surface of crucible made of iron that is preheated in an electric furnace.
  • Pure Mg metal, pure Al and Mg-Mn alloy are selectively introduced into the applied crucible by a predetermined amount and dissolved therein.
  • the molten metal is maintained at a temperature of 750°C and a predetermined amount of Ca is added thereinto.
  • TABLE 1 illustrates the amount of each element in each specimen. After those elements are completely dissolved in the molten metal by stirring the elements into the molten metal, the molten metal including the elements is cooled down and is maintained at a predetermined temperature.
  • an alloyed molten metal is obtained.
  • the alloyed molten metal is poured into a die and is solidified in the atmosphere.
  • a test piece is cut from the obtained ingot and cylindrical specimens of ⁇ 10 ⁇ 10 mm are machined from the test piece.
  • the specimens are measured as follows. Referring to the above specimens Nos. 1, 2, 3 and 4, which are shown in TABLE 1, the relaxation test is performed in order to examine heat resistance of the specimens Nos. 1, 2, 3 and 4, or creep characteristics thereof.
  • stress applied to the specimens is relaxed in accordance with passage of time in such a manner that displacement of each specimen is retained at a predetermined value in the atmosphere of 150°C.
  • compressive stress of 100 MPa is first applied to each specimen and displacement of each specimen is a predetermined value
  • the compressive stress is reduced in accordance with passage of time in such a manner that displacement of each specimen is retained at the predetermined value.
  • FIG. 1 the relationship between stress, which is applied to each specimen, and time is shown in FIG. 1.
  • the result from the relaxation test, which is shown in FIG. 1, is now analyzed.
  • the Mg alloy whose mass ratio of Ca to Al is equal to or more than 0.5 has a relatively small rate of diminution of stress, it is understood that the Mg alloy has sufficient heat resistance.
  • the rate of diminution of stress becomes small.
  • the Mg alloy whose mass ratio is equal to or more than 1.0 is equivalent to Al alloy (ADC12) in heat resistance.
  • the mass ratio of Ca to Al is equal to 0.5, it is understood that the Mg alloy, which includes a proper amount of Mn, is substantially equivalent to the above Al alloy in heat resistance. Further, Mg alloys according to the present invention are superior to prior art heat resistant Mg alloys in terms of creep characteristics.
  • a heat resistant magnesium alloy contains 1 to 6 percentage by mass of aluminum, 0.5 to 3 by mass ratio of calcium to aluminum, and the remainder made from magnesium and unavoidable impurities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

A heat resistant magnesium alloy contains 1 to 6 percentage by mass of aluminum, 0.5 to 3 by mass ratio of calcium to aluminum, and the remainder made from magnesium and unavoidable impurities.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a low-cost heat resistant magnesium (Mg) alloy.
  • Because it is a lightweight material, Mg alloy, which is more lightweight than aluminum (Al) alloy, has recently attracted attention. Mg alloy is the most lightweight among suitable materials used to construct airplanes and automobiles. Mg alloy is used, for example, for wheels and head covers of engines of the automobiles.
  • In recent years, making automobiles more lightweight has been environmentally important. Therefore, use of Mg alloy is considered even in equipment and apparatus for use in high-temperature environments. In this case, it is the heat resistance of Mg alloy that matters. Prior art Mg alloy is characterized by a lack of high-temperature strength and is unsuitable for use in high-temperature environments. Additionally, when prior art Mg alloy is used for a structural material to which relatively large stress is applied, it is susceptible to creep deformation.
  • An additional element, when added to Mg alloy, improves the heat resistance of Mg alloy. The following publications disclose such a heat resistant Mg alloy.
  • Japanese Unexamined Patent Publication No. 9-272945 discloses Mg-Al-Ca-Si series alloy where Ca and Si respectively denote calcium and silicon. Also, Japanese Unexamined Patent Publication No. 9-291332, which corresponds to United States Patent No. 3,229,954, discloses Mg-Al-Ca-RE-Mn series alloy where RE and Mn respectively denote a rare-earth element and manganese. In addition, Japanese Unexamined Patent Publication No. 2002-157979 discloses Mg-Al-Zn series alloy where Zn denotes zinc. Further, other publications or references disclose heat resistant Mg alloy such as Mg-Al-Zn-Mn series alloy, Mg-Al-Si-Mn series alloy, Mg-Zn-Ca series alloy, and Mg-RE-Zn series alloy in such a manner that the heat resistant Mg alloy contains various elements and amounts of the elements.
  • However, most prior art Mg alloys contain a plurality of elements in large amounts. Some prior art Mg alloys contain costly RE. Consequently, these prior art Mg alloys are expensive.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a heat resistant magnesium alloy excellent in heat resistance, which is produced using a low-cost element and by appropriately adjusting an amount of the element.
  • The present invention has a following feature. A heat resistant magnesium alloy contains about 1 to about 6 percentage by mass of aluminum, about 0.5 to about 3 by mass ratio of calcium to aluminum, and the remainder made from magnesium and unavoidable impurities.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
  • FIG. 1 is a graph illustrating results from a relaxation test applied to specimens made of various magnesium alloys;
  • FIG. 2A is a picture of metallic formation of a specimen No. 3 observed by a metallographical microscope; and
  • FIG. 2B is a picture of metallic formation of a specimen No. C2 observed by a metallographical microscope.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A heat resistant magnesium (Mg) alloy according to a first preferred embodiment of the present invention will now be described. In the first embodiment, the Mg alloy contains 1 to 6 percentage (%) by mass of aluminum (Al), 0.5 to 3 by mass ratio of calcium (Ca) to Al, and remainder being Mg and unavoidable impurities.
  • In the first preferred embodiment, the heat resistant Mg alloy essentially contains only Al and Ca together with Mg so as to improve heat resistance of the Mg alloy. Since only a few kinds of elements that are low cost and commonplace are used, not only the material cost of the heat resistant Mg alloy but also the total manufacturing cost is reduced. Therefore, a competitive heat resistant Mg alloy is obtained.
  • A Mg alloy excellent in heat resistance is obtained by restricting Ca content and Al content respectively in the above ranges. Al is an element that is dissolved in the crystal grain of Mg so as to improve the strength of the Mg alloy at room temperature. Also, Al lowers the melting point of the Mg alloy and improves the casting performance thereof. At the same time, Al narrows the temperature range of coagulation of the Mg alloy and reduces stress caused by solidification shrinkage of the Mg alloy, and thereby prevents casting crack. Therefore, when the Mg alloy can be formed not only by metal mold casting but also by die casting whose cooling speed is relatively high, Al is an useful element for improving the casting performance of the Mg alloy.
  • If the amount of Al is less than 1% by mass, the above effect is not sufficiently achieved. Even if the amount of Al is more than 6% by mass, the above effect is not improved and is not economical. Mg alloy preferably contains 2 to 4% by mass of Al.
  • Meanwhile, if the amount of Al that is contained in the Mg alloy becomes more than a predetermined amount of Al, Al is dissolved in Mg matrix including dendritic cell and alpha crystal grain to excessive saturation to form Al-rich phase. Since Al-rich phase is thermally unstable, if temperature of Mg alloy is raised to a predetermined value, Al-rich phase and Mg alloy change to Mg-Al compound such as Mg17Al12 and separates from Mg matrix and Mg crystal grain boundary. If Mg alloy is left to stand in a range of high temperature for an extended period, intermetallic compound coheres and becomes coarse. Thereby, creep deformation of Mg alloy is increased. That is, heat resistance of Mg alloy is reduced.
  • However, in the first preferred embodiment, a proper amount of Ca is contained in the Mg alloy in accordance with Al content. Ca inhibits deterioration of the heat resistance of the Mg alloy accompanied by increase of Al content. The reason is considered as follows. Ca reacts with the Mg-Al compound and the Mg alloy matrix and thereby reduces the amount of Mg17Al12, which causes an increase of creep deformation to Mg alloy, while forming Ca-Al compound and Mg-Ca compound, which are stable in a range of high temperature, together with Al and Mg.
  • These intermetallic components are crystallized or separated mainly from grain boundary so as to form a network. Thereby, it is considered that the intermetallic components serve as a wedge for preventing transposition of Mg alloy. For these reasons, when proper amounts of Al and Ca are contained in the Mg alloy according to the first preferred embodiment of the present invention, it is considered that the Mg alloy excellent in heat resistance with very little creep deformation even in a range of high temperature is produced.
  • If the mass ratio of Ca to Al is lower than 0.5, separation of Mg17Al12, which causes an increase of creep deformation of the Mg alloy, is not sufficiently inhibited. Therefore, heat resistance of Mg alloy becomes insufficient. On the other hand, even if the mass ratio of Ca to Al is more than 3, improvement of heat resistance of Mg alloy is not achieved. In this case, it is not economical either. Also, since an excessive increase of the amount of Ca causes deterioration of castability, casting crack, burning to die, and deterioration of extensibility, it is not preferable. The mass ratio of Ca to Al is preferably 1 to 2.
  • A heat resistant Mg alloy according to a second preferred embodiment of the present invention will now be described. The Mg alloy contains the same elements of the first preferred embodiment and the same amounts thereof. In the second embodiment, the Mg alloy further contains 0.2 to 1% by mass of Manganese (Mn). More preferably, the Mg alloy contains 0.5 to 0.7% by mass of Mn.
  • Mn is an element that is also dissolved in the crystal grain of Mg so as to improve the strength of the Mg alloy. Mn also reacts with Al so as to prevent separation of Mg17Al12, which causes an increase of creep deformation of the Mg alloy while forming a thermally stable intermetallic compound together with Al. Thus, Mn is an element that improves not only the strength of the Mg alloy at room temperature but also the strength thereof in high temperature. Further, Mn settles out impurities such as iron (Fe), which causes corrosion, in order to remove the impurities. If the amount of Mn is less than 0.2% by mass, the above effect is not sufficiently achieved. Even if the amount of Mn is more than 1% by mass, the above effect is not improved. In this case, it is not economical either.
  • In the present specification, a compositional range of each element is indicated in a form of x to y% by mass of the element. In this case, unless it is specifically noted, the compositional range of the element includes a minimum value or x% by mass itself. In a similar manner, the compositional range of the element also includes a maximum value or y% by mass itself.
  • In the present invention, the heat resistance is estimated by a mechanical property of Mg alloy in a high-temperature environment. The heat resistance is estimated, for example, by creep characteristics or high-temperature strength resulting from a test such as a relaxation test or an axial force retaining test.
  • In the Mg alloy according to the present invention, the manufacturing process of the Mg alloy is not restricted. Therefore, the Mg alloy may be obtained by any method of sand-cast, metal mould cast and die-cast. The materials used are also not restricted. That is, pure metallic materials such as Mg, Al, Ca and Mn may be used. On the other hand, a relatively low-cost alloy such as Mg-Al alloy may be used.
  • Mg alloy according to the present invention is used in various fields, such as space, military affairs, aviation, automobile and household electrical apparatus. It is further preferable if Mg alloy according to the present invention is applied to a product used in a high-temperature environment in order to utilize its heat resistance. The product is, for example, an engine, a transmission, a compressor for an air conditioner and an associated product that is placed in an engine compartment.
  • Examples of the Mg alloy according to the first and second embodiments of the present invention will now be described. In the examples, specimens of the Mg alloy are produced in such a manner that amounts of Al, Ca and Mn contained in or added to the Mg alloy are varied, and properties of the specimen are measured by various tests.
  • First, specimens of the Mg alloy are produced as follows. A halide flux is applied to an inner surface of crucible made of iron that is preheated in an electric furnace. Pure Mg metal, pure Al and Mg-Mn alloy are selectively introduced into the applied crucible by a predetermined amount and dissolved therein. The molten metal is maintained at a temperature of 750°C and a predetermined amount of Ca is added thereinto. TABLE 1 illustrates the amount of each element in each specimen. After those elements are completely dissolved in the molten metal by stirring the elements into the molten metal, the molten metal including the elements is cooled down and is maintained at a predetermined temperature. While Ca is dissolved in the molten metal, the surface of the molten metal is sprayed with mixed gas of carbon dioxide and sulfur hexafluoride (SF6) gas and is sprayed with flux in order to prevent combustion of Mg.
    SPECIMEN No. COMPOSOTION (% BY MASS: REMAINDER Mg) TENSILE STRENGTH (MPa) EXTENSION (%)
    Ca Al Mn MASS RATIO Ca/Al
    1 2 4 0.2 0.5 - -
    2 3 6 - 0.5 128.5 1.75
    3 1 1 - 1 104.8 2.08
    4 3 1 - 3 136.3 2.46
    C1 1 9 - 0.1 158.0 2.53
    C2 1 3 - 0.3 131.9 2.38
  • Thus, an alloyed molten metal is obtained. The alloyed molten metal is poured into a die and is solidified in the atmosphere. A test piece is cut from the obtained ingot and cylindrical specimens of Φ 10 × 10 mm are machined from the test piece.
  • Then, the specimens are measured as follows. Referring to the above specimens Nos. 1, 2, 3 and 4, which are shown in TABLE 1, the relaxation test is performed in order to examine heat resistance of the specimens Nos. 1, 2, 3 and 4, or creep characteristics thereof. In the relaxation test, stress applied to the specimens is relaxed in accordance with passage of time in such a manner that displacement of each specimen is retained at a predetermined value in the atmosphere of 150°C. Specifically, when compressive stress of 100 MPa is first applied to each specimen and displacement of each specimen is a predetermined value, the compressive stress is reduced in accordance with passage of time in such a manner that displacement of each specimen is retained at the predetermined value. At this time, the relationship between stress, which is applied to each specimen, and time is shown in FIG. 1.
  • For a comparative test, a similar relaxation test is applied to specimens Nos. C1 and C2, which are made of various alloys in a market. The result from the test is shown in FIG. 1. Note that the alloys used are an Al alloy ADC12 (Al-11Si-2.5Cu), Mg alloys AE42 (Mg-4Al-2.7R.E.), AS21 (Mg-2Al-1Si), and AZ91 (Mg-9Al-0.9Zn).
  • Subsequently, normal tensile test is applied to each specimen. Also, mechanical property of each specimen is measured at room temperature. The results from the test and the measurement are also shown in TABLE 1.
  • Further, metallic formation of the specimens Nos. 3 and C2, which are shown in TABLE 1, is observed using a metallographical microscope with a magnifying power of 500. Pictures of the metallic formation are shown in FIGs. 2A and 2B.
  • The result from the relaxation test, which is shown in FIG. 1, is now analyzed. In view of the result of FIG. 1, since the Mg alloy whose mass ratio of Ca to Al is equal to or more than 0.5 has a relatively small rate of diminution of stress, it is understood that the Mg alloy has sufficient heat resistance. In addition, as the mass ratio of Ca to Al increases, the rate of diminution of stress becomes small. The Mg alloy whose mass ratio is equal to or more than 1.0 is equivalent to Al alloy (ADC12) in heat resistance.
  • Further, even if the mass ratio of Ca to Al is equal to 0.5, it is understood that the Mg alloy, which includes a proper amount of Mn, is substantially equivalent to the above Al alloy in heat resistance. Further, Mg alloys according to the present invention are superior to prior art heat resistant Mg alloys in terms of creep characteristics.
  • This reason is also understood from the pictures of metallic formation, which is shown in FIGs. 2A and 2B. Specifically, as shown in FIG. 2B, a relatively large amount of Mg17AL12, which reduces the creep characteristics of Mg alloy, separates from metallic formation of Mg alloy of the specimen No. C2 whose mass ratio of Ca to Al is equal to 0.3. In contrast, as shown in FIG. 2A, every Mg17AL12 of Mg alloy of the specimen No. 3 whose mass ratio of Ca to Al is equal to 1.0 is replaced by Al-Ca compound, which is thermally stable, or by Mg-Ca compound, which is also thermally stable.
  • The present examples and preferred embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein but may be modified within the scope of the appended claims.
  • A heat resistant magnesium alloy contains 1 to 6 percentage by mass of aluminum, 0.5 to 3 by mass ratio of calcium to aluminum, and the remainder made from magnesium and unavoidable impurities.

Claims (5)

  1. A heat resistant magnesium alloy comprising:
    aluminum in an amount by weight of about 1 to about 6 percent;
    calcium in an amount such that the weight ratio of calcium to aluminum is from about 0.5 to about 3; and
    the remainder magnesium and unavoidable impurities.
  2. The heat resistant magnesium alloy of claim 1, wherein aluminum is present in an amount by weight of about 2 to about 4 percent.
  3. The heat resistant magnesium alloy of claim 1, wherein calcium is present in an amount such that the weight ratio of calcium to aluminum is from about 1 to about 2.
  4. The heat resisting magnesium alloy of claim 1 further comprising manganese in an amount by weight of about 0.2 to about 1 percent.
  5. The heat resistant magnesium alloy of claim 4, wherein the manganese is present in an amount by weight of about 0.5 to about 0.7 percent.
EP03025817A 2002-11-11 2003-11-10 Heat resistant magnesiun alloy Withdrawn EP1418248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002326825 2002-11-11
JP2002326825A JP2004162090A (en) 2002-11-11 2002-11-11 Heat resistant magnesium alloy

Publications (1)

Publication Number Publication Date
EP1418248A1 true EP1418248A1 (en) 2004-05-12

Family

ID=32105521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03025817A Withdrawn EP1418248A1 (en) 2002-11-11 2003-11-10 Heat resistant magnesiun alloy

Country Status (3)

Country Link
US (1) US20040091384A1 (en)
EP (1) EP1418248A1 (en)
JP (1) JP2004162090A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816223A1 (en) * 2006-01-27 2007-08-08 Aisin Seiki Kabushiki Kaisha Magnesium alloy and casting
EP2135965A1 (en) * 2007-04-03 2009-12-23 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy
EP2159293A3 (en) * 2008-08-26 2012-05-30 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Creep-resistant magnesium alloy
EP2631312A1 (en) * 2010-10-29 2013-08-28 Sanden Corporation Magnesium-alloy member, compressor for use in air conditioner, and method for manufacturing magnesium-alloy member
CN104046868A (en) * 2014-06-26 2014-09-17 宝山钢铁股份有限公司 Rare-earth-free low-cost high-strength heat-conducting magnesium alloy and preparation method thereof
EP3896182A1 (en) * 2020-04-16 2021-10-20 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Magnesium alloy, in particular for laser build-up welding

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123877B2 (en) 2003-01-31 2012-02-28 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product
JP4575645B2 (en) * 2003-01-31 2010-11-04 株式会社豊田自動織機 Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting
DE102006009116A1 (en) * 2006-02-24 2007-09-06 Gerhard Heiche Gmbh Corrosion-resistant substrate and method for its production
JP2009007676A (en) * 2008-07-30 2009-01-15 Toyota Industries Corp Heat resistant magnesium alloy for casting, and heat resistant magnesium alloy casting
JP5445820B2 (en) * 2008-10-03 2014-03-19 株式会社豊田自動織機 Heat resistant magnesium alloy
JP5327515B2 (en) 2008-11-14 2013-10-30 株式会社豊田自動織機 Magnesium alloys for casting and magnesium alloy castings
JP6596236B2 (en) * 2015-05-27 2019-10-23 本田技研工業株式会社 Heat-resistant magnesium alloy and method for producing the same
JP2018193592A (en) * 2017-05-19 2018-12-06 株式会社豊田中央研究所 Magnesium alloy, magnesium alloy cast, and manufacturing method therefor
CN110195178B (en) * 2018-02-26 2021-10-22 中国宝武钢铁集团有限公司 High-strength high-plasticity heat-resistant flame-retardant magnesium alloy and manufacturing method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073207A (en) * 1989-08-24 1991-12-17 Pechiney Recherche Process for obtaining magnesium alloys by spray deposition
JPH08269609A (en) * 1995-03-27 1996-10-15 Toyota Central Res & Dev Lab Inc Mg-al-ca alloy excellent in die castability
EP0791662A1 (en) * 1996-02-27 1997-08-27 Honda Giken Kogyo Kabushiki Kaisha Heat-resistant magnesium alloy
EP0799901A1 (en) * 1996-04-04 1997-10-08 Mazda Motor Corporation Heat-resistant magnesium alloy member
JPH09271919A (en) * 1996-04-04 1997-10-21 Mitsui Mining & Smelting Co Ltd Production of heat resistant magnesium alloy member, magnesium alloy used to it and formed member made of magnesium alloy
US5681403A (en) * 1993-06-28 1997-10-28 Nissan Motor Co., Ltd. Magnesium alloy
EP0990710A1 (en) * 1998-09-30 2000-04-05 Mazda Motor Corporation Magnesium alloy forging material and forged member, and method for manufacturing the forged member
DE19915277A1 (en) * 1999-04-03 2000-10-05 Volkswagen Ag Magnesium alloy used e.g. in the manufacture of a wheel rim contains traces of cadmium, copper, iron, nickel and lanthanum and yttrium
JP2000280043A (en) * 1999-03-31 2000-10-10 Mazda Motor Corp Forging material and, manufacture of forging member
EP1048743A1 (en) * 1999-04-30 2000-11-02 General Motors Corporation Creep-resistant magnesium alloy die castings
JP2001107171A (en) * 1999-10-04 2001-04-17 Japan Steel Works Ltd:The Magnesium alloy and magnesium alloy heat resistant member excellent in heat resistance and castability
EP1127950A1 (en) * 2000-02-24 2001-08-29 Mitsubishi Aluminum Co.,Ltd. Die casting magnesium alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2741642B2 (en) * 1992-03-25 1998-04-22 三井金属鉱業株式会社 High strength magnesium alloy
JP2001316753A (en) * 2000-05-10 2001-11-16 Japan Steel Works Ltd:The Magnesium alloy and magnesium alloy member excellent in corrosion resistance and heat resistance

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073207A (en) * 1989-08-24 1991-12-17 Pechiney Recherche Process for obtaining magnesium alloys by spray deposition
US5681403A (en) * 1993-06-28 1997-10-28 Nissan Motor Co., Ltd. Magnesium alloy
JPH08269609A (en) * 1995-03-27 1996-10-15 Toyota Central Res & Dev Lab Inc Mg-al-ca alloy excellent in die castability
EP0791662A1 (en) * 1996-02-27 1997-08-27 Honda Giken Kogyo Kabushiki Kaisha Heat-resistant magnesium alloy
EP0799901A1 (en) * 1996-04-04 1997-10-08 Mazda Motor Corporation Heat-resistant magnesium alloy member
JPH09271919A (en) * 1996-04-04 1997-10-21 Mitsui Mining & Smelting Co Ltd Production of heat resistant magnesium alloy member, magnesium alloy used to it and formed member made of magnesium alloy
EP0990710A1 (en) * 1998-09-30 2000-04-05 Mazda Motor Corporation Magnesium alloy forging material and forged member, and method for manufacturing the forged member
JP2000280043A (en) * 1999-03-31 2000-10-10 Mazda Motor Corp Forging material and, manufacture of forging member
DE19915277A1 (en) * 1999-04-03 2000-10-05 Volkswagen Ag Magnesium alloy used e.g. in the manufacture of a wheel rim contains traces of cadmium, copper, iron, nickel and lanthanum and yttrium
EP1048743A1 (en) * 1999-04-30 2000-11-02 General Motors Corporation Creep-resistant magnesium alloy die castings
JP2001107171A (en) * 1999-10-04 2001-04-17 Japan Steel Works Ltd:The Magnesium alloy and magnesium alloy heat resistant member excellent in heat resistance and castability
EP1127950A1 (en) * 2000-02-24 2001-08-29 Mitsubishi Aluminum Co.,Ltd. Die casting magnesium alloy

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 02 28 February 1997 (1997-02-28) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 02 30 January 1998 (1998-01-30) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 13 5 February 2001 (2001-02-05) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 21 3 August 2001 (2001-08-03) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816223A1 (en) * 2006-01-27 2007-08-08 Aisin Seiki Kabushiki Kaisha Magnesium alloy and casting
EP2135965A1 (en) * 2007-04-03 2009-12-23 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy
EP2135965A4 (en) * 2007-04-03 2010-03-31 Toyota Jidoshokki Kk Heat-resistant magnesium alloy
EP2159293A3 (en) * 2008-08-26 2012-05-30 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Creep-resistant magnesium alloy
EP2631312A1 (en) * 2010-10-29 2013-08-28 Sanden Corporation Magnesium-alloy member, compressor for use in air conditioner, and method for manufacturing magnesium-alloy member
EP2631312A4 (en) * 2010-10-29 2014-06-18 Sanden Corp Magnesium-alloy member, compressor for use in air conditioner, and method for manufacturing magnesium-alloy member
CN104046868A (en) * 2014-06-26 2014-09-17 宝山钢铁股份有限公司 Rare-earth-free low-cost high-strength heat-conducting magnesium alloy and preparation method thereof
EP3896182A1 (en) * 2020-04-16 2021-10-20 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Magnesium alloy, in particular for laser build-up welding

Also Published As

Publication number Publication date
JP2004162090A (en) 2004-06-10
US20040091384A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US5855697A (en) Magnesium alloy having superior elevated-temperature properties and die castability
US9180515B2 (en) Magnesium alloy and magnesium-alloy cast product
EP1418248A1 (en) Heat resistant magnesiun alloy
JP5146767B2 (en) Magnesium alloy for casting and method for producing magnesium alloy casting
US7942986B2 (en) Magnesium alloy
US20080193322A1 (en) Hpdc Magnesium Alloy
US20070178006A1 (en) Magnesium alloy and casting
JP2005068550A (en) Inexpensive heat resistant magnesium alloy for casting having excellent heat resistance and casting property
JP4852082B2 (en) Magnesium alloy
JP3737440B2 (en) Heat-resistant magnesium alloy casting and manufacturing method thereof
US11713500B2 (en) Advanced cast aluminum alloys for automotive engine application with superior high-temperature properties
US20120070331A1 (en) Magnesium alloy and method for making the same
JP2005187896A (en) Heat resistant magnesium alloy casting
JP2005240129A (en) Heat resistant magnesium alloy casting
JPH05255794A (en) Heat resistant magnesium alloy
JP4575645B2 (en) Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting
JP2001316752A (en) Magnesium alloy for diecasting
JP4526769B2 (en) Magnesium alloy
CN100366775C (en) High strength creep-resisting magnetium base alloy
JP2005187895A (en) Heat resistant magnesium alloy casting
JP2005120449A (en) Heat resistant magnesium alloy for casting, casting made of magnesium alloy, and its production method
JP2006176873A (en) Magnesium alloy and method for manufacturing magnesium alloy member
JPH06330216A (en) Magnesium alloy
JP2005240130A (en) Heat resistant magnesium alloy casting
JPH09272939A (en) Heat resistant and high strength aluminum alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KINOSHITA, KYOICHI

Inventor name: KATO, TAKAYUKI

Inventor name: MIYOSHI, MANABU

Inventor name: OKAMOTO, YUKI

Inventor name: TANIZAWA, MOTOHARU

Inventor name: KISHI, EIJI

Inventor name: TANAKA, KATSUFUMI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KATO, TAKAYUKI

Inventor name: MIYOSHI, MANABU

Inventor name: OKAMOTO, YUKI

Inventor name: TANIZAWA, MOTOHARU

Inventor name: KISHI, EIJI

Inventor name: KINOSHITA, KYOICHI

Inventor name: TANAKA, KATSUFUMI

17Q First examination report despatched

Effective date: 20071105

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120614