EP1414815A1 - Tetrahydropyridazin-derivate und ihre verwendung als pestizide - Google Patents

Tetrahydropyridazin-derivate und ihre verwendung als pestizide

Info

Publication number
EP1414815A1
EP1414815A1 EP02748854A EP02748854A EP1414815A1 EP 1414815 A1 EP1414815 A1 EP 1414815A1 EP 02748854 A EP02748854 A EP 02748854A EP 02748854 A EP02748854 A EP 02748854A EP 1414815 A1 EP1414815 A1 EP 1414815A1
Authority
EP
European Patent Office
Prior art keywords
spp
formula
compounds
cyano
bromine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02748854A
Other languages
English (en)
French (fr)
Inventor
Fritz Maurer
Christoph Erdelen
Udo Reckmann
Andreas Turberg
Angelika Lubos-Erdelen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience AG
Original Assignee
Bayer CropScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer CropScience AG filed Critical Bayer CropScience AG
Publication of EP1414815A1 publication Critical patent/EP1414815A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • A01N47/38Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N< containing the group >N—CO—N< where at least one nitrogen atom is part of a heterocyclic ring; Thio analogues thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/16Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/18One oxygen or sulfur atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to new tetrahydropyridazine derivatives, a process for their preparation and their use as pesticides.
  • R represents hydrogen, halogen, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, haloalkylthio, hydroxy, nitro, cyano, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl or dialkylaminocarbonyl,
  • X represents halogen, haloalkyl, haloalkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, haloalkylthio, haloalkylsulfinyl, haloalkylsulfonyl or cyano and Y represents halogen, haloalkyl, haloalkoxy, haloalkylthio, halosulfonyl, haloalkylsulfonyl or cyano.
  • Formula (I) provides a general definition of the tetrahydropyridazine derivatives according to the invention.
  • R preferably represents hydrogen, halogen, C 1 -C 4 -alkyl, C 1 -C 4 -alko y, C 1 -C 4 -alkylthio; for Cj- ⁇ haloalkyl, Cj-C4-haloalkoxy and C1-C4-haloalkylthio, each with 1 to 5 identical or different halogen atoms from the series fluorine, chlorine and bromine; for hydroxy, nitro, cyano; for C 1 -C 4 alkoxy-carbonyl, aminocarbonyl, C 1 -C 4 -alkylan ⁇ ino-carbonyl or di-C 1 -C 4 -alkylamino-carbonyl.
  • X preferably represents halogen, -CC-C4-alkylthio, C] ⁇ C4-alkylsulfinyl, C1-C4-
  • alkylsulfonyl for -C-C4-haloalkyl, C ⁇ -C4-haloalkoxy, C ⁇ -C ⁇ - haloalkylthio, C ⁇ -C4-haloalkylsulfinyl and C ⁇ -C4-haloalkylsulfonyl, each with 1 to 5 identical or different halogen atoms from the series fluorine, chlorine and Bromine; or for cyano.
  • halogen for Cj-C4-haloalkyl, C ⁇ -C4-haloalkoxy, C] ⁇ C4-haloalkylthio, C ⁇ -C4-haloalkylsulfinyl and C1-C4-haloalkylsulfonyl, each with 1 to 5 identical or different halogen atoms from the series fluorine, chlorine and bromine ; or for cyano.
  • R particularly preferably represents hydrogen, fluorine, chlorine, bromine, methyl
  • Cyano methoxycarbonyl, ethoxycarbonyl, aminocarbonyl, methylaminocarbonyl, ethylaminocarbonyl, dimethylaminocarbonyl or methyl ethyl aminocarbonyl.
  • X particularly preferably represents fluorine, chlorine, bromine, trifluoromethyl, trifluoromethoxy, methylthio, methylsulfonyl, trifluoromethylthio, trifluoromethylsulfonyl or cyano.
  • Y particularly preferably represents fluorine; Chlorine, bromine, trifluoromethyl, trifluoromethoxy, trifluoromethylthio, trifluoromethylsulfonyl, difluoromethyl, difluoromethoxy or cyano.
  • radical definitions or explanations listed above or listed in preferred areas apply accordingly to the end products and to the starting and intermediate products. These residual definitions can be combined with one another, i.e. also between the respective preferred areas.
  • hydrocarbon radicals such as alkyl - in each case straight-chain or branched - as far as possible - also in connection with heteroatoms such as alkoxy.
  • Formula (II) provides a general definition of the tetrahydropyridazines to be used as starting materials in the process according to the invention.
  • the tetrahydropyridazines of the formula (II) are not yet known and are also the subject of this application. They can be obtained in a generally known manner by using ⁇ -chloro ketones of the formula (IV)
  • R and X have the meanings given above, with hydrazine hydrate (NH2-H2 H2O), optionally in the presence of a diluent, such as ethanol, at temperatures between 0 ° C and 50 ° C (see also the preparation examples).
  • a diluent such as ethanol
  • ⁇ -chloro ketones of formula (IV) are also new and the subject of this application. They can be obtained in a generally known manner by using dihalogen ketones of the formula (V)
  • hydrohalides such as hydrochlorides
  • an inert diluent preferably nitriles, such as acetonitrile
  • Ketones such as acetone or amides, such as dimethylformamide and optionally in the presence of bases, such as, for example, alkaline earth metal carbonates . converts tertiary alcoholates, alkali metal hydrides or tertiary amines at temperatures from -20 ° C to 40 ° C (see also the preparation examples).
  • the dihaloketones of the formula (V) are known (cf., for example, EP-A 657 421) or can be obtained by known processes by, for example, the corresponding monohalogen ketones of the formula (VI)
  • the monohalogen ketones of the formula (VI) are known (cf. e.g. EP-A 657 421 or US 3 859290) or can be obtained by known processes by using furanone derivatives of the formula (VII)
  • furanone derivatives of the formula (VII) are known (cf., for example, JP-A 55127382 [CA 94, 174852]). Not yet known and also the subject of this application are furanone derivatives of the formula (VIIa) in which
  • X 1 for fluorine, bromine; C 1 -C 4 alkylthio, C 1 -C 4 alkylsulfinyl, C 1 -C 4 acylsulfonyl; for -C -C4-haloalkyl, C ⁇ -C4-haloalkoxy, C ⁇ -C4-haloalkylthio, C ⁇ -C4-haloalkylsulfinyl and C ⁇ -C4-haloalkylsulfonyl each having 1 to 5 identical or different halogen atoms from the series fluorine, chlorine and bromine , or stands for cyano.
  • the new furanone derivatives of the formula (VIIIa) can be obtained in a generally known manner by known methyl benzoates of the formula (VIII)
  • X 1 has the meaning given above
  • the isocyanates of the formula (III) which are also to be used as starting materials for carrying out the process according to the invention are generally known compounds of organic chemistry.
  • diluents Practically all inert organic solvents can be used as diluents. These preferably include ahphatic and aromatic, optionally halogenated hydrocarbons, such as pentane, hexane, heptane, cyclohexane, petroleum ether, gasoline, ligroin, benzene, toluene, xylene, methylene chloride, ethylene chloride, chloroform, carbon tetrachloride, chlorobenzene and o-dichlorobenzene, ether such as diethyl and dibutyl ether, glycol dimethyl ether and diglycol dimethyl ether, tetrahydrofuran and dioxane, ketones such as acetone, methyl ethyl, methyl isopropyl or methyl isobutyl ketone, esters such as methyl acetate or ethyl a
  • reaction temperatures can be varied within a wide range in the process according to the invention. In general, temperatures between 0 ° C and 100 ° C, preferably at temperatures between 10 ° C and 80 ° C.
  • the process according to the invention is generally carried out under normal pressure. However, it is also possible to work under increased or reduced pressure.
  • the starting materials required in each case are generally used in approximately equimolar amounts. However, it is also possible to use one of the two components used in each case in a larger excess.
  • Working up is carried out in the methods according to the invention in each case by customary methods (cf. the preparation examples).
  • the active substances are suitable for combating animal pests, in particular insects, arachnids and nematodes, which occur in agriculture, in forests, in the protection of stored goods and materials, and in the hygiene sector. They can preferably be used as pesticides. They are effective against normally sensitive and resistant species as well as against all or individual stages of development.
  • the pests mentioned above include:
  • Isopoda e.g. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.
  • Chilopoda for example, Geophilus carpophagus . Scutigera spp ..
  • Thysanura e.g. Lepisma saccharina.
  • Thysanoptera e.g. Hercinothrips femoralis, Thrips tabaci
  • Homoptera e.g. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Aphis pomi, Eriosoma lanigemm, Hyalopterus arundinis, Phylloxera vastatrix, Pemphigus sppe, Phros
  • Empoasca spp. Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp.
  • Anthrenus spp. Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimalltrastitium Lissorhoptrus oryzophilus.
  • Hymenoptera e.g. Diprion spp., Hoplocampa spp., Lasius spp.
  • Plant-parasitic nematodes include, for example, Pratylenchus spp., Radopholus similis, Ditylenchus dipsaci, Tylenchulus semipenetrans, Heterodera spp., Globodera spp., Meloidogyne spp., Aphelenchoides spp., Longidorus spp., Xiphinema spp., Trichodorus spp., Bursaphelenchus spp ..
  • the substances according to the invention can be used with particularly good success for controlling plant-damaging insects, such as against caterpillars of the cotton capsule worm (Heliothis virescens), the larvae of the horseradish beetle (Phaedon cochleariae), the caterpillars of the cockroach (Plutella xylostella) and caterpillars of the army worm (Spodoptera exigua and Spodoptera frugioerda).
  • caterpillars of the cotton capsule worm Heliothis virescens
  • the larvae of the horseradish beetle Phaedon cochleariae
  • the caterpillars of the cockroach Plutella xylostella
  • caterpillars of the army worm Spodoptera exigua and Spodoptera frugioerda
  • the substances according to the invention also show resistance-inducing
  • the compounds according to the invention can also be used in certain concentrations or application rates as herbicides and microbicides, for example as fungicides, antifungal agents and bactericides. If appropriate, they can also be used as intermediates or precursors for the synthesis of further active compounds.
  • plants and parts of plants can be treated.
  • Plants are understood here to mean all plants and plant populations, such as desired and unwanted wild plants or crop plants (including naturally occurring crop plants).
  • Cultivated plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including those by
  • Plant variety rights of protectable or non-protectable plant varieties Plant parts are to be understood to mean all above-ground and underground parts and organs of plants, such as shoots, leaves, flowers and roots, examples being leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds as well as roots, tubers and rhizomes.
  • One of the plant parts also crops and vegetative and generative propagation material, for example cuttings, tubers, rhizomes, offshoots and seeds.
  • Storage room according to the usual treatment methods, e.g. by dipping, spraying, vaporizing, atomizing, scattering, spreading and, in the case of propagation material, in particular seeds, furthermore by single- or multi-layer coating.
  • the active compounds can be converted into the customary formulations, such as solutions, emulsions, wettable powders, suspensions, powders, dusts, pastes, soluble powders, granules, suspension emulsion concentrates, active substance-impregnated natural and synthetic substances and very fine encapsulations in polymeric substances.
  • formulations are made in a known manner, e.g. by mixing the active ingredients with extenders, that is to say liquid solvents and / or solid carriers, optionally using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • extenders that is to say liquid solvents and / or solid carriers
  • surface-active agents that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • organic solvents can also be used as auxiliary solvents.
  • auxiliary solvents e.g. organic solvents
  • aromatics such as xylene, toluene, or alkylnaphthalenes
  • chlorinated aromatics and chlorinated aliphatic hydrocarbons such as chlorobenzenes, chlorethylenes or methylene chloride
  • aliphatic hydrocarbons such as cyclohexane or paraffins, e.g.
  • Petroleum fractions mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • alcohols such as butanol or glycol and their ethers and esters
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • solid carriers e.g. ammonium salts and natural rock powders such as kaolins, clays, talc, chalk, quartz, attapulgite, MontmoriUonit or diatomaceous earth and synthetic rock powders such as highly disperse silicic acid, aluminum oxide and silicates, as solid carriers for granulates are possible: e.g.
  • emulsifiers and / or foam-generating agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters,
  • Polyoxyethylene fatty alcohol ethers e.g. Alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates and protein hydrolyzates; Possible dispersants are: e.g. Lignin sulfite liquor and methyl cellulose.
  • Adhesives such as carboxymethyl cellulose, natural and synthetic powdery, granular or latex-shaped polymers, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids such as cephalins and lecithins and synthetic phospholipids can be used in the formulations.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 95% by weight of active compound, preferably between 0.5 and 90%.
  • the active compounds according to the invention can also be used in a mixture with known fungicides, bactericides, acaricides, nematicides or insecticides, in order to thus, for example, improve the spectrum of action. broaden or prevent the development of resistance. In many cases, synergistic effects are obtained, ie the effectiveness of the mixture is greater than the effectiveness of the individual components.
  • Diethofencarb Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Diniconazol-M, Dinocap, Diphenylamin, Dipyrithione, Ditalimfos, Dithianon, Dodemorph, Dodine, Drazoxolon,
  • Ferimzon Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Flu rimidol, Flusilazol, Flusulfamid, Flutolanil, Flutriafol, Folpet, Fosetyl-Alminium, Fosetyl- Sodium, fthalide, fuberidazole, furalaxyl, furametpyr, furcarbonil, furconazole, furconazole-cis, furmecyclox,
  • Imazalil Imibenconazol, Iminoctadin, Iminoctadinealbesilat, Iminoctadinetriacetat, Iodocarb, Ipconazol, Iprobefos (IBP), Iprodione, Irumamycin, Isoprothiolan, Isovaledione,
  • copper preparations such as: copper hydroxide, copper phthalate, copper oxychloride, copper sulfate, copper oxide, oxy-copper and Bordeaux mixture,
  • Mancopper Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metomeclam, Metsulfovax, Mildiomycin, Myclobutanil, Myclozolin,
  • Insecticides / acaricides / nematicides Abamectin, Acephate, Acetamiprid, Acrinathrin, Alanycarb, Aldicarb, Aldoxycarb, Alpha-cypermethrin, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azamethiphos, Azinphos A, Azinphos M, Azocyclotin,
  • Fenamiphos fenazaquin, fenbutatin oxide, fenitrothion, fenothiocarb, fenoxacrim
  • Fenoxycarb Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fenvalerate, Fipronil, Fluazina, Fluazuron, Flubrocythrinate, Flucycloxuron, Flucyfhrinate, Flufenoxuron, Flumethrin, Flutenzine, Fluvalinate, Fonophos, Fostiarbof, Fosarbiazil, Fosti Methfiazole
  • Metharhilicium flavoviride methidathione, methiocarb, methoprene, methomyl, methoxyfenozide, metolcarb, metoxadiazone, mevinphos, milbemectin, milbemycin, monocrotophos,
  • Paecilomyces fumosoroseus Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A,
  • Pirimiphos M Profenofos, Promecarb, Propargite, Propoxur, Prothiofos, Prothoat, Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridathion, Pyrimidifen, Pyriproxyfen,
  • the active compounds according to the invention can also be present in their commercially available formulations and in the use forms prepared from these formulations in a mixture with synergists.
  • Synergists are compounds that increase the effectiveness of the active ingredients without the added synergist itself having to be active.
  • the active substance content of the use forms prepared from the commercially available formulations can vary within wide ranges.
  • the active substance concentration of the use forms can be from 0.0000001 to 95% by weight of active substance, preferably between 0.0001 and 1% by weight.
  • the application takes place in a customary manner adapted to the application forms
  • the active ingredient When used against hygiene pests and pests of stored products, the active ingredient is distinguished by an excellent residual action on wood and clay and by a good stability to alkali on limed substrates.
  • Protoplast fusion obtained plant species and plant varieties and their parts treated.
  • transgenic plants and plant cultivars which have been obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetic modified organisms) and their parts are treated.
  • plants of the plant cultivars which are in each case commercially available or in use are particularly preferably treated.
  • Plant cultivars are understood to mean plants with new properties (“traits”) which have been bred by conventional breeding, by mutagenesis or by recombinant DNA techniques. These can be varieties, bio and genotypes.
  • the treatment according to the invention can also cause superadditive (“synergistic") effects.
  • superadditive for example, reduced application rates and / or widening of the spectrum of action and / or an increase in the action of the substances and agents which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, Accelerated ripeness, higher crop yields, higher quality and / or higher nutritional value of the harvested products, higher shelf life and / or workability of the harvested products possible, which go beyond the effects that are actually to be expected.
  • the preferred transgenic (genetically engineered) plants or plant cultivars to be treated according to the invention include all plants which, by virtue of the genetic engineering modification, have received genetic material which gives these plants particularly advantageous, valuable properties (“traits”). Examples of such properties are better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated ripening, higher crop yields, higher quality and / or higher nutritional value of the harvested products, higher shelf life and / or workability of the harvested products. Further and particularly highlighted examples of such properties are an increased defense of the plants against animal and microbial
  • Pests such as insects, mites, phytopathogenic fungi, bacteria and / or viruses, and an increased tolerance of the plants to certain herbicidal active ingredients.
  • transgenic plants include the important crop plants, such as cereals (wheat, rice), corn, soybeans, potatoes, cotton, rapeseed and fruit plants (with the fruits apples, pears, citrus fruits and grapes), with corn, soybeans, potatoes , Cotton and rapeseed are highlighted.
  • the traits are particularly emphasized as the increased defense of the plants against insects by toxins which arise in the plants, in particular those which are caused by the genetic material from Bacillus thuringiensis (for example by the genes Cry ⁇ A (a), Cry ⁇ A (b), Cry ⁇ A (c), CryllA, CryfflA, CryIIIB2, Cry9c Cry2Ab,
  • Bt plants Cry3Bb and CrylF and their combinations are generated in the plants (hereinafter “Bt plants”).
  • the properties (“traits”) also particularly emphasize the increased defense of plants against fungi, bacteria and viruses by systemic acquired resistance (SAR), systemin, phytoalexins, elicitors and resistance genes and correspondingly expressed proteins and toxins.
  • SAR systemic acquired resistance
  • the increased tolerance is further emphasized as properties (“traits”) the plants against certain herbicidal active ingredients, for example imidazolinones, sulfonylureas, glyphosate or phosphinotricin (for example “PAT” gene).
  • the genes imparting the desired properties (“traits”) can also occur in combinations with one another in the transgenic plants. Examples of “Bt plants” are maize, cotton, soybean and
  • Potato varieties named under the trade names YIELD GARD® e.g. corn, cotton, soy
  • KnockOut® e.g. corn
  • StarLink® e.g. corn
  • Bollgard® cotton
  • Nucotn® cotton
  • NewLeaf® potato
  • Examples of herbicide-tolerant plants are maize varieties, cotton varieties and soy varieties which are sold under the trade names Roundup Ready®
  • the herbicide-resistant plants include the varieties sold under the name Clearfield® (e.g. maize). Of course, these statements also apply to plant varieties developed in the future or coming onto the market in the future with these or future-developed genetic properties ("traits").
  • the active compounds according to the invention act not only against pests from plants, hygiene and stored products, but also in the veterinary sector against animal parasites (ectoparasites) such as tick ticks, leather ticks, mites, running mites, flies (stinging and licking), parasitic fly larvae, lice,
  • animal parasites ectoparasites
  • tick ticks leather ticks
  • mites running mites
  • flies stinging and licking
  • parasitic fly larvae lice
  • These parasites include: From the order of the Anoplurida, for example Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp ..
  • Ischnocerina e.g. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp ..
  • Nematocerina and Brachycerina e.g. Aedes spp., Anopheles spp., Culex spp., Simulium spp.
  • Siphonaptrida e.g. Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp ..
  • Pneumonyssus spp. Sternostoma spp., Varroa spp ..
  • Tyrophagus spp. Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp.
  • the active compounds of the formula (I) according to the invention are also suitable for controlling arthropods which are used in agricultural animals, e.g. Cattle, sheep, goats,
  • Infest hamsters, guinea pigs, rats and mice By combating these arthropods, deaths and reduced performance (in the case of meat, milk, wool, skins, eggs, honey, etc.) are to be reduced, so that the use of the active compounds according to the invention enables more economical and simple animal husbandry.
  • the active compounds according to the invention are used in the veterinary sector in a known manner by enteral administration in the form of, for example, tablets,
  • Formula (I) as formulations (for example powders, emulsions, flowable Agents), which contain the active substances in an amount of 1 to 80% by weight, directly or after 100 to 10,000-fold dilution or use them as a chemical bath.
  • insects may be mentioned by way of example and preferably, but without limitation:
  • Lyctus pubescens Trogoxylon aequale, Minthes rugicollis, Xyleborus spec. Tryptodendron spec. Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec. Dinoderus minutus.
  • Kalotermes flavicollis Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.
  • Bristle tails such as Lepisma saccharina.
  • technical materials are to be understood as non-living materials, such as preferably plastics, adhesives, glues, papers and cartons, leather, wood, wood processing products and paints.
  • the one to be protected against insect attack is very particularly preferably
  • Wood and wood processing products which can be protected by the agent according to the invention or mixtures containing it are to be understood as examples:
  • the active substances can be used as such, in the form of concentrates or generally customary formulations such as powders, granules, solutions, suspensions, emulsions or pastes.
  • the formulations mentioned can be prepared in a manner known per se, e.g. by mixing the active ingredients with at least one solvent or diluent, emulsifier, dispersant and / or binder or fixative, water repellant, optionally siccatives and UV stabilizers and, where appropriate, dyes and pigments and other processing aids.
  • the insecticidal compositions or concentrates used to protect wood and wood-based materials contain the active ingredient according to the invention in a concentration of 0.0001 to 95% by weight, in particular 0.001 to 60% by weight.
  • the amount of the agents or concentrates used depends on the type and occurrence of the insects and on the medium. The optimal amount can be determined in each case by test series. In general, however, it is sufficient to use 0.0001 to 20% by weight, preferably 0.001 to 10% by weight, of the active compound, based on the material to be protected.
  • organic-chemical solvent or solvent mixture and / or an oily or oily or low-volatility organic-chemical solvent or solvent mixture and / or a polar organic-chemical solvent or solvent mixture and / or water and optionally an emulsifier and / or wetting agents.
  • the organic chemical solvents used are preferably oily or oily solvents with an evaporation number above 35 and a flash point above 30 ° C., preferably above 45 ° C.
  • Corresponding mineral oils or their aromatic fractions or mineral oil-containing solvent mixtures, preferably white spirit, petroleum and / or alkylbenzene, are used as such low-volatility, water-insoluble, oily and oily solvents.
  • Mineral oils with a boiling range of 170 to 220 ° C, white spirit with a boiling range of 170 to 220 ° C, spindle oil with a boiling range of 250 to 350 ° C, petroleum or aromatics with a boiling range of 160 to 280 ° C, turpentine oil and Like. Used.
  • liquid aliphatic hydrocarbons with a boiling range from 180 to 210 ° C. or high-boiling mixtures of aromatic and aliphatic hydrocarbons with a boiling range from 180 to 220 ° C. and or lock oil and / or monochloronaphthalene, preferably ⁇ -monochloronaphthalene, are used.
  • organic non-volatile oily or oily solvents with an evaporation number above 35 and a flash point above 30 ° C, preferably above 45 ° C can be partially replaced by slightly or medium-volatile organic chemical solvents, with the proviso that the solvent mixture also has an evaporation number 35 and a flash point above 30 ° C, preferably above 45 ° C, and that the insecticide-fungicide mixture is soluble or emulsifiable in this solvent mixture.
  • part of the organic chemical solvent or solvent mixture or an aliphatic polar organic chemical solvent or solvent mixture is replaced.
  • Aliphatic organochemical solvents containing hydroxyl and / or ester and or ether groups, such as, for example, glycol ethers, esters or the like, are preferably used.
  • the organic-chemical binders which are known are water-dilutable and / or synthetic resins which are soluble or dispersible or emulsifiable in the organic-chemical solvents used and / or binding drying oils, in particular binders consisting of or containing an acrylate resin, a vinyl resin, e.g. Polyvinyl acetate, polyester resin, polycondensation or polyaddition resin, polyurethane resin, alkyd resin or modified alkyd resin, phenolic resin, hydrocarbon resin such as indene-coumarone resin, silicone resin, drying vegetable and / or drying oils and / or physically drying binders based on a natural and / / or synthetic resin used.
  • binders consisting of or containing an acrylate resin, a vinyl resin, e.g. Polyvinyl acetate, polyester resin, polycondensation or polyaddition resin, polyurethane resin, alkyd resin or modified alkyd resin, phenolic resin, hydrocarbon resin such
  • the synthetic resin used as a binder can be used in the form of an emulsion, dispersion or solution. Bitumen or bituminous substances up to 10% by weight can also be used as binders. In addition, in itself Known dyes, pigments, water-repellent agents, odor correctors and inhibitors or anticorrosive agents and the like can be used.
  • Alkyd resins with an oil content of more than 45% by weight, preferably 50 to 68% by weight, are preferably used according to the invention.
  • the binder mentioned can be wholly or partly by a fixing agent.
  • mixture or a plasticizer (mixture) can be replaced.
  • additives are intended to prevent volatilization of the active ingredients and crystallization or precipitation. They preferably replace 0.01 to 30% of the binder (based on 100% of the binder used).
  • the plasticizers come from the chemical classes of phthalic acid esters such as dibutyl, dioctyl or benzyl butyl phthalate, phosphoric acid esters such as tributyl phosphate, adipic acid esters such as di- (2-ethylhexyl) adipate, stearates such as butyl stearate or amyl stearate, oleates such as butyl oleate, higher glycerol glycerol or glycerol ether - Kolether, glycerol ester and p-toluenesulfonic acid ester.
  • phthalic acid esters such as dibutyl, dioctyl or benzyl butyl phthalate
  • phosphoric acid esters such as tributyl phosphate
  • adipic acid esters such as di- (2-ethylhexyl) adipate
  • Fixing agents are chemically based on polyvinyl alcohols such as Polyvinyl methyl ether or ketones such as benzophenone, ethylene benzophenone.
  • Water is also particularly suitable as a solvent or diluent, if appropriate in a mixture with one or more of the above-mentioned organic chemical solvents or diluents, emulsifiers and dispersants.
  • a particularly effective wood protection is achieved by industrial impregnation processes, e.g. vacuum, double vacuum or pressure processes.
  • the ready-to-use compositions can optionally contain further insecticides and, if appropriate, one or more fungicides.
  • insecticides and fungicides mentioned in WO 94/29 268 are preferably suitable as additional mixing partners.
  • the ones mentioned in this document are preferably suitable as additional mixing partners.
  • Insecticides such as chlorpyriphos, phoxim, silafluofin, alphamethrin, cyfluthrin, cypermethrin, deltamethrin, permethrin, imidacloprid, NI-25, flufenoxuron, hexaflumuron, transfluthrin, methoxyphenuriflifon, trifluoropurine,
  • fungicides such as epoxyconazole, hexaconazole, azaconazole, propiconazole, tebuconazole, cyproconazole, metconazole, imazalil, dichlorofluoride, tolylfluanid, 3-iodo-2-propynylbutylcarbamate, N-octyl-isothiazolin-3-one and 4,5-dichloro -octyl-isothiazolin-3-one.
  • the compounds according to the invention can be used to protect objects, in particular ship hulls, sieves, nets, structures, quay systems and signaling systems which come into contact with sea or brackish water.
  • Baianus or pollicipes species increases the frictional resistance of ships and, as a result, leads to a significant increase in operating costs due to increased energy consumption and, moreover, frequent dry dock stays.
  • heavy metals such as e.g. in bis (trialkyltin) sulfides, tri-K-butyltin laurate, tri-butyltin chloride, copper (I) oxide,
  • Triethyltin chloride tri - «- butyl (2-phenyl-4-chlorophenoxy) tin, tributyltin oxide, molybdenum disulfide, antimony oxide, polymeric butyl titanate, phenyl (bispyridine) bismuth chloride, tri-M-butyltin fluoride, manganese ethylene thiothiocarbamate, Zinc ethylene bishiocarbamate, zinc and copper salts of 2-pyridine-thiol-1-oxide, bisdimethyldithiocarbamoyl zinc ethylene bisthiocarbamate, zinc oxide,
  • Copper (I) ethylene bisdithiocarbamate, copper thiocyanate, copper phthalate and tributyltin halides can be dispensed with or the concentration of these compounds can be significantly reduced.
  • the ready-to-use antifouling paints can also be used if necessary
  • active ingredients preferably algicides, fungicides, herbicides, molluscicides or other antifouling active ingredients.
  • Suitable combination partners for the antifouling agents according to the invention are preferably:
  • Fentin acetate, metaldehyde, methiocarb, niclosamide, thiodicarb and trimethacarb; or conventional anti-fouling agents such as
  • the antifouling agents used contain the active compound according to the invention of the compounds according to the invention in a concentration of 0.001 to 50% by weight, in particular of 0.01 to 20% by weight.
  • the antifouling agents according to the invention furthermore contain the usual ones
  • antifouling paints contain in particular binders.
  • binders are polyvinyl chloride in a solvent system, chlorinated rubber in a solvent system, acrylic resins in a solvent system, in particular in an aqueous system, vinyl chloride / vinyl acetate copolymer systems in the form of aqueous dispersions or in the form of organic solvent systems, butadiene / styrene / Acrylonitrile rubbers, drying
  • Oils such as linseed oil, resin esters or modified hard resins in combination with tar or bitumen, asphalt and epoxy compounds, small amounts of chlorinated rubber, chlorinated polypropylene and vinyl resins.
  • Paints may also contain inorganic pigments, organic
  • Paints may also contain materials such as rosin to enable controlled release of the active ingredients.
  • the paints may also contain plasticizers, modifiers that affect the rheological properties, and other conventional ingredients. Also in self-polishing antifouling
  • the active substances are also suitable for combating animal pests, in particular insects, arachnids and mites, which live in closed spaces such as, for example, apartments, factories, offices, vehicle cabins and the like. occurrence.
  • Sco ⁇ ionidea e.g. Buthus occitanus.
  • Acarina for example Argas persicus, Argas reflexus, Bryobia ssp., Dermanyssus gallinae, Glyciphagus domesticus, Ornithodorus moubat, Rhipicephalus sanguineus, Trombicula alfreddugesi, Neutrombicula autumnalis, Dermatophagoides pteronissimus, Dermatophagoides forinae.
  • Opiüones e.g. Pseudosco ⁇ iones chelifer, Pseudosco ⁇ iones cheiridium, Opiliones phalangium.
  • Diplopoda e.g. Blaniulus guttulatus, Polydesmus spp ..
  • Psocoptera for example Lepinatus spp., Liposcelis spp.
  • Coleptera for example Anthrenus spp., Attagenus spp., Dermestes spp., Latheticus oryzae, Necrobia spp., Ptinus spp., Rhizopertha dominica, Sitophilus granarius, Sitophilus oryzae, Sitophilus zeamais, Stegobium paniceum.
  • Lepidoptera e.g. Achroia grisella, Galleria mellonella, Plodia inte ⁇ unctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella.
  • Ctenocephalides canis Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenops lla cheopis.
  • Hymenoptera e.g. Camponotus herculeanus, Lasius fuliginosus, Lasius niger, Lasius urnbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum.
  • the application in the field of household insecticides is carried out alone or in combination with other suitable active ingredients such as phosphoric acid esters, carbamates, pyrethroids, growth regulators or active ingredients from other known classes of insecticides. They are used in aerosols, unpressurized sprays, e.g. pump and atomizer sprays, automatic fog machines, foggels, foams, gels, vaporizer products with vaporizer plates made of cellulose or plastic, liquid vaporizers, gel and membrane vaporizers, propeller-driven vaporizers, energy-free or passive evaporation systems, moth papers, moth papers and moth gels, as granules or dusts, in lures or bait stations.
  • suitable active ingredients such as phosphoric acid esters, carbamates, pyrethroids, growth regulators or active ingredients from other known classes of insecticides. They are used in aerosols, unpressurized sprays, e.g. pump and atomizer sprays, automatic fog machines, foggels
  • Example IV-1 is added to a solution of 5.3 g (17.2 mmol) of 3'-cyano-2- (4-chloro-yrazol-l-yl) -4-chlorobutyrophenone (Example IV-1) in 50 ml of ethanol , 7 g (35 mmol) hydrazine hydrate and stir the mixture overnight at room temperature. Then the solvent is distilled off in vacuo, the residue is mixed with water and extracted with ethyl acetate. The organic phase is separated off, dried over sodium sulfate and evaporated in vacuo.
  • a solution of 40.3 g (0.25 mol) of 3-cyanobenzoe is added dropwise to a solution of 30.2 g (0.27 mol) of potassium tert-butoxide in 300 ml of tetrahydrofuran - Acid methyl ester and 21.8 g (0.25 mol) of ⁇ -butyrolactone in 50 ml of tetrahydrofuran and the mixture is stirred for 18 hours at room temperature. Then the solvent is distilled off in vacuo, the residue is dissolved in water and extracted with diethyl ether. The aqueous phase is separated off and adjusted to about pH 1-2 with ice-cooling using dilute hydrochloric acid. The mixture is extracted twice with methylene chloride, the organic phases are dried over sodium sulfate and the solvent is then evaporated off in vacuo.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted to the desired concentration with water containing emulsifier.
  • Soybean shoots (Glycine max) are treated by dipping into the active ingredient preparation of the desired concentration and populated with Heliothis virescens caterpillars while the leaves are still moist.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • Cabbage leaves (Brassica oleracea) are treated by being dipped into the preparation of active compound of the desired concentration and populated with larvae of the horseradish leaf beetle (Phaedon cochleariae) while the leaves are still moist.
  • the kill is determined in%. 100% means that all beetle larvae have been killed; 0% means that no beetle larvae have been killed.
  • the compounds of preparation examples 2,3,4,5,6,7,8,9,10,11,12 and 16, for example, show 100% killing after 7 days.
  • Solvent 30 parts by weight of dimethylformamide emulsifier: 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted to the desired concentration with water containing emulsifier.
  • Cabbage leaves (Brassica oleracea) are treated by being dipped into the preparation of active compound of the desired concentration and populated with caterpillars of the cockroach (Plutella xylostella) while the leaves are still moist.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • Cabbage leaves (Brassica oleracea) are treated by being dipped into the preparation of active compound of the desired concentration and populated with caterpillars of the army worm (Spodoptera exigua) while the leaves are still moist.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted to the desired concentration with water containing emulsifier.
  • Cabbage leaves (Brassica oleracea) are treated by being dipped into the preparation of active compound of the desired concentration and populated with caterpillars of the army worm (Spodoptera frugiperda) while the leaves are still moist.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • Cotton plants (Gossypium hirsutum) are sprayed with an active ingredient preparation of the desired concentration. After the specified days, Heliothis virescens caterpillars are placed on the treated leaves in infection chambers.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • the compound according to preparation example 14 shows an infection of 100% after 5, 12, 19 and 26 days.
  • Solvent 9 parts by weight of dimethylformamide emulsifier: 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted to the desired concentration with water containing emulsifier.
  • Cotton plants (Gossypium hirsutum) are sprayed with an active ingredient preparation of the desired concentration. After the specified days, caterpillars of the army worm (Spodoptera frugiperda) are placed on the treated leaves in infection chambers.
  • caterpillars of the army worm Spodoptera frugiperda
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • Test animals adult Musca domestica, trunk Reichswald (OP, SP,
  • the effectiveness of the active ingredient preparation is determined. 100% means that all flies have been killed; 0% means that no flies have been killed.
  • Test animals Lucilia cuprina larvae
  • test tubes are removed for 2 days and the dolls are counted.
  • the effect of the active substance preparation is assessed according to the number of flies hatched after 1.5 times the development time of an untreated control. 100% means that no flies have hatched; 0% means that all flies hatched normally.

Abstract

Die vorliegende Erfindung betrifft neue Tetrahydropyridazin-Derivate der Formel (I), in welcher R, X und Y die oben angegebene Bedeutung haben, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel.

Description

TETRAHYDROPYRIDAZIN-DERIVATE UND IHRE VERWENDUNG ALS PESTIZIDE
Die vorliegende Erfindung betrifft neue Tetrahydropyridazin-Derivate, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel.
Es ist bekannt, dass bestimmte Tetrahydropyridazincarboxamide eine gute Wirksamkeit gegen tierische Schädlinge zeigen (vgl. z.B. DE-A 43 03 658 oder WO 91/17-983).
Die Wirkungshöhe bzw. Wirkungsdauer dieser vorbekannten Verbindungen ist jedoch, insbesondere bei bestimmten Organismen oder bei niedrigen Anwendungskonzentrationen nicht in allen Anwendungsgebieten völlig zufriedenstellend.
Es wurden neue Tetrahydropyridazin-Derivate der Formel (I) gefunden,
R für Wasserstoff, Halogen, Alkyl, Alkoxy, Alkylthio, Halogenalkyl, Halogen- alkoxy, Halogenalkylthio, Hydroxy, Nitro, Cyano, Alkoxycarbonyl, Amino- carbonyl, Alkylaminocarbonyl oder Dialkylaminocarbonyl steht,
X für Halogen, Halogenalkyl, Halogenalkoxy, Alkylthio, Alkylsulfinyl, Alkyl- sulfonyl, Halogenalkylthio, Halogenalkylsulfinyl, Halogenalkylsulfonyl oder Cyano steht und Y für Halogen, Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogen- sulfϊnyl, Halogenalkylsulfonyl oder Cyano steht.
Weiterhin wurde gefunden, dass man die Tetrahydropyridazin-Derivate der Formel
(I) erhält, wenn man Tetrahydropyridazme der Formel (II)
in welcher
R und X die oben angegebene Bedeutung haben,
mit Isocyanaten der Formel (III)
in welcher
Y die oben angegebene Bedeutung hat,
gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt.
Schließlich wurde gefunden, dass die neuen Tetrahydropyridazin-Derivate der Formel (I) stark ausgeprägte biologische Eigenschaften besitzen und vor allem zur
Bekämpfung von tierischen Schädlingen, insbesondere von Insekten, Spinntieren und Nematoden, die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen, geeignet sind. Die erfindungsgemäßen Tetrahydropyridazin-Derivate sind durch die Formel (I) allgemein definiert.
Bevorzugte Substituenten bzw. Bereiche der in den oben und nachstehend erwähnten
Formeln aufgeführten Reste werden im folgenden erläutert:
R steht bevorzugt für Wasserstoff, Halogen, C^-C4-Alkyl, Cι-C4-Alko y, Ci- C4- Alkylthio; für Cj- ^Halogenalkyl, Cj-C4-Halogenalkoxy und C1-C4- Halogenalkylthio mit jeweils 1 bis 5 gleichen oder verschiedenen Halogenatomen aus der Reihe Fluor, Chlor und Brom; für Hydroxy, Nitro, Cyano; für Cι-C4-Alkoxy-carbonyl, Aminocarbonyl, Cι-C4-Alkylanιino-carbonyl oder Di-C 1 -C4-alkylamino-carbonyl.
X steht bevorzugt für Halogen, Cι-C4-Alkylthio, C]^C4-Alkylsulfinyl, C1-C4-
Alkylsulfonyl; für Cι-C4-Halogenalkyl, Cι-C4-Halogenalkoxy, C\-C^- Halogenalkylthio, Cι-C4-Halogenalkylsulfinyl und Cι-C4-Halogenalkyl- sulfonyl mit jeweils 1 bis 5 gleichen oder verschiedenen Halogenatomen aus der Reihe Fluor, Chlor und Brom; oder für Cyano.
steht bevorzugt für Halogen; für Cj-C4-Halogenalkyl, Cι-C4-Halogen- alkoxy, C]^C4-Halogenalkylthio, Cι-C4-Halogenalkylsulfinyl und C1-C4- Halogenalkylsulfonyl mit jeweils 1 bis 5 gleichen oder verschiedenen Halogenatomen aus der Reihe Fluor, Chlor und Brom; oder für Cyano.
R steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl,
Methoxy, Methylthio, Trifluormethyl, Trifluormethoxy, Trifluormethylthio,
Cyano, Methoxycarbonyl, Ethoxycarbonyl, Aminocarbonyl, Methylamino- carbonyl, Ethylaminocarbonyl, Dimethylaminocarbonyl oder Methyl-ethyl- aminocarbonyl. X steht besonders bevorzugt für Fluor, Chlor, Brom, Trifluormethyl, Trifluormethoxy, Methylthio, Methylsulfonyl, Trifluormethylthio, Trifluor- methylsulfonyl oder Cyano.
Y steht besonders bevorzugt für Fluor; Chlor, Brom, Trifluormethyl, Trifluormethoxy, Trifluormethylthio, Trifluormethylsulfonyl, Difluormethyl, Difluor- methoxy oder Cyano.
Die oben aufgeführten oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuterungen gelten für die Endprodukte und für die Ausgangs- und Zwischenprodukte entsprechend. Diese Restedefinitionen können untereinander, also auch zwischen den jeweiligen Vorzugsbereichen, beliebig kombiniert werden.
Erfindungsgemäß bevorzugt werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als bevorzugt (vorzugsweise) aufgeführten Bedeutungen vorliegt
Erfϊndungsgemäß besonders bevorzugt werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Be- deutungen vorliegt.
In den oben und nachstehend aufgeführten Restedefinitionen sind Kohlenwasserstoffrest, wie Alkyl - auch in Verbindung mit Heteroatomen wie Alkoxy - soweit möglich jeweils geradkettig oder verzweigt.
Verwendet man beispielsweise 4-(4-Chlorpyrazol-l-yl)-3-(3-fluorphenyl)-l,4,5,6- tetrahydropyridazin und 4-Trifluormethylphenylisocyanat als Ausgangsstoffe, so kann der Reaktionsablauf des erfϊndungsgemäßen Verfahrens durch das folgende Formelschema wiedergegeben werden:
Die beim erfindungsgemäßen Verfahren als Ausgangsstoffe zu verwendenden Tetra- hydropyridazine sind durch die Formel (II) allgemein definiert. Die Tetrahydropyri- dazine der Formel (II) sind noch nicht bekannt und ebenfalls Gegenstand dieser Anmeldung. Sie können in allgemein bekannter Art und Weise erhalten werden, indem man ω-Chlorketone der Formel (IV)
in welcher
R und X die oben angegebenen Bedeutungen haben, mit Hydrazinhydrat (NH2- H2 H2O), gegebenenfalls in Gegenwart eines Verdünnungsmittels, wie beispielsweise Ethanol, bei Temperaturen zwischen 0°C und 50°C umsetzt (vgl. auch die Herstellungsbeispiele).
Die ω-Chlorketone der Formel (IV) sind ebenfalls neu und Gegenstand dieser Anmeldung. Sie können in allgemein bekannter Art und Weise erhalten werden, indem man Dihalogenketone der Formel (V)
in welcher
X die oben angegebene Bedeutung hat,
mit bekannten Pyrazolen der Formel (VI)
in welcher
R die oben angegebene Bedeutung hat;
vorzugsweise in Form der Hydrohalogenide, wie beispielsweise Hydrochloride, ge- gebenenfalls in Gegenwart eines inerten Verdünnungsmittels, vorzugsweise Nitrilen, wie Acetonitril; Ketonen, wie Aceton oder Amiden, wie Dimethylformamid und gegebenenfalls in Gegenwart von Basen, wie beispielsweise Erdalkalicarbonaten. tert.- Alkoholaten, Alkalihydriden oder tert.-Aminen bei Temperaturen von -20°C bis 40°C umsetzt (vgl. auch die Herstellungsbeispiele). Die Dihalogenketone der Formel (V) sind bekannt (vgl. z.B. EP-A 657 421) bzw. nach bekannten Verfahren erhältlich, indem man z.B. die entsprechenden Monohalogenketone der Formel (VI)
in welcher
X die oben angegebene Bedeutung hat,
in üblicher Art und Weise bromiert (vgl. auch die Herstellungsbeispiele).
Die Monohalogenketone der Formel (VI) sind bekannt (vgl. z.B. EP-A 657 421 oder US 3 859290) bzw. nach bekannten Verfahren erhältlich, indem man Furanon- Derivate der Formel (VII)
X die oben angegebene Bedeutung hat,
in bekannter Art und Weise mit konzentrierter Salzsäure bei Temperaturen zwischen
30°C und 60°C umsetzt (vgl. auch die Herstellungsbeispiele).
Die Furanon-Derivate der Formel (VII) sind teilweise bekannt (vgl. z.B. JP-A 55127382 [CA 94, 174852]). Noch nicht bekannt und ebenfalls Gegenstand dieser Anmeldung sind Furanon-Derivate der Formel (Vlla) in welcher
X1 für Fluor, Brom; Cι-C4-Alkylthio, Cι-C4-Alkylsulfinyl, Cι-C-4-Aflcyl- sulfonyl; für Cι -C4-Halogenalkyl, Cι-C4-Halogenalkoxy, C^-C4-Halogen- alkylthio, Cι-C4-Halogenalkylsulfinyl und Cι -C4-Halogenalkylsulfonyl mit jeweils 1 bis 5 gleichen oder verschiedenen Halogenatomen aus der Reihe Fluor, Chlor und Brom, oder für Cyano steht.
Die neuen Furanon-Derivate der Formel (Vlla) können in allgemein bekannter Art und Weise erhalten werden, indem man bekannte Benzoesäuremethylester der Formel (VIII)
in welcher
X1 die oben angegebene Bedeutung hat,
mit γ-Butyrolacton der Formel (IX)
in allgemein bekannter Art und Weise in Gegenwart eines Verdünnungsmittels, wie beispielsweise Tetrahydrofuran und in Gegenwart von Alkoholaten, wie beispielsweise Kalium-tert.-butanolat bei Temperaturen zwischen 0°C und 80°C umsetzt (vgl. auch die Herstellungsbeispiele). Die außerdem zur Durchführung des erfindungsgemäßen Verfahrens als Ausgangsstoffe zu verwendenden Isocyanate der Formel (III) sind allgemein bekannte Verbindungen der organischen Chemie.
Das erfindungsgemäße Verfahren wird vorzugsweise unter Verwendung von Verdünnungsmitteln durchgeführt. Als Verdünnungsmittel kommen praktisch alle inerten organischen Lösungsmittel in Frage. Hierzu gehören vorzugsweise ahphatische und aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe wie Pentan, Hexan, Heptan, Cyclohexan, Petrolether, Benzin, Ligroin, Benzol, Toluol, Xylol, Mefhylen- chlorid, Ethylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Di- chlorbenzol, Ether wie Diethyl- und Dibutylether, Glykoldimethylether und Di- glykoldimethylether, Tetrahydrofuran und Dioxan, Ketone wie Aceton, Methyl- ethyl-, Methyl-isopropyl- oder Methyl-isobutyl-keton, Ester wie Essigsäuremethyl- ester oder -ethylester, Nitrile wie z.B. Acetonitril oder Propionitril, Amide wie z.B.
Dimefhylformamid, Dimethylacetamid und N-Methylpyrrolidon sowie Dimethyl- sulfoxid, Tetramethylensulfon oder Hexamethylenphosphorsäuretriamid.
Die Reaktionstemperaturen können bei dem erfindungsgemäßen Verfahren in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 100°C, vorzugsweise bei Temperaturen zwischen 10°C und 80°C.
Das erfindungsgemäße Verfahren wird im allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch möglich, unter erhöhtem oder vermindertem Druck zu arbeiten.
Zur Durchführung des erfindungsgemäßen Verfahrens werden die jeweils benötigten Ausgangsstoffe im allgemeinen in angenähert äquimolaren Mengen eingesetzt. Es ist jedoch auch möglich, eine der beiden jeweils eingesetzten Komponenten in einem größeren Überschuss zu verwenden. Die Aufarbeitung erfolgt bei den erfindungsgemäßen Verfahren jeweils nach üblichen Methoden (vgl. die Herstellungsbeispiele). Die Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit und günstiger Warm- blütertoxizität zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnentieren und Nematoden, die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resi- stente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:
Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadillidium vulgäre, Porcellio scaber.
Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.
Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus. Scutigera spp..
Aus der Ordnung der Symphylaz.B. Scutigerella immaculata.
Aus der Ordnung der Thysanura z.B. Lepisma saccharina.
Aus der Ordnung der Collembola z.B. Onychiurus armatus.
Aus der Ordnung der Orthoptera z.B. Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides. Melanoplus spp., Schistocerca gregaria.
Aus der Ordnung der Blattaria z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica.
Aus der Ordnung der Dermaptera z.B. Forficula auricularia.
Aus der Ordnung der Isoptera z.B. Reticulitermes spp.. Aus der Ordnung der Phthiraptera z.B. Pediculus humanus corporis, Haematopinus spp., Linognathus spp., Trichodectes spp., Damalinia spp..
Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci,
Thrips palmi, Frankliniella accidentalis.
Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.
Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Aphis pomi, Eriosoma lanigemm, Hyalopterus arundinis, Phylloxera vastatrix, Pemphigus spp., Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp.
Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella xylostella, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp., Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Mamestra brassicae, Panolis flammea, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana, Cnaphalocerus spp., Oulema oryzae.
Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica,
Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica, Lissorhoptrus oryzophilus.
Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp.,
Monomorium pharaonis, Vespa spp.
Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp.,
Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa, Hylemyia spp., Liriomyza spp..
Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp..
Aus der Klasse der Arachnida z.B. Scorpio maurus, Latrodectus mactans, Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp.,
Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp., Hemitarsonemus spp., Brevipalpus spp..
Zu den pflanzenparasitären Nematoden gehören z.B. Pratylenchus spp., Radopholus similis, Ditylenchus dipsaci, Tylenchulus semipenetrans, Heterodera spp., Globodera spp., Meloidogyne spp., Aphelenchoides spp., Longidorus spp., Xiphinema spp., Trichodorus spp., Bursaphelenchus spp..
Die erfindungsgemäßen Stoffe lassen sich mit besonders gutem Erfolg zur Bekämp- fung von pflanzenschädigenden Insekten, wie z.B. gegen Raupen des Baumwollkapselwurms (Heliothis virescens), die Larven des Meerrettichkäfers (Phaedon cochleariae), die Raupen der Kohlschabe (Plutella xylostella) sowie Raupen des Heerwurms (Spodoptera exigua und Spodoptera frugioerda) einsetzen.
Die erfindungsgemäßen Stoffe zeigen darüberhinaus auch eine resistenzinduzierende
Wirkung, insbesondere gegen Erysiphe graminis.
Die erfindungsgemäßen Verbindungen können gegebenenfalls in bestimmten Konzentrationen bzw. Aufwandmengen auch als Herbizide und Mikrobizide, beispiels- weise als Fungizide, Antimykotika und Bakterizide verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- oder Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.
Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch
Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Sproß, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stengel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.
Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirk- Stoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder
Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.
Die Wirkstoffe können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.
Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.
Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkyl- naphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.
Als feste Trägerstoffe kommen in Frage: z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, MontmoriUonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester,
Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylaryl-polyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Einweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospho- lipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferro- cyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyanin- farbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.
Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu ver- breitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.
Als Mischpartner kommen zum Beispiel folgende Verbindungen in Frage:
Fungizide:
Aldimorph, Ampropylfos, Ampropylfos-Kalium, Andoprim, Anilazin, Azaconazol, Azoxystrobin,
Benalaxyl, Benodanil, Benomyl, Benzamacril, Benzamacryl-isobutyl, Bialaphos, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazol, Bupirimat, Buthiobat,
Calciumpolysulfϊd, Capsimycin, Captafol, Captan, Carbendazim, Carboxin, Carvon,
Chinomethionat (Quinomethionat), Chlobenthiazon, Chlorfenazol, Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Clozylacon, Cufraneb, Cymoxanil, Cyproconazol, Cyprodinil, Cyprofuram,
Debacarb, Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran,
Diethofencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Diniconazol-M, Dinocap, Diphenylamin, Dipyrithione, Ditalimfos, Dithianon, Dodemorph, Dodine, Drazoxolon,
Ediphenphos, Epoxiconazol, Etaconazol, Ethirimol, Etridiazol,
Famoxadon, Fenapanil, Fenarimol, Fenbuconazol, Fenfuram, Fenitropan,
Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetat, Fentinhydroxyd, Ferbam,
Ferimzon, Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Flu rimidol, Flusilazol, Flusulfamid, Flutolanil, Flutriafol, Folpet, Fosetyl-Alminium, Fosetyl- Natrium, Fthalid, Fuberidazol, Furalaxyl, Furametpyr, Furcarbonil, Furconazol, Furconazol-cis, Furmecyclox,
Guazatin,
Hexachlorobenzol, Hexaconazol, Hymexazol,
Imazalil, Imibenconazol, Iminoctadin, Iminoctadinealbesilat, Iminoctadinetriacetat, lodocarb, Ipconazol, Iprobenfos (IBP), Iprodione, Irumamycin, Isoprothiolan, Isovaledione,
Kasugamycin, Kresoxim-methyl, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfemaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung,
Mancopper, Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metomeclam, Metsulfovax, Mildiomycin, Myclobutanil, Myclozolin,
Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol,
Ofurace, Oxadixyl, Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin, Paclobutrazol, Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Picoxystrobin, Pimaricin, Piperalin, Polyoxin, Polyoxorim, Probenazol, Prochloraz, Procymidon, Propamocarb, Propanosine-Natrium, Propiconazol, Propineb, Pyraclostrobin,
Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon, Pyroxyfur,
Quinconazol, Quintozen (PCNB),
Schwefel und Schwefel-Zubereitungen, Tebuconazol, Tecloftalam, Tecnazen, Tetcyclacis, Tetraconazol, Thiabendazol, Thicyofen, Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tri- cyclazol, Tridemorph, Trifloxystrobin, Triflumizol, Triforin, Triticonazol,
Uniconazol,
Validamycin A, Vinclozolin, Viniconazol,
Zarilamid, Zineb, Ziram sowie
Dagger G,
OK-8705,
OK-8801, α-(l,l-Dimethylethyl)-ß-(2-phenoxyethyl)-lH-l,2,4-triazol-l-ethanol, -(2,4-Dichlorphenyl)-ß-fluor-b-propyl-lH-l,2,4-triazol-l-ethanol, -(2,4-Dichlorphenyl)-ß-methoxy-a-methyl- 1 H- 1 ,2,4-triazol- 1 -ethanol, α-(5-Methyl-l,3-dioxan-5-yl)-ß-[[4-(trifluormethyl)-phenyl]-methylen]-lH-l,2,4- triazol- 1 -ethanol, (5RS,6RS)-6-Hydroxy-2,257,7-tetramethyl-5-(lH-l,2,4-triazol-l-yl)-3-octanon,
(E)-a-(Methoxyimino)-N-methyl-2-phenoxy-phenylacetamid,
{2-Methyl-l-[[[l-(4-methylphenyl)-ethyl]-amino]-carbonyl]-propyl}-carbaminsäure-
1-isopropylester l-(2,4-Dichlorphenyl)-2-(lH-l,2,4-triazol-l-yl)-ethanon-0-(phenylmethyl)-oxim, l-(2-Methyl-l-naphthalenyl)-lH-pyrrol-2,5-dion, l-(3,5-Dichlorphenyl)-3-(2-propenyl)-2,5-pyrrolidindion, l-[(Diiodmethyl)-sulfonyl]-4-methyl-benzol, l-[[2-(2,4-Dichlorphenyl)-ls3-dioxolan-2-yl]-methyl]-lH-imidazol, l-[[2-(4-CMoι henyl)-3-phenyloxiranyl]-methyl]-lH-l,2,4-triazol, l-[l-[2-[(2,4-Dichlorphenyl)-methoxy]-phenyl]-ethenyl]-lH-imidazol, 1 -Methyl-5-nonyl-2-(phenylmethyl)-3 -pyrrolidinol,
2'56,-Dibrom-2-methyl-4,-trifluormethoxy-4'-trifluor-methyl-l,3-thiazol-5- carboxanilid,
2,2-Dichlor-N- [ 1 -(4-chlorphenyl)-ethyl] - 1 -ethyl-3 -methyl-cyclopropancarboxamid, 2,6-Dichlor-5-(methylthio)-4-pyrimidinyl-thiocyanat,
2,6-Dichlor-N-(4-trifluormethylbenzyl)-benzamid,
2,6-Dichlor-N-[[4-(trifluormethyl)-phenyl]-methyl]-benzamid,
2-(2,3,3-Triiod-2-propenyl)-2H-tetrazol,
2-[(l-Methylethyl)-sulfonyl]-5-(trichlormethyl)-l,3,4-thiadiazol, 2-[[6-Deoxy-4-0-(4-0-methyl-ß-D-glycopyranosyl)-a-D-glucopyranosyl]-amino]-4- memoxy-lH-pyιτolo[2,3-d]pyrimidin-5-carbonitril,
2-Aminobutan,
2-Brom-2-(brommethyl)-pentandinitril,
2-Chlor-N-(2,3-dihydro- 1 , 1 ,3 -trimethyl- 1 H-inden-4-yl)-3 -pyridincarboxamid, 2-Chlor-N-(2,6-dimethylphenyl)-N-(isothiocyanatomethyl)-acetamid,
2-Phenylphenol(OPP),
3,4-Dichlor-l-[4-(difluormethoxy)-phenyl]-lH-pyrrol-2,5-dion,
3,5-Dichlor-N-[cyan[(l-methyl-2-propynyl)-oxy]-methyl]-benzamid,
3 -( 1 , 1 -Dimethylpropyl- 1 -oxo- 1 H-inden-2-carbonitril, 3-[2-(4-Chlorphenyl)-5-ethoxy-3-isoxazolidinyl]-pyridin,
4-Chlor-2-cyan-N,N-dimethyl-5-(4-mefhylphenyl)- 1 H-imidazol- 1 -sulfonamid,
4-Methyl-tetrazolo[l,5-a]quinazolin-5(4H)-on,
8-(l,l-Dimethylethyl)-N-ethyl-N-propyl-l!4-dioxaspiro[4.5]decan-2-methanamin,
8-Hydroxychinolinsulfat, 9H-Xanthen-9-carbonsäure-2- [(phenylamino)-carbonyl]-hydrazid, bis-( 1 -Methylethyl)-3 -methyl-4- [(3 -methylbenzoyl)-oxy]-2,5-thiophendicarboxylat, eis- 1 -(4-Chlorphenyl)-2-( 1 H- 1 ,2,4-triazol- 1 -yl)-cycloheptanol, cis-4-[3-[4-(l,l-Dime ylρropyl)-phenyl-2-methylpropyl]-2,6-dimethyl-morpholin- hydrochlorid, Ethyl-[(4-chlorphenyl)-azo]-cyanoacetat,
Kaliumhydrogencarbonat, Methantetrathiol-Natriumsalz,
Methyl-l-(2,3-dihydro-2,2-dimethyl-lH-inden-l-yl)-lH-imidazol-5-carboxylat,
Methyl-N-(2,6-dimethylphenyl)-N-(5-isoxazolylcarbonyl)-DL-alaninat,
Methyl-N-(chloracetyl)-N-(2,6-dimethylphenyl)-DL-alaninat, N-(2,3-Dichlor-4-hydroxyphenyl)- 1 -methyl-cyclohexancarboxamid.
N-(2,6-Dimemylphenyl)-2-methoxy-N-(tettahydro-2-oxo-3-furanyl)-acetamid,
N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-thienyl)-acetamid,
N-(2-Chlor-4-nitrophenyl)-4-methyl-3-nitro-benzolsulfonamid,
N-(4-Cyclohexylphenyl)-l,4,5,6-tetrahydro-2-pyrimidinamin, N-(4-Hexylphenyl)-l,4,5,6-tetrahydro-2-pyrimidinamin,
N-(5-Chlor-2-methylphenyl)-2-methoxy-N-(2-oxo-3-oxazolidinyl)-acetamid,
N-(6-Methoxy)-3-pyridinyl)-cyclopropancarboxamid,
N-[2,2,2-Trichlor-l-[(chloracetyl)-amino]-ethyl]-benzamid,
N-[3-Chlor-4,5-bis-(2-propinyloxy)-phenyl]-N'-methoxy-methanimidamid, N-Formyl-N-hydroxy-DL-alanin -Natriumsalz,
0,0-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat,
0-Methyl-S-phenyl-phenylpropylphosphoramidothioat,
S-Methyl-l,2,3-benzothiadiazol-7-carbothioat, spiro[2H]-l-Benzopyran-2,r(3Η)-isobenzofuran]-3'-on, 4-[3,4-Dimethoxyphenyl)-3-(4-fluorphenyl)-acryloyl]-morpholin
Bakterizide:
Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclm, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.
Insektizide / Akarizide / Nematizide: Abamectin, Acephate, Acetamiprid, Acrinathrin, Alanycarb, Aldicarb, Aldoxycarb, Alpha-cypermethrin, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azamethiphos, Azinphos A, Azinphos M, Azocyclotin,
Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus Üruringiensis, Baculoviren, Beauveria bassiana, Beauveria tenella, Bendiocarb, Berrfuracarb, Bensultap, Benzoximate, Betacyfluthrin, Bifenazate, Bifenthrin, Bioethanomethrin, Biopermethrin, Bistrifluron, BPMC, Bromophos A, Bufencarb, Buprofezin, Butathiofos, Butocarboxim, Butylpyridaben,
Cadusafos, Carbaryl, Carbofuran, Carbophenofhion, Carbosulfan, Cartap, Chloethocarb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chlorpyrifos, Chlo yrifos M, Chlovaporthrin, Chromafenozide, Cis- Resmethrin, Cispermethrin, Clocythrin, Cloethocarb, Clofentezine, Clothianidine, Cyanophos, Cycloprene, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cyper- methrin, Cyromazine,
Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlorvos, Dicofol, Diflubenzuron, Dimethoat, Dimethylvinphos, Diofenolan, Disulfoton, Docusat-sodium, Dofenapyn,
Eflusilanate, Emamectin, Empenthrin, Endosulfan, Entomopfthora spp., Esfenvalerate, Ethiofencarb, Ethion, Ethoprophos, Etofenprox, Etoxazole, Etrimfos,
Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenitrothion, Fenothiocarb, Fenoxacrim,
Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fenvalerate, Fipronil, Fluazina , Fluazuron, Flubrocythrinate, Flucycloxuron, Flucyfhrinate, Flufenoxuron, Flumethrin, Flutenzine, Fluvalinate, Fonophos, Fosmethilan, Fosthiazate, Fubfenprox, Furathiocarb,
Granuloseviren Halofenozide, HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydroprene,
Imidacloprid, Indoxacarb, Isazofos, Isofenphos, Isoxathion, Ivermectin,
Kernpolyederviren
Lambda-cyhalothrin, Lufenuron
Malathion, Mecarbam, Metaldehyd, Methamidophos, Metharhizium anisopliae,
Metharhizium flavoviride, Methidathion, Methiocarb, Methoprene, Methomyl, Methoxyfenozide, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Milbemycin, Monocrotophos,
Naled, Nitenpyram, Nithiazine, Novaluron
Omethoat, Oxamyl, Oxydemethon M
Paecilomyces fumosoroseus, Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A,
Pirimiphos M, Profenofos, Promecarb, Propargite, Propoxur, Prothiofos, Prothoat, Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridathion, Pyrimidifen, Pyriproxyfen,
Quinalphos,
Ribavirin
Salithion, Sebufos, Silafluofen, Spinosad, Spirodiclofen, Sulfotep, Sulprofos, Tau-fluvalinate, Tebufenozide, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Temephos, Temivinphos, Terbufos, Tetrachlorvinphos, Tetradifon Theta- cypermethrin, Thiacloprid, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam hydrogen oxalate, Thiodicarb, Thiofanox, Thuringiensin, Tralocythrin, Tralomethrin, Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon, Tri- flumuron, Trimethacarb,
Vamidothion, Vaniliprole, Verticillium lecanii
YI 5302
Zeta-cypermethrin, Zolaprofos
(lR-cis)-[5-(Phenylmethyl)-3-furanyl]-methyl-3-[(dihydro-2-oxo-3(2H)- furanyliden)-methyl]-2,2-dimethylcyclopropancarboxylat
(3-Phenoxyphenyl)-methyl-2,2,3,3-tetramethylcyclopropanecarboxylat l-[(2-Chlor-5-tlu^olyl)methyl]tettahydro-3,5-dimethyl-N-nitro-l33,5-triazin-2(lH)- imin
2-(2-Chlor-6-fluoφhenyl)-4-[4-(l , 1 -dimethylethyl)phenyl]-4,5-dihydro-oxazol 2-(Acetlyoxy)-3 -dodecyl- 1 ,4-naphthalindion
2-Chlor-N- [[[4-( 1 -phenylethoxy)-phenyl] -amino]-carbonyl]-benzamid
2-Chlor-N-[[[4-(2,2-dichlor-l,l-difluorethoxy)-phenyl]-amino]-carbonyl]-benzamid
3-Methylphenyl-propylcarbamat
4-[4-(4-Ethoxyphenyl)-4-methylpentyl]-l-fluor-2-phenoxy-benzol 4-Cωor-2-(l,l-dime le l)-5-[[2-(2,6-dimethyl-4-phenoxyphenoxy)ethyl]thio]-
3(2H)-pyridazinon
4-Chlor-2-(2-chlor-2-methylpropyl)-5-[(6-iod-3-pyridinyl)methoxy]-3(2H)- pyridazinon
4-CMor-5-[(6-cmor-3-pyridinyl)methoxy]-2-(3,4-dichlorphenyl)-3(2H)-pyridazinon Bacillus thuringiensis strain EG-2348
Benzoesäure [2-benzoyl- 1 -(1 , 1 -dimethylethyl)-hydrazid Butansäure 2,2-dimethyl-3-(2,4-dichlorphenyl)-2-oxo-l-oxaspiro[4.5]dec-3-en-4-yl- ester
[3 - [(6-Chlor-3 -pyridinyl)methyl]-2-thiazolidinyliden] -cy anamid
Dihydro-2-(nitromethylen)-2H-l,3-thiazine-3(4H)-carboxaldehyd Ethyl-[2-[[l,6-dihydro-6-oxo-l-(phenylmethyl)-4-pyridazinyl]oxy]ethyl]-carbamat
N-(3,4,4-Trifluor-l-oxo-3-butenyl)-glycin
N-(4-Chlθφhenyl)-3 - [4-(difluormethoxy)phenyl]-4,5 -dihydro-4-phenyl- 1 H-pyrazol-
1-carboxamid
N-[(2-Chlor-5-thiazolyl)methyl]-N'-methyl-N"-nitro-guanidin N-Methyl-N'-(1 -methyl-2-propenyl)-l,2-hydrazindicarbothioamid
N-Methyl-N'-2-propenyl- 1 ,2-hydrazindicarbothioamid
0,0-Diemyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat
N-Cyanomethyl-4-trifluormethyl-nicotinamid
3,5-Dichlor-l-(3,3-dichlor-2-propenyloxy)-4-[3-(5-trifluormethylpyridin-2-yloxy)- propoxyj-benzol
Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.
Die erfindungsgemäßen Wirkstoffe können ferner beim Einsatz als Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne dass der zugesetzte Synergist selbst aktiv wirksam sein muß.
Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen. Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen
Weise.
Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnet sich der Wirk- stoff durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekalkten Unterlagen aus.
Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkom- mende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder
Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetic Modified Organisms) und deren Teile behandelt. Der Begriff "Teile" bzw. "Teile von
Pflanzen" oder "Pflanzenteile" wurde oben erläutert.
Besonders bevorzugt werden erfϊndungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten ver- steht man Pflanzen mit neuen Eigenschaften ("Traits"), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Bio- und Genotypen sein.
Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbe- dingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive ("synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz ge- genüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.
Zu den bevorzugten erfϊndungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz ge- genüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigen- schaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle
Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Raps sowie Obst- pflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle und Raps besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryΙA(a), CryΙA(b), CryΙA(c), CryllA, CryfflA, CryIIIB2, Cry9c Cry2Ab,
Cry3Bb und CrylF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden "Bt Pflanzen"). Als Eigenschaften ("Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend expri ierte Proteine und Toxine. Als Eigenschaften ("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imida- zolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und
Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucotn® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready®
(Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").
Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den
Verbindungen der allgemeinen Formel I bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.
Die erfindungsgemäßen Wirkstoffe wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten) wie Schildzecken, Lederzecken, Räudemilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse,
Haarlinge, Federlinge und Flöhe. Zu diesen Parasiten gehören: Aus der Ordnung der Anoplurida z.B. Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp..
Aus der Ordnung der Mallophagida und den Unterordnungen Amblycerina sowie
Ischnocerina z.B. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp..
Aus der Ordnung Diptera und den Unterordnungen Nematocerina sowie Brachycerina z.B. Aedes spp., Anopheles spp., Culex spp., Simulium spp.,
Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp., Melophagus spp..
Aus der Ordnung der Siphonapterida z.B. Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp..
Aus der Ordnung der Heteropterida z.B. Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp..
Aus der Ordnung der Blattarida z.B. Blatta orientalis, Periplaneta americana, Blattela germanica, Supella spp..
Aus der Unterklasse der Acaria (Acarida) und den Ordnungen der Meta- sowie Mesostigmata z.B. Argas spp., Ornithodorus spp., Otobius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp.,
Pneumonyssus spp., Sternostoma spp., Varroa spp.. Aus der Ordnung der Actinedida (Prostigmata) und Acaridida (Astigmata) z.B. Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp..
Die erfindungsgemäßen Wirkstoffe der Formel (I) eignen sich auch zur Bekämpfung von Arthropoden, die landwirtschaftliche Nutztiere, wie z.B. Rinder, Schafe, Ziegen,
Pferde, Schweine, Esel, Kamele, Büffel, Kaninchen, Hühner, Puten, Enten, Gänse, Bienen, sonstige Haustiere wie z.B. Hunde, Katzen, Stubenvögel, Aquarienfische sowie sogenannte Versuchstiere, wie z.B. Hamster, Meerschweinchen, Ratten und Mäuse befallen. Durch die Bekämpfung dieser Arthropoden sollen Todesfälle und Leistungsminderungen (bei Fleisch, Milch, Wolle, Häuten, Eiern, Honig usw.) vermindert werden, so dass durch den Einsatz der erfindungsgemäßen Wirkstoffe eine wirtschaftlichere und einfachere Tierhaltung möglich ist.
Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht im Veterinärsektor in bekannter Weise durch enterale Verabreichung in Form von beispielsweise Tabletten,
Kapseln, Tränken, Drenchen, Granulaten, Pasten, Boli, des feed-through-Verfahrens, von Zäpfchen, durch parenterale Verabreichung, wie zum Beispiel durch Injektionen (intramuskulär, subcutan, intravenös, intraperitonal u.a.), Implantate, durch nasale Applikation, durch dermale Anwendung in Form beispielsweise des Tauchens oder Badens (Dippen), Sprühens (Spray), Aufgießens (Pour-on und Spot-on), des
Waschens, des Einpuderns sowie mit Hilfe von wirkstoffhaltigen Formkörpern, wie Halsbändern, Ohrmarken, Schwanzmarken, Gliedmaßenbändern, Halftern, Markierungsvorrichtungen usw.
Bei der Anwendung für Vieh, Geflügel, Haustiere etc. kann man die Wirkstoffe der
Formel (I) als Formulierungen (beispielsweise Pulver, Emulsionen, fließfähige Mittel), die die Wirkstoffe in einer Menge von 1 bis 80 Gew.-% enthalten, direkt oder nach 100 bis 10 000-facher Verdünnung anwenden oder sie als chemisches Bad verwenden.
Außerdem wurde gefunden, dass die erfindungsgemäßen Verbindungen eine hohe insektizide Wirkung gegen Insekten zeigen, die technische Materialien zerstören.
Beispielhaft und vorzugsweise - ohne jedoch zu limitieren - seien die folgenden Insekten genannt:
Käfer wie
Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinus pecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis,
Lyctus pubescens, Trogoxylon aequale, Minthes rugicollis, Xyleborus spec. Tryptodendron spec. Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec. Dinoderus minutus.
Hautflügler wie
Sirex juvencus, Urocerus gigas, Urocerus gigas taignus, Urocerus augur.
Termiten wie
Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.
Borstenschwänze wie Lepisma saccharina. Unter technischen Materialien sind im vorliegenden Zusammenhang nicht-lebende Materialien zu verstehen, wie vorzugsweise Kunststoffe, Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Holzverarbeitungsprodukte und Anstrichmittel.
Ganz besonders bevorzugt handelt es sich bei dem vor Insektenbefall zu schützenden
Material um Holz und Holzverarbeitungsprodukte.
Unter Holz und Holzverarbeitungsprodukten, welche durch das erfindungsgemäße Mittel bzw. dieses enthaltende Mischungen geschützt werden kann, ist beispielhaft zu verstehen:
Bauholz, Holzbalken, Eisenbahnschwellen, Brückenteile, Bootsstege, Holzfahrzeuge, Kisten, Paletten, Container, Telefonmasten, Holzverkleidungen, Holzfenster und -türen, Sperrholz, Spanplatten, Tischlerarbeiten oder Holzprodukte, die ganz allge- mein beim Hausbau oder in der Bautischlerei Verwendung finden.
Die Wirkstoffe können als solche, in Form von Konzentraten oder allgemein üblichen Formulierungen wie Pulver, Granulate, Lösungen, Suspensionen, Emulsionen oder Pasten angewendet werden.
Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit mindestens einem Lösungs- bzw. Verdünnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Wasser-Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebe- nenfalls Farbstoffen und Pigmenten sowie weiteren Verarbeitungshilfsmitteln.
Die zum Schutz von Holz und Holzwerkstoffen verwendeten Insektiziden Mittel oder Konzentrate enthalten den erfindungsgemäßen Wirkstoff in einer Konzentration von 0,0001 bis 95 Gew.-%, insbesondere 0,001 bis 60 Gew.-%. Die Menge der eingesetzten Mittel bzw. Konzentrate ist von der Art und dem Vorkommen der Insekten und von dem Medium abhängig. Die optimale Einsatzmenge kann bei der Anwendung jeweils durch Testreihen ermittelt werden. Im allgemeinen ist es jedoch ausreichend 0,0001 bis 20 Gew.-%, vorzugsweise 0,001 bis 10 Gew.-%, des Wirkstoffs, bezogen auf das zu schützende Material, einzusetzen.
Als Lösungs- und/oder Verdünnungsmittel dient ein organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein öliges oder ölartiges schwer flüchtiges organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder Wasser und gegebenenfalls einen Emulgator und/oder Netzmittel.
Als organisch-chemische Lösungsmittel werden vorzugsweise ölige oder ölartige Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, eingesetzt. Als derartige schwerflüchtige, wasserunlösliche, ölige und ölartige Lösungsmittel werden entsprechende Mineralöle oder deren Aromatenfraktionen oder mineralölhaltige Lösungsmittelgemische, vorzugsweise Testbenzin, Petroleum und/oder Alkylbenzol verwendet.
Vorteilhaft gelangen Mineralöle mit einem Siedebereich von 170 bis 220°C, Testbenzin mit einem Siedebereich von 170 bis 220°C, Spindelöl mit einem Siedebereich von 250 bis 350°C, Petroleum bzw. Aromaten vom Siedebereich von 160 bis 280°C, Terpentinöl und dgl. zum Einsatz.
In einer bevorzugten Ausführungsform werden flüssige aliphatische Kohlenwasserstoffe mit einem Siedebereich von 180 bis 210°C oder hochsiedende Gemische von aromatischen und aliphatischen Kohlenwasserstoffen mit einem Siedebereich von 180 bis 220°C und oder Spindeöl und/oder Monochlornaphthalin, vorzugsweise α- Monochlornaphthalin, verwendet. Die organischen schwerflüchtigen öligen oder ölartigen Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45 °C, können teilweise durch leicht oder mittelflüchtige organisch-chemische Lösungsmittel ersetzt werden, mit der Maßgabe, dass das Lösungsmittelgemisch ebenfalls eine Verdunstungszahl über 35 und einen Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, aufweist und dass das Insektizid-Fungizid-Gemisch in diesem Lösungsmittelgemisch löslich oder emulgierbar ist.
Nach einer bevorzugten Ausführungsform wird ein Teil des organisch-chemischen Lösungsmittel oder Lösungsmittelgemisches oder ein aliphatisches polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch ersetzt. Vorzugsweise gelangen Hydroxyl- und/oder Ester- und oder Ethergruppen enthaltende aliphatische organisch-chemische Lösungsmittel wie beispielsweise Glycolether, Ester oder dgl. zur Anwendung.
Als organisch-chemische Bindemittel werden im Rahmen der vorliegenden Erfindung die an sich bekannten wasserverdünnbaren und/oder in den eingesetzten organisch-chemischen Lösungsmitteln löslichen oder dispergier- bzw. emulgierbaren Kunstharze und/oder bindende trocknende Öle, insbesondere Bindemittel bestehend aus oder enthaltend ein Acrylatharz, ein Vinylharz, z.B. Polyvinylacetat, Polyesterharz, Polykondensations- oder Polyadditionsharz, Polyurethanharz, Alkydharz bzw. modifiziertes Alkydharz, Phenolharz, Kohlenwasserstoffharz wie Inden-Cumaron- harz, Siliconharz, trocknende pflanzliche und/oder trocknende Öle und/oder physikalisch trocknende Bindemittel auf der Basis eines Natur- und/oder Kunstharzes verwendet.
Das als Bindemittel verwendete Kunstharz kann in Form einer Emulsion, Dispersion oder Lösung, eingesetzt werden. Als Bindemittel können auch Bitumen oder bituminöse Substanzen bis zu 10 Gew.-%, verwendet werden. Zusätzlich können an sich bekannte Farbstoffe, Pigmente, wasserabweisende Mittel, Geruchskorrigentien und Inhibitoren bzw. Korrosionsschutzmittel und dgl. eingesetzt werden.
Bevorzugt ist gemäß der Erfindung als organisch-chemische Bindemittel mindestens ein Alkydharz bzw. modifiziertes Alkydharz und/oder ein trocknendes pflanzliches
Öl im Mittel oder im Konzentrat enthalten. Bevorzugt werden gemäß der Erfindung Alkydharze mit einem Ölgehalt von mehr als 45 Gew.-%, vorzugsweise 50 bis 68 Gew.-%, verwendet.
Das erwähnte Bindemittel kann ganz oder teilweise durch ein Fixierungsmittel-
(gemisch) oder ein Weichmacher(gemisch) ersetzt werden. Diese Zusätze sollen einer Verflüchtigung der Wirkstoffe sowie einer Kristallisation bzw. Ausfällem vorbeugen. Vorzugsweise ersetzen sie 0,01 bis 30 % des Bindemittels (bezogen auf 100 % des eingesetzten Bindemittels).
Die Weichmacher stammen aus den chemischen Klassen der Phthalsäureester wie Dibutyl-, Dioctyl- oder Benzylbutylphthalat, Phosphorsäureester wie Tributyl- phosphat, Adipinsäureester wie Di-(2-ethylhexyl)-adipat, Stearate wie Butylstearat oder Amylstearat, Oleate wie Butyloleat, Glycerinether oder höhermolekulare Gly- kolether, Glycerinester sowie p-Toluolsulfonsäureester.
Fixierungsmittel basieren chemisch auf Polyvinylalk lethern wie z.B. Polyvinyl- methylether oder Ketonen wie Benzophenon, Ethylenbenzophenon.
Als Lösungs- bzw. Verdünnungsmittel kommt insbesondere auch Wasser in Frage, gegebenenfalls in Mischung mit einem oder mehreren der oben genannten organischchemischen Lösungs- bzw. Verdünnungsmittel, Emulgatoren und Dispergatoren.
Ein besonders effektiver Holzschutz wird durch großtechnische Imprägnierverfahren, z.B. Vakuum, Doppelvakuum oder Druckverfahren, erzielt. Die anwendungsfertigen Mittel können gegebenenfalls noch weitere Insektizide und gegebenenfalls noch ein oder mehrere Fungizide enthalten.
Als zusätzliche Zumischpartner kommen vorzugsweise die in der WO 94/29 268 ge- nannten Insektizide und Fungizide in Frage. Die in diesem Dokument genannten
Verbindungen sind ausdrücklicher Bestandteil der vorliegenden Anmeldung.
Als ganz besonders bevorzugte Zumischpartner können Insektizide, wie Chlorpyri- phos, Phoxim, Silafluofin, Alphamethrin, Cyfluthrin, Cypermethrin, Deltamethrin, Permethrin, Imidacloprid, NI-25, Flufenoxuron, Hexaflumuron, Transfluthrin, Thiacloprid, Methoxyphenoxid und Triflumuron,
sowie Fungizide wie Epoxyconazole, Hexaconazole, Azaconazole, Propiconazole, Tebuconazole, Cyproconazole, Metconazole, Imazalil, Dichlorfluanid, Tolylfluanid, 3-Iod-2-propinyl-butylcarbamat, N-Octyl-isothiazolin-3-on und 4,5-Dichlor-N-octyl- isothiazolin-3-on, sein.
Zugleich können die erfindungsgemäßen Verbindungen zum Schutz vor Bewuchs von Gegenständen, insbesondere von Schiffsköφern, Sieben, Netzen, Bauwerken, Kaianlagen und Signalanlagen, welche mit See- oder Brackwasser in Verbindung kommen, eingesetzt werden.
Bewuchs durch sessile Oligochaeten, wie Kalkröhrenwürmer sowie durch Muscheln und Arten der Gruppe Ledamoφha (Entenmuscheln), wie verschiedene Lepas- und Scalpellum-Arten, oder durch Arten der Gruppe Balanomoφha (Seepocken), wie
Baianus- oder Pollicipes-Species, erhöht den Reibungswiderstand von Schiffen und führt in der Folge durch erhöhten Energieverbrauch und darüber hinaus durch häufige Trockendockaufenthalte zu einer deutlichen Steigerung der Betriebskosten.
Neben dem Bewuchs durch Algen, beispielsweise Ectocaφus sp. und Ceramium sp., kommt insbesondere dem Bewuchs durch sessile Entomostraken-Gruppen, welche unter dem Namen Cirripedia (Rankenflußkrebse) zusammengefaßt werden, besondere Bedeutung zu.
Es wurde nun überraschenderweise gefunden, dass die erfindungsgemäßen Verbin- düngen allein oder in Kombination mit anderen Wirkstoffen, eine hervorragende
Antifouling (Antibewuchs)-Wirkung aufweisen.
Durch Einsatz von erfindungsgemäßen Verbindungen allein oder in Kombination mit anderen Wirkstoffen, kann auf den Einsatz von Schwermetallen wie z.B. in Bis- (trialkylzinn)-sulfiden, Tri-K-butylzinnlaurat, Tri-«-butylzinnchlorid, Kupfer(I)-oxid,
Triethylzinnchlorid, Tri-«-butyl(2-phenyl-4-chloφhenoxy)-zinn, Tributylzinnoxid, Molybdändisulfid, Antimonoxid, polymerem Butyltitanat, Phenyl-(bispyridin)-wis- mutchlorid, Tri-M-butylzinnfluorid, Manganethylenbisthiocarbamat, Zinkdimethyldi- thiocarbamat, Zinkethylenbisthiocarbamat, Zink- und Kupfersalze von 2-Pyridin- thiol-1-oxid, Bisdimethyldithiocarbamoylzinkethylenbisthiocarbamat, Zinkoxid,
Kupfer(I)-ethylen-bisdithiocarbamat, Kupferthiocyanat, Kupfemaphthenat und Tri- butylzinnhalogeniden verzichtet werden oder die Konzentration dieser Verbindungen entscheidend reduziert werden.
Die anwendungsfertigen Antifoulingfarben können gegebenenfalls noch andere
Wirkstoffe, vorzugsweise Algizide, Fungizide, Herbizide, Molluskizide bzw. andere Antifouling- Wirkstoffe enthalten.
Als Kombinationspartner für die erfindungsgemäßen Antifouling-Mittel eignen sich vorzugsweise:
Algizide wie
2-tert.-Butylamino-4-cyclopropylamino-6-methylthio- 1 ,3,5-triazin, Dichlorophen, Diuron, Endothal, Fentinacetat, Isoproturon, Methabenzthiazuron, Oxyfluorfen,
Quinoclamine und Terbutryn; Fungizide wie
Benzo [ό]thiophencarbonsäurecyclohexylamid-S, S-dioxid, Dichlofluanid, Fluor- folpet, 3-Iod-2-propinyl-butylcarbamat, Tolylfluanid und Azole wie
Azaconazole, Cyproconazole, Epoxyconazole, Hexaconazole, Metconazole, Propi- conazole und Tebuconazole;
Molluskizide wie
Fentinacetat, Metaldehyd, Methiocarb, Niclosamid, Thiodicarb und Trimethacarb; oder herkömmliche Antifouling- irkstoffe wie
4,5-Dichlor-2-octyl-4-isothiazolin-3-on, Diiodmethylparatrylsulfon, 2-(N,N-Di- me ylthiocarbamoylthio)-5-nitrothiazyl, Kalium-, Kupfer-, Natrium- und Zinksalze von 2-Pyridinthiol-l-oxid, Pyridin-triphenylboran, Tetrabutyldistannoxan, 2,3,5,6- Tetrachlor-4-(methylsulfonyl)-pyridin, 2,4,5,6-Tetrachloroisophthalonitril, Tetrame- thylthiuramdisulfid und 2,4,6-Trichloφhenylmaleinimid.
Die verwendeten Antifouling-Mittel enthalten die erfindungsgemäßen Wirkstoff der erfindungsgemäßen Verbindungen in einer Konzentration von 0,001 bis 50 Gew.-%, insbesondere von 0,01 bis 20 Gew.-%.
Die erfindungsgemäßen Antifouling-Mittel enthalten desweiteren die üblichen
Bestandteile wie z.B. in Ungerer, Chem. Ind. 1985, 37, 730-732 und Williams, Antifouling Marine Coatings, Noyes, Park Ridge, 1973 beschrieben.
Antifouling-Anstrichmittel enthalten neben den algiziden, fungiziden, molluskiziden und erfindungsgernäßen insektiziden Wirkstoffen insbesondere Bindemittel. Beispiele für anerkannte Bindemittel sind Polyvinylchlorid in einem Lösungsmittelsystem, chlorierter Kautschuk in einem Lösungsmittelsystem, Acrylharze in einem Lösungsmittelsystem insbesondere in einem wäßrigen System, Vinylchlorid/Vinyl- acetat-Copolymersysteme in Form wäßriger Dispersionen oder in Form von orga- nischen Lösungsmittelsystemen, Butadien/Styrol/Acrylnitril-Kautschuke, trocknende
Öle, wie Leinsamenöl, Harzester oder modifizierte Hartharze in Kombination mit Teer oder Bitumina, Asphalt sowie Epoxyverbindungen, geringe Mengen Chlorkautschuk, chloriertes Polypropylen und Vinylharze.
Gegebenenfalls enthalten Anstrichmittel auch anorganische Pigmente, organische
Pigmente oder Farbstoffe, welche vorzugsweise in Seewasser unlöslich sind. Femer können Anstrichmittel Materialien, wie Kolophonium enthalten, um eine gesteuerte Freisetzung der Wirkstoffe zu ermöglichen. Die Anstriche können femer Weichmacher, die rheologischen Eigenschaften beeinflussende Modifizierungsmittel sowie andere herkömmliche Bestandteile enthalten. Auch in Self-Polishing-Antifouling-
Systemen können die erfindungsgemäßen Verbindungen oder die oben genannten Mischungen eingearbeitet werden.
Die Wirkstoffe eignen sich auch zur Bekämpfung von tierischen Schädlingen, insbe- sondere von Insekten, Spinnentieren und Milben, die in geschlossenen Räumen, wie beispielsweise Wohnungen, Fabrikhallen, Büros, Fahrzeugkabinen u.a. vorkommen.
Sie können zur Bekämpfung dieser Schädlinge allein oder in Kombination mit anderen Wirk- und Hilfsstoffen in Haushaltsinsektizid-Produkten verwendet werden.
Sie sind gegen sensible und resistente Arten sowie gegen alle Entwicklungsstadien wirksam. Zu diesen Schädlingen gehören:
Aus der Ordnung der Scoφionidea z.B. Buthus occitanus.
Aus der Ordnung der Acarina z.B. Argas persicus, Argas reflexus, Bryobia ssp., Dermanyssus gallinae, Glyciphagus domesticus, Ornithodorus moubat, Rhipicephalus sanguineus, Trombicula alfreddugesi, Neutrombicula autumnalis, Dermatophagoides pteronissimus, Dermatophagoides forinae.
Aus der Ordnung der Araneae z.B. Aviculariidae, Araneidae.
Aus der Ordnung der Opiüones z.B. Pseudoscoφiones chelifer, Pseudoscoφiones cheiridium, Opiliones phalangium.
Aus der Ordnung der Isopoda z.B. Oniscus asellus, Porcellio scaber.
Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus, Polydesmus spp..
Aus der Ordnung der Chilopoda z.B. Geophilus spp..
Aus der Ordnung der Zygentoma z.B. Ctenolepisma spp., Lepisma saccharina,
Lepismodes inquilinus.
Aus der Ordnung der Blattaria z.B. Blatta orientalies, Blattella germanica, Blattella asahinai, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta australasiae, Periplaneta americana, Periplaneta brunnea, Periplaneta fuliginosa,
Supella longipalpa.
Aus der Ordnung der Saltatoria z.B. Acheta domesticus.
Aus der Ordnung der Dermaptera z.B. Forficula auricularia.
Aus der Ordnung der Isoptera z.B. Kalotermes spp., Reticulitermes spp.
Aus der Ordnung der Psocoptera z.B. Lepinatus spp., Liposcelis spp. Aus der Ordnung der Coleptera z.B. Anthrenus spp., Attagenus spp., Dermestes spp., Latheticus oryzae, Necrobia spp., Ptinus spp., Rhizopertha dominica, Sitophilus granarius, Sitophilus oryzae, Sitophilus zeamais, Stegobium paniceum.
Aus der Ordnung der Diptera z.B. Aedes aegypti, Aedes albopictus, Aedes taeniorhynchus, Anopheles spp., Calliphora erythrocephala, Chrysozona pluvialis, Culex quinquefasciatus, Culex pipiens, Culex tarsalis, Drosophila spp., Fannia canicularis, Musca domestica, Phlebotomus spp., Sarcophaga carnaria, Simulium spp., Stomoxys calcitrans, Tipula paludosa.
Aus der Ordnung der Lepidoptera z.B. Achroia grisella, Galleria mellonella, Plodia inteφunctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella.
Aus der Ordnung der Siphonaptera z.B. Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenops lla cheopis.
Aus der Ordnung der Hymenoptera z.B. Camponotus herculeanus, Lasius fuliginosus, Lasius niger, Lasius urnbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum.
Aus der Ordnung der Anoplura z.B. Pediculus humanus capitis, Pediculus humanus coφoris, Phthirus pubis.
Aus der Ordnung der Heteroptera z.B. Cimex hemipterus, Cimex lectularius, Rhodinus prolixus, Triatoma infestans.
Die Anwendung im Bereich der Haushaltsinsektizide erfolgt allein oder in Kombination mit anderen geeigneten Wirkstoffen wie Phosphorsäureestern, Carbamaten, Pyrethroiden, Wachstumsregulatoren oder Wirkstoffen aus anderen bekannten Insektizidklassen. Die Anwendung erfolgt in Aerosolen, drucklosen Sprühmitteln, z.B. Pump- und Zerstäubersprays, Nebelautomaten, Foggem, Schäumen, Gelen, Verdampfeφrodukten mit Verdampfeφlättchen aus Cellulose oder Kunststoff, Flüssigverdampfern, Gel- und Membranverdampfem, propellergetriebenen Verdampfern, energielosen bzw. passiven Verdampfungssystemen, Mottenpapieren, Mottensäckchen und Mottengelen, als Granulate oder Stäube, in Streuködern oder Köderstationen.
Herstellungsbeispiele
Beispiel 1
Zu einer Lösung von 1,27 g (4,4 mMol) 3-(3-Cyanophenyl)-4-(4-chloφyrazol-l-yl)- 1,4,5,6-tetrahydropyridazin (Bsp. II- 1) in 30 ml Acetonitril tropft man bei Raumtemperatur eine Lösung von 0,89 g (4,4 mMol) 4-Trifluormethoxyphenylisocyanat in 10 ml Acetonitril und rührt die Mischung 6 Stunden bei Raumtemperatur nach. Dann wird das ausgefallene Produkt abfiltriert, das Filtrat dampft man im Vakuum ein. Den Rückstand verreibt man mit Ethanol, saugt das Produkt nach Kristallisation ab und wäscht es mit Ethanol nach.
Man erhählt so 0,44 g (20 % d.Th.) 3-(3-Cyanophenyl)-4-(4-chloφyrazol-l-yl)-l-(4- trifluormethoxyphenylamino)-carbonyl-l,4,5,6-tetrahydropyridazin in Form farbloser
Kristalle mit dem logP (pH2) = 4,08 und dem Schmelzpunkt 216°C.
Herstellung der Ausgangsprodukte
Zu einer Lösung von 5,3 g (17,2 mMol) 3'-Cyano-2-(4-Chloφyrazol-l-yl)-4-chlor- butyrophenon (Bsp. IV-1) in 50 ml Ethanol gibt man 1,7 g (35 mMol) Hydrazin- hydrat und rührt die Mischung über Nacht bei Raumtemperatur. Dann wird das Lösungsmittel im Vakuum abdestilliert, den Rückstand versetzt man mit Wasser und extrahiert mit Essigsäureethylester. Die organische Phase wird abgetrennt, über Natriumsulfat getrocknet und im Vakuum eingedampft.
Man erhält so 3,8 g (78 % der Th.) 3-(3-Cyanophenyl)-4-(4-chloφyrazol-l-yl)- 1,4,5,6-tetrahydropyridazin als farbloses Pulver mit dem logP (pH2) = 2,29 und dem Schmelzpunkt 171 °C.
Zu einer Mischung aus 7 g (0,05 Mol) 4-Chlθφyrazol-Hydrochlorid, 13,8 g (0,1 Mol) Kaliumcarbonat und 60 ml Acetonitril tropft man bei -5°C eine Lösung von 14,3 g (0,05 Mol) 3'-Cyano-2-brom-4-chlor-butyrophenon (Bsp. V-l) in 20 ml Acetonitril und rührt die Mischung dann 18 Stunden bei Raumtemperatur nach. Anschließend versetzt man das Reaktionsgemisch mit Wasser und extrahiert mit Essig- säureethylester. Die organische Phase wird abgetrennt, über Natriumsulfat getrocknet und im Vakuum eingedampft. Den Rückstand verreibt man mit Isopropanol, läßt über Nacht bei Raumtemperatur stehen und saugt dann das ausgefallene Produkt ab.
Man erhält so 3,8 g (25 % der Th.) 3'-Cyano-2-(4-chlθφyrazol-l-yl)-4-chlor-butyro- phenon als beiges Pulver mit dem logP (pH2) = 2,95.
Zu einer Lösung von 32,7 g (0,15 Mol) 3'-Cyano-4-chlor-butyrolphenon (Bsp. VI-1) in 150 ml Methylenchlord gibt man 0,1 g Aluminiumchlorid und tropft dann 25,6 g
(0,16 Mol) Brom zu. Man rührt die Mischung über Nacht bei Raumtemperatur nach und leitet dann zur Entfernung des Bromwasserstoffes Stickstoff durch das Reaktionsgemisch. Dann gibt man unter Rühren Wasser und anschließend gesättigte Natriumbicarbonatlösung zu, bis die wäßrige Phase neutral ist. Jetzt wird die orga- nische Phase abgetrennt, über Natriumsulfat getrocknet, filtriert und im Vakuum eingedampft. Den Rückstand verreibt man mit Petrolether und saugt das Produkt nach Kristallisation ab.
Man erhält so 40,8 g (95 % der Th.) 3'-Cyano-2-brom-4-chlor-butyrophenon als beiges Pulver mit dem logP (pH2) = 3,09.
Eine Mischung aus 48 g (0,22 Mol) 3-(3-Cyanobenzoyl)-γ-butyrolacton (Bsp. VIIa-1) und 200 ml konzentrierter Salzsäure wird unter Rühren 2 Stunden auf 35 bis 40°C erwärmt, danach steigert man die Temperatur noch 30 Minuten auf 50°C. Man kühlt das Reaktionsgemisch im Eisbad ab und saugt dann das ausgefallene Produkt ab, wäscht es mit Wasser nach und trocknet es an der Luf
Man erhält so 32,9 g (71 % der Th.) 3'-Cyano-4-chlor-butyrophenon in Form eines beigen Pulvers mit dem logP (pH2) = 2,49.
Zu einer Lösung von 30,2 g (0,27 Mol) Kalium-tert.-butanolat in 300 ml Tetrahydro- furan tropft man bei 25 - 30°C eine Lösung von 40,3 g (0,25 Mol) 3-Cyanobenzoe- säuremethylester und 21,8 g (0,25 Mol) γ-Butyrolacton in 50 ml Tetrahydrofuran und rührt die Mischung 18 Stunden bei Raumtemperatur nach. Dann wird das Lösungsmittel im Vakuum abdestilliert, den Rückstand löst man in Wasser und extrahiert mit Diethylether. Die wässrige Phase wird abgetrennt und unter Eiskühlung mit ver- dünnter Salzsäure auf ca. pH 1-2 eingestellt. Man extrahiert 2 mal mit Methylenchlorid, trocknet die organischen Phasen über Natriumsulfat und dampft dann das Lösungsmittel im Vakuum ab.
Man erhält so 46,1 g (86 % der Th.) 3-(3-Cyanobenzoyl)-γ-butyrolacton in Form eines teilkristallinen Öles mit dem logP (pH2) = 1,48.
Analog Bsp. 1 bzw. gemäß den allgemeinen Angaben zur Herstellung werden die in der folgenden Tabelle 1 angegebenen Verbindungen der Formel (I) erhalten: Tabelle 1:
Analog Beispiel 1 können die in der folgenden Tabelle 2 angegebenen neuen Ausgangsprodukte der Formel (II) erhalten werden:
Tabelle 2:
Analog Beispiel 1 können die in der folgenden Tabelle 3 angegebenen neuen Zwischenprodukte der Formel (IV) erhalten werden:
Tabelle 3:
Analog Beispiel 1 können die in der folgenden Tabelle 4 angegebenen Zwischenprodukte der Formel (V) erhalten werden: Tabelle 4:
Analog Beispiel 1 können die in der folgenden Tabelle 5 angegebenen Zwischenprodukte der Formel (VI) erhalten werden:
Tabelle 5:
Analog Beispiel 1 können die in der folgenden Tabelle 6 angegebenen neuen Zwischenprodukte der Formel (Vlla) erhaten werden:
Tabelle 6:
Anwendungsbeispiele:
Beispiel A
Heliothis virescens-Test
Lösungsmittel: 30 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Sojatriebe (Glycine max) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Heliothis virescens-Raupen besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Bei diesem Test zeigen bei einer beispielhaften Wirkstoffkonzentration von 500 ppm z.B. die Verbindungen der Herstellungsbeispiele 1, 13, 14, 15 und 17 eine Abtötung von 100 % nach 6 Tagen.
Beispiel B
Phaedon- arven-Test
Lösungsmittel: 30 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.
Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Larven des Meerrettichblattkäfers (Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Käferlarven abgetötet wurden; 0 % bedeutet, dass keine Käferlarven abgetötet wurden.
Bei diesem Test zeigen bei einer beispielhaften Wirkstoffkonzentration von 1000 ppm z.B. die Verbindungen der Herstellungsbeispiele 2,3,4,5,6,7,8,9,10,11,12 und 16 eine Abtötung von 100 % nach 7 Tagen.
Beispiel C
Plutella-Test
Lösungsmittel: 30 Gewichtsteile Dimethylformamid Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen der Kohlschabe (Plutella xylostella) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Bei diesem Test zeigen bei einer beispielhaften Wirkstoffkonzentration von 500 ppm z.B. die Verbindungen der Herstellungsbeispiele 1, 13, 14, 15 und 17 eine Abtötung von 100 % nach 6 Tagen.
Beispiel D
Spodoptera exigua-Test
Lösungsmittel: 30 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.
Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen des Heerwurms (Spodoptera exigua) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Bei diesem Test zeigen bei einer beispielhaften Wirkstoffkonzentration von 500 ppm z.B. die Verbindungen der Herstellungsbeispiele 1, 13, 14, 15 und 17 eine Abtötung von 100 % nach 6 Tagen.
Beispiel E
Spodoptera frugiperda-Test
Lösungsmittel: 30 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen des Heerwurms (Spodoptera frugiperda) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Bei diesem Test zeigen bei einer beispielhaften Wirkstofϊkonzentration von 1000 ppm z.B. die Verbindungen der Herstellungsbeispiele 2,3,4,5,6,7,8,9,10,11,12 und 16 eine Abtötung von 100 % nach 7 Tagen.
Beispiel F
Wirkungsdauertest: Heliothis virescens
Lösungsmittel: 9 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.
Baumwollpflanzen (Gossypium hirsutum) werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt. Nach den angegebenen Tagen werden Heliothis virescens-Raupen in Infektionskammern an die behandelten Blätter gesetzt.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Bei diesem Test zeigt bei einer beispielhaften Wirkstoffkonzentration von 20 ppm z.B. die Verbindung gemäß Herstellungsbeispiel 14 bei einer Infektion nach 5, 12, 19 und 26 Tagen jeweils eine Abtötung von 100 %.
Beispiel G
Wirkungsdauertest: Spodoptera frugiperda
Lösungsmittel: 9 Gewichtsteile Dimethylformamid Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Baumwollpflanzen (Gossypium hirsutum) werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt. Nach den angegebenen Tagen werden Raupen des Heerwurms (Spodoptera frugiperda) in Infektionskammem an die behandelten Blätter gesetzt.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.
Bei diesem Test zeigen bei einer beispielhaften Wirkstoffkonzentration von 20 ppm eine gute Wirkung:
Beispiel H
Test mit Fliegen (Musca domestica)
Testtiere: adulte Musca domestica, Stamm Reichswald (OP, SP,
Carbamatresistent Lösungsmittel: Dimethylsulfoxid
20 mg Wirkstoff werden in 1 ml Dimethylsulfoxid gelöst, geringere Konzentrationen werden durch Verdünnen mit destilliertem Wasser hergestellt.
2 ml dieser Wirkstoffzubereitung werden auf Filteφapierschalen (0 9,5 cm) pipettiert, die sich in Petrischalen entsprechender Größe befinden. Nach Trocknung der Filterscheiben werden 25 Testtiere in die Petrischalen überführt und abgedeckt.
Nach 1, 3, 5, 24 und 48 Stunden wird die Wirksamkeit der Wirkstoffzubereitung ermittelt. Dabei bedeutet 100 %, dass alle Fliegen abgetötet wurden; 0 % bedeutet, dass keine Fliegen abgetötet wurden.
Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele eine gute Wirkung
Beispiel I
BIowfly-Larven-Test/Entwickhingshemmende Wirkung
Testtiere: Lucilia cuprina-Larven
Lösungsmittel: Dimethylsulfoxid
20 mg Wirkstoff werden in 1 ml Dimethylsulfoxid gelöst, geringere Konzentrationen werden durch Verdünnen mit destilliertem Wasser hergestellt.
Etwa 20 Lucilia cuprina-Larven werden in ein Teströhrchen gebracht, welches ca.
1 cm3 Pferdefleisch und 0,5 ml der zu testende Wirkstoffzubereitung enthält. Nach 24 und 48 Stunden wird die Wirksamkeit der Wirkstoffzubereitung ermittelt. Die Teströhrchen werden in Becher mit Sand-bedecktem Boden überführt. Nach weiteren
2 Tagen werden die Teströhrchen entfernt und die Puppen ausgezählt.
Die Wirkung der Wirkstoffzubereitung wird nach der Zahl der geschlüpften Fliegen nach 1,5-facher Entwicklungsdauer einer unbehandelten Kontrolle beurteilt. Dabei bedeutet 100 %, dass keine Fliegen geschlüpft sind; 0 % bedeutet, dass alle Fliegen normal geschlüpft sind.
Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele eine gute Wirkung

Claims

Patentanspräche
1. Verbindungen der Formel (I)
in welcher
R für Wasserstoff, Halogen, Alkyl, Alkoxy, Alkylthio, Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Hydroxy, Nitro, Cyano, Alkoxy- carbonyl, Aminocarbonyl, Alkylaminocarbonyl oder Dialkylamino- carbonyl steht,
X für Halogen, Halogenalkyl, Halogenalkoxy, Alkylthio, Alkylsulfinyl, Alkylsulfonyl, Halogenalkylthio, Halogenalkylsulfmyl, Halogen- alkylsulfonyl oder Cyano steht und
Y für Halogen, Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogensulfinyl, Halogenalkylsulfonyl oder Cyano steht.
2. Verbindungen der Formel (I) gemäß Ansprach 1, in welcher
R für Wasserstoff, Halogen, Cι -C4-Alkyl, Cι-C4-Alkoxy, C1-C4- Alkylthio; für C1-C4_.Halogena.kyl, Cι-C4-Halogenalkoxy und C\- C4-Halogenalkylthio mit jeweils 1 bis 5 gleichen oder verschiedenen Halogenatomen aus der Reihe Fluor, Chlor und Brom; für Hydroxy, Nitro, Cyano; für Ci-G-j-Alkoxy-carbonyl, Aminocarbonyl, C1-C4- Alkylamino-carbonyl oder Di-Cι-C4-alkylamino-carbonyl steht.
X für Halogen, Cι-C4-Alkylthio, Cι-C4-Alkylsulfinyl, Cι-C4-Alkyl- sulfonyl; für Cι -C4-Halogenalkyl, Cι-C4-Halogenalkoxy, C1-C4- Halogenalkylthio, C]-C4-Halogenalkylsulfinyl und Cι-C4-Halogen- alkylsulfonyl mit jeweils 1 bis 5 gleichen oder verschiedenen Halogenatomen aus der Reihe Fluor, Chlor und Brom; oder für Cyano steht.
Y für Halogen; für Cι-C4-Halogenalkyl, Cι-C4-Halogenalkoxy, Ci-
C4-Halogenalkylthio, Cι-C4-Halogenalkylsulfϊnyl und Cι- 4-Halo- genalkylsulfonyl mit jeweils 1 bis 5 gleichen oder verschiedenen Halogenatomen aus der Reihe Fluor, Chlor und Brom; oder für Cyano steht.
3. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher
R für Wasserstoff, Fluor, Chlor, Brom, Methyl, Methoxy, Methylthio,
Trifluormethyl, Trifluormethoxy, Trifluormethylthio, Cyano, Methoxycarbonyl, Ethoxycarbonyl, Aminocarbonyl, Methylamino- carbonyl, Ethylaminocarbonyl, Dimethylaminocarbonyl oder Methyl- ethyl-aminocarbonyl steht.
X für Fluor, Chlor, Brom, Trifluormethyl, Trifluormethoxy, Methylthio, Methylsulfonyl, Trifluormethylthio, Trifluormethylsulfonyl oder Cyano steht. Y für Fluor; Chlor, Brom, Trifluormethyl, Trifluormethoxy, Trifluormethylthio, Trifluormethylsulfonyl, Difluormethyl, Difluormethoxy oder Cyano steht.
Verfahren zur Herstellung von Verbindungen der Formel (I), dadurch gekennzeichnet, dass man Verbindungen der Formel (II)
in welcher
R und X die oben angegebene Bedeutung haben,
mit Verbindungen der Formel (III)
in welcher
die oben angegebene Bedeutung hat,
gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt.
5. Verbindungen der Formel (II)
in welcher
R und X die oben angegebene Bedeutung haben.
6. Verbindungen der Formel (IV)
in welcher
R und X die oben angegebene Bedeutung haben.
7. Verbindungen der Formel (VII a)
in welcher
X1 für Fluor, Brom; Cι -C4-Alkylthio, Cι-C4-Alkylsulfinyl, C1-C4- Alkylsulfonyl; für Cι-C4-Halogenalkyl, Cι-C4-Halogenalkoxy, C\- C4-Halogenalkylthio, Cι-C4-Halogenalkylsulfmyl und Cι-C4-Halo- genalkylsulfonyl mit jeweils 1 bis 5 gleichen oder verschiedenen
Halogenatomen aus der Reihe Fluor, Chlor und Brom, oder für Cyano steht.
8. Schädlingsbekämpfungsmittel, gekennzeichnet durch einen Gehalt an min- destens einer Verbindung der Formel (I) gemäß Anspruch 1.
9. Verfahren zur Bekämpfung von tierischen Schädlingen, dadurch gekennzeichnet, daß man Verbindungen der Formel (T) gemäß Anspruch 1 auf Schädlinge und/oder ihren Lebensraum einwirken läßt.
10. Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 zur Bekämpfung von tierischen Schädlingen.
11. Verfahren zur Herstellung von Schädlingsbekämpfungsmitteln, dadurch ge- kennzeichnet, daß man Verbindungen der Formel (I) gemäß Anspruch 1 mit
Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.
2. Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 zur Herstellung von Schädlmgsbekämpfungsmitteln.
EP02748854A 2001-07-25 2002-07-12 Tetrahydropyridazin-derivate und ihre verwendung als pestizide Withdrawn EP1414815A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10136066 2001-07-25
DE10136066A DE10136066A1 (de) 2001-07-25 2001-07-25 Tetrahydropyridazin-Derivate
PCT/EP2002/007780 WO2003010162A1 (de) 2001-07-25 2002-07-12 Tetrahydropyridazin-derivate und ihre verwendung als pestizide

Publications (1)

Publication Number Publication Date
EP1414815A1 true EP1414815A1 (de) 2004-05-06

Family

ID=7692939

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02748854A Withdrawn EP1414815A1 (de) 2001-07-25 2002-07-12 Tetrahydropyridazin-derivate und ihre verwendung als pestizide

Country Status (9)

Country Link
US (1) US20050150764A1 (de)
EP (1) EP1414815A1 (de)
JP (1) JP2005501045A (de)
KR (1) KR20040016989A (de)
CN (1) CN1535270A (de)
BR (1) BR0211480A (de)
DE (1) DE10136066A1 (de)
MX (1) MXPA04000623A (de)
WO (1) WO2003010162A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10239480A1 (de) * 2002-08-28 2004-03-04 Bayer Cropscience Ag Tetrahydropyridazin-Derivate
EP1812071A2 (de) 2004-10-13 2007-08-01 PTC Therapeutics, Inc. Verbindungen zur nonsense-unterdrückung und verwendung dieser verbindungen für die herstellung eines medikaments zur behandlung somatischer mutationsbedingter erkrankungen
EP2234731B1 (de) 2008-01-09 2016-05-04 Meadwestvaco Calmar, Inc. Drehsprüher und verfahren zu seiner verwendung
RU2471504C1 (ru) * 2011-11-14 2013-01-10 Федеральное государственное образовательное учреждение высшего профессионального образования "САНКТ-ПЕТЕРБУРГСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ" (ФГОУ ВПО СПГАВМ) Способ борьбы с мелофагозом овец
RU2471503C1 (ru) * 2011-11-14 2013-01-10 Федеральное государственное образовательное учреждение высшего профессионального образования "САНКТ-ПЕТЕРБУРГСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ" (ФГОУ ВПО СПГАВМ) Способ борьбы с эктопаразитами птиц

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919546B2 (ja) * 1979-03-26 1984-05-07 日本化学工業株式会社 α−アロイル−γ−ブチロラクトンの製造方法
US5247094A (en) * 1990-01-24 1993-09-21 Bayer Aktiengesellschaft 1-(3- or 5-halo-1,2,4-triazol-1-yl)ethyl phenyl ketone intermediates
DE4303658A1 (de) * 1993-02-09 1994-08-11 Bayer Ag Substituierte Tetrahydropyridazincarboxamide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03010162A1 *

Also Published As

Publication number Publication date
JP2005501045A (ja) 2005-01-13
MXPA04000623A (es) 2004-04-20
WO2003010162A1 (de) 2003-02-06
BR0211480A (pt) 2004-08-17
US20050150764A1 (en) 2005-07-14
DE10136066A1 (de) 2003-02-13
KR20040016989A (ko) 2004-02-25
CN1535270A (zh) 2004-10-06

Similar Documents

Publication Publication Date Title
DE10231333A1 (de) Cis-Alkoxysubstituierte spirocyclische 1-H-Pyrrolidin-2,4-dion-Derivate
EP1360190B1 (de) Phthalsäurediamide, ein verfahren zu ihrer herstellung und ihre verwendung als schädlingsbekämpfungsmittel
EP1359803B1 (de) Synergistische pestizide mischungen gegen tierische schädlinge
WO2003064385A2 (de) Delta1-pyrroline und deren verwendung als schädlingsbekämpfungsmittel
EP1289969A1 (de) Substituierte n-benzoyl-n&#39;-(tetrazolylphenyl)-harnstoffe und ihre verwendung als schädlingsbekämpfungsmittel
WO2003064386A1 (de) Delta1-pyrroline als schädlingsbekämpfungsmittel
DE10034131A1 (de) Heterocyclische Fluoralkenylthioether (II)
EP1414815A1 (de) Tetrahydropyridazin-derivate und ihre verwendung als pestizide
DE10034132A1 (de) Heterocyclische Fluoralkenylthioether (lll)
WO2003010148A1 (de) Pyrazolin-derivate und ihre verwendung als schädlingsbekämpfungsmittel
DE10034133A1 (de) Heterocyclische Fluoralkenylthioether (l)
WO2003040129A1 (de) Halogen-nitro-butadiene zur bekämpfung von tierischen shädlingen
DE10134720A1 (de) Synergistische Mischungen
DE10119421A1 (de) Insektizide Mittel
EP1322608A1 (de) Delta1-pyrroline als pestizide
DE10201544A1 (de) Substituierte Pyrazoline
EP1474418A1 (de) Substituierte 4-hetaryl-pyrazoline als schädlingsbekämpfungsmittel
EP1399421A1 (de) Substituierte imidate als schädlingsbekämpfungsmittel
DE10115406A1 (de) Phthalsäurediamide
EP1448549A1 (de) Delta1 -pyrroline
WO2003016293A1 (de) Oxadiazolyl-u. thiadiazolyl-benzoylharnstoffe und ihre verwendung als schädlingsbekämpfungsmittel
DE10206791A1 (de) Substituierte 4-Pyrazolyl-pyrazoline
WO2003040092A2 (de) Δpyrroline

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040225

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LUBOS-ERDELEN, ANGELIKA

Inventor name: TURBERG, ANDREAS

Inventor name: RECKMANN, UDO

Inventor name: ERDELEN, CHRISTOPH

Inventor name: MAURER, FRITZ

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060201