EP1387986A1 - Dispositif et procede d'injection d'un combustible liquide dans un flux d'air pour une chambre de combustion - Google Patents

Dispositif et procede d'injection d'un combustible liquide dans un flux d'air pour une chambre de combustion

Info

Publication number
EP1387986A1
EP1387986A1 EP02735482A EP02735482A EP1387986A1 EP 1387986 A1 EP1387986 A1 EP 1387986A1 EP 02735482 A EP02735482 A EP 02735482A EP 02735482 A EP02735482 A EP 02735482A EP 1387986 A1 EP1387986 A1 EP 1387986A1
Authority
EP
European Patent Office
Prior art keywords
fuel
flow
injection
tubes
pressurized air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02735482A
Other languages
German (de)
English (en)
Inventor
Niass Tidjani
Gérard Martin
Etienne Lebas
Guy Grienche
Gérard Schott
Hubert Verdier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Helicopter Engines SAS
Original Assignee
IFP Energies Nouvelles IFPEN
Turbomeca SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, Turbomeca SA filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1387986A1 publication Critical patent/EP1387986A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices

Definitions

  • the present invention relates to a device and a method for injecting a liquid fuel into an air flow making it possible to produce a homogeneous fuel / air mixture in a combustion chamber.
  • the invention finds a use in particular in the field of terrestrial gas turbines, by promoting, during the operation of said turbine, obtaining a high energy yield associated with a low production of pollutants.
  • the pollutants generally produced by gas turbines during the combustion of hydrocarbons are, as previously mentioned, nitrogen oxides but also carbon monoxide and unburnt hydrocarbons. It is also well known that the oxidation of molecular nitrogen to thermal NO x within the combustion chambers of turbines strongly depends on the maximum temperature of the hot gases in the reactive zone.
  • nitrogen oxides can thus be represented by an increasing exponential function of the temperature. It therefore follows from the above that it is possible to limit the formation of nitrogen oxides by avoiding the temperature peaks of the gases within the combustion chamber.
  • Another solution consists in practicing staged combustion, with a rich stage and a lean stage, the transition from one to the other taking place very quickly.
  • the temperature peaks, which generate nitrogen oxides NOx are reduced, and the rich zone is also used to limit their formation, but this solution leads to a significant production of unburnt hydrocarbons.
  • a third solution for jointly controlling the temperature and the emission of pollutants consists, before combustion, of mixing the air and the fuel in the form of a lean mixture, in order to obtain a fuel / air richness of between 0.3 and 1, preferably between 0.5 and 0.8.
  • the mass of air present in excess in the reaction zone thus absorbs part of the heat generated by the oxidation reaction of the fuel and reduces the temperature to which the products of the reaction are subjected.
  • the need for cooling air to adjust the temperature at the inlet of the expansion turbine is much less. This process thus effectively limits the production of nitrogen oxides without significantly increasing the emission level of other pollutants (hydrocarbons, carbon monoxide, etc.).
  • the main problem posed by a lean mixture operation is that the premix must be sufficiently homogeneous and uniform to achieve the low levels of pollutant emissions sought.
  • the premix must be sufficiently homogeneous and uniform to achieve the low levels of pollutant emissions sought.
  • US patent 6,094,916 proposes for example a device in which the air / fuel mixture is carried out under pressure thanks to the presence of a fixed device with radial blades generating a rotational movement of the flow of fluids. Between each blade of the device is axially disposed a fuel injection tube. Fuel injection is performed through orifices made in the tubes with an opening angle of 60 ° relative to a radial direction of said device.
  • the subject of the present invention is a device making it possible to obtain a homogeneous lean mixture of fuel and air before combustion.
  • a device for injecting a liquid fuel into a pressurized air flow comprising a hollow cylindrical body of longitudinal axis delimiting a central volume of substantially cylindrical shape, veins substantially radial with respect to the longitudinal axis of the body and arranged at the periphery of said body for the passage of said flow, and axial fuel injection tubes, disposed inside said veins and connected to at least one fuel inlet by at least one feed point, is characterized in that said tubes are pierced with openings open on the central volume of said body and oriented substantially in the direction of flow flow in the fluid veins.
  • the median axis of the veins can form an angle between 20 ° and 60 ° with the radius of the cylindrical body.
  • the fluid streams can have a three-dimensional shape calculated to minimize the pressure losses caused during the crossing of the fluid streams by the flow of air under pressure.
  • the orifices can be distributed linearly in the axial direction of the fuel injection tubes.
  • the fuel injection tubes can have a variable internal cross section as a function of the distance from the fuel supply point of said tube.
  • the device may further comprise axial tubes for injecting a gaseous fuel, said tubes being pierced with openings open on said central cylindrical volume and oriented substantially perpendicular to the direction of flow flow in the veins fluids.
  • the gaseous fuel injection tubes can be placed, relative to the direction of movement of the pressurized air flow in the fluid streams, upstream of the liquid fuel injection tubes.
  • a method of injecting a liquid fuel into a pressurized air flow is characterized in that the following steps are carried out: - pressurized air is brought into a volume upstream d '' at least one combustion zone, a swirling movement of air is generated in said volume by passing the pressurized air flow through a plurality of passages arranged at the periphery of said volume,
  • air can be injected into said volume so that its speed varies from approximately 10 m / s to approximately 200 m / s.
  • a gaseous fuel can be injected, as a substitute, substantially perpendicularly to the direction of flow of the pressurized air flow.
  • Water can be injected in liquid form or in vapor form to replace the fuel.
  • FIG. 1 shows a partial sectional view of an injection device according to the invention
  • FIG. 2 is a cross-sectional view along line 2-2 of Figure 1;
  • FIG. 3A is a local view on a larger scale showing a detail of the device according to the invention.
  • FIG. 3B is a sectional view along line 3-3 of Figure 3A;
  • - Figure 4 shows a longitudinal sectional view of a possible embodiment of the liquid fuel injection tubes
  • upstream and downstream must be associated with the reading of this description in the sense of air circulation in the present device.
  • FIG. 1 shows a cross section of a fuel injection and air introduction device 1 and leading to a combustion chamber 2 of a pilot stage or of a main stage of a gas turbine, for example.
  • This device with a longitudinal axis YY ′, comprises a liquid fuel inlet tube 3 bringing said fuel to a distribution pipe or manifold 4 of substantially annular shape.
  • the hollow body 10 delimits a central zone 11 whose cross section is illustrated in FIG. 2.
  • a swirling movement of the air caused by its passage between the vanes 6 allows better stabilization of the combustion by promoting the recirculation of the combustion gases in the space 11 and in the combustion chamber 2.
  • the tubes 5 have, over their entire length, orifices 9 open substantially in the direction of air flow in veins 12 and allowing the injection of the liquid fuel in a substantially radial manner between the said blades as well as the mixing of this fuel with the air 7 which arrives, for example, under pressure from the compressor of the turbine (not shown).
  • the hollow body 10 is made integral with a fixed part 8 of the device by a known technique.
  • Figure 2 shows schematically a cross section of the cylindrical body 10 shown in Figure 1.
  • the pressurized air passes through the hollow cylindrical body 10 by the fluid veins 12 delimited by the blades 6.
  • the median axis XX 'of the veins 12 forms a angle ⁇ with the radius R between the center of the body 10 and the center of the tube 5.
  • the angle ⁇ will be chosen by a person skilled in the art so that the vortex movement in the central zone 11 optimizes the recirculation of the gases of combustion.
  • the angle ⁇ will thus generally be between 20 and 60 °.
  • a liquid fuel injection tube 5 is placed in each vein 12.
  • twelve fluid veins 12 for the passage of air under pressure 7 delimited by twelve blades 6 between which are inserted twelve fuel injection tubes 5.
  • FIGS. 3A and 3B respectively show a transverse and longitudinal section of a fluid stream 12 and of the tube 5 present within it.
  • the pressurized air 7 passes through the fluid streams 12 along the arrows 17 and is mixed within them with the fuel arriving from an injection point 16 and leaving the orifices 9 in a direction illustrated by the arrows 18.
  • the arrows 17 and 18 are collinear in FIGS. 3A and 3B, that is to say that said tubes 5 are pierced with openings open on the central volume of the hollow cylindrical body substantially in the direction of flow of the in the fluid veins.
  • This configuration has the advantage in the context of a liquid injection of limiting the formation of coke on the walls 19 of the blades and improving in the fluid streams 12, on the one hand, the mixture between the air and the fuel. and, on the other hand, spraying said fuel downstream of the tubes 5 according to the principles previously described.
  • the turbulence zone in the wake of the tube 5 generated by the flow of air 7 at high speed strongly promotes the atomization of the liquid fuel and contributes to improving the homogeneity of the air mixture. / fuel in said area.
  • the air flow speed should be of the order of a few tens of m / s, preferably of the order of about 100 m / s while the speed of the fuel had to be as low as possible (of the order of 0.1 m / s to 10 m / s and preferably between about 0.5 m / s and 2 m / s) to promote said spraying and said mixture.
  • the cross section of the fluid veins illustrated by the arrows 14 and 15, has a significant narrowing from upstream to downstream so as to increase the speed of the air in it and therefore the turbulence of the 'flow.
  • This arrangement advantageously makes it possible to further improve the air / fuel mixture and the atomization of the fuel in the fluid streams 12.
  • the cross section of the streams 12 may be rectangular or of another form known to those skilled in the art. so as to optimize the pressure drop caused by crossing the device.
  • it can be fitted with a shutter system to adjust the air flow of the floor combustion depending on the load of the turbine, which facilitates operations in reduced steps.
  • the swirling movement of the fluids in the central space 11 generated by the passage of the veins 12 of the body 10 also allows recirculation of the hot combustion products also favorable to stabilization of said combustion whatever the operating speed of the combustion chamber.
  • FIG. 4 illustrates a possible embodiment of a tube 5 for injecting liquid fuel according to the invention.
  • This tube has an evolving section 401 which is a function of the distance to the injection point 16 of the fuel in said tube.
  • the tube thus comprises two separate parts: a hollow part 403 ensuring the passage of the fuel to the injection orifices 9 and a solid part 404 produced according to any technique known to those skilled in the art so that it limits gradually the fuel passage section in said tube from the vicinity of its injection point 16 to its free end.
  • This arrangement makes it possible to maintain, in a simple and economical manner, a substantially identical flow of fuel for each of the orifices 9.
  • FIGS. 5A and 5B respectively represent a cross section and a longitudinal section of a fluid stream 12 and of an injection tube 505 of gaseous fuel present within it.
  • the injection orifices 509 are oriented perpendicular to the mean direction of the flow of air in the fluid veins.
  • the speed of the mixing will be, in this embodiment, all the more effective the higher the ratio between the speeds of the gaseous fuel and the air.
  • FIGS. 3A, 3B and 5A, 5B can be combined to allow a supply and a mode of operation in liquid-gas dual-fueling of the combustion chamber.
  • the supply of gaseous fuel to the gaseous fuel injection tubes may be carried out by a second distribution pipe of substantially annular shape substantially identical to that shown in relation to FIG. 1.
  • Figure 6 shows schematically a cross section of a cylindrical body 600, identical to that described in connection with Figure 2 and associated with an injection device allowing operation in liquid-gas bicarburation.
  • This dual-fueling is carried out by combining, in the same device, tubes for injecting liquid fuel and tubes for injecting gaseous fuel as described above in relation to FIGS. 3A, 3B and 5A, 5B.
  • tubes 5 are dedicated to the injection of liquid fuel and tubes 505 allow the injection of a gaseous fuel.
  • the tubes 505 are placed in the fluid veins upstream from the tubes 5.
  • the present device and / or the present method although it has an obvious application therein, is not limited to the sole domain of gas turbines but may also be envisaged in any combustion device or method requiring the introduction a fuel in liquid form and a homogeneous mixture between said liquid fuel and the air prior to said combustion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spray-Type Burners (AREA)

Abstract

La présente invention concerne un dispositif d'injection d'un combustible liquide dans un flux d'air sous pression (7), notamment pour une chambre de combustion, comportant un corps cylindrique creux (10) d'axe longitudinal (YY') délimitant un volume central (11) de forme sensiblement cylindrique, des veines fluides (12) sensiblement radiales par rapport à l'axe longitudinal du corps (10) et disposées à la périphérie dudit corps pour le passage dudit flux, et des tubes axiaux (5) d'injection du combustible, disposés à l'intérieur desdites veines fluides et reliés à au moins une arrivée de combustible (3) par au moins un point d'alimentation (16). Selon l'invention, les tubes (5) sont percés d'orifices (9) ouverts sur le volume central (11) dudit corps (10) et orientés sensiblement dans le sens de l'écoulement du flux dans les veines fluides (12).

Description

DISPOSITIF ET PROCEDE D'INJECTION D'UN COMBUSTIBLE LIQUIDE DANS UN FLUX D'AIR POUR UNE CHAMBRE DE COMBUSTION
La présente invention se rapporte à un dispositif et à un procédé d'injection d'un combustible liquide dans un flux d'air permettant de réaliser un mélange combustible/air homogène dans une chambre de combustion.
L'invention trouve une utilisation en particulier dans le domaine des turbines à gaz terrestres, en favorisant, lors du fonctionnement de ladite turbine, l'obtention d'un fort rendement énergétique associé à une faible production de polluants.
Dans les chambres de combustion classiques pour turbine à gaz, la préoccupation principale est, en priorité, l'obtention d'une combustion stable sur une large gamme de conditions opératoires. Pour atteindre de la manière la plus efficace cet objectif, on réalise classiquement, dans un premier temps, une combustion au voisinage de la stœchiométrie avec une partie de l'air issu du compresseur et on dilue progressivement, dans un deuxième temps, les fumées obtenues avec une autre partie de l'air issu de ce compresseur pour abaisser leur température jusqu'au niveau thermique admissible par la turbine de détente. Cette approche présente cependant l'inconvénient de générer des quantités importantes d'oxydes d'azote (encore appelés NOx thermiques), à cause des températures très élevées atteintes dans la zone de combustion (températures de flamme comprises typiquement entre 2000 et 2400 °C).
Pour répondre aux nouvelles réglementations environnementales, les constructeurs de turbines à gaz cherchent maintenant à mettre au point des unités capables d'opérer à pleine capacité, c'est à dire sous de fortes charges sans produire de fortes quantités de polluants de l'air.
Les polluants généralement produits par les turbines à gaz lors de la combustion d'hydrocarbures sont, comme il a été mentionné précédemment, les oxydes d'azote mais aussi le.monoxyde de carbone et les hydrocarbures imbrûlés. Il est d'autre part bien connu que l'oxydation de l'azote moléculaire en NOx thermiques au sein des chambres de combustion des turbines dépend fortement de la température maximale des gaz chauds dans la zone réactive.
La formation d'oxydes d'azote peut être ainsi représentée par une fonction exponentielle croissante de la température. Il découle donc de ce qui précède qu'il est possible de limiter la formation des oxydes d'azote en évitant les pointes de température des gaz au sein de la chambre de combustion.
Plusieurs méthodes ont été proposées dans ce but : Suivant un premier mode opératoire, il a été proposé d'injecter de l'eau ou de la vapeur d'eau dans la chambre de combustion pour réduire les pics de température, ce qui a un effet bénéfique pour limiter la formation d'oxyde d'azote d'origine thermique.
Cette solution est cependant lourde à mettre en œuvre en regard des résultats obtenus car elle requiert un traitement sophistiqué de l'eau pour en éliminer toutes les impuretés ainsi qu'un générateur de vapeur dans le cas d'une injection de vapeur, et ne peut s'envisager raisonnablement que pour de très grosses machines. De plus, l'abaissement de la température provoque un ralentissement important de la réaction d'oxydation des hydrocarbures conduisant quelquefois à l'augmentation conjointe du niveau d'émission du monoxyde de carbone et des hydrocarbures imbrûlés.
Une autre solution consiste à pratiquer une combustion étagée, avec une étape riche et une étape pauvre, le passage de l'une à l'autre se déroulant très rapidement. Là également, on réduit les pics de température, générateurs d'oxydes d'azote NOx, et on bénéficie par ailleurs de la zone riche pour limiter leur formation, mais cette solution conduit à une production significative d'hydrocarbures imbrûlés.
Une troisième solution pour contrôler conjointement la température et l'émission des polluants consiste, préalablement à la combustion, à mélanger l'air et le combustible sous la forme d'un mélange pauvre, pour obtenir une richesse combustible/air comprise entre 0,3 et 1 , de manière préférée entre 0,5 et 0,8. La masse d'air présente en excès dans la zone de réaction absorbe ainsi une partie de la chaleur générée par la réaction d'oxydation du combustible et réduit la température à laquelle sont soumis les produits de la réaction. De plus, les besoins en air de refroidissement pour ajuster la température à l'entrée de la turbine de détente sont nettement moindres. Ce procédé permet ainsi de façon efficace de limiter la production des oxydes d'azote sans augmenter sensiblement le niveau d'émission des autres polluants (hydrocarbures, monoxyde de carbone etc.). Le principal problème posé par un fonctionnement en mélange pauvre est que le pré-mélange doit être suffisamment homogène et uniforme pour réaliser les bas niveaux d'émissions de polluants recherchés. Ainsi, il est possible, pour une répartition non uniforme du combustible dans l'air dans la zone de combustion, que la présence d'un excès de combustible dans certaines régions entraîne l'existence de points chauds avec pour corollaire la formation incontrôlée d'oxydes d'azote. De même, dans d'autres régions de très faible richesse, le refroidissement local est d'empêcher la combustion et de conduire en final à des imbrûlés gazeux et solides. En outre, si le mélange d'un combustible gazeux avec de l'air s'effectue grâce aux effets de la diffusion moléculaire et surtout du rapport d'énergie cinétique entre le combustible et l'air ainsi que de la répartition spatiale des points d'injection, le mélange d'un combustible liquide avec de l'air nécessite en plus une pulvérisation préalable qui conditionne la qualité du mélange et donc de la combustion.
En effet, la combustion se faisant toujours en phase gazeuse, il est nécessaire de transformer le combustible en un nuage de gouttelettes dont le diamètre doit être le plus faible possible, l'évaporation dudit combustible étant d'autant plus rapide que le diamètre des gouttelettes liquides est petit. Cette evaporation du combustible est souvent réalisée en deux étapes par des systèmes munis, d'une part, d'une chambre de vaporisation et, d'autre part, d'injecteurs de combustible liquide. La qualité de la vaporisation est en général tributaire de la géométrie de la chambre de vaporisation.
Le brevet US 6,094,916 propose par exemple un dispositif dans lequel le mélange air/combustible est effectué sous pression grâce à la présence d'un dispositif fixe à aubes radiales générant un mouvement de rotation de l'écoulement des fluides. Entre chaque aube du dispositif est disposé axialement un tube d'injection de combustible. L'injection du combustible est effectuée grâce à des orifices pratiqués dans les tubes avec un angle d'ouverture de 60° par rapport à une direction radiale dudit dispositif.
Une telle disposition ne peut pas convenir à une injection sous forme liquide du combustible, car elle aurait dans ce cas pour effet d'envoyer ledit combustible directement sur les aubes du dispositif avec pour conséquence inévitable la formation de coke sur les parois de celui-ci entraînant d'importantes nuisances sur les performances, la durée de vie des matériaux du dispositif et les niveaux d'émission de polluants de la turbine. De plus, il a été trouvé par le demandeur qu'une telle injection ne permettait pas une pulvérisation optimale et un mélange homogène avec l'air dans le cas de l'injection d'un combustible liquide.
Ainsi, la présente invention a pour objet un dispositif permettant d'obtenir un mélange pauvre homogène de combustible et d'air avant la combustion.
Selon la présente invention il est possible d'obtenir une flamme stable sur toute la plage de conditions opératoires d'une turbine à gaz fonctionnant en mélange pauvre.
A cet effet, un dispositif d'injection d'un combustible liquide dans un flux d'air sous pression, notamment pour une chambre de combustion, comportant un corps cylindrique creux d'axe longitudinal délimitant un volume central de forme sensiblement cylindrique, des veines sensiblement radiales par rapport à l'axe longitudinal du corps et disposées à la périphérie dudit corps pour le passage dudit flux, et des tubes axiaux d'injection du combustible, disposés à l'intérieur desdites veines et reliés à au moins une arrivée de combustible par au moins un point d'alimentation, est caractérisé en ce que lesdits tubes sont percés d'orifices ouverts sur le volume central dudit corps et orientés sensiblement dans le sens de l'écoulement du flux dans les veines fluides. Selon une autre caractéristique, l'axe médian des veines peut former un angle compris entre 20° et 60° avec le rayon du corps cylindrique.
Avantageusement, les veines fluides , peuvent présenter une forme tridimensionnelle calculée pour minimiser les pertes de charge occasionnées lors de la traversée des veines fluides par le flux d'air sous pression.
Les orifices peuvent être répartis linéairement dans la direction axiale des tubes d'injection de combustible.
Les tubes d'injection de combustible peuvent présenter une section interne variable en fonction de la distance au point d'alimentation en combustible dudit tube.
En variante, le dispositif peut comprendre en outre des tubes axiaux d'injection d'un combustible gazeux, lesdits tubes étant percés d'orifices ouverts sur ledit volume cylindrique central et orientés sensiblement perpendiculairement à la direction de l'écoulement du flux dans les veines fluides.
Les tubes d'injection de combustible gazeux peuvent être placés, par rapport au sens de déplacement du flux d'air sous pression dans les veines fluides, en amont des tubes d'injection de combustible liquide.
Selon l'invention, un procédé d'injection d'un combustible liquide dans un flux d'air sous pression est caractérisé en ce qu'on réalise les étapes suivantes : - on amène de l'air sous pression dans un volume en amont d'au moins une zone de combustion, - on génère un mouvement tourbillonnant de l'air dans ledit volume en faisant passer le flux d'air sous pression à travers une pluralité de passages disposés à la périphérie dudit volume,
- on injecte dans lesdits passages le combustible liquide sensiblement dans le sens d'écoulement du flux d'air sous pression.
De manière avantageuse, on peut injecter de l'air dans ledit volume de telle façon que sa vitesse varie d'environ 10 m/s à environ 200 m/s.
On peut injecter, de manière substitutive, dans lesdits passages un combustible gazeux sensiblement perpendiculairement au sens d'écoulement du flux d'air sous pression.
On peut injecter de l'eau sous forme liquide ou sous forme vapeur en substitution du combustible.
D'autres caractéristiques et avantages du dispositif et/ou du procédé selon l'invention apparaîtront mieux à la lecture de la description ci-après des exemples non limitatifs de réalisation qui suivent, en se référant aux figures 1 •à 6 sur lesquelles :
- La figure 1 présente une vue en coupe partielle d'un dispositif d'injection selon l'invention ;
- La figure 2 est une vue en coupe transversale selon la ligne 2-2 de la figure 1 ;
- La figure 3A est une vue locale à plus grande échelle montrant un détail du dispositif selon l'invention ;
- La figure 3B est une vue en coupe selon la ligne 3-3 de la figure 3A ; - La figure 4 montre une vue en coupé longitudinale d'un mode possible de réalisation des tubes d'injection du combustible liquide
- Les figures 5A et 5B schématisent, selon deux vues identiques à celles des figures 3A et 3B, une variante de réalisation de l'invention ;
- La figure 6 illustre un autre mode de réalisation de l'invention.
Les termes « amont » et « aval » doivent être associés à la lecture de la présente description au sens de circulation de l'air dans le présent dispositif.
La figure 1 présente une coupe transversale d'un dispositif d'injection de combustible et d'introduction d'air 1 et débouchant sur une chambre de combustion 2 d'un étage pilote ou d'un étage principal d'une turbine à gaz, par exemple.
Ce dispositif 1 , d'axe longitudinal YY', comprend un tube d'arrivée de combustible liquide 3 amenant ledit combustible vers une conduite ou rampe de distribution 4 de forme sensiblement annulaire. Une multitude de canaux ou tubes 5, en communication avec la conduite 4 par l'intermédiaire des points d'injection 16, s'étendent sensiblement axialement dans l'espace compris entre deux aubes 6 d'un corps creux 10 de forme sensiblement cylindrique, cette espace formant une veine 12 pour le passage des fluides, comme cela est mieux visible sur la figure 2. Le corps creux 10 délimite une zone centrale 11 dont la coupe transversale est illustrée par la figure 2. Un mouvement tourbillonnant de l'air provoqué par son passage entre les aubes 6 permet une meilleure stabilisation de la combustion en favorisant la recirculation des gaz de combustion dans l'espace 11 et dans la chambre de combustion 2. Les tubes 5 présentent sur toute leur longueur des orifices 9 ouverts sensiblement dans le sens d'écoulement de l'air dans les veines 12 et permettant l'injection du combustible liquide de manière sensiblement radiale entre lesdites aubes ainsi que le mélange de ce combustible avec l'air 7 qui arrive, par exemple, sous pression du compresseur de la turbine (non représenté). Le corps creux 10 est rendu solidaire avec une partie fixe 8 du dispositif par une technique connue.
La figure 2 schématise une coupe transversale du corps cylindrique 10 représenté sur la figure 1. L'air sous pression traverse le corps cylindrique creux 10 par les veines fluides 12 délimitées par les aubes 6. L'axe médian XX' des veines 12 forme un angle θ avec le rayon R entre le centre du corps 10 et le centre du tube 5. L'angle θ sera choisi par l'homme du métier de telle façon que le mouvement de tourbillon dans la zone centrale 11 optimise la recirculation des gaz de combustion. L'angle θ sera ainsi compris en général entre 20 et 60°.
Un tube 5 d'injection du combustible liquide est placé dans chaque veine 12. Dans la représentation illustrée par la figure 2 on compte ainsi, régulièrement répartis le long de la circonférence du corps 10, douze veines fluides 12 pour le passage de l'air sous pression 7 délimitées par douze aubes 6 entre lesquelles viennent s'insérer douze tubes 5 d'injection du combustible.
Bien entendu, le mode de réalisation ainsi présenté est illustratif et le nombre d'aubes, leur forme et celle des veines fluides permettant le passage de l'air seront optimisés en fonction des caractéristiques techniques de l'ensemble du dispositif par l'homme de l'art selon toute technique connue.
Les figures 3A et 3B montrent respectivement une coupe transversale et longitudinale d'une veine fluide 12 et du tube 5 présent au sein de celle-ci. L'air sous pression 7 traverse les veines fluides 12 suivant les flèches 17 et est mélangé au sein de celles-ci avec le combustible arrivant d'un point d'injection 16 et sortant des orifices 9 dans une direction illustrée par les flèches 18. Les flèches 17 et 18 sont colinéaires sur les figures 3A et 3B, c'est à dire que lesdits tubes 5 sont percés d'orifices ouverts sur le volume central du corps cylindrique creux sensiblement dans le sens de l'écoulement de l'air dans les veines fluides. Cette configuration présente l'avantage dans le cadre d'une injection liquide de limiter la formation de coke sur les parois 19 des aubes et d'améliorer dans les veines fluides 12, d'une part, le mélange entre l'air et le combustible et, d'autre part, la pulvérisation dudit combustible en aval des tubes 5 suivant les principes précédemment décrits. Ainsi, il a été trouvé par le demandeur que la zone de turbulence dans le sillage du tube 5 générée par l'écoulement de l'air 7 à grande vitesse favorise fortement la pulvérisation du combustible liquide et contribue à améliorer l'homogénéité du mélange air/combustible dans ladite zone. Les travaux effectués dans le cadre de la présente invention ont par ailleurs montré que la vitesse d'écoulement de l'air devait être de l'ordre de quelques dizaines de m/s, préférentiellement de l'ordre d'environ 100 m/s alors que la vitesse du combustible devait être la plus faible possible (de l'ordre de 0,1 m/s à 10 m/s et de préférence entre environ 0,5 m/s et 2 m/s) pour favoriser ladite pulvérisation et ledit mélange.
Comme montré sur ces figures, la section droite des veines fluides, illustrée par les flèches 14 et 15, présente un rétrécissement sensible d'amont en aval de façon à augmenter la vitesse de l'air dans celle-ci et donc la turbulence de l'écoulement. Cette disposition permet avantageusement d'améliorer encore le mélange air/combustible et la pulvérisation du combustible dans les veines fluides 12. Cependant, la section droite des veines 12 peut être rectangulaire ou d'une autre forme connue de l'Homme de l'Art de façon à optimiser la perte de charge occasionnée par la traversée du dispositif. De plus, elle peut être munie d'un système d'obturation permettant d'ajuster le débit d'air de l'étage de combustion en fonction de la charge de la turbine, ce qui facilite les fonctionnements en marches réduites.
Ainsi, en sortie des veines fluides, on obtient selon le dispositif illustré par les figures 1, 2 et 3A, 3B un mélange pauvre air/combustible très homogène engendrant une combustion stable quel que soit le régime considéré.
En outre, le mouvement tourbillonnant des fluides dans l'espace central 11 généré par la traversée des veines 12 du corps 10 permet en plus une recirculation des produits de combustion chauds également favorable à une stabilisation de ladite combustion quel que soit le régime de marche de la chambre de combustion.
La figure 4 illustre un mode possible de réalisation d'un tube 5 d'injection de combustible liquide selon l'invention.
Ce tube présente une section évolutive 401 qui est fonction de la distance au point d'injection 16 du combustible dans ledit tube.
Le tube comprend ainsi deux parties distinctes : une partie évidée 403 assurant le passage du combustible jusqu'aux orifices d'injection 9 et une partie pleine 404 réalisée selon toute technique connue de l'homme de l'art de telle façon qu'elle limite progressivement la section de passage du combustible dans ledit tube à partir du voisinage de son point d'injection 16 jusqu'à son extrémité libre. Cette disposition permet de maintenir de façon simple et économique un débit sensiblement identique de combustible pour chacun des orifices 9.
Les études menées par le demandeur montrent que, pour un tel tube, le diamètre moyen des gouttelettes à la sortie des veines fluides est sensiblement indépendant du rapport de débit massique air/combustible et que ledit diamètre moyen est sensiblement constant sur toute la section de sortie des veines fluides. Cette propriété permet de conserver les mêmes performances de pulvérisation pour différents régimes de marche de la chambre de combustion.
Un mode particulier de réalisation de l'invention est illustré par les figures 5A et 5B, qui représentent respectivement une coupe transversale et une coupe longitudinale d'une veine fluide 12 et d'un tube d'injection 505 de combustible gazeux présent au sein de celle-ci.
A la différence du système d'injection liquide décrit en relation avec les figures 3A et 3B, les orifices d'injection 509 sont orientés perpendiculairement à la direction moyenne de l'écoulement de l'air dans les veines fluides. La rapidité du mélange sera, dans ce mode de réalisation, d'autant plus efficace que le rapport entre les vitesses du combustible gazeux et de l'air sera élevé.
Sans sortir du cadre de l'invention, les modes de réalisation décrits en relation avec les figures 3A, 3B et 5A, 5B peuvent être associés pour permettre une alimentation et un mode de fonctionnement en bicarburation liquide-gaz de la chambre de combustion. L'alimentation en combustible gazeux des tubes d'injection de combustible gazeux pourra être effectuée par une deuxième conduite de distribution de forme sensiblement annulaire sensiblement identique à celle représentée en relation avec la figure 1.
La figure 6 schématise une coupe transversale d'un corps cylindrique 600, identique à celui décrit en relation avec la figure 2 et associé à un dispositif d'injection permettant un fonctionnement en bicarburation liquide-gaz. Cette bicarburation est réalisée par association dans un même dispositif de tubes d'injection de combustible liquide et de tube d'injection de combustible gazeux tels que décrits précédemment en relation avec les figures 3A, 3B et 5A, 5B. Entre les aubes 6 du corps cylindrique creux, des tubes 5 sont dédiés à l'injection du combustible liquide et des tubes 505 permettent l'injection d'un combustible gazeux. Les tubes 505 sont placés dans les veines fluides en amont des tubes 5.
L'utilisation de deux rampes de distribution conduisant à des tubes d'injection distincts dans une chambre de combustion de turbine à gaz offre une souplesse importante en raison de la possibilité d'employer alternativement ou dans un même cycle un combustible gazeux ou un combustible liquide, sans modification du système d'alimentation en combustible et sans arrêt de la turbine. De plus, le système d'injection reste compact et offre avantageusement la possibilité de basculer de l'un vers l'autre en cas d'avarie d'une rampe (gaz ou liquide) ou de problème d'approvisionnement d'un combustible (gaz ou liquide).
Sans sortir du cadre de l'invention, il est possible d'utiliser, lors du fonctionnement du présent dispositif, l'un des deux tubes 5 ou 505 tels que précédemment décrits pour injecter soit de l'eau sous forme liquide soit de la vapeur d'eau dans la chambre de combustion. Cette procédure a pour avantage, conformément à l'art antérieur décrit précédemment, de diminuer les émissions d'oxydes d'azote.
Le présent dispositif et/ou la présente méthode, bien qu'il/elle y trouve une application évidente, n'est pas limitée au seul domaine des turbines à gaz mais pourra également être envisagée dans tout dispositif ou procédé de combustion nécessitant l'introduction d'un combustible sous forme liquide et un mélange homogène entre ledit combustible liquide et l'air préalable à ladite combustion.

Claims

REVENDICATIONS
1. Dispositif d'injection d'un combustible liquide dans un flux d'air sous pression (7), notamment pour une chambre de combustion, comportant un corps cylindrique creux (10) d'axe longitudinal (YY') délimitant un volume central (11) de forme sensiblement cylindrique, des veines (12) sensiblement radiales par rapport à l'axe longitudinal du corps (10) et disposées à la périphérie dudit corps pour le passage dudit flux, et des tubes d'injection du combustible (5), disposés à l'intérieur desdites veines fluides et reliés à au moins une arrivée de combustible (3) par au moins un point d'alimentation (16), caractérisé en ce que lesdits tubes sont percés d'orifices (9) ouverts sur le volume central (11) dudit corps (10) et orientés sensiblement dans le sens de l'écoulement du flux dans les veines fluides (12).
2. Dispositif d'injection selon la revendication 1 dans lequel l'axe médian (XX') des veines (1 ) forme un angle (θ) compris entre 20° et 60° avec le rayon (R) du corps cylindrique (10).
3. Dispositif d'injection selon la revendication 1 ou 2 dans lequel les veines fluides (12) présentent une forme tridimensionnelle calculée pour minimiser les pertes de charge occasionnées lors de la traversée des veines fluides (12) par le flux d'air sous pression (7).
4. Dispositif d'injection selon l'une des revendications précédentes dans lequel les orifices (9) sont répartis linéairement dans la direction axiale des tubes (5) d'injection de combustible.
5. Dispositif d'injection selon l'une des revendications précédentes dans lequel les tubes (5) d'injection de combustible présentent une section interne variable en fonction de la distance au point d'alimentation en combustible (16) dudit tube.
6. Dispositif d'injection selon l'une des revendications précédentes comprenant en outre des tubes axiaux d'injection d'un combustible gazeux (505), lesdits tubes étant percés d'orifices ouverts sur ledit volume cylindrique central et orientés sensiblement perpendiculairement à la direction de l'écoulement du flux dans les veines fluides (12).
7. Dispositif d'injection selon la revendication 6 dans lequel les tubes d'injection de combustible gazeux (505) sont placés, par rapport au sens de déplacement du flux d'air sous pression dans les veines fluides (12), en amont des tubes d'arrivée de combustible liquide (5).
8. Procédé d'injection et de mélange d'un combustible liquide dans un flux d'air sous pression caractérisé en ce qu'on réalise les étapes suivantes :
- on amène de l'air sous pression dans un volume en amont d'au moins une zone de combustion,
- on génère un mouvement tourbillonnant de l'air dans ledit volume en faisant passer le flux d'air sous pression à travers une pluralité de passages (12) disposés à la périphérie dudit volume,
- on injecte dans lesdits passages le combustible liquide sensiblement dans le sens d'écoulement du flux d'air sous pression.
9. Procédé d'injection selon la revendication 8 dans lequel on injecte de l'air dans ledit volume de telle façon que sa vitesse varie d'environ 10 m/s à environ 200 m/s.
10. Procédé d'injection selon l'une des revendications 8 ou 9 dans lequel on injecte, de manière substitutive, dans lesdits passages un combustible gazeux sensiblement perpendiculairement au sens d'écoulement du flux d'air sous pression.
11. Procédé d'injection selon l'une des revendications 8 à 10 dans lequel on injecte de l'eau sous forme liquide ou sous forme vapeur en substitution du combustible liquide ou du combustible gazeux
12. Application du dispositif d'injection selon l'une des revendications 1 à 7 et/ou du procédé d'injection selon l'une des revendications 8 à 11 à l'étage de combustion principal d'une turbine à gaz comprenant au moins un étage de combustion.
13. Application du dispositif d'injection selon l'une des revendications 1 à 7 et/ou du procédé d'injection selon l'une des revendications 8 à 11 à l'étage de combustion pilote d'une turbine à gaz comprenant plusieurs étages de combustion.
EP02735482A 2001-05-10 2002-04-22 Dispositif et procede d'injection d'un combustible liquide dans un flux d'air pour une chambre de combustion Withdrawn EP1387986A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0106218A FR2824625B1 (fr) 2001-05-10 2001-05-10 Dispositif et procede d'injection d'un combustible liquide dans un flux d'air pour une chambre de combustion
FR0106218 2001-05-10
PCT/FR2002/001381 WO2002090831A1 (fr) 2001-05-10 2002-04-22 Dispositif et procede d'injection d'un combustible liquide dans un flux d'air pour une chambre de combustion

Publications (1)

Publication Number Publication Date
EP1387986A1 true EP1387986A1 (fr) 2004-02-11

Family

ID=8863149

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02735482A Withdrawn EP1387986A1 (fr) 2001-05-10 2002-04-22 Dispositif et procede d'injection d'un combustible liquide dans un flux d'air pour une chambre de combustion

Country Status (6)

Country Link
US (1) US7249721B2 (fr)
EP (1) EP1387986A1 (fr)
JP (1) JP4368112B2 (fr)
AU (1) AU2002310718A1 (fr)
FR (1) FR2824625B1 (fr)
WO (1) WO2002090831A1 (fr)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0230070D0 (en) * 2002-12-23 2003-01-29 Bowman Power Systems Ltd A combustion device
JP3940705B2 (ja) * 2003-06-19 2007-07-04 株式会社日立製作所 ガスタービン燃焼器及びその燃料供給方法
JP4626251B2 (ja) 2004-10-06 2011-02-02 株式会社日立製作所 燃焼器及び燃焼器の燃焼方法
EP1645805A1 (fr) * 2004-10-11 2006-04-12 Siemens Aktiengesellschaft brûleur pour combustible fluide et procédé pour uriliser un tel brûleur
US7703288B2 (en) * 2005-09-30 2010-04-27 Solar Turbines Inc. Fuel nozzle having swirler-integrated radial fuel jet
EP1821035A1 (fr) * 2006-02-15 2007-08-22 Siemens Aktiengesellschaft Brûleur de turbine à gaz et procédé pour mélanger le carburant et l'air dans une zone de tourbillonage d'un brûleur de turbine à gaz
US7716931B2 (en) * 2006-03-01 2010-05-18 General Electric Company Method and apparatus for assembling gas turbine engine
JP4719059B2 (ja) * 2006-04-14 2011-07-06 三菱重工業株式会社 ガスタービンの予混合燃焼バーナー
GB2449267A (en) * 2007-05-15 2008-11-19 Alstom Technology Ltd Cool diffusion flame combustion
US9068743B2 (en) * 2009-02-26 2015-06-30 8 Rivers Capital, LLC & Palmer Labs, LLC Apparatus for combusting a fuel at high pressure and high temperature, and associated system
WO2010099452A2 (fr) * 2009-02-26 2010-09-02 Palmer Labs, Llc Appareil et procédé de combustion d'un combustible à haute pression et haute température, et système et dispositif associés
US8986002B2 (en) * 2009-02-26 2015-03-24 8 Rivers Capital, Llc Apparatus for combusting a fuel at high pressure and high temperature, and associated system
EP2239501B1 (fr) * 2009-04-06 2012-01-04 Siemens Aktiengesellschaft Tourbillonnement, chambre à combustion, et turbine à gaz avec tourbillon amélioré
DE102009045950A1 (de) * 2009-10-23 2011-04-28 Man Diesel & Turbo Se Drallerzeuger
EP2325542B1 (fr) * 2009-11-18 2013-03-20 Siemens Aktiengesellschaft Aube de turbulence, turbulence et ensemble de brûleur
DE102009054669A1 (de) * 2009-12-15 2011-06-16 Man Diesel & Turbo Se Brenner für eine Turbine
US9746185B2 (en) * 2010-02-25 2017-08-29 Siemens Energy, Inc. Circumferential biasing and profiling of fuel injection in distribution ring
JP4894947B2 (ja) * 2010-09-21 2012-03-14 株式会社日立製作所 燃焼器及び燃焼器の燃焼方法
JP5584260B2 (ja) * 2012-08-08 2014-09-03 日野自動車株式会社 排気浄化装置用バーナー
US9528444B2 (en) 2013-03-12 2016-12-27 General Electric Company System having multi-tube fuel nozzle with floating arrangement of mixing tubes
US9650959B2 (en) 2013-03-12 2017-05-16 General Electric Company Fuel-air mixing system with mixing chambers of various lengths for gas turbine system
US9765973B2 (en) 2013-03-12 2017-09-19 General Electric Company System and method for tube level air flow conditioning
US9671112B2 (en) 2013-03-12 2017-06-06 General Electric Company Air diffuser for a head end of a combustor
US9759425B2 (en) * 2013-03-12 2017-09-12 General Electric Company System and method having multi-tube fuel nozzle with multiple fuel injectors
US20140338340A1 (en) * 2013-03-12 2014-11-20 General Electric Company System and method for tube level air flow conditioning
US9534787B2 (en) 2013-03-12 2017-01-03 General Electric Company Micromixing cap assembly
US9651259B2 (en) 2013-03-12 2017-05-16 General Electric Company Multi-injector micromixing system
FR3011911B1 (fr) * 2013-10-14 2015-11-20 Cogebio Bruleur de gaz pauvre
MX2019010633A (es) 2017-03-07 2019-12-19 8 Rivers Capital Llc Sistema y metodo para la combustion de combustibles solidos y sus derivados.
WO2018162994A1 (fr) 2017-03-07 2018-09-13 8 Rivers Capital, Llc Système et procédé de fonctionnement de chambre de combustion à combustible mixte pour turbine à gaz
US11761635B2 (en) * 2017-04-06 2023-09-19 University Of Cincinnati Rotating detonation engines and related devices and methods
US11572828B2 (en) 2018-07-23 2023-02-07 8 Rivers Capital, Llc Systems and methods for power generation with flameless combustion
US11719438B2 (en) * 2021-03-15 2023-08-08 General Electric Company Combustion liner

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866413A (en) * 1973-01-22 1975-02-18 Parker Hannifin Corp Air blast fuel atomizer
GB9023004D0 (en) * 1990-10-23 1990-12-05 Rolls Royce Plc A gas turbine engine combustion chamber and a method of operating a gas turbine engine combustion chamber
US5423173A (en) * 1993-07-29 1995-06-13 United Technologies Corporation Fuel injector and method of operating the fuel injector
SE9304194L (sv) * 1993-12-17 1995-06-18 Abb Stal Ab Bränslespridare
DE4445279A1 (de) * 1994-12-19 1996-06-20 Abb Management Ag Einspritzdüse
JPH09119641A (ja) * 1995-06-05 1997-05-06 Allison Engine Co Inc ガスタービンエンジン用低窒素酸化物希薄予混合モジュール
DE19532264C2 (de) * 1995-09-01 2001-09-06 Mtu Aero Engines Gmbh Einrichtung zur Aufbereitung eines Gemisches aus Brennstoff und Luft an Brennkammern für Gasturbinentriebwerke
GB2324147B (en) * 1997-04-10 2001-09-05 Europ Gas Turbines Ltd Fuel-injection arrangement for a gas turbine combuster
US6109038A (en) * 1998-01-21 2000-08-29 Siemens Westinghouse Power Corporation Combustor with two stage primary fuel assembly
GB2333832A (en) * 1998-01-31 1999-08-04 Europ Gas Turbines Ltd Multi-fuel gas turbine engine combustor
GB2337102A (en) * 1998-05-09 1999-11-10 Europ Gas Turbines Ltd Gas-turbine engine combustor
EP0981019A1 (fr) * 1998-08-20 2000-02-23 Asea Brown Boveri AG Procédé et brûleur pour la combustion des combustibles liquides
GB9818160D0 (en) * 1998-08-21 1998-10-14 Rolls Royce Plc A combustion chamber
US6868676B1 (en) * 2002-12-20 2005-03-22 General Electric Company Turbine containing system and an injector therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO02090831A1 *

Also Published As

Publication number Publication date
JP4368112B2 (ja) 2009-11-18
US20040142294A1 (en) 2004-07-22
US7249721B2 (en) 2007-07-31
FR2824625A1 (fr) 2002-11-15
WO2002090831A8 (fr) 2002-12-12
WO2002090831A1 (fr) 2002-11-14
AU2002310718A1 (en) 2002-11-18
FR2824625B1 (fr) 2003-08-15
JP2004525335A (ja) 2004-08-19

Similar Documents

Publication Publication Date Title
EP1387986A1 (fr) Dispositif et procede d'injection d'un combustible liquide dans un flux d'air pour une chambre de combustion
EP0933594B1 (fr) Procédé de fonctionnement d'une chambre de combustion de turbine à gaz fonctionnant au carburant liquide
EP3117083B1 (fr) Procédé de contrôle de l'injection de combustible d'un moteur à combustion interne à injection directe, notamment à allumage par compression, et moteur utilisant un tel procédé
FR2875584A1 (fr) Injecteur a effervescence pour systeme aeromecanique d'injection air/carburant dans une chambre de combustion de turbomachine
FR2931537A1 (fr) Procedes et systemes pour reduire la dynamique de combustion
FR2586453A1 (fr) Carburateur pour moteur a turbine a gaz
EP3134627B1 (fr) Moteur à combustion interne à injection directe à double angle de nappe pour réaliser un mélange carburé dans une chambre de combustion à double zone de combustion et à faible taux de compression et procédé pour utiliser un tel moteur
FR2915989A1 (fr) Injecteur mixte a bas nox
EP0099828B1 (fr) Dispositif pour la combustion de fluides combustibles avec induction d'air
EP3105452B1 (fr) Moteur à combustion interne à injection de deux nappes de combustible à débit différencié et procédé d'injection de combustible pour un tel moteur
FR2922629A1 (fr) Chambre de combustion a dilution optimisee et turbomachine en etant munie
FR2706985A1 (fr)
EP2261491A1 (fr) Procédé d'injection de carburant dans un moteur à combustion interne à auto-inflammation à injection directe
EP3430316B1 (fr) Chambre de combustion d'une turbine, notamment d'une turbine a cycle thermodynamique avec recuperateur, pour la production d'energie, en particulier d'energie electrique
EP1618334B1 (fr) Procede de combustion etagee d un combustible liquide et d'un oxydant dans un four
WO2020025233A1 (fr) Chambre de combustion pour une turbine a gaz destinee a la production d'energie notamment d'energie electrique, comprenant des trous de dilution asymetriques dans un tube a flamme
WO2015071093A1 (fr) Procédé pour mélanger au moins un comburant et au moins un combustible dans la chambre de combustion d'un moteur à combustion interne à injection directe à allumage par compression et moteur utilisant un tel procédé
WO2020109089A1 (fr) Injecteur de carburant avec moyens de refroidissement
WO2020025234A1 (fr) Chambre de combustion comprenant une section de passage d'un tube a flamme modifiee notamment pour une turbine destinee a la production d'energie, notamment d'energie electrique
EP2310745B1 (fr) Procede et dispositif de traitement thermique d'au moins un effluent comportant des polluants combustibles
WO2019063935A1 (fr) Paroi d'injection pour une chambre de combustion de moteur-fusee
FR2924750A1 (fr) Ligne d'echappement d'un moteur a combustion apte a ameliorer l'homogeneisation du melange des gaz d'echappement .
WO2023057722A1 (fr) Dispositif d'injection de dihydrogène et d'air
FR2908818A1 (fr) Ligne d'echappement de moteur adaptee a homogeneiser la richesse en carburant dans les gaz d'echappement a l'entree des moyens de depollution et de filtrage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20071106

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TURBOMECA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN HELICOPTER ENGINES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180530