EP1376505B1 - Brandmelder - Google Patents

Brandmelder Download PDF

Info

Publication number
EP1376505B1
EP1376505B1 EP02013657A EP02013657A EP1376505B1 EP 1376505 B1 EP1376505 B1 EP 1376505B1 EP 02013657 A EP02013657 A EP 02013657A EP 02013657 A EP02013657 A EP 02013657A EP 1376505 B1 EP1376505 B1 EP 1376505B1
Authority
EP
European Patent Office
Prior art keywords
detector
fire detector
detector according
temperature sensors
fire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02013657A
Other languages
English (en)
French (fr)
Other versions
EP1376505A1 (de
Inventor
Kurt Dr. Hess
Max Schlegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DK02013657T priority Critical patent/DK1376505T3/da
Application filed by Siemens Schweiz AG filed Critical Siemens Schweiz AG
Priority to PT02013657T priority patent/PT1376505E/pt
Priority to AT02013657T priority patent/ATE318000T1/de
Priority to ES02013657T priority patent/ES2260357T3/es
Priority to DE50205813T priority patent/DE50205813D1/de
Priority to EP02013657A priority patent/EP1376505B1/de
Priority to KR1020047020789A priority patent/KR101019839B1/ko
Priority to HU0501096A priority patent/HU226178B1/hu
Priority to CA2489933A priority patent/CA2489933C/en
Priority to PL03373368A priority patent/PL373368A1/xx
Priority to US10/518,609 priority patent/US7463159B2/en
Priority to PCT/CH2003/000381 priority patent/WO2004001694A1/de
Priority to CNB03819824XA priority patent/CN100449573C/zh
Priority to AU2003233745A priority patent/AU2003233745B2/en
Priority to JP2004514497A priority patent/JP2005530257A/ja
Publication of EP1376505A1 publication Critical patent/EP1376505A1/de
Priority to NO20050310A priority patent/NO331469B1/no
Application granted granted Critical
Publication of EP1376505B1 publication Critical patent/EP1376505B1/de
Priority to HK06103665.2A priority patent/HK1083662A1/xx
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the present invention relates to a fire detector with a detector insert, which has a sensor arrangement and an evaluation, and with a housing surrounding the sensor assembly with openings for the access of room air and possibly smoke to the sensor array.
  • the sensor arrangement can have, for example, an electro-optical sensor for detecting the scattered light generated by smoke in the ambient air, or a temperature sensor for detecting the heat generated in a fire or a gas sensor for detecting combustion gases or combinations of these sensors.
  • an electro-optical sensor for detecting the scattered light generated by smoke in the ambient air
  • a temperature sensor for detecting the heat generated in a fire
  • a gas sensor for detecting combustion gases or combinations of these sensors.
  • the invention will now be a unification of the detector inserts and the housing and thus a reduction in costs are made possible.
  • the aim is that a single housing can be used for different types of detectors.
  • the detector has a modular structure and is designed to accommodate detection modules for different fire parameters, all detection modules being compatible with a single housing.
  • the modular design with a housing and different compatible detection modules results in a universally usable detector with a uniform external appearance. This looks aesthetically pleasing and also causes a noticeable reduction in manufacturing costs.
  • optical-thermal detectors which have an electro-optical sensor and a temperature sensor.
  • the temperature sensor is located at the level below the electro-optical sensor, preferably in the center axis of the detector.
  • the above-mentioned access openings are at this lower level. This results in a "multi-level" structure of the detector that determines the detector height. For aesthetic reasons, however, the smallest possible height of the detector is often desired.
  • Another object of the invention is to provide a fire detector with a compatible with the various detection modules housing of the lowest possible height.
  • the detector according to the invention is therefore a relatively flat detector which can be used both as a multi-criteria and as a single-criteria detector.
  • the small height of the detector is made possible by the arrangement of the sensor arrangement and the access openings on one level.
  • the inventive fire detector is also characterized in that the detection modules have a same for all types of detectors and usable in the detector carrier plate, which is designed to receive the sensors for the different fire parameters.
  • a first preferred embodiment is characterized in that the support plate has on its underside facing the detector tip housing for receiving components of an electro-optical sensor system and is formed on its upper side for mounting a transmitter carrying the transmitter.
  • a second preferred embodiment of the inventive fire detector is characterized in that the housing has a detector hood, which consists of an annular upper and a spaced from this and forming the tip of the detector lower part.
  • the intermediate space between the two parts of the detector hood forms said access openings and said lower part is connected to the upper part by arcuate or rib-like webs.
  • a third preferred embodiment is characterized in that an optical detection module is provided for the measurement of smoke-induced scattered light which has at least one light source, a light receiver, a measuring chamber and a labyrinth system with diaphragms arranged on the periphery of the measuring chamber, wherein the at least one Light source and the light receiver are mounted in the housings on the underside of the support plate and the labyrinth system formed lid-like and can be fixed on the support plate.
  • a further preferred embodiment is characterized in that a thermal detection module is provided with two temperature sensors which are mounted radially opposite each other on the circuit board and protrude from the latter through the support plate downwards.
  • a development of this embodiment is characterized in that the said webs are formed in the form of wings or tabs with a vertically extending recess and provided in an even number, and that the temperature sensors in such a way each protrude from above against one of the webs that their free ends are directly in or behind the recess.
  • the thermal detection module has a cover plate which can be fixed on the carrier plate for covering the housing provided for the electro-optical sensor system, and openings for the passage of the temperature sensors and a partition wall extending radially between the temperature sensors for obtaining a directed air flow are provided on the cover plate.
  • a further preferred embodiment of the inventive fire detector is characterized in that an optical-thermal detection module for the measurement of scattered light caused by smoke and for temperature measurement is provided which has an electro-optical sensor system and two temperature sensors, the latter being arranged laterally next to the optical sensor system ,
  • the temperature sensors are mounted radially opposite each other on the circuit board and lie with their free ends in the region of one of said webs.
  • the webs are formed so as to protect the one hand, the temperature sensors from mechanical effects and on the other hand to ensure the most undisturbed air flow of the temperature sensors.
  • FIG. 1 shows a view of a part of the optical sensor system 2 in a cross section through the detector as seen from below.
  • the base 1 is intended for mounting on the ceiling of the room to be monitored, with the installation either directly on a flush box or surface-mounted with or without socket addition he follows.
  • the base 1, which essentially consists of a circular plate and a downwardly projecting edge web, contains inter alia a plug connector 4 (FIGS. 3, 4) which is provided for receiving a contact strip 5 (FIG. 4) connected to the sensor system ,
  • the optical sensor system 2 includes a plate-shaped carrier 6 for the optical sensor, a fixed to the underside of the carrier 6 lid-shaped labyrinth 7, arranged on the base 1 facing the upper side of the carrier 6 arranged circuit board 8 with the transmitter and a printed circuit board 8 am Edge and upwardly covering cover 9, which forms part of the housing 3.
  • the contact strip 5 is an integral part of the support plate 6 and protrudes from this upwards.
  • the cover 9 has substantially the shape of a plate with a peripheral collar at the edge and with an opening 10 for the passage of the contact strip 5, so that this projects into the plane of the socket 1 arranged in the socket strip 4.
  • the optical sensor shown in FIG. 2 includes a measuring chamber formed by the carrier 6 and the labyrinth 7 with a light receiver 11 and two light sources 12, 12 ', which are each arranged in a housing 13, 14, 15.
  • These housings consist of a bottom part, in which the respective diode (photodiode or IRED) is held, and which has a window opening for the entrance or exit of light at its front side facing the center of the measuring chamber.
  • the scattering space formed in the measuring chamber in the region in front of the mentioned window-like openings of the housings 13, 14, 15 is compact and exposed.
  • This arrangement and shape makes the detector for the use of a usable in this scattering space transparent body for smoke simulation best suited.
  • Such transparent bodies are used to adjust or test for smoke sensitivity in the manufacture of the detectors (see EP-B-0 658 264).
  • the frames of the window openings are integrally formed at least in the housings 14 and 15, whereby the tolerances for the smoke sensitivity are reduced.
  • the window frames consist of two parts, one of which is worked on the ceiling and the other at the bottom of the measuring chamber.
  • the windows are rectangular or square and between the window openings and the associated light source 12, 12 'and the lens of the associated light receiver 11 is a relatively large distance, resulting in a relatively small opening angle of the respective light beams.
  • a small opening angle of the light beams has the advantage that, on the one hand, hardly any light of the light sources 12, 12 'hits the ground and, on the other hand, the light receiver 11 does not "see” the ground, so that dust particles deposited on the floor can not produce disturbing scattered light.
  • Another advantage the large distance between the windows and the light source 12, 12 'and the lens of the light receiver 11 is that the penetrated by light optical surfaces are relatively deep inside the housing and are thus well protected against contamination, resulting in a constant sensitivity of opto result in electronic elements.
  • the labyrinth 7 consists of a bottom and peripherally arranged aperture 16 and it contains flat cover for said housing 13, 14, 15.
  • the bottom and the panels 16 serve to shield the measuring chamber against extraneous light from the outside and to suppress the so-called background light ( see also EP-A-0 821 330 and EP-A-1 087 352).
  • the peripherally arranged aperture 16 each consist of two legs and have an L-shaped configuration. Due to the shape and arrangement of the aperture 16, in particular by their mutual distance, it is ensured that the measuring chamber is adequately shielded from extraneous light and still their function can be checked with an optical test device (EP-B-0 636 266). In addition, the panels 16 are arranged asymmetrically, so that smoke from all directions can penetrate similarly well into the measuring chamber.
  • the directed against the measuring chamber leading edge of the aperture 16 is formed as sharp as possible, so that only a little light fall on such an edge and can be reflected.
  • the arrangement of the two light sources 12 and 12 ' is selected so that the optical axis of the light receiver 11 with the optical axis of the one light source, according to the light source 12, a blunt and with the optical axis of the other light source, according to the light source 12', includes an acute angle.
  • the light of the light source 12, 12 ' is scattered by smoke entering the measuring chamber and a portion of this scattered light is incident on the light receiver 11, with an obtuse angle between the optical axes of light source and light receiver of forward scattering and at an acute angle between the light source optical axes of backward scattering speaks.
  • the carrier 6 is prepared accordingly and has provided in the housings 13, 14 and 15 grooves (not shown) in which polarizing filter can be fixed.
  • polarizing filter can be fixed.
  • light sources 12, 12 'diodes can be used, which emit radiation in the wavelength range of visible light (see EP-A-0 926 646), or the light sources can emit radiation of different wavelengths, for example the one light source red and the other blue light.
  • the housing 3 of the smoke detector is constructed substantially in two parts and consists of the already mentioned cover 9 and a sensor sensor system 2 comprehensive detector hood 17.
  • the latter consists of an upper annular portion and a spaced therefrom, the tip of the detector forming plate which is connected to the upper annular part by arcuate or rib-like webs 18.
  • the space designated by the reference numeral 19 between the upper and the lower part of the detector hood 17 forms a running over the entire housing circumference opening for the entry of air and thus smoke to the optical sensor system 2, said opening is interrupted only by the relatively narrow webs 18 , There is an even number of webs 18 is provided, according to four.
  • the detector hood 17 and the cover 9 are fixed to the carrier 6 via hook-type snap fasteners (not shown) and the entire detector is fastened in the base 1.
  • a ring 20 is inserted, which carries an insect screen 21 made of a suitable flexible material.
  • the carrier 6 is pressed against the ring 20, whereby the insect screen 21 is fixed in the detector.
  • the attachment of the detector in the base 1 is done by a kind of bayonet lock.
  • the detector is pushed from below into the base 1, which is possible due to a formed by guide ribs and grooves mechanical coding only in a single relative position between the detector and socket. Then, the detector in the base 1 is rotated by an angle of about 20 ° (Fig.
  • the contact strip 5 is integrated on the upper side of the carrier 6 in so-called insert technique and manufactured in one piece with the carrier 6.
  • the electrical connections are made to a cast into the carrier 6 stamped part with metallic, mutually insulated metal conductors. The free ends of these metal conductors protrude next to the contact strip 5 from the carrier 6 and form contact points for the production of solder joints to the transmitter on the circuit board. 8
  • a light guide 22 is fixed to the bottom of the labyrinth 7 forming member, which projects on the one hand up to the circuit board 8 and on the other hand through a hole in the lower part of the detector hood 17 from the detector hood.
  • the detector hood is provided in the region of said bore with a spherical recess 23 which surrounds the free end of the light guide 22.
  • the light guide 22 serves as a so-called alarm indicator for the visual display of alarm conditions of the detector.
  • an LED (not shown) is provided for this purpose, which is activated in an alarm condition and the light guide 22 is exposed to light.
  • a detector sends an alarm signal, then it is usually a visual check whether the alarm indicator also indicates an alarm. It is clear that the alarm indicator should be visible on all sides for this check. Where this is not the case, the detectors must be mounted in the interstitial space so that the alarm indicator is clearly visible from the door. For purely thermal detectors where there are no restrictions on the location of the alarm indicator due to the lack of an optical sensor, the alarm indicator is often located at the detector apex (see US-A-5 450 066).
  • the alarm indicator requires little power and, because it is located in the area of the detector apex, it is practically visible on all sides. The visibility from all sides is only given from a viewing angle of 20 ° to the horizontal, but since the detector is mounted on the ceiling, this condition is met in most cases.
  • the light guide 22 is guided through the measuring chamber in the area between the housings 14 and 15.
  • the two housings 14 and 15 are connected to one another at their front side and thus form, with their inner side surfaces and the connecting surface between them, a wall surrounding the optical waveguide 22 which largely shields the scattering space of the measuring chamber from the optical waveguide 22.
  • the smoke detector described so far is a purely optical detector with smoke detection based on the scattered light caused by smoke particles that have penetrated into the measuring chamber.
  • the detector can be designed as a two-criteria detector and additionally contain a temperature sensor.
  • two temperature sensors 24 formed by NTC resistors are provided, which are arranged in the region of two mutually opposite webs 18.
  • the webs 18 have in the middle of an elongated recess 25, in which from above the temperature sensors 24 protrude, which are mounted on the circuit board 8.
  • Optical thermal detectors are known, so that a description of the signal evaluation is omitted here.
  • the detector could contain other sensors, such as a fire gas sensor (CO, NO x ), which could be arranged at correspondingly small dimensions within the measuring chamber.
  • CO, NO x fire gas sensor
  • the smoke detector described so far is a purely optical detector with smoke detection based on the scattered light caused by smoke particles that have penetrated into the measuring chamber.
  • the detector can be designed as a two-criteria detector and additionally contain a temperature sensor.
  • two temperature sensors 24 formed by NTC resistors are provided, which are arranged in the region of two mutually opposite webs 18.
  • the webs 18 have in the middle of an elongated recess 25, in which from above the temperature sensors 24 protrude, which are mounted on the circuit board 8.
  • Optical thermal detectors are known, so that a description of the signal evaluation is omitted here.
  • the detector could contain other sensors, such as a fire gas sensor (CO, NO x ), which could be arranged at correspondingly small dimensions within the measuring chamber.
  • CO, NO x fire gas sensor
  • optical, optical-thermal and thermal fire detectors are in use today, whereby gas detectors can still be used for these.
  • the optical, thermal and optical thermal detectors may additionally have a fire gas sensor.
  • the detector shown in FIGS. 1 to 5 covers the variants visually and optically-thermally (possibly supplemented by a fire gas sensor), wherein of course in the purely optical detector no temperature sensors 24 are provided. Apart from that, but the detector structure in the two variants previously described mechanically completely the same.
  • the detector can also serve as the basis for a purely thermal detector without any conceptual changes to the base or housing. Since the mechanical main components and the structure of the detector are always the same in all cases, a family of fire detectors with sensors for different fire characteristics is proposed, which manages with a single, in all cases the same housing and a single base and thus allows substantial savings.
  • the cover plate 26 is a very essential part of the thermal fire detector because, among other things, it allows one and the same support 6 to be used for the different types of detectors. As can be seen in particular from Fig. 7, which shows a view of the cover plate 26 from below, this has the contour of the housing 13, 14 and 15 adapted openings through which said housing with their lower ends protrude. In addition, elastic tongues 27, 28 and 29 are provided on the cover plate 26, which serve to cover the housing 13, 14, 15 and are snapped into this. In addition, the cover plate 26 has a tubular holder 30 for the light guide 22, two openings for the temperature sensors 24 and extending therebetween a partition wall 31, which serves to achieve a directed air flow.
  • the partition wall 31 makes a significant contribution to the fact that the described thermal fire detector has a homogeneous sensitivity and meets the strict requirements of the standard EN 54/5, class A1. Together with the webs 18, the dividing wall 31 directs the incoming air through the housing to the sensors 24.
  • the response of the temperature sensors provides an indication of the location of the fire, assuming that the fire is on the detector side with the higher temperature sensor.
  • Another advantage of using two temperature sensors 24 is the associated redundancy.
  • the two sensors monitor each other and drift or aging are noticeable much earlier than with just one sensor.
  • the monitoring of both sensors over a longer period of time must result in both about the same temperature. If not, one of the sensors has a fault.
  • optical-thermal detector shown in Figures 1 to 5 can be achieved by using a double-photodiode as a light receiver 11 optimal redundancy (two light transmitter, two light receivers, two temperature sensors).
  • the detection module for an optical detector consists of the support 6, the optoelectronic elements 11, 12, 12 ', the labyrinth 7 and the grid 21 with the ring 20, the detection module for a thermal detector from the support 6, the thermal sensors 24 and Cover plate 26, and the detection module for an optical-thermal detector the carrier 6, the opto-electronic elements 11, 12, 12 ', the labyrinth 7, the grid 21 with the ring 20 and the thermal sensors 24, wherein of course the circuit board 8 is also specific to the detector type.
  • the sensor in question would also be mounted on the support 6 if possible.
  • Another possibility is to arrange the gas sensor laterally next to the fire detector or in a separate, remote from the detector and preferably arranged laterally next to this or molded onto this, housing.
  • Options for further modules include, for example, a module for measuring the radiation power, a camera, or an alarm module with an acoustic alarm transmitter (see EP 01 128 683.8).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Brandmelder mit einem Meldereinsatz, welcher eine Sensoranordnung und eine Auswerteelektronik aufweist, und mit einem die Sensoranordnung umgebenden Gehäuse mit Öffnungen für den Zutritt von Raumluft und gegebenenfalls Rauch zur Sensoranordnung.
  • Die Sensoranordnung kann beispielsweise einen elektrooptischen Sensor zur Detektion des durch in der Raumluft vorhandenen Rauch erzeugten Streulichts, oder einen Temperatursensor zur Detektion der bei einem Brand erzeugten Wärme oder einen Gassensör zur Detektion von Brandgasen oder Kombinationen dieser Sensoren aufweisen. Bei den bisher bekannten Brandmeldern ist je nach der verwendeten Sensoranordnung sowohl der Meldereinsatz als auch das Gehäuse verschieden, so dass für jeden Meldertyp ein eigenes Spritzgusswerkzeug benötigt wird, was die Herstellungskosten erhöht. Auch die Lagerung verschiedener Typen von Meldereinsätzen und Gehäusen verursacht unerwünschte Kosten.
  • Durch die Erfindung soll nun eine Vereinheitlichung der Meldereinsätze und der Gehäuse und damit eine Reduktion der Kosten ermöglicht werden. Als Ziel wird angestrebt, dass für verschiedene Meldertypen ein einziges Gehäuse verwendet werden kann.
  • Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass der Melder modular aufgebaut und zur Aufnahme von Detektionsmodulen für verschiedene Brandkenngrössen ausgebildet ist, wobei alle Detektionsmodule mit einem einzigen Gehäuse kompatibel sind.
  • Durch den modularen Aufbau mit einem Gehäuse und verschiedenen mit diesem kompatiblen Detektionsmodulen ergibt sich ein universell verwendbarer Melder mit einem einheitlichen äusseren Erscheinungsbild. Das wirkt ästhetisch ansprechend und bewirkt ausserdem eine merkbare Reduktion der Herstellungskosten.
  • Aus dem WO/0155991 ist ein modular aufgebauter Brandmelder bekannt.
  • Heute sind so genannte optisch-thermische Melder stark verbreitet, die einen elektrooptischen Sensor und einem Temperatursensor aufweisen. Bei diesen Meldern ist in den meisten Fällen der Temperatursensor im Niveau unterhalb des elektrooptischen Sensors angeordnet, und zwar vorzugsweise in der Mittelachse des Melders. Meistens befinden sich auch die genannten Zutrittsöffnungen auf diesem unteren Niveau. Daraus ergibt sich ein die Melderhöhe bestimmender "mehrstöckiger" Aufbau des Melders. Aus ästhetischen Gründen wird allerdings vielfach eine möglichst geringe Höhe des Melders gewünscht.
  • Ein weiteres Ziel der Erfindung besteht darin, einen Brandmelder mit einem mit den verschiedenen Detektionsmodulen kompatiblen Gehäuse von möglichst geringer Höhe anzugeben.
  • Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Sensoranordnung und die genannten Zutrittsöffnungen im wesentlichen auf einer Ebene angeordnet sind.
  • Der erfindungsgemässe Melder ist also ein relativ flacher Melder, der sowohl als Mehrkriterienals auch als Einkriterienmelder verwendet werden kann. Die geringe Höhe des Melders wird durch die Anordnung der Sensoranordnung und der Zutrittsöffnungen auf einem Niveau ermöglicht.
  • Der erfindingsgemässe Brandmelder ist auch dadurch gekennzeichnet, dass die Detektionsmodule eine für alle Meldertypen gleiche und in den Melder einsetzbare Trägerplatte aufweisen, die zur Aufnahme der Sensoren für die verschiedenen Brandkenngrössen ausgebildet ist.
  • Eine erste bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass die Trägerplatte an ihrer der Melderkuppe zuwandten Unterseite Gehäuse zur Aufnahme von Komponenten eines elektro-optischen Sensorsystems aufweist und an ihrer Oberseite zur Halterung einer die Auswerteelektronik tragenden Leiterplatte ausgebildet ist.
  • Eine zweite bevorzugte Ausführungsform des erfindungsgemässen Brandmelder ist dadurch gekennzeichnet, dass das Gehäuse eine Melderhaube aufweist, welche aus einem ringförmigen oberen und einem von diesem beabstandeten und die Kuppe des Melders bildenden unteren Teil besteht. Der Zwischenraum zwischen den beiden Teilen der Melderhaube bildet die genannten Zutrittsöffnungen und der genannte untere Teil ist mit dem oberen Teil durch bogen- oder rippenartige Stege verbunden.
  • Eine dritte bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass ein optisches Detektionsmodul für die Messung von durch Rauch verursachtem Streulicht vorgesehen ist, welches mindestens eine Lichtquelle, einen Lichtempfänger, eine Messkammer und ein Labyrinthsystem mit an der Peripherie der Messkammer angeordneten Blenden aufweist, wobei die mindestens eine Lichtquelle und der Lichtempfänger in den Gehäusen auf der Unterseite der Trägerplatte befestigt sind und das Labyrinthsystem deckelartig ausgebildet und auf der Trägerplatte fixierbar ist.
  • Eine weitere bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass ein thermisches Detektionsmodul mit zwei Temperatursensoren vorgesehen ist, welche einander radial gegenüber liegend auf der Leiterplatte befestigt sind und von dieser durch die Trägerplatte nach unten ragen. Eine Weiterbildung dieser Ausführungsform ist dadurch gekennzeichnet, dass die genannten Stege in Form von Flügel oder Laschen mit einer vertikal verlaufenden Ausnehmung ausgebildet und in gerader Anzahl vorgesehen sind, und dass die Temperatursensoren derart von oben je gegen einen der Stege ragen, dass ihren freien Enden unmittelbar in oder hinter der Ausnehmung liegen. Das thermische Detektionsmodul weist eine auf der Trägerplatte fixierbare Abdeckplatte für die Abdeckung der für das elektrooptische Sensorsystem vorgesehenen Gehäuse auf, und auf der Abdeckplatte sind Öffnungen für den Durchtritt der Temperatursensoren sowie eine zwischen den Temperatursensoren in radialer Richtung verlaufende Trennwand zur Erzielung einer gerichteten Luftströmung vorgesehen.
  • Eine weitere bevorzugte Ausführungsform des erfindungsgemässen Brandmelders ist dadurch gekennzeichnet, dass ein optisch-thermisches Detektionsmodul für die Messung von durch Rauch verursachtem Streulicht und zur Temperaturmessung vorgesehen ist, welches ein elektrooptisches Sensorsystem und zwei Temperatursensoren aufweist, wobei die letzteren seitlich neben dem optischen Sensorsystem angeordnet sind.
  • Gemäss einer Weiterbildung dieser bevorzugten Ausführungsform sind die Temperatursensoren einander radial gegenüber liegend auf der Leiterplatte befestigt und liegen mit ihren freien Enden im Bereich eines der genannten Stege. Vorzugsweise sind die Stege so ausgebildet, dass sie einerseits die Temperatursensoren vor mechanischen Einwirkungen schützen und andererseits eine möglichst ungestörte Luftanströmung der Temperatursensoren gewährleisten.
  • Im folgenden wird die Erfindung anhand von Ausführungsbeispielen und der Zeichnungen näher erläutert; es zeigt:
  • Fig. 1
    eine perspektivische Darstellung eines ersten Ausführungsbeispiels eines erfindungsgemässen Melders von vorne unten gesehen,
    Fig. 2
    eine perspektivische Darstellung eines Querschnitts durch den Melder von Fig. 1,
    Fig. 3
    eine perspektivische Darstellung eines Axialschnitts durch den Melder von Fig. 1,
    Fig. 4
    eine Draufsicht auf den Melder von Fig. 1,
    Fig. 5
    eine perspektivische Darstellung einer Draufsicht auf den Melder von Fig. 1 ohne Sockel aber mit Sockelklemme,
    Fig. 6
    eine perspektivische Darstellung eines zweiten Ausführungsbeispiels eines erfindungsgemässen Melders von vorne unten gesehen,
    Fig. 7
    eine perspektivische Ansicht des Melder von Fig. 6 bei abgenommener Melderkuppe von unten gesehen; und
    Fig. 8
    eine perspektivische Darstellung eines Axialschnitts durch den Melder von Fig. 6.
  • Der in den Figuren 1 bis 5 dargestellte Rauchmelder besteht in bekannter Weise aus drei Hauptbestandteilen, einem Sockel 1, einem optischen Sensorsystem 2 und einem Gehäuse 3. Dieser Aufbau ist am besten aus Fig. 3 ersichtlich. Fig. 2 zeigt in einem Querschnitt durch den Melder mit Blickrichtung von unten eine Ansicht eines Teils des optischen Sensorsystems 2.
  • Der Sockel 1 ist zur Montage an der Decke des zu überwachenden Raumes vorgesehen, wobei die Montage entweder direkt auf einer Unterputzdose oder aufputz mit oder ohne Sockelzusatz erfolgt. Der Sockel 1, der im wesentlichen aus einer kreisförmigen Platte und einem nach unten ragenden Randsteg besteht, enthält unter anderem eine Steckerleiste 4 (Fig. 3, 4), welche zur Aufnahme einer mit dem Sensorsystem verbundenen Kontaktleiste 5 (Fig. 4) vorgesehen ist.
  • Das optische Sensorsystem 2 enthält einen plattenförmigen Träger 6 für den optischen Sensor, ein an der Unterseite des Trägers 6 fixiertes deckelförmiges Labyrinth 7, eine an der dem Sockel 1 zugewandten oberen Seite des Trägers 6 angeordnete Leiterplatte 8 mit der Auswerteelektronik und eine die Leiterplatte 8 am Rand und nach oben abdeckende Abdeckung 9, welche Teil des Gehäuses 3 bildet. Die Kontaktleiste 5 ist integrierender Bestandteil der Trägerplatte 6 und ragt von dieser nach oben. Die Abdeckung 9 hat im wesentlichen die Form einer Platte mit einem am Rand umlaufenden Bund und mit einer Durchbrechung 10 zum Durchtritt der Kontaktleiste 5, so dass diese in die Ebene der im Sockel 1 angeordneten Steckerleiste 4 ragt.
  • Der aus Fig. 2 ersichtliche optische Sensor enthält eine durch den Träger 6 und das Labyrinth 7 gebildete Messkammer mit einem Lichtempfänger 11 und zwei Lichtquellen 12, 12', die jeweils in einem Gehäuse 13, 14, 15 angeordnet sind. Diese Gehäuse bestehen aus einem Bodenteil, in dem die jeweilige Diode (Fotodiode oder IRED) gehalten ist, und der an seiner dem Zentrum der Messkammer zugewandten Frontseite eine Fensteröffnung für den Lichtein- bzw. Lichtaustritt aufweist. Wie der Figur zu entnehmen ist, ist der in der Messkammer im Bereich vor den genannten fensterartigen Öffnungen der Gehäuse 13, 14, 15 gebildete Streuraum kompakt und freiliegend ausgebildet. Diese Anordnung und Formgebung macht den Melder für die Verwendung eines in diesen Streuraum einsetzbaren transparenten Körpers zur Rauchsimulation bestens geeignet. Derartige transparente Körper werden zum Abgleich oder zur Prüfung der Rauchempfindlichkeit bei der Herstellung der Melderverwendet (siehe dazu EP-B-0 658 264).
  • Die Rahmen der Fensteröffnungen sind zumindest bei den Gehäusen 14 und 15 einteilig ausgebildet, wodurch die Toleranzen für die Rauchempfindlichkeit reduziert werden. Bei bekannten Streulichtrauchmeldern bestehen die Fensterrahmen aus zwei Teilen, von denen der eine an die Decke und der andere an den Boden der Messkammer angearbeitet ist. Beim Aufsetzen des Bodens treten immer wieder Passschwierigkeiten auf und es kommt zu variablen Fenstergrössen und zur Bildung eines Lichtspalts zwischen den beiden Fensterhälften und damit zu unerwünschten Störungen des Sende- und des Empfangslichts. Bei den einteiligen Gehäusefenstern sind Störungen dieser Art ausgeschlossen und es können keine Probleme mit der Positioniergenauigkeit von Fensterhälften auftreten. Die Fenster sind rechteckig oder quadratisch und zwischen den Fensteröffnungen und der zugehörigen Lichtquelle 12, 12' bzw. der Linse des zugehörigen Lichtempfänger 11 besteht ein relativ grosser Abstand, wodurch sich ein relativ kleiner Öffnungswinkel der betreffenden Lichtstrahlen ergibt. Ein kleiner Öffnungswinkel der Lichtstrahlen hat den Vorteil, dass einerseits kaum Licht der Lichtquellen 12, 12' auf den Boden trifft und anderseits der Lichtempfänger 11 den Boden nicht "sieht", so dass auf dem Boden abgelagerte Staubpartikel kein störendes Streulicht erzeugen können. Ein weiterer Vorteil des grossen Abstandes zwischen den Fenstern und den Lichtquelle 12, 12' bzw. der Linse des Lichtempfängers 11 besteht darin, dass die von Licht durchdrungenen optischen Flächen relativ tief im Gehäuseinneren liegen und dadurch gegen Verschmutzung gut geschützt sind, was eine konstante Empfindlichkeit der opto-elektronischen Elemente zur Folge hat.
  • Das Labyrinth 7 besteht aus einem Boden und peripher angeordneten Blenden 16 und es enthält flache Deckel für die genannten Gehäuse 13, 14, 15. Der Boden und die Blenden 16 dienen zur Abschirmung der Messkammer gegen Fremdlicht von aussen und zur Unterdrückung des so genannten Untergrundlichts (siehe dazu auch EP-A-0 821 330 und EP-A-1 087 352).
  • Die peripher angeordneten Blenden 16 bestehen je aus zwei Schenkeln und weisen eine L-förmige Gestalt auf. Durch die Form und die Anordnung der Blenden 16, insbesondere auch durch deren gegenseitigen Abstand, ist gewährleistet, dass die Messkammer ausreichend gegen Fremdlicht abgeschirmt ist und trotzdem ihre Funktion mit einem optischen Testgerät (EP-B-0 636 266) überprüft werden kann. Ausserdem sind die Blenden 16 asymmetrisch angeordnet, so dass Rauch aus allen Richtungen ähnlich gut in die Messkammer eindringen kann.
  • Die gegen die Messkammer gerichtete Vorderkante der Blenden 16 ist möglichst scharf ausgebildet, so dass nur wenig Licht auf eine solche Kante fallen und reflektiert werden kann. Boden und Decke der Messkammer, also die einander zugewandten Flächen von Träger 6 und Labyrinth 7, sind geriffelt ausgebildet, und alle Oberflächen in der Messkammer, insbesondere die Blenden 16 und die genannten geriffelten Flächen sind glänzend und wirken wie schwarze Spiegel. Das hat den Vorteil, dass auftreffendes Licht nicht diffus gestreut sondern gerichtet reflektiert wird.
  • Die Anordnung der beiden Lichtquellen 12 und 12' ist so gewählt, dass die optische Achse des Lichtempfängers 11 mit der optischen Achse der einen Lichtquelle, darstellungsgemäss der Lichtquelle 12, einen stumpfen und mit der optischen Achse der anderen Lichtquelle, darstellungsgemäss der Lichtquelle 12', einen spitzen Winkel einschliesst. Das Licht der Lichtquelle 12, 12' wird durch in die Messkammer eindringenden Rauch gestreut und ein Teil dieses Streulichts fällt auf den Lichtempfänger 11, wobei man bei einem stumpfen Winkel zwischen den optischen Achsen von Lichtquelle und Lichtempfänger von Vorwärtsstreuung und bei einem spitzen Winkel zwischen den optischen Achsen von Rückwärtsstreuung spricht.
  • Es ist bekannt, dass das durch Vorwärtsstreuung erzeugte Streulicht wesentlich grösser ist als das durch Rückwärtsstreuung erzeugte, wobei die beiden Streulichtanteile für verschiedene Arten von Bränden in charakteristischer Weise verschieden sind. Dieses Phänomen ist beispielsweise aus der WO-A-84/01950 (= US-A-4 642 471) bekannt, wo unter anderem offenbart ist, dass sich das für verschiedene Raucharten unterschiedliche Verhältnis der Streuung bei kleinem Streuwinkel zur Streuung bei grösserem Streuwinkel zur Erkennung der Rauchart ausnützen lässt. Der grössere Streuwinkel könne auch über 90° gewählt werden, so dass die Vorwärts- und die Rückwärts-Streuung ausgewertet wird. Die Auswertung der von den beiden Lichtquellen 12 und 12' stammenden Streulichtanteile bildet nicht Gegenstand der vorliegenden Anmeldung und wird daher hier nicht näher beschrieben.
  • Zur besseren Diskriminierung zwischen verschiedenen Aerosolen können im Strahlengang sender- und/oder empfängerseitig aktive oder passive Polarisationsfilter vorgesehen sein. Der Träger 6 ist entsprechend vorbereitet und weist in den Gehäusen 13, 14 und 15 vorgesehene Nuten auf (nicht dargestellt), in denen Polarisationsfilter fixiert werden können. Als weitere Option können als Lichtquellen 12, 12' Dioden verwendet werden, die eine Strahlung im Wellenlängenbereich des sichtbaren Lichts aussenden (siehe dazu EP-A-0 926 646), oder die Lichtquellen können Strahlung verschiedener Wellenlängen aussenden, beispielsweise die eine Lichtquelle rotes und die andere blaues Licht.
  • Das Gehäuse 3 des Rauchmelders ist im wesentlichen zweiteilig aufgebaut und besteht aus der schon erwähnten Abdeckung 9 und einer das optische Sensorsystem 2 umfassenden Melderhaube 17. Die letztere besteht aus einem oberen ringförmigen Teil und einer von diesem beabstandeten, die Kuppe des Melders bildenden Platte, welche mit dem oberen ringförmigen Teil durch bogen- oder rippenartige Stege 18 verbunden ist. Der mit dem Bezugszeichen 19 bezeichnete Zwischenraum zwischen dem oberen und dem unteren Teil der Melderhaube 17 bildet eine über den gesamten Gehäuseumfang verlaufende Öffnung für den Zutritt von Luft und damit Rauch zum optischen Sensorsystem 2, wobei diese Öffnung nur durch die relativ schmalen Stege 18 unterbrochen ist. Es ist eine gerade Anzahl von Stegen 18 vorgesehen, darstellungsgemäss sind es vier.
  • Die Melderhaube 17 und die Abdeckung 9 sind am Träger 6 über hakenartige Schnappverschlüsse (nicht dargestellt) fixiert und der gesamte Melder ist im Sockel 1 befestigt. In den oberen Teil der Melderhaube 17 ist ein Ring 20 eingelegt, welcher ein Insektengitter 21 aus einem geeigneten flexiblen Material trägt. Beim Anbringen der Melderhaube 17 wird der Träger 6 gegen den Ring 20 gedrückt, wodurch das Insektengitter 21 im Melder fixiert wird. Die Befestigung des Melders im Sockel 1 erfolgt durch eine Art von Bajonettverschluss. Der Melder wird von unten in den Sockel 1 geschoben, was aufgrund einer durch Führungsrippen und Führungsnuten gebildeten mechanischen Codierung nur in einer einzigen Relativposition zwischen Melder und Sockel möglich ist. Dann wird der Melder im Sockel 1 um einen Winkel von etwa 20° (Fig. 4) gedreht, wodurch die Teil des Trägers 6 bildende und von diesem nach oben ragende Kontaktleiste 5 tangential in die im Sockel 1 montierte Steckerleiste eingeschoben und der elektrische Kontakt zwischen der Steckerleiste 4 und der Kontaktleiste 5 und damit zwischen Melder und Sockel hergestellt wird. Anschliessend erfolgt durch den erwähnten Bajonettverschluss die mechanische Fixierung des Melders im Sockel 1.
  • Die Kontaktleiste 5 ist auf der Oberseite des Trägers 6 in so genannter Insert-Technik integriert und einstückig mit dem Träger 6 hergestellt. Von den Steckerkontakten der Kontaktleiste 5 sind die elektrischen Anschlüsse zu einem in den Träger 6 eingegossenen Stanzteil mit metallischen, gegeneinander isolierten Metallleiten geführt. Die freien Enden dieser Metallleiter ragen neben der Kontaktleiste 5 aus dem Träger 6 und bilden Kontaktstellen für die Herstellung von Lötverbindungen zur Auswerteelektronik auf der Leiterplatte 8.
  • Die elektrische Verbindung zwischen Melder und Sockel durch die beiden Elemente Steckerleiste 4 und Kontaktleiste 5 besitzt eine Reihe von Vorteilen:
    • Für die Herstellung der Steckverbindung ist nur eine einfache Mechanik erforderlich und es muss insbesondere keine Umsetzung einer Rotations- in eine Translationsbewegung erfolgen.
    • Die kompakte Steckverbindung erlaubt einfache Schlaufkontakte und besitzt ausgezeichnete Eigenschaften hinsichtlich elektro-magnetischer Verträglichkeit (EMV).
  • Wie Fig. 3 zu entnehmen ist, ist auf dem Boden des das Labyrinth 7 bildenden Bauteils ein Lichtleiter 22 befestigt, der einerseits nach oben zur Leiterplatte 8 und andererseits durch eine Bohrung im unteren Teil der Melderhaube 17 aus der Melderhaube ragt. Die Melderhaube ist im Bereich der genannten Bohrung mit einer sphärischen Vertiefung 23 versehen, welche das freie Ende des Lichtleiters 22 umgibt. Der Lichtleiter 22 dient als so genannter Alarmindikator zur optischen Anzeige von Alarmzuständen des Melders. Auf der Leiterplatte 8 ist zu diesem Zweck eine LED (nicht dargestellt) vorgesehen, welche bei einem Alarmzustand aktiviert wird und den Lichtleiter 22 mit Licht beaufschlagt.
  • Wenn ein Melder ein Alarmsignal absetzt, dann erfolgt in der Regel eine visuelle Kontrolle, ob auch der Alarmindikator einen Alarm anzeigt. Es leuchtet ein, dass der Alarmindikator für diese Kontrolle allseitig sichtbar sein sollte. Wo dies nicht der Fall ist, müssen die Melder so im Überwachungsraum montiert werden, dass der Alarmindikator von der Türe aus gut sichtbar ist. Bei rein thermischen Meldern, wo wegen des Fehlens eines optischen Sensors keine Einschränkungen für die Anordnung des Alarmindikators bestehen, ist der Alarmindikator vielfach am Melderscheitel angeordnet (siehe dazu US-A-5 450 066). Bei Streulichtrauchmeldern ist das nur mit Einschränkungen möglich, weil einerseits ein in der Melderachse und damit durch den Streuraum geführter Lichtleiter nicht in Frage kommt und daher ein gebogener Lichtleiter verwendet werden müsste, und andererseits die elektrische Verbindung zu einer am Melderscheitel montierten LED zu aufwändig wäre. Aus diesem Grund ist bei Streulichtrauchmeldern der Alarmindikator in der Regel an der Peripherie des Melders angeordnet (siehe dazu DE-A-100 54 111) und praktisch nur aus einem sehr kleinen Raumwinkel sichtbar, was zu den schon erwähnten Problemen bezüglich Montage und Positionierung der Melder führt. Vorschläge bezüglich einer allseitigen Sichtbarkeit des Alarmindikators bei Streulichtrauchmeldern gehen in Richtung von ring- oder streifenförmigen Lichtleitern über den gesamten Umfang der Melderhaube (EP-1 049 061). Diese Lösungen sind aber nicht befriedigend, weil ein Lichtleiter mit einer derart grossen leuchtenden Fläche relativ viel Strom benötigt, damit er ausreichend hell leuchtet, um eine sichere Erkennung von Alarmanzeigen zu gewährleisten.
  • Der Alarmindikator benötigt nur wenig Strom und er ist, weil er im Bereich des Melderscheitels liegt, praktisch allseitig sichtbar. Die allseitige Sichtbarkeit ist zwar erst ab einem Blickwinkel von 20° zur Horizontalen gegeben, da aber der Melder an der Decke montiert wird, ist diese Bedingung in den meisten Fällen erfüllt. Wie insbesondere Fig. 2 zu entnehmen ist, ist der Lichtleiter 22 im Bereich zwischen den Gehäusen 14 und 15 durch die Messkammer geführt. Die beiden Gehäuse 14 und 15 sind an ihrer Frontseite miteinander verbunden und bilden somit mit ihren inneren Seitenflächen und der Verbindungsfläche zwischen diesen eine den Lichtleiter 22 umgebende Wand, welche den Streuraum der Messkammer gegen den Lichtleiter 22 weitgehend abschirmt.
  • Der bisher beschriebene Rauchmelder ist ein rein optischer Melder mit Rauchdetektion anhand des durch in die Messkammer eingedrungene Rauchpartikel verursachten Streulichts. Optional kann der Melder als Zweikriterien-Melder ausgebildet sein und zusätzlich einen Temperatursensor enthalten. Gemäss den Figuren 1 und 2 sind zwei durch NTC-Widerstände gebildete Temperatursensoren 24 vorgesehen, die im Bereich von zwei einander gegenüber liegenden Stegen 18 angeordnet sind. Die Stege 18 weisen in der Mitte eine längliche Ausnehmung 25 auf, in welche von oben her die Temperatursensoren 24 ragen, die auf der Leiterplatte 8 befestigt sind. Optisch-thermische Melder sind bekannt, so dass hier auf eine Beschreibung der Signalauswertung verzichtet wird. Selbstverständlich könnte der Melder noch weitere Sensoren, beispielsweise einen Brandgassensor (CO, NOx) enthalten, wobei dieser bei entsprechend kleinen Abmessungen innerhalb der Messkammer angeordnet sein könnte.
  • Der bisher beschriebene Rauchmelder ist ein rein optischer Melder mit Rauchdetektion anhand des durch in die Messkammer eingedrungene Rauchpartikel verursachten Streulichts. Optional kann der Melder als Zweikriterien-Melder ausgebildet sein und zusätzlich einen Temperatursensor enthalten. Gemäss den Figuren 1 und 2 sind zwei durch NTC-Widerstände gebildete Temperatursensoren 24 vorgesehen, die im Bereich von zwei einander gegenüber liegenden Stegen 18 angeordnet sind. Die Stege 18 weisen in der Mitte eine längliche Ausnehmung 25 auf, in welche von oben her die Temperatursensoren 24 ragen, die auf der Leiterplatte 8 befestigt sind. Optisch-thermische Melder sind bekannt, so dass hier auf eine Beschreibung der Signalauswertung verzichtet wird. Selbstverständlich könnte der Melder noch weitere Sensoren, beispielsweise einen Brandgassensor (CO, NOx) enthalten, wobei dieser bei entsprechend kleinen Abmessungen innerhalb der Messkammer angeordnet sein könnte.
  • Während in der Achse des Melders angeordnete Temperatursensoren völlig richtungsunabhängig sind, besteht bei einem peripher angeordneten Sensor eine starke Richtungsabhängigkeit und das Ansprechverhalten hängt davon ab, ob der Sensor an der dem Brand zugewandten oder an der von diesem abgewandten Seite des Melders liegt. Dieses Problem wird durch die Verwendung von zwei einander gegenüberliegenden Temperatursensoren 24 gelöst. Näheres dazu bei der Beschreibung der Figuren 6 bis 8. Wesentlich ist, dass der Melder unabhängig von der Anströmrichtung eine homogene, rotationssymmetrische Empfindlichkeit aufweist. Diese wird durch die Stege 18 in Zusammenwirken mit dem Labyrinth 7 erreicht, wobei die Stege 18 einerseits die Temperatursensoren 24 gegen mechanische Krafteinwirkungen schützen und die Luft optimal zu den Sensoren leiten und andererseits in Zusammenwirken mit dem Labyrinth 7 die Luft aussen am Gehäuse entlang leiten.
  • Wie schon in der Beschreibungseinleitung erwähnt wurde, sind heute optische, optisch-thermische und thermische Brandmelder in Verwendung, wobei zu diesen noch Gasmelder kommen können. Ausserdem können die optischen, thermischen und optisch-thermischen Melder zusätzlich einen Brandgassensor aufweisen. Der in den Fig. 1 bis 5 dargestellte Melder deckt die Varianten optisch und optisch-thermisch (eventuell ergänzt durch einen Brandgassensor) ab, wobei selbstverständlich beim rein optischen Melder keine Temperatursensoren 24 vorgesehen sind. Abgesehen davon, ist aber der Melderaufbau bei den beiden bisher beschriebenen Varianten mechanisch völlig gleich.
  • Wie nun anhand der Figuren 6 bis 8 erläutert werden wird, kann der Melder ohne konzeptionelle Änderungen an Sockel oder Gehäuse auch als Basis für einen rein thermischen Melder dienen. Da somit die mechanischen Hauptkomponenten und der Aufbau des Melders in allen Fällen immer gleich sind, wird eine Familie von Brandmeldern mit Sensoren für verschiedene Brandkenngrössen vorgeschlagen, die mit einem einzigen, für alle Fälle gleichen Gehäuse und einem einzigen Sockel auskommt und somit wesentliche Einsparungen ermöglicht.
  • Der in den Fig. 6 bis 8 dargestellte thermische Brandmelder unterscheidet sich von dem in den Fig. 1 bis 5 dargestellten optisch-thermischen Melder im wesentlichen durch folgende Merkmale:
    • Die Lichtquellen 12 und 12' und der Lichtempfänger 11 sind weggelassen,
    • der Ring 20 und das Gitter 21 sind weggelassen,
    • das Labyrinth 7 ist weggelassen und durch eine Abdeckplatte 26 ersetzt.
  • Die Abdeckplatte 26 ist ein sehr wesentliches Teil des thermischen Brandmelders, weil sie unter anderem ermöglicht, dass ein und derselbe Träger 6 für die verschiedenen Meldertypen verwendet werden kann. Wie insbesondere Fig. 7 entnommen werden kann, welche eine Ansicht der Abdeckplatte 26 von unten zeigt, weist diese an die Kontur der Gehäuse 13, 14 und 15 angepasste Durchbrechungen auf, durch welche die genannten Gehäuse mit ihren unteren Enden ragen. Ausserdem sind an der Abdeckplatte 26 elastische Zungen 27, 28 und 29 vorgesehen, die zur Abdeckung der Gehäuse 13, 14, 15 dienen und in diese eingeschnappt sind. Ausserdem weist die Abdeckplatte 26 eine rohrförmige Halterung 30 für den Lichtleiter 22, zwei Durchbrechungen für die Temperatursensoren 24 und eine zwischen diesen verlaufende Trennwand 31 auf, welche zur Erzielung einer gerichteten Luftströmung dient.
  • Die Trennwand 31 liefert einen wesentlichen Beitrag dazu, dass der beschriebene thermische Brandmelder eine homogene Empfindlichkeit aufweist und die strengen Anforderungen der Norm EN 54/5, Klasse A1 erfüllt. Zusammen mit den Stegen 18 leitet die Trennwand 31 die anströmende Luft durch das Gehäuse zu den Sensoren 24.
  • Bei der Auswertung der Signale der beiden Temperatursensoren 24 kann man entweder den höheren Wert berücksichtigen oder den Mittelwert, man kann aber auch beide Werte gewichten und gemeinsam zur Auswertung heranziehen. Das Ansprechverhalten der Temperatursensoren liefert einen Hinweis auf den Ort des Feuers, indem man davon ausgehen kann, dass das Feuer auf der Melderseite mit dem den höheren Temperaturwert liefernden Sensor befindet.
  • Ein weiterer Vorteil der Verwendung von zwei Temperatursensoren 24 liegt in der damit verbundenen Redundanz. Die beiden Sensoren überwachen einander gegenseitig und Abdriften oder Alterung sind wesentlich früher erkennbar als bei nur einem Sensor. Die Überwachung beider Sensoren über einen längeren Zeitraum muss bei beiden die etwa gleiche Temperatur ergeben. Wenn nicht, liegt bei einem der Sensoren eine Störung vor.
  • Bei dem in den Figuren 1 bis 5 dargestellten optisch-thermischen Melder lässt sich durch die Verwendung einer Doppel-Fotodiode als Lichtempfänger 11 eine optimale Redundanz (zwei Licht-sender, zwei Lichtempfänger, zwei Temperatursensoren) erzielen.
  • In den Figuren 1 bis 8 ist nicht ein einzelner Melder dargestellt, sondern ein Meldersystem, welches sich durch drei Hauptmerkmale auszeichnet:
    • Alle Melder sehen gleich aus, zumindest dann, wenn man sie aus dem üblichen Abstand von mehr als 2 m betrachtet;
    • die Melder sind flach und "einstöckig";
    • die Melder sind modular aufgebaut und damit kostengünstig herstellbar.
  • Jeder Melder des Systems, gleichgültig ob Ein- oder Mehrkriterien-, ob optischer oder thermischer Melder hat den gleichen Sockel 1, das gleiche Gehäuse 3 und den gleichen Träger 6. Die einzelnen Melder unterscheiden sich lediglich im Detektionsmodul, das ist die jeweilige Sensoranordnung. Das Detektionsmodul für einen optischen Melder besteht aus dem Träger 6, den optoelektronischen Elementen 11, 12, 12', dem Labyrinth 7 und dem Gitter 21 mit dem Ring 20, das Detektionsmodul für einen thermischen Melder aus dem Träger 6, den Thermosensoren 24 und der Abdeckplatte 26, und das Detektionsmodul für einen optisch-thermischen Melder aus dem Träger 6, den opto-elektronischen Elementen 11, 12, 12', dem Labyrinth 7, dem Gitter 21 mit dem Ring 20 und den Thermosensoren 24, wobei selbstverständlich die Leiterplatte 8 ebenfalls spezifisch für den Meldertyp ist.
  • Als zusätzliches Detektionsmodul ist ein solches für einen Gasmelder möglich, wobei der betreffende Sensor nach Möglichkeit ebenfalls auf dem Träger 6 montiert wäre. Eine andere Möglichkeit besteht darin, den Gassensor seitlich neben dem Brandmelder oder in einem separaten, vom Melder abgesetzten und vorzugsweise seitlich neben diesem angeordneten oder an diesen angeformten, Gehäuse anzuordnen. Möglichkeiten für weitere Module sind beispielsweise ein Modul zur Messung der Strahlungsleistung, eine Kamera, oder ein Alarmmodul mit einem akustischen Alarmgeber (siehe dazu EP 01 128 683.8).

Claims (14)

  1. Brandmelder mit einem Meldereinsatz, welcher eine Sensoranordnung (2) und eine Auswerteelektronik aufweist, und mit einem die Sensoranordnung (2) umgebenden Gehäuse (3) mit Öffnungen für den Zutritt von Luft und gegebenenfalls Rauch zur Sensoranordnung (2), dadurch gekennzeichnet, dass der Melder modular aufgebaut und zur Aufnahme von Detektionsmodulen mit Sensoren (11, 12, 12'; 24) für verschiedene Brandkenngrössen ausgebildet ist, wobei alle Detektionsmodule mit einem einzigen Gehäuse (3) kompatibel sind, dass die Sensoranordnung (2) und die genannten Zutrittsöffnungen im wesentlichen auf einem Niveau angeordnet sind, und dass die Detektionsmodule eine für alle Meldertypen gleiche und in den Melder einsetzbare Trägerplatte (6) aufweisen, die zur Aufnahme der Sensoren (11, 12, 12'; 24) für die verschiedenen Brandkenngrössen ausgebildet ist.
  2. Brandmelder nach Anspruch 1, dadurch gekennzeichnet, dass die Trägerplatte (6) an ihrer der Melderkuppe zuwandten Unterseite Gehäuse (13, 14, 15) zur Aufnahme von Komponenten eines elektro-optischen Sensorsystems (2) aufweist und an ihrer Oberseite zur Halterung einer die Auswerteelektronik tragenden Leiterplatte (8) ausgebildet ist.
  3. Brandmelder nach Anspruch 2, dadurch gekennzeichnet, dass das Gehäuse (3) eine Melderhaube (17) aufweist, welche aus einem ringförmigen oberen und einem von diesem beabstandeten und die Kuppe des Melders bildenden unteren Teil besteht.
  4. Brandmelder nach Anspruch 3, dadurch gekennzeichnet, dass der Zwischenraum (19) zwischen den beiden Teilen der Melderhaube (17) die genannten Zutrittsöffnungen bildet und der genannte untere Teil mit dem oberen Teil durch bogen- oder rippenartige Stege (18) verbunden ist.
  5. Brandmelder nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass ein optisches Detektionsmodul für die Messung von durch Rauch verursachtem Streulicht vorgesehen ist, welches mindestens eine Lichtquelle (12, 12'), einen Lichtempfänger (11), eine Messkammer und ein Labyrinthsystem (7) mit an der Peripherie der Messkammer angeordneten Blenden (16) aufweist, wobei die mindestens eine Lichtquelle (12, 12') und der Lichtempfänger (11) in den Gehäusen (14, 15; 13) auf der Unterseite der Trägerplatte (6) befestigt sind und das Labyrinthsystem (7) deckelartig ausgebildet und auf der Trägerplatte (6) fixierbar ist.
  6. Brandmelder nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass ein thermisches Detektionsmodul mit zwei Temperatursensoren (24) vorgesehen ist, welche einander radial gegenüber liegend auf der Leiterplatte (8) befestigt sind und von dieser durch die Trägerplatte (6) nach unten ragen.
  7. Brandmelder nach den Ansprüchen 4 und 7, dadurch gekennzeichnet, dass die genannten Stege (18) in Form von Flügel oder Laschen mit einer vertikal verlaufenden Ausnehmung (25) ausgebildet und in gerader Anzahl vorgesehen sind, und dass die Temperatursensoren (24) derart von oben je gegen einen der Stege (18) ragen, dass ihre freien Enden unmittelbar in oder hinter der Ausnehmung (25) liegen.
  8. Brandmelder nach den Ansprüchen 2 und 7, dadurch gekennzeichnet, dass das thermische Detektionsmodul eine auf der Trägerplatte (6) fixierbare Abdeckplatte (26) für die Abdeckung der für das elektrooptische Sensorsystem (2) vorgesehenen Gehäuse (13, 14, 15) aufweist, und dass auf der Abdeckplatte (26) Öffnungen für den Durchtritt der Temperatursensoren (24) sowie eine zwischen den Temperatursensoren (24) in radialer Richtung verlaufende Trennwand (31) zur Erzielung einer gerichteten Luftströmung vorgesehen sind.
  9. Brandmelder nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass ein optisch-thermisches Detektionsmodul für die Messung von durch Rauch verursachtem Streulicht und zur Temperaturmessung vorgesehen ist, welches ein elektrooptisches Sensorsystem (2) und zwei Temperatursensoren (24) aufweist, wobei die letzteren seitlich neben dem optischen Sensorsystem (2) angeordnet sind.
  10. Brandmelder nach Anspruch 9, dadurch gekennzeichnet dass die Temperatursensoren (24) einander radial gegenüber liegend auf der Leiterplatte (8) befestigt sind und mit ihren freien Enden im Bereich eines der genannten Stege (18) liegen.
  11. Brandmelder nach Anspruch 7 oder 10, dadurch gekennzeichnet, dass die Stege (18) so ausgebildet sind, dass sie einerseits die Temperatursensoren (24) vor mechanischen Einwirkungen schützen und andererseits eine möglichst ungestörte Luftanströmung der Temperatusensoren (24) gewährleisten.
  12. Brandmelder nach den Ansprüchen 2 und 3, dadurch gekennzeichnet, dass auf dem Boden des Labyrinthsystems (7) ein Lichtleiter (22) befestigt ist, welcher nach oben zur Leiterplatte (8) geführt ist und Teil einer im Bereich des Melderscheitels sichtbaren Alarmanzeige bildet.
  13. Brandmelder nach einem der Ansprüche 1 bis 14, gekennzeichnet durch einen dem Brandmelder zugeordneten Sockel (1) mit einer mehrpoligen Steckerleiste (4) und durch eine im Brandmelder angeordnete Kontaktleiste (5), welche durch eine Drehung des Melders relativ zum Sockel (1) tangential in die Steckerleiste (4) einschiebbar ist.
  14. Brandmelder nach den Ansprüchen 4 und 15, dadurch gekennzeichnet, dass die Kontaktleiste (5) auf der Trägerplatte (6) in Insert-Technik integriert ist.
EP02013657A 2002-06-20 2002-06-20 Brandmelder Expired - Lifetime EP1376505B1 (de)

Priority Applications (17)

Application Number Priority Date Filing Date Title
PT02013657T PT1376505E (pt) 2002-06-20 2002-06-20 Alarme de incendio
AT02013657T ATE318000T1 (de) 2002-06-20 2002-06-20 Brandmelder
ES02013657T ES2260357T3 (es) 2002-06-20 2002-06-20 Detector de incendios.
DE50205813T DE50205813D1 (de) 2002-06-20 2002-06-20 Brandmelder
EP02013657A EP1376505B1 (de) 2002-06-20 2002-06-20 Brandmelder
DK02013657T DK1376505T3 (da) 2002-06-20 2002-06-20 Branddetektor
AU2003233745A AU2003233745B2 (en) 2002-06-20 2003-06-13 Fire detector
CA2489933A CA2489933C (en) 2002-06-20 2003-06-13 Fire detector
KR1020047020789A KR101019839B1 (ko) 2002-06-20 2003-06-13 화재 탐지기
US10/518,609 US7463159B2 (en) 2002-06-20 2003-06-13 Fire detector
PCT/CH2003/000381 WO2004001694A1 (de) 2002-06-20 2003-06-13 Brandmelder
CNB03819824XA CN100449573C (zh) 2002-06-20 2003-06-13 火警报警器
HU0501096A HU226178B1 (en) 2002-06-20 2003-06-13 Fire detector
JP2004514497A JP2005530257A (ja) 2002-06-20 2003-06-13 火災警報器
PL03373368A PL373368A1 (en) 2002-06-20 2003-06-13 Fire detector
NO20050310A NO331469B1 (no) 2002-06-20 2005-01-20 Brannvarsler
HK06103665.2A HK1083662A1 (en) 2002-06-20 2006-03-23 Fire detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP02013657A EP1376505B1 (de) 2002-06-20 2002-06-20 Brandmelder

Publications (2)

Publication Number Publication Date
EP1376505A1 EP1376505A1 (de) 2004-01-02
EP1376505B1 true EP1376505B1 (de) 2006-02-15

Family

ID=29716802

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02013657A Expired - Lifetime EP1376505B1 (de) 2002-06-20 2002-06-20 Brandmelder

Country Status (17)

Country Link
US (1) US7463159B2 (de)
EP (1) EP1376505B1 (de)
JP (1) JP2005530257A (de)
KR (1) KR101019839B1 (de)
CN (1) CN100449573C (de)
AT (1) ATE318000T1 (de)
AU (1) AU2003233745B2 (de)
CA (1) CA2489933C (de)
DE (1) DE50205813D1 (de)
DK (1) DK1376505T3 (de)
ES (1) ES2260357T3 (de)
HK (1) HK1083662A1 (de)
HU (1) HU226178B1 (de)
NO (1) NO331469B1 (de)
PL (1) PL373368A1 (de)
PT (1) PT1376505E (de)
WO (1) WO2004001694A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008026701A1 (de) * 2008-06-04 2009-12-10 Rheinmagnet Horst Baermann Gmbh Organisationsmagnet

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004002592A1 (de) * 2004-01-16 2005-08-18 Robert Bosch Gmbh Brandmelder
DE102005010454A1 (de) 2005-03-08 2006-09-21 Robert Bosch Gmbh Gassensor
EP1732049A1 (de) 2005-06-10 2006-12-13 Siemens S.A.S. Brand- oder Rauchmelder mit erhöhter Fehlalarmunterdrükungsleistung
JP4729425B2 (ja) * 2006-03-31 2011-07-20 能美防災株式会社 煙感知器
WO2008002106A1 (en) * 2006-06-29 2008-01-03 Jeong-Hun Shin Fire detector having a lifting function
DE102007013295A1 (de) 2007-03-16 2008-09-18 Aoa Apparatebau Gauting Gmbh Rauchmelder
CN102436712B (zh) * 2008-03-31 2014-10-15 能美防灾株式会社 热烟复合型火灾探测器
AU2009301879B2 (en) * 2008-10-09 2014-10-09 Hochiki Corporation Smoke detector
DE102008053909A1 (de) * 2008-10-30 2010-05-27 Novar Gmbh Gasdetektor
EP2251846B1 (de) * 2009-05-13 2017-04-05 Minimax GmbH & Co KG Flammenmelder
US20110210854A1 (en) * 2009-12-31 2011-09-01 Chris Kelly Building safety detector assembly
GB201006683D0 (en) * 2010-04-21 2010-06-09 Fireangel Ltd Smoke alarm
JP5484219B2 (ja) * 2010-06-30 2014-05-07 ニッタン株式会社 熱煙複合式感知器
DE102011055592A1 (de) * 2011-11-22 2013-05-23 Pfannenberg Gmbh Signalgerät zur Aussendung eines akustischen und/oder visuellen Signals
RU2509369C1 (ru) * 2012-07-05 2014-03-10 Закрытое акционерное общество "Инженерно-техническая компания ИРСЭТ-Центр" Оптический датчик дыма
US9007222B2 (en) * 2012-09-21 2015-04-14 Google Inc. Detector unit and sensing chamber therefor
ES2451915R1 (es) 2012-09-27 2014-06-02 Utc Fire & Security Americas Corporation, Inc. Sistema modular de detección de humo y procedimiento para montar un sistema de detección de humo
EP2720209B2 (de) * 2012-10-09 2020-11-04 Siemens Schweiz AG Gefahrenmelder mit einem digitalen Temperatursensor
US20150021054A1 (en) * 2013-07-19 2015-01-22 Ian Edward McNamara Automatic fire targeting and extinguishing system and method
USD758230S1 (en) * 2013-09-05 2016-06-07 Cavius Aps Smoke alarm
USD769756S1 (en) * 2014-01-30 2016-10-25 Cavius Aps Heat detector
US9679468B2 (en) 2014-04-21 2017-06-13 Tyco Fire & Security Gmbh Device and apparatus for self-testing smoke detector baffle system
US9659485B2 (en) 2014-04-23 2017-05-23 Tyco Fire & Security Gmbh Self-testing smoke detector with integrated smoke source
US9799175B2 (en) 2014-05-06 2017-10-24 White Stagg, Llc Signal device with indirect lighting signal
DE102015004458B4 (de) 2014-06-26 2016-05-12 Elmos Semiconductor Aktiengesellschaft Vorrichtung und Verfahren für einen klassifizierenden, rauchkammerlosen Luftzustandssensor zur Prognostizierung eines folgenden Betriebszustands
CN204390398U (zh) * 2014-10-14 2015-06-10 宁波尚泰电子有限公司 烟雾报警器
CN104408863A (zh) * 2014-11-05 2015-03-11 中国科学技术大学先进技术研究院 一种双光路火灾烟雾探测烟室
GB201421557D0 (en) * 2014-12-04 2015-01-21 Sleep Safe Systems Ltd Fire mist apparatus and system and method of use thereof
DE102014019172B4 (de) 2014-12-17 2023-12-07 Elmos Semiconductor Se Vorrichtung und Verfahren zur Unterscheidung von festen Objekten, Kochdunst und Rauch mit einem kompensierenden optischen Messsystem
DE102014019773B4 (de) 2014-12-17 2023-12-07 Elmos Semiconductor Se Vorrichtung und Verfahren zur Unterscheidung von festen Objekten, Kochdunst und Rauch mittels des Displays eines Mobiltelefons
EP3128493A1 (de) * 2015-08-06 2017-02-08 Siemens Schweiz AG Streulichtrauchmelder mit einer im meldergehäuse aufgenommenen optischen messkammer und mit einer spiegelfläche an einer innenseite einer melderhaube als teil des meldergehäuses
JP6681913B2 (ja) * 2015-10-26 2020-04-15 ホーチキ株式会社 警報装置
ES2637785B1 (es) * 2016-03-16 2018-07-24 Pyro Fire Extinction, S.L. Cápsula para la protección contra incendios y procedimiento de creación de una franja de seguridad
US10571312B2 (en) 2017-06-29 2020-02-25 Databuoy Corporation Adjustable mounting system
RU177379U1 (ru) * 2017-09-12 2018-02-19 Общество с ограниченной ответственностью "Группа компаний "РУБЕЖ" Извещатель пожарный дымовой
CN107393249A (zh) * 2017-09-21 2017-11-24 郑金秀 一种智能家居火灾预警***
US10739323B2 (en) * 2017-10-17 2020-08-11 Pierre Desjardins Interconnecting detector
CN108320432B (zh) * 2018-04-13 2024-03-22 北京紫光新锐科技发展有限公司 烟感报警装置
JP7117619B2 (ja) * 2018-05-31 2022-08-15 パナソニックIpマネジメント株式会社 熱感知器
US11430313B2 (en) * 2018-05-31 2022-08-30 Autronica Fire & Security As Printed circuit board for smoke detector
CN108765852A (zh) * 2018-06-15 2018-11-06 芜湖中淇节能科技有限公司 一种安全监控用烟雾感应器盒装置
CN108765859A (zh) * 2018-06-19 2018-11-06 郑州坤博科技有限公司 一种感烟感温火灾探测器
CN109272701B (zh) * 2018-10-27 2024-04-16 上海国际机场股份有限公司 一种带有监控的火灾探测器
CN109544848A (zh) * 2018-12-08 2019-03-29 湖南明盛高新科技有限公司 一种便于维护的物联网电气火灾预警装置
US20210349067A1 (en) * 2019-10-17 2021-11-11 Design West Technologies, Inc. CBRNE Sensors And System For Monitoring And Deploying Same
CN113034838B (zh) * 2021-03-31 2023-07-21 郑州轻工业大学 结合太赫兹波检测的火灾感烟探测器
CN114241709B (zh) * 2021-12-14 2023-08-04 深圳市海曼科技股份有限公司 一种隐藏式烟雾检测结构
RU210807U1 (ru) * 2021-12-24 2022-05-05 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Датчик дымовой оптико-электронный
US20230252871A1 (en) * 2022-02-07 2023-08-10 Pixart Imaging Inc. Smoke detection device with preferred detection accuracy
KR102489359B1 (ko) * 2022-05-24 2023-01-17 (주)빅트론 센서 확장형 복합 화재 감지기를 이용한 배터리 보관 랙 내부 상태 모니터링 시스템

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123983A (en) * 1977-04-05 1978-10-28 Matsushita Electric Works Ltd Photoelectric type smoke detector
JPS59501879A (ja) 1982-10-11 1984-11-08 ツエルベルス・アクチエンゲゼルシヤフト 散乱光式煙検出器
JPS6099954A (ja) 1983-11-04 1985-06-03 Daido Steel Co Ltd 給湯器
JPS6099954U (ja) 1983-12-15 1985-07-08 沖電気防災株式会社 防災感知器
JP2539937B2 (ja) * 1990-02-28 1996-10-02 ホーチキ株式会社 散乱光式煙感知器
EP0569712B1 (de) * 1992-04-25 1998-03-04 Nohmi Bosai Ltd. Feuermelder
JP2684937B2 (ja) 1992-09-07 1997-12-03 マックス株式会社 結束方法および結束具
CH685410A5 (de) 1993-02-15 1995-06-30 Cerberus Ag Vorrichtung zur Funktionsprüfung von Rauchmeldern.
US5497144A (en) 1993-07-07 1996-03-05 Cerberus Ag Testing and adjustment of scattered-light smoke detectors
US5546074A (en) * 1993-08-19 1996-08-13 Sentrol, Inc. Smoke detector system with self-diagnostic capabilities and replaceable smoke intake canopy
US5450066A (en) 1993-09-07 1995-09-12 Simplex Time Recorder Company Fire alarm heat detector
JP3366098B2 (ja) 1994-02-25 2003-01-14 積水化学工業株式会社 多機能センサ
DE9416314U1 (de) * 1994-10-10 1994-12-01 Fritz Fuss Gmbh & Co, 72458 Albstadt Rauchmelder
JP2787001B2 (ja) * 1994-12-12 1998-08-13 ホーチキ株式会社 光電式煙感知器
US5751218A (en) * 1996-07-19 1998-05-12 Simplex Time Recorder Company Smoke detector housing for improved smoke collection
ES2183899T3 (es) 1996-07-22 2003-04-01 Siemens Building Tech Ag .etector de humos
EP0821333A1 (de) * 1996-07-22 1998-01-28 Cerberus Ag Rauchmelder
US5926098A (en) * 1996-10-24 1999-07-20 Pittway Corporation Aspirated detector
DE19733375B4 (de) * 1997-08-01 2005-07-28 Hekatron Gmbh Vorrichtung zur Branderkennung
EP0926646B8 (de) 1997-12-24 2004-09-22 Siemens Building Technologies AG Optischer Rauchmelder
JP2001014570A (ja) 1999-04-28 2001-01-19 Nittan Co Ltd 火災感知器
EP1087352A1 (de) 1999-09-22 2001-03-28 Siemens Building Technologies AG Optischer Rauchmelder
JP3672777B2 (ja) 1999-11-01 2005-07-20 ホーチキ株式会社 煙感知器及び防虫網
PT1103937E (pt) 1999-11-19 2005-09-30 Siemens Building Tech Ag Detector de incendios
CA2293830C (en) * 1999-12-31 2008-07-29 Digital Security Controls Ltd. Photoelectric smoke detector and chamber therefor
JP3779853B2 (ja) * 2000-01-26 2006-05-31 松下電工株式会社 感知器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008026701A1 (de) * 2008-06-04 2009-12-10 Rheinmagnet Horst Baermann Gmbh Organisationsmagnet

Also Published As

Publication number Publication date
AU2003233745B2 (en) 2008-03-13
EP1376505A1 (de) 2004-01-02
NO20050310D0 (no) 2005-01-20
JP2005530257A (ja) 2005-10-06
CA2489933C (en) 2012-05-29
ES2260357T3 (es) 2006-11-01
WO2004001694A1 (de) 2003-12-31
US7463159B2 (en) 2008-12-09
PT1376505E (pt) 2006-06-30
HUP0501096A2 (en) 2006-03-28
HU226178B1 (en) 2008-06-30
US20060007009A1 (en) 2006-01-12
AU2003233745A1 (en) 2004-01-06
PL373368A1 (en) 2005-08-22
DE50205813D1 (de) 2006-04-20
NO20050310L (no) 2005-01-20
CN100449573C (zh) 2009-01-07
KR20050006292A (ko) 2005-01-15
KR101019839B1 (ko) 2011-03-04
HK1083662A1 (en) 2006-07-07
DK1376505T3 (da) 2006-06-19
CA2489933A1 (en) 2003-12-31
NO331469B1 (no) 2012-01-09
ATE318000T1 (de) 2006-03-15
CN1675659A (zh) 2005-09-28

Similar Documents

Publication Publication Date Title
EP1376505B1 (de) Brandmelder
EP1376504B1 (de) Streulichtrauchmelder
DE60201208T2 (de) Brandmeldereinheit
DE4328671B4 (de) Streulichtrauchmelder
DE102005018559B4 (de) Rauchdetektor
EP2407949B1 (de) Ringförmige Hilfslichtquelle
EP3270362B1 (de) Brandmelder mit einer messkammer und mit einem schaltungsträger zur gemeinsamen anordnung eines brandsensors der messkammer sowie zumindest eines weiteren sensors zur erfassung einer messgrösse in der umgebung ausserhalb des brandmelders
DE102005010657B4 (de) Objekterfassungsvorrichtung
DE10246056A1 (de) Rauchmelder
EP1061489B1 (de) Intrusionsmelder mit einer Einrichtung zur Sabotageüberwachung
DE4431889B4 (de) Lichtstreuungstyp-Rauchsensor
EP0717385B1 (de) Streulichtrauchsensor
EP0821330B1 (de) Rauchmelder
DE102005010905A1 (de) Objekterfassungsvorrichtung für ein Fahrzeug
DE202019005865U1 (de) Brand- oder Rauchmelder
EP2093731A1 (de) Linearer optischer Rauchmelder mit mehreren Teilstrahlen
DE60100756T2 (de) Feuermelder
DE60001338T2 (de) Brandmelder
DE19517517B4 (de) Passiv Infrarot Eindringdetektor
EP1574880B1 (de) Sendeelement für Lichtschranken, Lichtgitter und dergleichen
EP2342701B1 (de) Lichtempfangseinrichtung mit einer sich auf eine substratrückseite erstreckenden abschirmvorrichtung
WO1992010819A1 (de) Passiv-infrarot-bewegungsmelder
EP0821331B1 (de) Rauchmelder
DE102022116321B3 (de) Rauchmelder
EP0133990B1 (de) Nach dem Extinktionsprinzip arbeitende Rauchmelder-Anordnung und Brandmeldeanlage mit derartiger Rauchmelderanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040621

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040923

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS SCHWEIZ AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060215

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50205813

Country of ref document: DE

Date of ref document: 20060420

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060504

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Effective date: 20060508

Ref country code: GR

Ref legal event code: EP

Ref document number: 20060401561

Country of ref document: GR

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2260357

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20080618

Year of fee payment: 7

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Effective date: 20080829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CY

Payment date: 20080522

Year of fee payment: 7

Ref country code: MC

Payment date: 20080612

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS AKTIENGESELLSCHAFT

Free format text: SIEMENS SCHWEIZ AG#ALBISRIEDERSTRASSE 245#8047 ZUERICH (CH) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090514 AND 20090520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090620

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20110318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20120619

Year of fee payment: 11

Ref country code: FI

Payment date: 20120613

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120710

Year of fee payment: 11

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20130630

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20060401561

Country of ref document: GR

Effective date: 20140103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150220 AND 20150225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50205813

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

Effective date: 20150407

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 318000

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20150330

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20151009

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20160202

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS SCHWEIZ AG

Effective date: 20160414

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20200624

Year of fee payment: 19

Ref country code: DK

Payment date: 20200622

Year of fee payment: 19

Ref country code: TR

Payment date: 20200619

Year of fee payment: 19

Ref country code: PT

Payment date: 20200518

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200507

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200708

Year of fee payment: 19

Ref country code: ES

Payment date: 20200909

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210621

Year of fee payment: 20

Ref country code: NL

Payment date: 20210602

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210608

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210906

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210819

Year of fee payment: 20

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211220

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 318000

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210620

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210620

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210620

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50205813

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20220619

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220630

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210621