EP1369498B1 - Method and apparatus for high-speed flame spraying - Google Patents

Method and apparatus for high-speed flame spraying Download PDF

Info

Publication number
EP1369498B1
EP1369498B1 EP03011231A EP03011231A EP1369498B1 EP 1369498 B1 EP1369498 B1 EP 1369498B1 EP 03011231 A EP03011231 A EP 03011231A EP 03011231 A EP03011231 A EP 03011231A EP 1369498 B1 EP1369498 B1 EP 1369498B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
powder tube
nozzle body
spraying device
laval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03011231A
Other languages
German (de)
French (fr)
Other versions
EP1369498A1 (en
Inventor
Peter Heinrich
Heinrich Dr. Kreye
Thorsten Stoltenhoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1369498A1 publication Critical patent/EP1369498A1/en
Application granted granted Critical
Publication of EP1369498B1 publication Critical patent/EP1369498B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • B05B7/201Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
    • B05B7/205Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed being originally a particulate material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Definitions

  • the invention relates to a method and an apparatus for producing a coating or a molded part by means of high-speed flame spraying, in which the pulverulent spray particles are injected into a flame jet of combustion gases by means of a powder tube and the spray articles at a relaxation of the flame jet in a Laval nozzle at speeds of up be brought to 800 m / sec.
  • US 55 20 334 shows a device according to the preamble of the independent claims.
  • high-pressure combustion In high-velocity flame spraying, high-pressure combustion generates a jet of flame in excess of 2000 m / s and injects the powder into this jet.
  • a fuel gas or kerosene and oxygen is passed into the high-pressure combustion chamber of the spray gun.
  • the fuel gases used are propane, propylene, hydrogen, ethene and acetylene.
  • the combustion takes place at a pressure of 0.3 to 0.5 MPa or 0.5 to 1.5 MPa.
  • Spray guns operating in the lower of said pressure ranges are attributed to the first and second generations, while the spray guns are attributed to the high pressure range of the third generation.
  • the flame jet reaches its high speed through expansion.
  • Laval nozzle In the first and second generation, the expansion takes place at the outlet of the spray gun.
  • the spray particles reach speeds in the range of about 400 to 500 m / s.
  • the expansion nozzle is located directly behind the High-pressure combustion chamber. Particle velocities ranging from 600 to 800 m / s are achieved.
  • Laval nozzles consist of a convergent and a downstream divergent section. The contour of the nozzle must be shaped in the divergent area in a certain way, so that it does not come to flow separation and no compression shocks occur and the flow of the laws according to de Laval obeyed.
  • Laval nozzles are characterized by this contour and the length of the divergent section and furthermore by the ratio of the outlet cross section to the narrowest cross section. The narrowest cross-section of the Laval nozzle is called nozzle throat.
  • the injection of the spray particles into the flame jet is solved differently.
  • the powder is injected axially and centrally into the high-pressure combustion chamber.
  • the injection is also either axial and centric, or else the powder is injected radially into the already expanding flame jet behind the nozzle throat. If the powder is already injected in the high-pressure combustion chamber, the spray products reach significantly higher temperatures than when injected behind the nozzle throat.
  • the spray guns with powder feed into the combustion chamber are therefore only suitable for heat resistant materials, such as ceramics, while spray guns with radial spray particle delivery at the gun exit can also be used to spray low melting temperature materials such as aluminum and copper alloys.
  • the radial injection of the spray particles causes an uneven acceleration of the same size spray particles and thus different end velocities of these spray particles.
  • different speeds of the spray particles when hitting the workpiece lead to irregularities and faulty locations in the coating.
  • the nozzle walls erode at the location that is on the opposite side of the spray particle inlet. This increases the wear of the already heavily loaded expansion nozzle and thus worsens the economics of the process.
  • the present invention is therefore an object of the invention to provide a method and apparatus for high-speed flame spraying, which is the injection of the spray particles only outside the hot combustion chamber and avoiding the mentioned disadvantages of non-uniform acceleration and the Düsenwanderosion performs.
  • This object is achieved in that the injection of the spray particles takes place in the divergent section of the Laval nozzle.
  • the axial and centric injection of the spray particles ensures a uniform acceleration of the spray particles. Since the spray particles are injected in the center of the flame jet, all particles experience almost the same acceleration forces and thus reach almost the same final velocity. Consequently, the coatings and moldings produced by the method according to the invention are of very high quality.
  • erosion of the inner nozzle wall is avoided by the axial and centric spray particle injection, since the spray particles are injected in the direction of the flame jet and are guided by this straight ahead in the injection direction. Furthermore, turbulence and turbulence are minimized by this injection, and thus results in an optimal acceleration of the spray particles.
  • the passage for the flame jet at the narrowest point has an annular cross-section. This is limited inwardly by the outer contour of the powder tube and outwardly bounded by the inner contour of the nozzle tube. In this passage, the flame jet is accelerated. Due to the size of the passage of the consumption of combustion gases and thus fuel and oxygen is also given. Since the annular cross-section can be chosen small without problems, the method proposed here is economically applicable.
  • the high-speed flame spraying device is characterized in that the powder tube inside the outer nozzle body ends axially and centrally in the divergent section.
  • the inventive arrangement of the powder tube minimizes the erosion of the outer nozzle body, since the flow direction of the flame jet is taken into account in the arrangement of the flame jet and the spray particles have no velocity component in the direction of the outer nozzle wall during the injection.
  • the high-speed flame spraying device also dictates the conditions for optimum acceleration of the spray particles through the centric arrangement of the powder tube. Even disturbing turbulence and turbulence largely prevents the arrangement according to the invention.
  • the powder tube ends only in the divergent portion of the outer nozzle body it is possible to use with the high-speed flame spraying device also easily fusible spray particles, which can not stand the great heat in the combustion chamber. Also for heat-resistant spray particles, it is advantageous if they do not overheat or melt too much.
  • the inner shape of an outer nozzle body together with the outer shape of a coaxially arranged in the outer nozzle body, oriented in the direction of injection powder tube yield a Laval nozzle.
  • a Laval nozzle is easy to manufacture, since the inner contour of the outer nozzle body and / or the outside of the powder tube is to be finished by the construction according to the invention.
  • the inside powder tube has on its outside a contour designed in such a way that, together with a smooth, cylindrical inner contour of the outer nozzle body results in a Laval nozzle.
  • a Laval nozzle results from an inside powder tube with a smooth cylindrical outer side and outer nozzle body, which is shaped accordingly on its inside.
  • the Laval nozzle is formed in another way in that the necessary contour for the Laval nozzle is partially applied to the outside of the powder tube and partly on the inside of the outer nozzle body.
  • the opening ratio of the Laval nozzle i. the ratio of the cross-sectional area for the gas passage at the narrowest point to the cross-section at the outlet of the nozzle, in an advantageous embodiment between 1: 2 and 1:25, preferably between 1: 5 and 1:11.
  • the outer nozzle body in the convergent region has an annular cross section, which merges into a rectangular cross section in the divergent region of the nozzle.
  • both the powder tube and the outer nozzle body each consist of a metallic material, a ceramic or a composite material with metallic or ceramic components.
  • Powder tube and nozzle body consist in an advantageous embodiment of different materials.
  • different metal alloys, different ceramics, plastics or a combination of different materials e.g. Metal / ceramic, metal / plastic, ceramic / plastic.
  • the outer nozzle body is made of metal, while the inner powder tube is made of ceramic.
  • Powder tube and / or outer nozzle body are in an advantageous variant of - viewed in the flow direction - two or more parts joined, in which the first part comprises the area around the nozzle neck and a second reaching to the nozzle exit part connects thereto.
  • the second part is easy to replace and is selected in terms of its shape and choice of materials according to the requirements of the different spray materials.
  • the two aforementioned parts advantageously consist of different materials.
  • FIG. 1 shows the principle of the expansion nozzle. This principle is used, for example, in the JP-5000 system, which belongs to the third generation of high-speed flame-spraying devices.
  • the high-pressure combustion chamber 3 adjoins the feed tube 4, followed by the Laval nozzle 5 with the nozzle constriction and the end piece 6, into which the powder tubes 2 lead.
  • Kerosene and oxygen pass through the supply pipe 4 into the high-pressure combustion chamber 3, where the two substances react with one another.
  • the combustion gases form a flame jet which is accelerated to supersonic speed by expansion in the Laval nozzle 5.
  • the powder is injected with two powder tubes radially into the flame jet.
  • the high-speed flame spraying device shown schematically in Figure 2 comprises a Laval nozzle 5 with an outer nozzle body 1, a powder tube 2, a high-pressure combustion chamber 3 and two supply pipes 4. Through the supply pipes 4 enter fuel gas and oxygen in the high-pressure combustion chamber 3, where the chemical reaction takes place. Kerosene can be used instead of the fuel gas.
  • the powder gases 2 expand in the adjoining the high-pressure combustion chamber Laval nozzle 5.
  • the powder tube 2 terminates only in the convergent section of the Laval nozzle 5.
  • the outer surface of the powder tube 2 and the inner surface of the outer nozzle body 1 according to the invention designed such that the expansion nozzle 5 the Laws after de 'Laval obeys.
  • FIG. 3 shows three particularly advantageous embodiments of a high-speed flame spraying device according to the invention with outer nozzle body 1 and powder tube 2, with particular reference being made to the design of the powder tube 2 and the outer nozzle body 1.
  • the powder tube 2 is surrounded by the outer nozzle body 1 in each case.
  • the combination of the inner contour of the outer nozzle body and the outer shape of the powder tube result a Laval nozzle.
  • Fig. 3a results in a smooth, cylindrical inner shape of the outer nozzle body together with an outwardly curved outer contour of the powder tube, the Laval nozzle.
  • the powder tube is cylindrically shaped and the outer nozzle body swung in its inside. Nozzle body and powder tube are so curved in Fig. 3c, so that the necessary for the Laval nozzle contour results from the combination of the shapes of the outside of the powder tube and the inside of the outer nozzle body.

Abstract

For high speed flame spraying, the spray particles are accelerated in a flame spray of combustion gases. The powder tube (2) and the outer jet body (1) together form a Laval jet (5) to accelerate the flame spray to a speed up to 800 m/second, where the injection of the spray particles is axial and centrally in diverging sections of the jet structure. The Laval jet has a high pressure combustion chamber (3), with feed tubes (4) for the delivery of oxygen and a combustion gas e.g. propane, propylene, hydrogen, ethene and acetylene, or a kerosene.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung einer Beschichtung oder eines Formteils mittels Hochgeschwindigkeits-Flammspritzen, bei dem die pulverförmigen Spritzpartikel in einen Flammstrahl aus Verbrennungsgasen mittels eines Pulverrohrs injiziert werden und die Spritzartikel bei einer Entspannung des Flammstrahls in einer Lavaldüse auf Geschwindigkeiten von bis zu 800 m/sec gebracht werden. US 55 20 334 zeigt eine Vorrichtung gemäß dem Oberbegriffs der unabhängigen Ansprüche.The invention relates to a method and an apparatus for producing a coating or a molded part by means of high-speed flame spraying, in which the pulverulent spray particles are injected into a flame jet of combustion gases by means of a powder tube and the spray articles at a relaxation of the flame jet in a Laval nozzle at speeds of up be brought to 800 m / sec. US 55 20 334 shows a device according to the preamble of the independent claims.

Es ist bekannt, auf Werkstoffe unterschiedlichster Art Beschichtungen mittels thermischer Spritzens aufzubringen. Bekannte Verfahren hierfür sind beispielsweise Flammspritzen, Lichtbogenspritzen, Plasmaspritzen oder Hochgeschwindigkeits-Flammspritzen. Das Hochgeschwindigkeits-Flammspritzen hat in den letzten beiden Jahrzehnten zunehmend an Bedeutung gewonnen. Der besondere Vorteil des Hochgeschwindigkeits-Flammspritzen besteht darin, dass der Schichtwerkstoff weniger stark erwärmt wird und mit deutlich höherer Geschwindigkeit auf die zu beschichtenden Teile aufgeschleudert wird als beim Flammspritzen, Lichtbogenspritzen oder Plasmaspritzen. Das bringt für viele Schichtwerkstoffe und Anwendungen Vorteile in bezug auf die Eigenschaften der Schichten.It is known to apply to materials of various kinds coatings by thermal spraying. Known methods for this are, for example, flame spraying, arc spraying, plasma spraying or high-speed flame spraying. High-speed flame spraying has become increasingly important over the past two decades. The particular advantage of high-speed flame spraying is that the coating material is heated less strongly and is spun on the parts to be coated at a much higher speed than in the case of flame spraying, arc spraying or plasma spraying. This provides advantages in terms of the properties of the layers for many coating materials and applications.

Beim Hochgeschwindigkeits-Flammspritzen wird durch eine Verbrennung unter hohem Druck ein über 2000 m/s schneller Flammstrahl erzeugt und das Pulver in diesen Strahl injiziert. Zur Erzeugung des Flammstrahls wird ein Brenngas oder Kerosin sowie Sauerstoff in die Hochdruckbrennkammer der Spritzpistole geleitet. Als Brenngase dienen Propan, Propylen, Wasserstoff, Ethen und Acetylen. In der Hochdruckbrennkammer findet die Verbrennung bei einem Druck von 0,3 bis 0,5 MPa bzw. 0,5 bis 1,5 MPa statt. Spritzpistolen, die in dem niedrigeren der genannten Druckbereiche arbeiten, werden der ersten und zweiten Generation zugerechnet, während die Spritzpistolen im hohen Druckbereich der dritten Generation zugerechnet werden. Der Flammstrahl erreicht seine hohe Geschwindigkeit durch Expansion. Bei der ersten und zweiten Generation erfolgt die Expansion am Ausgang der Spritzpistole. Die Spritzpartikel erreichen dabei Geschwindigkeiten im Bereich von etwa 400 bis 500 m/s. Bei Spritzpistolen der dritten Generation befindet sich die Expansionsdüse direkt hinter der Hochdruckbrennkammer. Es werden Partikelgeschwindigkeiten erreicht, die im Bereich von 600 bis 800 m/s liegen. Zur Expansion der Verbrennungsgase wird eine de Laval'sche Düse benutzt, im folgenden kurz Lavaldüse genannt. Lavaldüsen bestehen aus einem konvergenten und einem sich in Stromrichtung daran anschließenden divergenten Abschnitt. Die Kontur der Düse muss im divergenten Bereich in bestimmter Weise geformt sein, damit es nicht zu Strömungsablösungen kommt und keine Verdichtungsstöße auftreten und die Strömung den Gesetzen nach de Laval gehorcht. Charakterisiert sind Lavaldüsen durch diese Kontur und die Länge des divergenten Abschnitts und des Weiteren durch das Verhältnis des Austrittquerschnitts zum engsten Querschnitt. Der engste Querschnitt der Lavaldüse heißt Düsenhals.In high-velocity flame spraying, high-pressure combustion generates a jet of flame in excess of 2000 m / s and injects the powder into this jet. To generate the flame jet, a fuel gas or kerosene and oxygen is passed into the high-pressure combustion chamber of the spray gun. The fuel gases used are propane, propylene, hydrogen, ethene and acetylene. In the high-pressure combustion chamber, the combustion takes place at a pressure of 0.3 to 0.5 MPa or 0.5 to 1.5 MPa. Spray guns operating in the lower of said pressure ranges are attributed to the first and second generations, while the spray guns are attributed to the high pressure range of the third generation. The flame jet reaches its high speed through expansion. In the first and second generation, the expansion takes place at the outlet of the spray gun. The spray particles reach speeds in the range of about 400 to 500 m / s. For third-generation spray guns, the expansion nozzle is located directly behind the High-pressure combustion chamber. Particle velocities ranging from 600 to 800 m / s are achieved. To expand the combustion gases de Laval'sche nozzle is used, hereinafter referred to as Laval nozzle. Laval nozzles consist of a convergent and a downstream divergent section. The contour of the nozzle must be shaped in the divergent area in a certain way, so that it does not come to flow separation and no compression shocks occur and the flow of the laws according to de Laval obeyed. Laval nozzles are characterized by this contour and the length of the divergent section and furthermore by the ratio of the outlet cross section to the narrowest cross section. The narrowest cross-section of the Laval nozzle is called nozzle throat.

Die Injektion der Spritzpartikel in den Flammstrahl ist unterschiedlich gelöst. Bei den Spritzpistolen der ersten und zweiten Generation wird das Pulver axial und zentrisch in die Hochdruckbrennkammer injiziert. Bei den Spritzpistolen der dritten Generation erfolgt die Injektion entweder ebenfalls axial und zentrisch oder aber das Pulver wird erst hinter dem Düsenhals, radial in den bereits expandierenden Flammenstrahl injiziert. Wird das Pulver bereits in der Hochdruckbrennkammer injiziert, erreichen die Spritzartikel deutlich höhere Temperaturen als bei einer Injektion hinter dem Düsenhals. Die Spritzpistolen mit Pulverzufuhr in die Brennkammer sind folglich nur für Hitze beständige Werkstoffe, wie beispielsweise Keramiken, geeignet, während Spritzpistolen mit radialer Spritzpartikelzufuhr am Pistolenausgang auch zum Spritzen von Werkstoffen mit niedriger Schmelztemperatur, wie beispielsweise Aluminium - und Kupferlegierungen, verwendet werden können. Die radiale Injektion der Spritzpartikel bewirkt jedoch eine ungleichmäßige Beschleunigung gleich großer Spritzpartikel und damit unterschiedliche Endgeschwindigkeiten dieser Spritzpartikel. Verschiedene Geschwindigkeiten der Spritzpartikel beim Auftreffen auf das Werkstück führen jedoch zu Unregelmäßigkeiten und fehlerhaften Stellen in der Beschichtung. Des Weiteren erodiert bei der radialen Injektion der Spritzpartikel die Düsenwänd an der Stelle, die auf der gegenüberliegenden Seite des Spritzpartikeleinlasses liegt. Dies erhöht den Verschleiß der ohnehin stark belasteten Expansionsdüse und verschlechtert folglich die Wirtschaftlichkeit des Verfahrens.The injection of the spray particles into the flame jet is solved differently. In the spray guns of the first and second generation, the powder is injected axially and centrally into the high-pressure combustion chamber. In the case of the third generation spray guns, the injection is also either axial and centric, or else the powder is injected radially into the already expanding flame jet behind the nozzle throat. If the powder is already injected in the high-pressure combustion chamber, the spray products reach significantly higher temperatures than when injected behind the nozzle throat. The spray guns with powder feed into the combustion chamber are therefore only suitable for heat resistant materials, such as ceramics, while spray guns with radial spray particle delivery at the gun exit can also be used to spray low melting temperature materials such as aluminum and copper alloys. However, the radial injection of the spray particles causes an uneven acceleration of the same size spray particles and thus different end velocities of these spray particles. However, different speeds of the spray particles when hitting the workpiece lead to irregularities and faulty locations in the coating. Further, upon radial injection of the spray particles, the nozzle walls erode at the location that is on the opposite side of the spray particle inlet. This increases the wear of the already heavily loaded expansion nozzle and thus worsens the economics of the process.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zum Hochgeschwindigkeits-Flammspritzen anzugeben, welche die Injektion der Spritzpartikel erst ausserhalb der heißen Brennkammer und unter Vermeidung der erwähnten Nachteile der ungleichmäßigen Beschleunigung und der Düsenwanderosion durchführt.The present invention is therefore an object of the invention to provide a method and apparatus for high-speed flame spraying, which is the injection of the spray particles only outside the hot combustion chamber and avoiding the mentioned disadvantages of non-uniform acceleration and the Düsenwanderosion performs.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Injektion der Spritzpartikel im divergenten Abschnitt der Lavaldüse erfolgt. Die axial und zentrische Injektion der Spritzpartikel gewährleistet eine gleichmäßige Beschleunigung der Spritzpartikel. Da die Spritzpartikel im Zentrum des Flammstrahls injiziert werden, erfahren alle Partikel nahezu die gleichen Beschleunigungskräfte und erreichen folglich nahezu die gleiche Endgeschwindigkeit. Folglich sind die mit dem erfindungsgemäßen Verfahren hergestellten Beschichtungen und Formteile qualitativ äußerst hochwertig. Darüber hinaus wird durch die axial und zentrische Spritzpartikelinjektion eine Erosion der inneren Düsenwand vermieden, da die Spritzpartikel in Richtung des Flammstrahls injiziert werden und von diesem geradeaus in Spritzrichtung geführt werden. Des Weiteren werden durch diese Injektion Verwirbelungen und Turbulenzen minimiert, und damit ergibt sich eine optimale Beschleunigung der Spritzpartikel. Weitere Vorteile ergeben sich aufgrund des Injektionsorts: Durch die Injektion im divergenten Abschnitt der Lavaldüse werden ein Überhitzen und ein zu weitgehendes Aufschmelzen der Spritzpartikel vermieden. Das Pulver gelangt nicht in die Brennkammer und wird dem Flammenstrahl aus Verbrennungsgasen erst zugegeben, wenn dessen Temperatur aufgrund der Expansion in der Düse zurückgegangen ist. Die Injektion im divergenten Abschnitt der Lavaldüse erlaubt somit die Verwendung von Hitze unbeständigem Pulver. Aber auch bei Hitze beständigen Pulvermaterialien wird ein zu starkes Aufschmelzen der Partikel, welches sich nachteilig auf Qualität der Beschichtung auswirkt, unterbunden. Das erfindungsgemäße Verfahren weist folglich alle Vorteile der radialen und zentrischen Injektion auf sowie die Vorteile der Injektion im divergenten Abschnitt der Lavaldüse.This object is achieved in that the injection of the spray particles takes place in the divergent section of the Laval nozzle. The axial and centric injection of the spray particles ensures a uniform acceleration of the spray particles. Since the spray particles are injected in the center of the flame jet, all particles experience almost the same acceleration forces and thus reach almost the same final velocity. Consequently, the coatings and moldings produced by the method according to the invention are of very high quality. In addition, erosion of the inner nozzle wall is avoided by the axial and centric spray particle injection, since the spray particles are injected in the direction of the flame jet and are guided by this straight ahead in the injection direction. Furthermore, turbulence and turbulence are minimized by this injection, and thus results in an optimal acceleration of the spray particles. Further advantages arise due to the injection site: By injecting in the divergent section of the Laval nozzle overheating and excessive melting of the spray particles are avoided. The powder does not enter the combustion chamber and is added to the flame jet of combustion gases only when its temperature has dropped due to the expansion in the nozzle. The injection in the divergent section of the Laval nozzle thus allows the use of heat unstable powder. But even with heat-resistant powder materials, excessive melting of the particles, which adversely affects the quality of the coating, is prevented. The method according to the invention consequently has all the advantages of radial and centric injection as well as the advantages of injection in the divergent section of the Laval nozzle.

In einer vorteilhaften Variante der Erfindung hat der Durchlass für den Flammenstrahl an der engsten Stelle einen kreisringförmigen Querschnitt. Dieser wird nach innen begrenzt durch die äußere Kontur des Pulverrohrs und nach außen begrenzt durch die innere Kontur des Düsenrohrs. In diesem Durchlass wird der Flammenstrahl beschleunigt. Durch die Größe des Durchlasses ist ferner der Verbrauch an Verbrennungsgasen und damit an Brennstoff und Sauerstoff vorgegeben. Da der kreisringförmige Querschnitt ohne Probleme klein gewählt werden kann, ist das hier vorgeschlagene Verfahren wirtschaftlich anwendbar.In an advantageous variant of the invention, the passage for the flame jet at the narrowest point has an annular cross-section. This is limited inwardly by the outer contour of the powder tube and outwardly bounded by the inner contour of the nozzle tube. In this passage, the flame jet is accelerated. Due to the size of the passage of the consumption of combustion gases and thus fuel and oxygen is also given. Since the annular cross-section can be chosen small without problems, the method proposed here is economically applicable.

Die erfindungsgemäße Hochgeschwindigkeits-Flammspritz-Einrichtung ist dadurch gekennzeichnet, dass das Pulverrohr innerhalb des äußeren Düsenkörpers axial und zentrisch im divergenten Abschnitt endet. Die erfindungsgemäße Anordnung des Pulverrohrs minimiert die Erosion des äußeren Düsenkörpers, da die Strömungsrichtung des Flammstrahls bei der Anordnung des Flammstrahls berücksichtigt wird und die Spritzpartikel bei der Injektion keine Geschwindigkeitskomponente in Richtung der äußeren Düsenwand besitzen. Die Hochgeschwindigkeits-Flammspritz-Einrichtung gibt durch die zentrische Anordnung des Pulverrohrs ferner die Bedingungen für eine optimale Beschleunigung der Spritzpartikel vor. Auch störende Verwirbelungen und Turbulenzen unterbindet die erfindungsgemäße Anordnung weitgehend. Durch die Tatsache, dass das Pulverrohr erst im divergenten Abschnitt des äußeren Düsenkörpers endet, wird es möglich, mit der Hochgeschwindigkeits-Flammspritz-Einrichtung auch leicht schmelzbare Spritzpartikel zu verwenden, welche die große Hitze in der Brennkammer nicht vertragen. Auch für Hitze beständige Spritzpartikel ist es von Vorteil, wenn diese nicht überhitzen oder zu stark anschmelzen.The high-speed flame spraying device according to the invention is characterized in that the powder tube inside the outer nozzle body ends axially and centrally in the divergent section. The inventive arrangement of the powder tube minimizes the erosion of the outer nozzle body, since the flow direction of the flame jet is taken into account in the arrangement of the flame jet and the spray particles have no velocity component in the direction of the outer nozzle wall during the injection. The high-speed flame spraying device also dictates the conditions for optimum acceleration of the spray particles through the centric arrangement of the powder tube. Even disturbing turbulence and turbulence largely prevents the arrangement according to the invention. Due to the fact that the powder tube ends only in the divergent portion of the outer nozzle body, it is possible to use with the high-speed flame spraying device also easily fusible spray particles, which can not stand the great heat in the combustion chamber. Also for heat-resistant spray particles, it is advantageous if they do not overheat or melt too much.

In Weiterbildung der Erfindung ergeben die innere Form eines äußeren Düsenkörpers zusammen mit der äußeren Form eines koaxial in dem äußeren Düsenkörper angeordneten, in Spritzrichtung orientiertem Pulverrohrs eine Lavaldüse. Eine derartig gestaltete Lavaldüse ist unproblematisch herzustellen, da durch die erfindungsgemäße Konstruktion die Innenkontur des äußeren Düsenkörpers und/oder die Außenseite des Pulverrohrs zu fertigen ist.In a further development of the invention, the inner shape of an outer nozzle body together with the outer shape of a coaxially arranged in the outer nozzle body, oriented in the direction of injection powder tube yield a Laval nozzle. Such a designed Laval nozzle is easy to manufacture, since the inner contour of the outer nozzle body and / or the outside of the powder tube is to be finished by the construction according to the invention.

In Weiterbildung der Erfindung hat das innen befindliche Pulverrohr auf seiner Außenseite eine derart gestaltete Kontur, dass sich zusammen mit einer glatten, zylindrischen Innenkontur des äußeren Düsenkörpers eine Lavaldüse ergibt.In a further development of the invention, the inside powder tube has on its outside a contour designed in such a way that, together with a smooth, cylindrical inner contour of the outer nozzle body results in a Laval nozzle.

Alternativ ergibt sich eine Lavaldüse aus einem innen befindliche Pulverrohr mit glatter zylindrischen Außenseite und außen liegendem Düsenkörper, der auf seiner Innenseite entsprechend geformt ist.Alternatively, a Laval nozzle results from an inside powder tube with a smooth cylindrical outer side and outer nozzle body, which is shaped accordingly on its inside.

Die Lavaldüse wird in einer anderen Möglichkeit dadurch gebildet, dass die notwendige Kontur für die Lavaldüse teilweise auf der Außenseite des Pulverrohres und teilweise auf der Innenseite des äußeren Düsenkörpers aufgebracht wird.The Laval nozzle is formed in another way in that the necessary contour for the Laval nozzle is partially applied to the outside of the powder tube and partly on the inside of the outer nozzle body.

Das Öffnungsverhältnis der Lavaldüse, d.h. das Verhältnis der Querschnittsfläche für den Gasdurchlass an der engsten Stelle zum Querschnitt am Austritt der Düse, liegt in einer vorteilhaften Ausgestaltung zwischen 1:2 und 1:25, vorzugsweise zwischen 1:5 und 1:11.The opening ratio of the Laval nozzle, i. the ratio of the cross-sectional area for the gas passage at the narrowest point to the cross-section at the outlet of the nozzle, in an advantageous embodiment between 1: 2 and 1:25, preferably between 1: 5 and 1:11.

In einer bevorzugten Variante hat der äußere Düsenkörper im konvergenten Bereich einen kreisringförmigen Querschnitt, der im divergenten Bereich der Düse in einen rechteckigen Querschnitt übergeht. Mit Hilfe rechteckiger Formen werden schmale Bereiche und große Flächen vorteilhaft beschichtet.In a preferred variant, the outer nozzle body in the convergent region has an annular cross section, which merges into a rectangular cross section in the divergent region of the nozzle. With the help of rectangular shapes, narrow areas and large areas are advantageously coated.

Vorteilhafterweise bestehen sowohl das Pulverrohr als auch der äußere Düsenkörper jeweils aus einem metallischen Werkstoff, einer Keramik oder einem Verbundwerkstoff mit metallischem oder keramischen Bestandteilen. Pulverrohr und Düsenkörper bestehen in vorteilhafter Ausgestaltung aus unterschiedlichen Materialien. In Frage kommen hierfür unterschiedliche Metalllegierungen, unterschiedliche Keramiken, Kunststoffe oder eine Kombination aus unterschiedlichen Werkstoffen, z.B. Metall/Keramik, Metall/Kunststoff, Keramik/Kunststoff. Vorzugsweise besteht der äußere Düsenkörper aus Metall, während das innenliegende Pulverrohr aus Keramik gefertigt ist.Advantageously, both the powder tube and the outer nozzle body each consist of a metallic material, a ceramic or a composite material with metallic or ceramic components. Powder tube and nozzle body consist in an advantageous embodiment of different materials. For this purpose, different metal alloys, different ceramics, plastics or a combination of different materials, e.g. Metal / ceramic, metal / plastic, ceramic / plastic. Preferably, the outer nozzle body is made of metal, while the inner powder tube is made of ceramic.

Pulverrohr und/oder äußerer Düsenkörper sind in einer vorteilhaften Variante aus - in Strömungsrichtung betrachtet - zwei oder mehr Teilen zusammengefügt, bei denen das erste Teil den Bereich um den Düsenhals umfasst und sich ein zweites bis zum Düsenaustritt reichendes Teil daran anschließt. Dabei ist das zweite Teil leicht zu tauschen und wird hinsichtlich seiner Gestalt und Werkstoffwahl nach den Anforderungen der verschiedenen Spritzwerkstoffen ausgewählt. Die beiden eben genannten Teile bestehen dabei vorteilhafterweise aus unterschiedlichen Werkstoffen.Powder tube and / or outer nozzle body are in an advantageous variant of - viewed in the flow direction - two or more parts joined, in which the first part comprises the area around the nozzle neck and a second reaching to the nozzle exit part connects thereto. In this case, the second part is easy to replace and is selected in terms of its shape and choice of materials according to the requirements of the different spray materials. The two aforementioned parts advantageously consist of different materials.

Im folgendem soll der Stand der Technik und die Erfindung anhand schematisch dargestellter Beispiele näher erläutert werden:

  • In Figur 1 ist eine Hochgeschwindigkeits-Flammspritz-Einrichtung nach dem Stand der Technik skizziert.
  • In Figur 2 ist eine erfindungsgemäße Hochgeschwindigkeits-Flammspritz-Einrichtung gezeigt, in dessen Ausführung das Pulverrohr im divergenten Bereich des äußeren Düsenkörpers endet.
  • In Figur 3 sind drei Varianten für die Ausgestaltung der Lavaldüse aus Pulverrohr und äußerem Düsenkörper gezeigt.
In the following, the prior art and the invention will be explained in more detail with reference to schematically illustrated examples:
  • 1, a high-speed flame-spraying device according to the prior art is outlined.
  • FIG. 2 shows a high-speed flame-spraying device according to the invention, in the embodiment of which the powder tube ends in the divergent region of the outer nozzle body.
  • In Figure 3, three variants for the design of the Laval nozzle of powder tube and outer nozzle body are shown.

Figur 1 zeigt das Prinzip der Expansionsdüse. Dieses Prinzip wird beispielsweise bei dem System JP-5000, welches der dritten Generation an Hochgeschwindigkeits-Flammspritz-Vorrichtungen angehört, verwendet. An das Zufuhrrohr 4 schließt sich die Hochdruckbrennkammer 3 an gefolgt von der Lavaldüse 5 mit der Düsenverengung und dem Endstück 6, in welches die Pulverrohre 2 führen. Durch das Zufuhrrohr 4 gelangen Kerosin und Sauerstoff in die Hochdruckbrennkammer 3, wo die beiden Stoffe miteinander reagieren. Die Verbrennungsgase bilden einen Flammstrahl, welcher durch Expansion in der Lavaldüse 5 auf Überschallgeschwindigkeit beschleunigt wird. In dem der Lavaldüse 5 folgendem Endstück 6 wird das Pulver mit zwei Pulverrohren radial in den Flammstrahl injiziert.Figure 1 shows the principle of the expansion nozzle. This principle is used, for example, in the JP-5000 system, which belongs to the third generation of high-speed flame-spraying devices. The high-pressure combustion chamber 3 adjoins the feed tube 4, followed by the Laval nozzle 5 with the nozzle constriction and the end piece 6, into which the powder tubes 2 lead. Kerosene and oxygen pass through the supply pipe 4 into the high-pressure combustion chamber 3, where the two substances react with one another. The combustion gases form a flame jet which is accelerated to supersonic speed by expansion in the Laval nozzle 5. In the end of the Laval nozzle 5 following 6, the powder is injected with two powder tubes radially into the flame jet.

Die in Figur 2 schematisch gezeigte Hochgeschwindigkeits-Flammspritz-Einrichtung umfasst einer Lavaldüse 5 mit einem äußeren Düsenkörper 1, ein Pulverrohr 2, eine Hochruckbrennkammer 3 und zwei Zufuhrrohre 4. Durch die Zufuhrrohre 4 gelangen Brenngas und Sauerstoff in die Hochdruckbrennkammer 3, wo die chemische Reaktion stattfindet. Anstelle des Brenngases kann auch Kerosin verwendet werden. Die Verbrennungsgase expandieren in der sich an die Hochdruckbrennkammer anschließenden Lavaldüse 5. Das Pulverrohr 2 endet erst in dem konvergenten Abschnitt der Lavaldüse 5. Die äußere Oberfläche des Pulverrohrs 2 und die innere Oberfläche des äußeren Düsenkörpers 1 sind erfindungsgemäß derartig gestaltet, dass die Expansionsdüse 5 den Gesetzen nach de' Laval gehorcht.The high-speed flame spraying device shown schematically in Figure 2 comprises a Laval nozzle 5 with an outer nozzle body 1, a powder tube 2, a high-pressure combustion chamber 3 and two supply pipes 4. Through the supply pipes 4 enter fuel gas and oxygen in the high-pressure combustion chamber 3, where the chemical reaction takes place. Kerosene can be used instead of the fuel gas. The powder gases 2 expand in the adjoining the high-pressure combustion chamber Laval nozzle 5. The powder tube 2 terminates only in the convergent section of the Laval nozzle 5. The outer surface of the powder tube 2 and the inner surface of the outer nozzle body 1 according to the invention designed such that the expansion nozzle 5 the Laws after de 'Laval obeys.

Fig.3 zeigt drei besonders vorteilhafte Ausgestaltungen einer erfindungsgemäßen Hochgeschwindigkeits-Flammspritz-Einrichtung mit äußerem Düsenkörper 1 und Pulverrohr 2, wobei insbesondere Bezug auf die Gestaltung des Pulverrohrs 2 und des äußeren Düsenkörpers 1 genommen wird. In den Figuren 3a, b und c ist das Pulverrohr 2 jeweils von dem äußeren Düsenkörper 1 umgeben. Die Kombination der inneren Kontur des äußeren Düsenkörpers und der äußeren Form des Pulverrohrs ergeben eine Lavaldüse. In Fig. 3a ergibt eine glatte, zylindrische Innenform des äußeren Düsenkörpers zusammen mit einer nach außen gewölbten Außenkontur des Pulverrohrs die Lavaldüse. In Fig. 3b ist hingegen das Pulverrohr zylindrisch geformt und der äußere Düsenkörper in seiner Innenseite geschwungen. Düsenkörper und Pulverrohr sind in Fig. 3c derartig geschwungen, so dass sich die für die Lavaldüse notwendige Kontur aus der Kombination der Formen der Außenseite des Pulverrohrs und der Innenseite des äußeren Düsenkörpers ergibt.3 shows three particularly advantageous embodiments of a high-speed flame spraying device according to the invention with outer nozzle body 1 and powder tube 2, with particular reference being made to the design of the powder tube 2 and the outer nozzle body 1. In FIGS. 3 a, b and c, the powder tube 2 is surrounded by the outer nozzle body 1 in each case. The combination of the inner contour of the outer nozzle body and the outer shape of the powder tube result a Laval nozzle. In Fig. 3a results in a smooth, cylindrical inner shape of the outer nozzle body together with an outwardly curved outer contour of the powder tube, the Laval nozzle. In Fig. 3b, however, the powder tube is cylindrically shaped and the outer nozzle body swung in its inside. Nozzle body and powder tube are so curved in Fig. 3c, so that the necessary for the Laval nozzle contour results from the combination of the shapes of the outside of the powder tube and the inside of the outer nozzle body.

Claims (15)

  1. Process for producing a coating or a shaped part by means of high-velocity oxyfuel spraying, in which pulverulent spray particles are injected into a flame jet comprising combustion gases, and the spray particles are accelerated to velocities of up to 800 m/s during expansion of the flame jet in a Laval nozzle, and the spray particles are injected axially and centrally, characterized in that the injection of the spray particles takes place in the divergent section of the Laval nozzle.
  2. Process according to Claim 1, characterized in that the spray particles are injected into the flame jet by means of a powder tube which is arranged coaxially in an outer nozzle body and is oriented in the spraying direction, the external shape of the powder tube, together with the internal shape of the outer nozzle body, resulting in a Laval nozzle.
  3. Process according to Claim 1 or 2, characterized in that the injection of the spray particles takes place at a location which is located in the range between quarter and half way along a section whose starting point is defined by the nozzle neck and whose end point is defined by the nozzle outlet, the measurement starting from the nozzle neck.
  4. Process according to any of Claims 1 to 3, characterized in that at the narrowest point the passage for the flame jet has an annular cross section which is delimited on the inner side by the external contour of the powder tube and is delimited on the outer side by the internal contour of the nozzle tube.
  5. High-velocity oxyfuel spraying device having a Laval nozzle, comprising an outer nozzle body (1) and a powder tube (2), the powder tube being responsible for the supply of spray particles within the outer nozzle body, characterized in that the powder tube ends axially inside the outer nozzle body and centrally within the divergent section of the Laval nozzle.
  6. High-velocity oxyfuel spraying device according to Claim 5, characterized in that the internal shape of an outer nozzle body, together with the external shape of a powder tube, which is arranged coaxially in the outer nozzle body and is oriented in the spraying direction, produce a Laval nozzle.
  7. High-velocity oxyfuel spraying device according to Claim 5 or 6, characterized in that the internally located powder tube, on its outer side, has a contour which is configured in such a manner that, together with a smooth, cylindrical internal contour of the outer nozzle body, a Laval nozzle is produced.
  8. High-velocity oxyfuel spraying device according to Claim 5 or 6, characterized in that the internally located powder tube has a smooth, cylindrical outer side, and the inner side of the externally located nozzle body is shaped in such a way as to produce a Laval nozzle.
  9. High-velocity oxyfuel spraying device according to Claim 5 or 6, characterized in that the required contour for a Laval nozzle is applied partly to the outer side of the powder tube and partly to the inner side of the outer nozzle body.
  10. High-velocity oxyfuel spraying device according to any of Claims 5 to 9, characterized in that the opening ratio of the Laval nozzle, i.e. the ratio of the cross-sectional area for the gas passage at the narrowest point to the cross section at the outlet of the nozzle, is between 1:2 and 1:25, preferably between 1:5 and 1:11.
  11. High-velocity oxyfuel spraying device according to any of Claims 5 to 10, characterized in that the outer nozzle body, in the convergent region, has an annular cross section which merges into a rectangular cross section in the vicinity of the nozzle neck or in the divergent region of the nozzle.
  12. High-velocity oxyfuel spraying device according to any of Claims 5 to 11, characterized in that the powder tube and outer nozzle body each consist of a metallic material, a ceramic or a composite material with metallic or ceramic constituents.
  13. High-velocity oxyfuel spraying device according to any of Claims 6 to 12, characterized in that powder tube and outer nozzle body consist of different materials.
  14. High-velocity oxyfuel spraying device according to any of Claims 5 to 13, characterized in that powder tube and/or outer nozzle body - as seen in the direction of flow - are assembled from two or more parts, among which the first part comprises the region around the nozzle neck and a second part, extending as far as the nozzle outlet, adjoins the nozzle neck, the second part being readily exchangeable.
  15. High-velocity oxyfuel spraying device according to Claim 14, characterized in that the two parts consist of different materials.
EP03011231A 2002-05-22 2003-05-16 Method and apparatus for high-speed flame spraying Expired - Lifetime EP1369498B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10222660A DE10222660A1 (en) 2002-05-22 2002-05-22 Flame spraying assembly is a Laval jet, with the tube for the spray particles axial and centrally within the outer jet body, outside the hot combustion chamber
DE10222660 2002-05-22

Publications (2)

Publication Number Publication Date
EP1369498A1 EP1369498A1 (en) 2003-12-10
EP1369498B1 true EP1369498B1 (en) 2004-12-22

Family

ID=29414035

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03011231A Expired - Lifetime EP1369498B1 (en) 2002-05-22 2003-05-16 Method and apparatus for high-speed flame spraying

Country Status (4)

Country Link
US (1) US6972138B2 (en)
EP (1) EP1369498B1 (en)
AT (1) ATE285483T1 (en)
DE (2) DE10222660A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2465963C2 (en) * 2007-10-24 2012-11-10 ЗУЛЬЦЕР МЕТКО(ЮЭс) ИНК. Device and method of improved mixing in axial injection in thermal sprayer gun
DE102012000816A1 (en) 2012-01-17 2013-07-18 Linde Aktiengesellschaft Method and device for thermal spraying

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10126100A1 (en) * 2001-05-29 2002-12-05 Linde Ag Production of a coating or a molded part comprises injecting powdered particles in a gas stream only in the divergent section of a Laval nozzle, and applying the particles at a specified speed
WO2004098790A1 (en) * 2003-05-02 2004-11-18 Praxair S. T. Technology, Inc. Apparatus for thermal spray processes
US7569352B2 (en) * 2003-05-14 2009-08-04 Index Pharmaceuticals Ab Method for identifying modulators of the dioxin/aryl hydrocarbon receptor (AHR)
US7475831B2 (en) * 2004-01-23 2009-01-13 Delphi Technologies, Inc. Modified high efficiency kinetic spray nozzle
CA2527764C (en) * 2005-02-11 2014-03-25 Suelzer Metco Ag An apparatus for thermal spraying
EP1700638B1 (en) 2005-03-09 2009-03-04 SOLMICS Co., Ltd. Nozzle for cold spray and cold spray apparatus using the same
RU2288970C1 (en) * 2005-05-20 2006-12-10 Общество с ограниченной ответственностью Обнинский центр порошкового напыления (ООО ОЦПН) Device for the gas-dynamic deposition of the coatings and the method for the gas-dynamic deposition of the coatings
SE529058C2 (en) 2005-07-08 2007-04-17 Plasma Surgical Invest Ltd Plasma generating device, plasma surgical device, use of a plasma surgical device and method for forming a plasma
SE529053C2 (en) 2005-07-08 2007-04-17 Plasma Surgical Invest Ltd Plasma generating device, plasma surgical device and use of a plasma surgical device
SE529056C2 (en) 2005-07-08 2007-04-17 Plasma Surgical Invest Ltd Plasma generating device, plasma surgical device and use of a plasma surgical device
DE102006014124A1 (en) * 2006-03-24 2007-09-27 Linde Ag Cold spray gun
US8790459B2 (en) * 2006-05-31 2014-07-29 Cabot Corporation Colored reflective features and inks and processes for making them
US20070279718A1 (en) * 2006-05-31 2007-12-06 Cabot Corporation Reflective features with co-planar elements and processes for making them
US8070186B2 (en) 2006-05-31 2011-12-06 Cabot Corporation Printable reflective features formed from multiple inks and processes for making them
US20070281177A1 (en) * 2006-05-31 2007-12-06 Cabot Corporation Colored Reflective Features And Inks And Processes For Making Them
US20070281136A1 (en) * 2006-05-31 2007-12-06 Cabot Corporation Ink jet printed reflective features and processes and inks for making them
US9533523B2 (en) 2006-05-31 2017-01-03 Sicpa Holding Sa Reflective features with co-planar elements and processes for making them
WO2008025815A1 (en) * 2006-08-30 2008-03-06 H.C. Starck Gmbh Ceramic nozzle
US7928338B2 (en) * 2007-02-02 2011-04-19 Plasma Surgical Investments Ltd. Plasma spraying device and method
CA2677619C (en) * 2007-02-12 2014-03-25 Doben Limited Adjustable cold spray nozzle
US7829997B2 (en) * 2007-04-04 2010-11-09 Freescale Semiconductor, Inc. Interconnect for chip level power distribution
WO2008139273A1 (en) * 2007-05-10 2008-11-20 Freescale Semiconductor, Inc. Power lead-on-chip ball grid array package
DE102007032022A1 (en) 2007-07-10 2009-01-15 Linde Ag Kaltgasspritzdüse
DE102007032021A1 (en) 2007-07-10 2009-01-15 Linde Ag Kaltgasspritzdüse
US7589473B2 (en) * 2007-08-06 2009-09-15 Plasma Surgical Investments, Ltd. Pulsed plasma device and method for generating pulsed plasma
US8735766B2 (en) * 2007-08-06 2014-05-27 Plasma Surgical Investments Limited Cathode assembly and method for pulsed plasma generation
US8590804B2 (en) * 2007-10-24 2013-11-26 Sulzer Metco (Us) Inc. Two stage kinetic energy spray device
DE102008050184B4 (en) * 2008-10-01 2011-04-21 Technische Universität Chemnitz Method and apparatus for high velocity flame spraying
GB0904948D0 (en) 2009-03-23 2009-05-06 Monitor Coatings Ltd Compact HVOF system
US8052074B2 (en) * 2009-08-27 2011-11-08 General Electric Company Apparatus and process for depositing coatings
US8613742B2 (en) * 2010-01-29 2013-12-24 Plasma Surgical Investments Limited Methods of sealing vessels using plasma
US9089319B2 (en) 2010-07-22 2015-07-28 Plasma Surgical Investments Limited Volumetrically oscillating plasma flows
US8791582B2 (en) 2010-07-28 2014-07-29 Freescale Semiconductor, Inc. Integrated circuit package with voltage distributor
FR2980126B1 (en) * 2011-09-15 2014-01-31 Silimelt METHOD AND INSTALLATION FOR PROCESSING A LOAD
RU2539559C2 (en) * 2011-11-28 2015-01-20 Юрий Александрович Чивель Method of producing high-energy particle streams and apparatus therefor
EP2719544B1 (en) * 2012-10-10 2015-12-16 Artio Sarl Method of manufacturing rotogravure cylinders
US10107494B2 (en) 2014-04-22 2018-10-23 Universal City Studios Llc System and method for generating flame effect
RU2646858C2 (en) * 2016-08-08 2018-03-12 Публичное акционерное общество "Электромеханика" Arc-let plasmatron
JP6716496B2 (en) * 2017-05-12 2020-07-01 タツタ電線株式会社 Spray nozzle, film forming apparatus, and film forming method
CN107587132A (en) * 2017-10-19 2018-01-16 西安中科中美激光科技有限公司 A kind of multifunctional coaxial powder feeding high-rate laser spray equipment and application
RU190460U1 (en) * 2019-03-25 2019-07-01 Сергей Александрович Терентьев PLASMOTRON
CA3191050A1 (en) 2020-08-28 2022-03-03 Nikolay Suslov Systems, methods, and devices for generating predominantly radially expanded plasma flow

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB548630A (en) * 1941-03-11 1942-10-19 Basil Desmond Harry Blount Improvements relating to metal spraying
US3352492A (en) * 1960-08-02 1967-11-14 Powder Melting Corp Method of and apparatus for depositing metal powder
US4836447A (en) * 1988-01-15 1989-06-06 Browning James A Duct-stabilized flame-spray method and apparatus
JPH06151434A (en) * 1992-11-10 1994-05-31 Sony Corp Metal wiring and formation thereof
US5520334A (en) * 1993-01-21 1996-05-28 White; Randall R. Air and fuel mixing chamber for a tuneable high velocity thermal spray gun
FR2802844B1 (en) * 1999-12-23 2002-03-29 Biodecap Ind PROJECTION NOZZLE AND STRIPPING DEVICE PROVIDED WITH SAME
DE10126100A1 (en) * 2001-05-29 2002-12-05 Linde Ag Production of a coating or a molded part comprises injecting powdered particles in a gas stream only in the divergent section of a Laval nozzle, and applying the particles at a specified speed

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2465963C2 (en) * 2007-10-24 2012-11-10 ЗУЛЬЦЕР МЕТКО(ЮЭс) ИНК. Device and method of improved mixing in axial injection in thermal sprayer gun
DE102012000816A1 (en) 2012-01-17 2013-07-18 Linde Aktiengesellschaft Method and device for thermal spraying
EP2617868A1 (en) 2012-01-17 2013-07-24 Linde Aktiengesellschaft Method and device for thermal spraying

Also Published As

Publication number Publication date
EP1369498A1 (en) 2003-12-10
US20040018317A1 (en) 2004-01-29
DE50300212D1 (en) 2005-01-27
DE10222660A1 (en) 2003-12-04
ATE285483T1 (en) 2005-01-15
US6972138B2 (en) 2005-12-06

Similar Documents

Publication Publication Date Title
EP1369498B1 (en) Method and apparatus for high-speed flame spraying
EP1390152B1 (en) Cold gas spraying method and device
EP1999297A1 (en) Cold-gas spray gun
DE102006023483A1 (en) Apparatus for cold gas spraying
DE102009005528A1 (en) Dual-component nozzle for injecting a fluid e.g. urea solution into an exhaust gas system of an internal combustion engine for selective catalytic reduction, comprises first nozzle opening, and second nozzle opening formed by annular gap
DE10319481A1 (en) Laval nozzle use for cold gas spraying, includes convergent section and divergent section such that portion of divergent section of nozzle has bell-shaped contour
DE102014205343A1 (en) Cooling device for a spray nozzle or spray nozzle arrangement with a cooling device for thermal spraying
DE102005004116A1 (en) Method for cold gas spraying and cold gas spray gun
DE10129868B4 (en) Thermal spraying with mixed powder
EP2974796B1 (en) Cold gas spraying device
DE102006022282A1 (en) Cold spray gun
DE10223865B4 (en) Process for the plasma coating of workpieces
EP2647468A1 (en) Gas emitting device for internal pipe sections with at least one gas nozzle arrangement ; welding method using such gas emitting device
EP1506816B1 (en) Laval nozzle for thermal or kinetical spraying
DE102004001346A1 (en) Atomizer making powder or coatings from molten metal and ceramics, supplies melt continuously to feed chamber, to leave via concentric annular jet into atomization zone
DE3117715C2 (en) Powder coating device
WO2011057615A1 (en) Cold gas spray nozzle and cold gas spraying device having such a spray nozzle
DE102017130744B4 (en) Apparatus and method for thermal spraying
DE102013010126B4 (en) Plasmapulverspritzverfahren and apparatus for coating panels for boiler walls in conjunction with a laser beam device
DE10037276A1 (en) An attachment for flame spraying equipment has sliding and angle adjustments for one or more injection jets.
EP2136927B1 (en) Expansion nozzle for thermal spraying and method for the production thereof
DE10207525A1 (en) Cold gas spraying device for forming coatings comprises a powder tube having a chamfer in the region of the sprayed particles outlet for injecting sprayed particles into a gas stream
DE10119288B4 (en) Method and device for gas-dynamic coating of surfaces by means of sound nozzles
DE3105323A1 (en) Body of a device for detonation-gas powder coating
DE3117713C2 (en) Method and device for spray-coating objects with powder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20040520

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50300212

Country of ref document: DE

Date of ref document: 20050127

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050322

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050402

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050516

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050516

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 20050531

26N No opposition filed

Effective date: 20050923

ET Fr: translation filed
BERE Be: lapsed

Owner name: *LINDE A.G.

Effective date: 20050531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050522

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: LINDE AKTIENGESELLSCHAFT

Free format text: LINDE AKTIENGESELLSCHAFT#ABRAHAM-LINCOLN-STRASSE 21#65189 WIESBADEN (DE) -TRANSFER TO- LINDE AKTIENGESELLSCHAFT#LEOPOLDSTRASSE 252#80807 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090504

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090515

Year of fee payment: 7

Ref country code: IT

Payment date: 20090519

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090513

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090513

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100516

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101201

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50300212

Country of ref document: DE

Owner name: SULZER METCO AG, CH

Free format text: FORMER OWNER: LINDE AG, 80331 MUENCHEN, DE

Effective date: 20120718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220527

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50300212

Country of ref document: DE