EP1365129B1 - Method and apparatus for controlling an internal combustion engine - Google Patents

Method and apparatus for controlling an internal combustion engine Download PDF

Info

Publication number
EP1365129B1
EP1365129B1 EP03006785A EP03006785A EP1365129B1 EP 1365129 B1 EP1365129 B1 EP 1365129B1 EP 03006785 A EP03006785 A EP 03006785A EP 03006785 A EP03006785 A EP 03006785A EP 1365129 B1 EP1365129 B1 EP 1365129B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
engine
combustion chamber
combustion engine
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03006785A
Other languages
German (de)
French (fr)
Other versions
EP1365129A2 (en
EP1365129A3 (en
Inventor
Jens Jeschke
Jürgen Gloger
Hans-Georg Nitzke
Jörg Larink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1365129A2 publication Critical patent/EP1365129A2/en
Publication of EP1365129A3 publication Critical patent/EP1365129A3/en
Application granted granted Critical
Publication of EP1365129B1 publication Critical patent/EP1365129B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1006Engine torque losses, e.g. friction or pumping losses or losses caused by external loads of accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/083Introducing corrections for particular operating conditions for idling taking into account engine load variation, e.g. air-conditionning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/16Introducing closed-loop corrections for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions

Definitions

  • the present invention relates to a method and a device for controlling an internal combustion engine, for example a diesel engine, as a function of the combustion chamber pressure detected in the individual combustion chambers or cylinders of the internal combustion engine.
  • an internal combustion engine for example a diesel engine
  • an operating parameter in an internal combustion engine is the effective engine torque, i. the actually transmitted to the crankshaft of the engine and thus available at the clutch of a corresponding motor vehicle torque which corresponds to the actual driver's request.
  • the effective engine torque differs from the engine torque indicated by the combustion in the internal combustion engine by a negative torque loss, which in addition to frictional losses, e.g. on the piston and the crank mechanism of the internal combustion engine also drive torque of all connected to the auxiliary or belt drive consumer (for example, for the operation of the air compressor, the injection pumps, the power steering pump, the alternator, etc. of the motor vehicle).
  • From the DE 199 31 985 is a method for determining the indicated torque of internal combustion engines by measuring the angular velocity and the angular acceleration and determining a torque sum known. The determination is based on the torque ratios at steady-state operating points where the average indicated torque is approximately equal to the resistance torque.
  • maps are stored which include engine torque data required for the torque control. By accessing these maps, corresponding settings of suitable operating parameters of the internal combustion engine, for example the injected fuel quantity or the ignition time etc., can then be made for optimum torque control of the internal combustion engine as a function of the detected or determined indexed engine torque.
  • the present invention is therefore based on the object to propose a method and a device for controlling an internal combustion engine, wherein the effective engine torque can be taken into account.
  • the method according to the invention or the device according to the invention should preferably also allow a determination of the loss torque, by means of which the effective engine torque differs from the engine torque indicated by combustion in the internal combustion engine.
  • the determination of the effective engine torque occurring at the crankshaft of the internal combustion engine is proposed according to the invention.
  • the combustion chamber pressure occurring in a combustion chamber of the internal combustion engine is detected as a function of the crank angle and from this the indicated engine torque in the combustion chamber is derived.
  • the effective engine torque can then be derived, wherein the loss torque of the internal combustion engine is determined, which can be used in particular for diagnostic purposes.
  • an indexed average pressure value can also be derived as an intermediate variable and used to control the internal combustion engine, for example to improve idling.
  • the present invention will be explained in more detail below with reference to the accompanying drawings with reference to a preferred embodiment.
  • the single figure shows a simplified representation for explaining the cylinder or combustion chamber pressure detection in an internal combustion engine according to the present invention.
  • a piston 3 located in the combustion chamber 2 is driven via a crankshaft 4 of the internal combustion engine 1.
  • the crankshaft 4 and the piston 3 reach exactly twice the so-called top dead center TDC and bottom dead center UT within one operating cycle, which corresponds to two complete revolutions of the crankshaft 4.
  • the rotational angles ⁇ of the crankshaft 4 are indicated in degrees crank angle (° CA).
  • a pressure sensor 5 is arranged in the region of the cylinder head or the cylinder head gasket, with the aid of which occurring in the combustion chamber 2 during operation of the internal combustion engine 1 combustion chamber pressure can be detected.
  • the pressure sensor 5 comprises, for example, a measuring diaphragm which is differently stretched or deformed depending on the combustion chamber pressure prevailing in the combustion chamber, the extent of the expansion or deformation of this measuring diaphragm being a measure of the combustion chamber pressure instantaneously prevailing in the combustion chamber 2 Control unit 7 is evaluated.
  • the combustion chamber pressure prevailing in the combustion chamber 2 in this way becomes the instantaneous position of the crankshaft 4, i. H. to the instantaneous rotational angle ⁇ of the crankshaft 4.
  • a crankshaft sensor 6 is provided which continuously detects the instantaneous position of the crankshaft 4 and supplies it to the control unit 7. In this way, the control unit 7 can determine the course of the combustion chamber pressure as a function of the rotational angle ⁇ of the crankshaft 4.
  • dQ W describes the wall heat energy extracted from the system
  • dQ B describes the converted fuel energy or the combustion history of the injected fuel.
  • dH E is the enthalpy change of the mass flowing into the system, where dH A is the enthalpy change of the outflowing mass, and dH B is the enthalpy change of the injected fuel.
  • Equation (11) is the basis for the energetic assessment of the processes taking place in a combustion chamber 2 of the internal combustion engine 1.
  • the heat change in the working gas observable in the combustion chamber pressure p results in the heating course dQ H as the sum of the converted fuel energy dQ B and the negative wall heat energy dQ W :
  • dQ H dQ B + dQ W ,
  • the effective specific work resulting from combustion can be taken from the crankshaft 4 of the internal combustion engine 1 and expressed in terms of the mean effective pressure p me , the effective engine torque M e or the effective power P e .
  • This effective specific work corresponds to the difference between the specific internal work expressed by the indicated mean pressure p mi , the indicated engine torque M i or the indicated power P i , and the specific mechanical work loss (loss or Friction medium pressure p mv , loss moment M v , power loss P v ).
  • the indicated mean pressure p mi thus corresponds to the volume change work related to the respective displacement volume V h .
  • the indexed work corresponds to the area enclosed by the characteristic in the pV diagram. It is divided into four-stroke engines in a high-pressure and a charge alternation.
  • the indicated mean pressure p mi_HD of the high-pressure phase is preferably selected for the regulation and control of the internal combustion engine 1, since it physically describes the internal work of each combustion chamber 2.
  • the torque M of the internal combustion engine 1 is proportional to the (average between the individual combustion chambers or cylinders 2) mean pressure p m of the internal combustion engine: M ⁇ V H ⁇ p m ⁇ ,
  • the indexed engine torque is a conversion of the indicated work into a (virtual) moment (compare equation (18) with the index i).
  • the indicated engine torque is linked to the engine speed via a differential equation of the crank mechanism described, for example, in "Calculation of the combustion chamber pressure profile from crankshaft angular velocity of internal combustion engines", Fehrenbach H., Progress Reports VDI Series 6, Energy Production No. 255, VDI-Verlag Düsseldorf, 1991. in this regard, reference is expressly made at this point to the statements in this publication.
  • the (instantaneous) indicated engine torque can be derived as described from the combustion chamber pressure with a resolution of 1 ° KW.
  • the crankshaft angular velocity is also important with a temporal resolution of 1 ° KW.
  • the loss torque M v ( ⁇ ) is due to the negative work by friction losses on the respective piston and crank mechanism and torque losses due to consumers of the respective motor vehicle also driven via the crankshaft, such as the air conditioning compressor, the injection pumps, the power steering pump , the alternator, etc., back.
  • M e ⁇ M i ⁇ + M v ⁇ ⁇ M v ⁇ ⁇ 0th
  • the loss torque can be determined from the above relationships as well as in dependence on the indexed engine torque derived from the combustion chamber pressure.
  • the drag torque can be determined via equation (18).
  • the existing control loops of the engine management system can be improved because this additional information is included in the control or regulation of the internal combustion engine can.
  • Certain manipulated variables for example the fuel injection quantity, the fuel delivery start or the fuel injection course, can be changed in the form of a cylinder-specific combustion start or torque control, for example, such that the respective characteristic quantities extracted from the combustion chamber pressure are reached.
  • a regulation takes place on the basis of the combustion actually taking place in the respective combustion chamber.
  • the idling of the internal combustion engine can be improved.
  • the smoothness of the engine can be improved.
  • It is possible to specify cylinder-specific desired values for the indicated mean pressure if different torque or friction losses for the individual cylinders or combustion chambers are determined, in order to obtain a cylinder-specific regulation.
  • By detecting the (cylinder-specific) indicated mean pressure an absolute measure of the torque generated in the combustion in the respective cylinder is obtained, so that in combination with a high-resolution crank angle marking, very precise and effective cylinder-individual control loops can be created.
  • the effective engine torque With the effective engine torque, a high-quality model is available for the "idle", "jerk damping" driving behavior functions.
  • the effective engine torque as described above, is detected as crank angle resolved and may also be detected by other components or subscribers of the driveline, e.g. the gearbox or ancillaries, are provided for control / regulation.
  • both the input and output variables are known in principle on the basis of the determination of the indicated engine torque as a function of the combustion chamber pressure
  • the speed information can also be used to check the correctness of the pressure sensors of the individual combustion chambers of the internal combustion engine.
  • the idling control and the jerk damping of the internal combustion engine can be adapted by identifying the parameters of this differential equation in a further step so that these parameters no longer need to be applied in a lengthy process for different operating states.
  • the friction and other losses in the engine can be monitored and can be responded to in a suitable manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

The regulation method detects the combustion chamber pressure within an engine cylinder (2) in dependence on the crank angle of the crankshaft (4) controlling the movement of the reciprocating piston (3), with derivation of a corresponding engine torque, combined with the angular velocity of the crankshaft for providing the effective engine torque, used for regulation of at least one operating parameter of the engine (1). An Independent claim for a regulating device for a diesel engine is also included.

Description

Die vorliegende Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur Regelung eines Verbrennungsmotors, beispielsweise eines Dieselmotors, in Abhängigkeit von dem in den einzelnen Brennräumen oder Zylindern des Verbrennungsmotors erfassten Brennraumdruck.The present invention relates to a method and a device for controlling an internal combustion engine, for example a diesel engine, as a function of the combustion chamber pressure detected in the individual combustion chambers or cylinders of the internal combustion engine.

Für eine insbesondere emissionsoptimale Regelung eines Verbrennungsmotors, z. B. eines aufgeladenen Dieselmotors, ist die genaue Kenntnis einer möglichst großen Anzahl von Betriebsparametern des Motorsystems von entscheidender Bedeutung. Ein derartiger Betriebsparameter ist bei einem Verbrennungsmotor beispielsweise das effektive Motormoment, d.h. das tatsächlich auf die Kurbelwelle des Verbrennungsmotors übertragene und somit an der Kupplung eines entsprechenden Kraftfahrzeugs verfügbare Moment, welches dem eigentlichen Fahrerwunsch entspricht. Das effektive Motormoment unterscheidet sich von dem in dem Verbrennungsmotor durch die Verbrennung indizierten Motormoment durch ein negatives Verlustmoment, welches neben Reibungsverluste z.B. an den Kolben und dem Kurbeltrieb des Verbrennungsmotors auch Antriebsmomente aller am Hilfs- oder Riementrieb angeschlossenen Verbraucher (z.B. für den Betrieb des Klimakompressors, der Einspritzpumpen, der Servopumpe, der Lichtmaschine etc. des Kraftfahrzeugs) umfasst.For a particular emission-optimal control of an internal combustion engine, eg. As a supercharged diesel engine, the exact knowledge of the largest possible number of operating parameters of the engine system is crucial. Such an operating parameter in an internal combustion engine, for example, is the effective engine torque, i. the actually transmitted to the crankshaft of the engine and thus available at the clutch of a corresponding motor vehicle torque which corresponds to the actual driver's request. The effective engine torque differs from the engine torque indicated by the combustion in the internal combustion engine by a negative torque loss, which in addition to frictional losses, e.g. on the piston and the crank mechanism of the internal combustion engine also drive torque of all connected to the auxiliary or belt drive consumer (for example, for the operation of the air compressor, the injection pumps, the power steering pump, the alternator, etc. of the motor vehicle).

Aus der DE 199 31 985 ist ein Verfahren zur Ermittlung des indizierten Drehmomentes von Verbrennungskraftmaschinen durch Messung der Winkelgeschwindigkeit sowie der Winkelbeschleunigung und Bestimmung einer Drehmomentsumme bekannt. Die Ermittlung basiert auf den Drehmomentverhältnissen an stationären Betriebspunkten, an denen das mittlere indizierte Drehmoment näherungsweise gleich dem Widerstandsdrehmoment ist.From the DE 199 31 985 is a method for determining the indicated torque of internal combustion engines by measuring the angular velocity and the angular acceleration and determining a torque sum known. The determination is based on the torque ratios at steady-state operating points where the average indicated torque is approximately equal to the resistance torque.

Aus der DE 197 49 815 A1 ist ein Motormanagementsystem für einen Verbrennungsmotor bekannt, wobei durch Erfassung des Brennraumdrucks in jedem Zylinder oder Brennraum des Verbrennungsmotors in Abhängigkeit von dem jeweiligen Kurbelwinkel das in jedem Brennraum indizierte Motormoment ermittelt und für die Drehmomentregelung des Kraftfahrzeugs verwendet wird.From the DE 197 49 815 A1 an engine management system for an internal combustion engine is known, wherein by detecting the combustion chamber pressure in each cylinder or combustion chamber of the internal combustion engine as a function of the respective crank angle, the indicated in each combustion chamber engine torque is determined and used for the torque control of the motor vehicle.

In Motorsteuergeräten herkömmlicher Motormanagementsysteme werden hierzu Kennfelder abgelegt, welche für die Drehmomentregelung erforderliche Motordrehmomentdaten umfassen. Durch Zugriff auf diese Kennfelder können dann in Abhängigkeit von dem erfassten bzw. ermittelten indizierten Motormoment entsprechende Einstellungen geeigneter Betriebsparameter des Verbrennungsmotors, z.B. der eingespritzten Kraftstoffmenge oder des Zündzeitpunkts etc., für eine möglichst optimale Drehmomentregelung des Verbrennungsmotors vorgenommen werden.In engine control units of conventional engine management systems, maps are stored which include engine torque data required for the torque control. By accessing these maps, corresponding settings of suitable operating parameters of the internal combustion engine, for example the injected fuel quantity or the ignition time etc., can then be made for optimum torque control of the internal combustion engine as a function of the detected or determined indexed engine torque.

Bei den herkömmlichen Motormanagementsystemen erfolgt jedoch keine Erfassung des zuvor erwähnten augenblicklichen effektiven Motormoments. Insbesondere werden in Kennfeldern der zuvor beschriebenen Art lediglich relativ ungenaue Momentmittelwerte verwendet und das Ist-Verhalten des Verbrennungsmotors nicht oder nur unzureichend berücksichtigt. Das effektive Motormoment und auch das ebenfalls zuvor erwähnte Verlustmoment spielen bei den herkömmlichen Motorregelkreisen keine Rolle.In the conventional engine management systems, however, there is no detection of the aforementioned instantaneous effective engine torque. In particular, only relatively inaccurate momentum values are used in maps of the type described above, and the actual behavior of the internal combustion engine is not taken into account or only insufficiently taken into account. The effective engine torque and also the previously mentioned loss torque play no role in the conventional motor control loops.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren sowie eine Vorrichtung zur Regelung eines Verbrennungsmotors vorzuschlagen, wobei das effektive Motormoment berücksichtigt werden kann. Dabei soll das erfindungsgemäße Verfahren bzw. die erfindungsgemäße Vorrichtung vorzugsweise auch eine Bestimmung des Verlustmoments, durch welches sich das effektive Motormoment von dem in dem Verbrennungsmotor durch Verbrennung indizierten Motormoment unterscheidet, ermöglichen.The present invention is therefore based on the object to propose a method and a device for controlling an internal combustion engine, wherein the effective engine torque can be taken into account. In this case, the method according to the invention or the device according to the invention should preferably also allow a determination of the loss torque, by means of which the effective engine torque differs from the engine torque indicated by combustion in the internal combustion engine.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruches 1 bzw. eine Vorrichtung mit den Merkmalen des Anspruches 10 gelöst. Die Unteransprüche definieren jeweils bevorzugte und vorteilhafte Ausführungsformen der vorliegenden Erfindung.This object is achieved by a method having the features of claim 1 and a device having the features of claim 10. The subclaims each define preferred and advantageous embodiments of the present invention.

Zur effektiven Regelung eines Verbrennungsmotors wird erfindungsgemäß die Bestimmung des an der Kurbelwelle des Verbrennungsmotors auftretenden effektiven Motormoments vorgeschlagen. Hierzu wird der in einem Brennraum des Verbrennungsmotors auftretende Brennraumdruck in Abhängigkeit von dem Kurbelwinkel erfasst und daraus das indizierte Motormoment in dem Brennraum abgeleitet. Aus dem indizierten Motormoment und der Winkelgeschwindigkeit der Kurbelwelle kann dann das effektive Motormoment abgeleitet werden, wobei dabei das Verlustmoment des Verbrennungsmotors ermittelt wird, welches insbesondere auch für Diagnosezwecke verwendet werden kann.For the effective control of an internal combustion engine, the determination of the effective engine torque occurring at the crankshaft of the internal combustion engine is proposed according to the invention. For this purpose, the combustion chamber pressure occurring in a combustion chamber of the internal combustion engine is detected as a function of the crank angle and from this the indicated engine torque in the combustion chamber is derived. From the indexed engine torque and the angular velocity of the crankshaft, the effective engine torque can then be derived, wherein the loss torque of the internal combustion engine is determined, which can be used in particular for diagnostic purposes.

Aus den Brennraumdruckdaten kann als Zwischengröße auch ein indizierter Mitteldruckwert abgeleitet und zur Regelung des Verbrennungsmotors, beispielsweise zur Verbesserung des Leerlaufs, eingesetzt werden.From the combustion chamber pressure data, an indexed average pressure value can also be derived as an intermediate variable and used to control the internal combustion engine, for example to improve idling.

Mit Hilfe der Erfindung ist durch die Verwendung neuer Regelgrößen eine verbesserte Regelung des Verbrennungsmotors möglich, was wiederum zu einer Verbesserung des Komforts, des Emissionsaustosses und des Kraftstoffverbrauchs führt. Darüber hinaus ermöglicht die Erfindung brennraumbasierte Regelkreise und ein brennraumbasiertes Motormanagement.With the aid of the invention, improved regulation of the internal combustion engine is possible through the use of new controlled variables, which in turn leads to an improvement in the comfort, emissions and fuel consumption. Furthermore the invention enables combustion chamber-based control circuits and a combustion chamber-based engine management.

Die vorliegende Erfindung wird nachfolgend näher anhand der beigefügten Zeichnung unter Bezugnahme auf ein bevorzugtes Ausführungsbeispiel erläutert. Dabei zeigt die einzige Figur eine vereinfachte Darstellung zur Erläuterung der Zylinder- bzw. Brennraumdruckerfassung in einem Verbrennungsmotor gemäß der vorliegenden Erfindung.The present invention will be explained in more detail below with reference to the accompanying drawings with reference to a preferred embodiment. The single figure shows a simplified representation for explaining the cylinder or combustion chamber pressure detection in an internal combustion engine according to the present invention.

In der Figur ist ein Zylinder oder Brennraum 2 bzw. das entsprechende Zylindergehäuse eines Verbrennungsmotors 1, beispielsweise eines Dieselmotors, dargestellt. Ein in dem Brennraum 2 befindlicher Kolben 3 wird über eine Kurbelwelle 4 des Verbrennungsmotors 1 angetrieben. Wird beispielsweise angenommen, dass der Verbrennungsmotor mit vier Takten arbeitet, erreichen die Kurbelwelle 4 und der Kolben 3 innerhalb eines Arbeitszyklusses genau zweimal den so genannten oberen Totpunkt OT und den unteren Totpunkt UT, was zwei vollständigen Umdrehungen der Kurbelwelle 4 entspricht. In der Kraftfahrzeugtechnik werden die Drehwinkel ϕ der Kurbelwelle 4 in Grad Kurbelwinkel (°KW) angegeben.In the figure, a cylinder or combustion chamber 2 and the corresponding cylinder housing of an internal combustion engine 1, for example, a diesel engine, shown. A piston 3 located in the combustion chamber 2 is driven via a crankshaft 4 of the internal combustion engine 1. Assuming, for example, that the internal combustion engine is operating at four strokes, the crankshaft 4 and the piston 3 reach exactly twice the so-called top dead center TDC and bottom dead center UT within one operating cycle, which corresponds to two complete revolutions of the crankshaft 4. In motor vehicle technology, the rotational angles φ of the crankshaft 4 are indicated in degrees crank angle (° CA).

Bei dem dargestellten Ausführungsbeispiel ist im Bereich des Zylinderkopfs oder der Zylinderkopfdichtung ein Drucksensor 5 angeordnet, mit dessen Hilfe der in dem Brennraum 2 während des Betriebs des Verbrennungsmotors 1 auftretende Brennraumdruck erfasst werden kann. Zu diesem Zweck umfasst der Drucksensor 5 beispielsweise eine Messmembran, welche abhängig von dem in dem Brennraum herrschenden Brennraumdruck unterschiedlich gedehnt bzw. verformt wird, wobei das Ausmaß der Dehnung bzw. Verformung dieser Messmembran als Maß für den in dem Brennraum 2 augenblicklich herrschenden Brennraumdruck von einem Steuergerät 7 ausgewertet wird.In the illustrated embodiment, a pressure sensor 5 is arranged in the region of the cylinder head or the cylinder head gasket, with the aid of which occurring in the combustion chamber 2 during operation of the internal combustion engine 1 combustion chamber pressure can be detected. For this purpose, the pressure sensor 5 comprises, for example, a measuring diaphragm which is differently stretched or deformed depending on the combustion chamber pressure prevailing in the combustion chamber, the extent of the expansion or deformation of this measuring diaphragm being a measure of the combustion chamber pressure instantaneously prevailing in the combustion chamber 2 Control unit 7 is evaluated.

Der auf diese Weise in dem Brennraum 2 herrschende Brennraumdruck wird zu der augenblicklichen Stellung der Kurbelwelle 4, d. h. zu dem augenblicklichen Drehwinkel ϕ der Kurbelwelle 4, in Beziehung gesetzt. Zu diesem Zweck ist ein Kurbelwellensensor 6 vorgesehen, welcher kontinuierlich die augenblickliche Stellung der Kurbelwelle 4 erfasst und diese dem Steuergerät 7 zuführt. Auf diese Weise kann das Steuergerät 7 den Verlauf des Brennraumdrucks in Abhängigkeit von dem Drehwinkel ϕ der Kurbelwelle 4 ermitteln.The combustion chamber pressure prevailing in the combustion chamber 2 in this way becomes the instantaneous position of the crankshaft 4, i. H. to the instantaneous rotational angle φ of the crankshaft 4. For this purpose, a crankshaft sensor 6 is provided which continuously detects the instantaneous position of the crankshaft 4 and supplies it to the control unit 7. In this way, the control unit 7 can determine the course of the combustion chamber pressure as a function of the rotational angle φ of the crankshaft 4.

Für eine Vielzahl der hierin vorgeschlagenen numerischen Auswertungen ist eine Zuordnung des augenblicklich erfassten Brennraum- oder Zylinderdrucks zu dem Brennraumvolumen erforderlich. Hierzu sollen nachfolgend die wesentlichen Grundlagen erläutert werden.For a plurality of the numerical evaluations proposed herein, an assignment of the currently detected combustion chamber or cylinder pressure to the combustion chamber volume is required. For this purpose, the essential basics are explained below.

Das gesamte Hubvolumen VH des Verbrennungsmotors ist in Abhängigkeit von dem Brennraumhubvolumen Vh und der Zylinder- oder Brennraumzahl z wie folgt definiert: V H = V h z .

Figure imgb0001
The total displacement V H of the internal combustion engine is defined as a function of the combustion chamber displacement V h and the cylinder or combustion chamber number z as follows: V H = V H z ,
Figure imgb0001

Das Verdichtungsvolumen VC jedes Brennraums ist folgendermaßen über das Verdichtungsverhältnis mit dem Hubvolumen des jeweiligen Brennraums verknüpft: ε = V C + V h V C

Figure imgb0002
The compression volume V C of each combustion chamber is linked to the stroke volume of the respective combustion chamber via the compression ratio as follows: ε = V C + V H V C
Figure imgb0002

Das jeweils augenblickliche Brennraumvolumen V(ϕ) ergibt sich aus dem kurbelwinkelabhängigen Kolbenweg χ(ϕ) (gemessen ausgehend vom oberen Totpunkt OT) und der Kolbenfläche Ak, wobei r den Radius der Kurbelwelle 4 bezeichnet: V ( ϕ ) = V C + χ ϕ A k = V C + χ ϕ 2 r V h .

Figure imgb0003
The respective instantaneous combustion chamber volume V (φ) results from the crank angle-dependent piston travel χ (φ) (measured from the top dead center OT) and the piston surface A k , where r denotes the radius of the crankshaft 4: V ( φ ) = V C + χ φ A k = V C + χ φ 2 r V H ,
Figure imgb0003

Bei Betrachtung der einzigen Figur können folgende geometrischen Zusammenhänge ermittelt werden, wobei I die Länge des den Kolben 3 mit der Kurbelwelle 4 verbindenden Pleuels und β den Pleuelwinkel wie in der Figur gezeigt bezeichnen: r sin ϕ = l sin β l 2 = l cos β 2 + l sin β 2 χ ϕ r ( 1 - cos ϕ ) + l 1 - cos ϕ

Figure imgb0004
Considering the single figure, the following geometric relationships can be determined, where I denote the length of the connecting rod connecting the piston 3 to the crankshaft 4 and β the connecting rod angle as shown in the figure: r sin φ = l sin β l 2 = l cos β 2 + l sin β 2 χ φ r ( 1 - cos φ ) + l 1 - cos φ
Figure imgb0004

Mit der Definition des so genannten Schubstangenverhältnisses λ s = r l

Figure imgb0005
ergibt sich der Kolbenweg (bezogen auf den oberen Totpunkt OT) somit zu: χ ( ϕ ) = r ( 1 - cos ϕ ) + r λ s ( 1 - 1 - λ s sin ϕ 2 ) .
Figure imgb0006
With the definition of the so-called push rod ratio λ s = r l
Figure imgb0005
the piston travel (with reference to top dead center OT) thus results in: χ ( φ ) = r ( 1 - cos φ ) + r λ s ( 1 - 1 - λ s sin φ 2 ) ,
Figure imgb0006

Das Brennraumvolumen V(ϕ) ist somit in Abhängigkeit von der Hubfunktion k ϕ = χ ϕ r

Figure imgb0007
: V ( ϕ ) = V C + k ϕ 2 V h = V C + ( 1 - cos ϕ ) + 1 λ s 1 - 1 - λ s sin ϕ 2 2 V h .
Figure imgb0008
The combustion chamber volume V (φ) is thus dependent on the lifting function k φ = χ φ r
Figure imgb0007
: V ( φ ) = V C + k φ 2 V H = V C + ( 1 - cos φ ) + 1 λ s 1 - 1 - λ s sin φ 2 2 V H ,
Figure imgb0008

Die Ableitung der Hubfunktion dk = sin ϕ + 2 λ s sin ϕ cos ϕ 2 1 - λ s sin ϕ 2 = sin ϕ + λ s sin 2 ϕ 2 1 - λ s sin ϕ 2

Figure imgb0009
erlaubt die Berechnung der kurbelwinkelabhängigen Veränderung des Brennraumvolumens wie folgt: dV ϕ = dk ϕ V h 2 = sin ϕ + λ s sin 2 ϕ 2 1 - λ s sin ϕ 2 V h 2
Figure imgb0010
The derivation of the lifting function dk = sin φ + 2 λ s sin φ cos φ 2 1 - λ s sin φ 2 = sin φ + λ s sin 2 φ 2 1 - λ s sin φ 2
Figure imgb0009
allows the calculation of the crank angle-dependent change of the combustion chamber volume as follows: dV φ = dk φ V H 2 = sin φ + λ s sin 2 φ 2 1 - λ s sin φ 2 V H 2
Figure imgb0010

Aufbauend auf den zuvor beschriebenen Grundlagen sollen nachfolgend die im Rahmen der vorliegenden Erfindung relevanten Zusammenhänge zur Bestimmung des effektiven Motormoments sowie des Verlustmoments des Verbrennungsmotors erläutert werden.Based on the above-described principles, the relationships that are relevant in the context of the present invention for determining the effective engine torque and the torque loss of the internal combustion engine will be explained below.

Der effektive Wirkungsgrad des Verbrennungsprozesses ηe wird durch die Umsetzung der im Kraftstoff gespeicherten Energie QB in eine an der Kurbelwelle 4 verfügbare Nutzarbeit We definiert. Mit dem so genannten unteren Heizwert Hu des Kraftstoffs und der Kraftstoffmasse mk ergibt sich somit folgende Beziehung: η e = W e Q B = W e m k H u .

Figure imgb0011
The effective efficiency of the combustion process η e is defined by the conversion of the energy Q B stored in the fuel into a useful work W e available at the crankshaft 4. With the so-called lower heating value H u of the fuel and the fuel mass m k , the following relationship thus results: η e = W e Q B = W e m k H u ,
Figure imgb0011

Mit Hilfe der zuvor erwähnten Brennraumdruckmessung kann der Hochdruckprozess in dem jeweiligen Brennraum oder Zylinder 2 des Verbrennungsmotors 1 beobachtet werden. Somit lassen sich die mechanischen Verluste (mechanischer Wirkungsgrad ηm) von den inneren Verlusten (innerer Wirkungsgrad ηi) trennen. Für den effektiven Wirkungsgrad des Verbrennungsprozesses gilt mit der indizierten oder inneren Arbeit Wi: η e = η e η m = W i m k H u W e W i .

Figure imgb0012
With the aid of the aforementioned combustion chamber pressure measurement, the high-pressure process in the respective combustion chamber or cylinder 2 of the internal combustion engine 1 can be observed. Thus, the mechanical losses (mechanical efficiency η m ) can be separated from the internal losses (internal efficiency η i ). For the effective efficiency of the combustion process applies with the indicated or internal work W i : η e = η e η m = W i m k H u W e W i ,
Figure imgb0012

Aus dem 1. Hauptsatz der Thermodynamik ergibt sich für die Energiebilanz des Systems folgende Differentialgleichung: dW i + dQ W + dQ B + dH E + dH A + dH B = dU .

Figure imgb0013
From the first law of thermodynamics the following differential equation results for the energy balance of the system: dW i + dQ W + dQ B + dH e + dH A + dH B = you ,
Figure imgb0013

Der Term dWi beschreibt die Volumenänderungsarbeit und ist gemäß dem Zusammenhang dWi = -p·dV durch den Brennraumdruck p sowie die Volumenveränderung dV definiert.The term dW i describes the volume change work and is defined according to the relationship dW i = -p * dV by the combustion chamber pressure p and the volume change dV.

Der Term dQW beschreibt die dem System entzogene Wandwärmeenergie, und der Term dQB beschreibt die umgesetzte Kraftstoffenergie bzw. den Brennverlauf des eingespritzten Kraftstoffs.The term dQ W describes the wall heat energy extracted from the system, and the term dQ B describes the converted fuel energy or the combustion history of the injected fuel.

Mit dHE ist die Enthalpieänderung der in das System einströmenden Masse, mit dHA die Enthalpieänderung der ausströmenden Masse, und mit dHB die Enthalpieänderung des eingespritzten Kraftstoffs bezeichnet.With dH E is the enthalpy change of the mass flowing into the system, where dH A is the enthalpy change of the outflowing mass, and dH B is the enthalpy change of the injected fuel.

Der Term dU beschreibt schließlich die Änderung der inneren Energie des Systems.The term dU finally describes the change in the internal energy of the system.

Gleichung (11) ist die Grundlage für die energetische Beurteilung der in einem Brennraum 2 des Verbrennungsmotors 1 ablaufenden Vorgänge. Die im Brennraumdruck p beobachtbare Wärmeänderung im Arbeitsgas ergibt den Heizverlauf dQH als Summe der umgesetzten Kraftstoffenergie dQB und der negativen Wandwärmeenergie dQW: dQ H = dQ B + dQ W .

Figure imgb0014
Equation (11) is the basis for the energetic assessment of the processes taking place in a combustion chamber 2 of the internal combustion engine 1. The heat change in the working gas observable in the combustion chamber pressure p results in the heating course dQ H as the sum of the converted fuel energy dQ B and the negative wall heat energy dQ W : dQ H = dQ B + dQ W ,
Figure imgb0014

Bei Verbrennungsmotoren entspricht der Mitteldruck pm in einem Brennraum der auf das entsprechende Hubvolumen Vh bezogenen Arbeit W eines Arbeitsspiels: p m = W V h .

Figure imgb0015
In internal combustion engines, the mean pressure p m in a combustion chamber corresponds to the work W of a working cycle related to the corresponding displacement V h : p m = W V H ,
Figure imgb0015

Die aus einer Verbrennung resultierende effektive spezifische Arbeit kann an der Kurbelwelle 4 des Verbrennungsmotors 1 abgenommen und in Form des effektiven Mitteldrucks pme, des effektiven Motormoments Me oder der effektiven Leistung Pe ausgedrückt werden. Diese effektive spezifische Arbeit entspricht der Differenz zwischen der spezifischen inneren Arbeit, ausgedrückt durch den indizierten Mitteldruck pmi, dem indizierten Motormoment Mi oder der indizierten Leistung Pi, und der spezifischen mechanischen Verlustarbeit (Verlust- oder Reibungsmitteldruck pmv, Verlustmoment Mv, Verlustleistung Pv). Der mechanische Wirkungsgrad ηm verknüpft die effektiven und induzierten Größen wie folgt: η m = p me p mi = M e M i = P e P i .

Figure imgb0016
The effective specific work resulting from combustion can be taken from the crankshaft 4 of the internal combustion engine 1 and expressed in terms of the mean effective pressure p me , the effective engine torque M e or the effective power P e . This effective specific work corresponds to the difference between the specific internal work expressed by the indicated mean pressure p mi , the indicated engine torque M i or the indicated power P i , and the specific mechanical work loss (loss or Friction medium pressure p mv , loss moment M v , power loss P v ). The mechanical efficiency η m links the effective and induced quantities as follows: η m = p me p Wed. = M e M i = P e P i ,
Figure imgb0016

Aus Gleichung (14) ist ersichtlich, dass die zuvor erwähnten Mitteldrücke, Momente und Arbeiten bzw. Leistungen ineinander umgerechnet werden können.From equation (14) it can be seen that the aforementioned mean pressures, moments and work or performances can be converted into each other.

Der indizierte Mitteldruck pmi lässt sich direkt aus dem mit Hilfe des Drucksensors 5 gemessenen Brennraumdruck bestimmen. Er wird aus der Volumenänderungsarbeit abgeleitet und charakterisiert die Energieumsetzung des Arbeitsgases in dem jeweiligen Brennraum: P mi = 1 V h p dV .

Figure imgb0017
The indicated mean pressure p mi can be determined directly from the combustion chamber pressure measured with the aid of the pressure sensor 5. It is derived from the volume change work and characterizes the energy conversion of the working gas in the respective combustion chamber: P Wed. = 1 V H p dV ,
Figure imgb0017

Der indizierte Mitteldruck pmi entspricht somit der auf das jeweilige Hubvolumen Vh bezogenen Volumenänderungsarbeit.The indicated mean pressure p mi thus corresponds to the volume change work related to the respective displacement volume V h .

Die indizierte Arbeit entspricht der in dem jeweiligen pV-Diagramm von der Kennlinie eingeschlossenen Fläche. Sie unterteilt sich bei Viertakt-Motoren in einen Hochdruck- und einen Ladungswechselanteil. Der indizierte Mitteldruck pmi_HD der Hochdruckphase kann als Kenngröße für die Verbrennung der einzelnen Brennräume verwertet werden und wird zwischen den beiden unteren Totpunkten UT des Kurbelwegs in Abhängigkeit von dem gemessenen Brennraumdruck p wie folgt definiert: p mi_HD = 1 V h h - 180 ° KW 180 ° KW p dV .

Figure imgb0018
The indexed work corresponds to the area enclosed by the characteristic in the pV diagram. It is divided into four-stroke engines in a high-pressure and a charge alternation. The indicated mean pressure p mi_HD of the high-pressure phase can be utilized as a parameter for the combustion of the individual combustion chambers and is defined between the two bottom dead centers UT of the crank path as a function of the measured combustion chamber pressure p as follows: p mi_HD = 1 V H H - 180 ° KW 180 ° KW p dV ,
Figure imgb0018

Der indizierte Mitteldruck pmi_HD der Hochdruckphase wird vorzugsweise für die Regelung und Steuerung des Verbrennungsmotors 1 ausgewählt, da er die innere Arbeit jedes Brennraums 2 physikalisch beschreibt.The indicated mean pressure p mi_HD of the high-pressure phase is preferably selected for the regulation and control of the internal combustion engine 1, since it physically describes the internal work of each combustion chamber 2.

Der innere Wirkungsgrad ηi beschreibt die Verbrennungsgüte, da er die eingesetzte Brennstoffenergie QB mit der indizierten Energie Wi vergleicht: η i = W i Q B = p mi V h m k H u

Figure imgb0019
The internal efficiency η i describes the combustion quality, since it compares the fuel energy Q B used with the indicated energy W i : η i = W i Q B = p Wed. V H m k H u
Figure imgb0019

Das Drehmoment M des Verbrennungsmotors 1 ist proportional zu dem (zwischen den einzelnen Brennräumen oder Zylindern 2 gemittelten) Mitteldruck pm des Verbrennungsmotors: M V H p m .

Figure imgb0020
The torque M of the internal combustion engine 1 is proportional to the (average between the individual combustion chambers or cylinders 2) mean pressure p m of the internal combustion engine: M ~ V H p m ~ ,
Figure imgb0020

Das indizierte Motormoment ist eine Umrechnung der indizierten Arbeit in ein (virtuelles) Moment (vgl. Gleichung (18) mit dem Index i). Das momentane indizierte Motormoment eines Brennraums lässt sich näherungsweise wie folgt bestimmen: M i ϕ = p ϕ . dV ϕ .

Figure imgb0021
The indexed engine torque is a conversion of the indicated work into a (virtual) moment (compare equation (18) with the index i). The instantaneous indexed engine torque of a combustion chamber can be determined approximately as follows: M i φ = p φ , dV φ ,
Figure imgb0021

Aus der kontinuierlichen Betrachtung der indizierten Arbeit gemäß Gleichung (19) kann das momentane indizierte Motormoment durch Überlagerung der Verläufe aller z Brennräume berechnet werden: M i ϕ = z p ϕ . dV ϕ .

Figure imgb0022
From the continuous consideration of the indicated work according to equation (19), the instantaneous indicated engine torque can be calculated by superimposing the courses of all z combustion chambers: M i φ = Σ z p φ , dV φ ,
Figure imgb0022

Da die Funktion dV ϕ

Figure imgb0023
für die numerische Bestimmung des indizierten Mitteldrucks durch das Steuergerät 7 ohnehin berechnet wird, stellt die Bestimmung des maximalen und minimalen indizierten Motormoments sowie deren Kurbelwinkellagen ϕMimax, ϕMimin lediglich einen unwesentlichen Mehraufwand dar.Because the function dV φ
Figure imgb0023
is already calculated for the numerical determination of the indicated mean pressure by the control unit 7, the determination of the maximum and minimum indicated engine torque and their crank angle positions φ Mimax , φ Mimin represents only an insignificant overhead.

Das indizierte Motormoment ist über eine beispielsweise in "Berechnung des Brennraumdruckverlaufs aus Kurbelwellen-Winkelgeschwindigkeit von Verbrennungsmotoren", Fehrenbach H., Fortschrittsberichte VDI Reihe 6, Energieerzeugung Nr. 255, VDI-Verlag Düsseldorf, 1991, beschriebene Differentialgleichung des Kurbeltriebs mit der Motordrehzahl verknüpft, wobei diesbezüglich an dieser Stelle ausdrücklich auf die Ausführungen in dieser Veröffentlichung verwiesen wird. Das (momentane) indizierte Motormoment kann wie beschrieben aus dem Brennraumdruck mit einer Auflösung von 1°KW abgeleitet werden. Des Weiteren liegt auch die Kurbelwellen-Winkelgeschwindigkeit mit einer zeitlichen Auflösung von 1°KW vor. Somit sind die Eingangs- und Ausgangsgrößen des in dieser Veröffentlichung beschriebenen Modells des Kurbeltriebs vorhanden, und es können daraus das effektive Motormoment Me(ϕ) und das Verlustmoment MV(ϕ) bestimmt werden, da gemäß dieser Differentialgleichung folgender Zusammenhang gilt: M i ϕ + M v ϕ - M e ϕ = J d 2 ϕ dt + 2 dt 2 .

Figure imgb0024
The indicated engine torque is linked to the engine speed via a differential equation of the crank mechanism described, for example, in "Calculation of the combustion chamber pressure profile from crankshaft angular velocity of internal combustion engines", Fehrenbach H., Progress Reports VDI Series 6, Energy Production No. 255, VDI-Verlag Düsseldorf, 1991. in this regard, reference is expressly made at this point to the statements in this publication. The (instantaneous) indicated engine torque can be derived as described from the combustion chamber pressure with a resolution of 1 ° KW. Furthermore, the crankshaft angular velocity is also important with a temporal resolution of 1 ° KW. Thus, the input and output quantities of the crank drive model described in this publication are present and the effective engine torque M e (φ) and the lost torque M V (φ) can be determined therefrom, since according to this differential equation: M i φ + M v φ - M e φ = J d 2 φ dt + J ' 2 dt 2 ,
Figure imgb0024

Die Herleitung der Ausdrücke für J und J' kann ebenfalls der zuvor beschriebenen Veröffentlichung entnommen werden. Im Zusammenhang mit der vorliegenden Erfindung ist lediglich von Bedeutung, dass die rechte Seite der Gleichung (21) in Abhängigkeit von der Kubelwellen-Winkelgeschwindigkeit bekannt ist, so dass bei zusätzlicher Herleitung von Mi(ϕ) wie zuvor beschrieben aus dem Brennraumdruck auf das Verlustmoment Mv(ϕ) und das effektive Motormoment Me(ϕ) geschlossen werden kann.The derivation of the expressions for J and J 'can also be taken from the publication described above. It is only important in the context of the present invention that the right-hand side of equation (21) is known as a function of the crankshaft angular velocity, so that with additional derivation of M i (φ) from the combustion chamber pressure to the loss moment as described above M v (φ) and the effective motor torque M e (φ) can be closed.

Wie bereits erwähnt worden ist, geht das Verlustmoment Mv(ϕ) auf die negative Arbeit durch Reibungsverluste am jeweiligen Kolben und Kurbeltrieb sowie auf Momentverluste aufgrund von ebenfalls über die Kurbelwelle angetriebenen Verbrauchern des jeweiligen Kraftfahrzeugs, wie beispielsweise dem Klimakompressor, den Einspritzpumpen, der Servopumpe, der Lichtmaschine etc., zurück. Dabei gilt zwischen den einzelnen Momenten der folgende Zusammenhang: M e ϕ = M i ϕ + M v ϕ M v ϕ < 0.

Figure imgb0025
As already mentioned, the loss torque M v (φ) is due to the negative work by friction losses on the respective piston and crank mechanism and torque losses due to consumers of the respective motor vehicle also driven via the crankshaft, such as the air conditioning compressor, the injection pumps, the power steering pump , the alternator, etc., back. The following relationship applies between the individual moments: M e φ = M i φ + M v φ M v φ < 0th
Figure imgb0025

Im Betriebszustand "Leerlauf"/"Motor ausgekuppelt" ist das effektive Motormoment Null. Daher kann in diesem Betriebszustand das Verlustmoment aus den obigen Zusammenhängen sowie in Abhängigkeit von dem aus dem Brennraumdruck abgeleiteten indizierten Motormoment ermittelt werden. Zusätzlich kann über die Mitteldruckwerte auch das zylinder- oder brennraumindividuelle Schleppmoment bestimmt werden. Dabei gilt zwischen den Mitteldruckwerten folgender Zusammenhang: p ms = p mi - HD - p me .

Figure imgb0026
In the operating state "Idle" / "Engine disengaged" the effective engine torque is zero. Therefore, in this operating state, the loss torque can be determined from the above relationships as well as in dependence on the indexed engine torque derived from the combustion chamber pressure. In addition, the cylinder or combustion chamber-specific drag torque can be determined via the mean pressure values. The following relationship applies between the mean pressure values: p ms = p Wed. - HD - p me ,
Figure imgb0026

Aus dem Schleppmitteldruck pms kann das Schleppmoment über Gleichung (18) bestimmt werden.From the drag pressure p ms , the drag torque can be determined via equation (18).

Mit Hilfe der zuvor beschriebenen zusätzlich gewonnenen Informationen, insbesondere dem effektiven Motormoment Me, dem Verlustmoment Mv und dem indizierten Mitteldruck pmi, können die vorhandenen Regelkreise des Motormanagementsystems verbessert werden, da diese zusätzlichen Informationen in die Steuerung bzw. Regelung des Verbrennungsmotors mit einfließen können. Bestimmte Stellgrößen, z.B. die Kraftstoff-Einspritzmenge, der Kraftstoff-Förderbeginn oder der Kraftstoff-Einspritzverlauf, können beispielsweise in Form einer zylinderindividuellen Verbrennungsbeginn- oder Momentenregelung derart verändert werden, dass die jeweils aus dem Brennraumdruck extrahierten Kenngrößen erreicht werden. Dabei findet insbesondere eine Regelung auf Basis der in dem jeweiligen Brennraum tatsächlich ablaufenden Verbrennung statt.With the help of the additional information previously obtained, in particular the effective engine torque M e , the lost torque M v and the indicated mean pressure p mi , the existing control loops of the engine management system can be improved because this additional information is included in the control or regulation of the internal combustion engine can. Certain manipulated variables, for example the fuel injection quantity, the fuel delivery start or the fuel injection course, can be changed in the form of a cylinder-specific combustion start or torque control, for example, such that the respective characteristic quantities extracted from the combustion chamber pressure are reached. In particular, a regulation takes place on the basis of the combustion actually taking place in the respective combustion chamber.

So kann insbesondere der Leerlauf des Verbrennungsmotors verbessert werden. Im unteren Drehzahlbereich kann auch die Laufruhe des Verbrennungsmotors verbessert werden. Es können zylinderindividuelle Sollwerte für den indizierten Mitteldruck vorgegeben werden, wenn unterschiedliche Moment- oder Reibverluste für die einzelnen Zylinder oder Brennräume festgestellt werden, um somit eine zylinderindividuelle Regelung zu erhalten. Durch die Erfassung des (zylinderindividuellen) indizierten Mitteldrucks wird ein absolutes Maß für das in der Verbrennung in dem jeweiligen Zylinder entstehende Moment gewonnen, so dass in Kombination mit einer hochaufgelösten Kurbelwinkelmarkierung sehr genaue und effektive zylinderindividuelle Regelkreise geschaffen werden können.In particular, the idling of the internal combustion engine can be improved. In the lower speed range and the smoothness of the engine can be improved. It is possible to specify cylinder-specific desired values for the indicated mean pressure, if different torque or friction losses for the individual cylinders or combustion chambers are determined, in order to obtain a cylinder-specific regulation. By detecting the (cylinder-specific) indicated mean pressure, an absolute measure of the torque generated in the combustion in the respective cylinder is obtained, so that in combination with a high-resolution crank angle marking, very precise and effective cylinder-individual control loops can be created.

Mit dem effektiven Motormoment steht eine Modellgröße hoher Güte für die Fahrverhaltensfunktionen "Leerlauf", "Ruckeldämpfung" etc. zur Verfügung. Das effektive Motormoment wird - wie zuvor beschrieben worden ist - kurbelwinkelaufgelöst erfasst und kann auch anderen Komponenten oder Teilnehmern des Triebstrangs, z.B. dem Getriebe oder den Nebenaggregaten, zur Steuerung/Regelung zur Verfügung gestellt werden.With the effective engine torque, a high-quality model is available for the "idle", "jerk damping" driving behavior functions. The effective engine torque, as described above, is detected as crank angle resolved and may also be detected by other components or subscribers of the driveline, e.g. the gearbox or ancillaries, are provided for control / regulation.

Dadurch, dass bei der zuvor beschriebenen Differentialgleichung des Kurbeltriebs, welche die Grundlage für die Bestimmung des Verlustmoments und des effektiven Moments des Verbrennungsmotors darstellt, aufgrund der Ermittlung des indizierten Motormoments in Abhängigkeit von dem Brennraumdruck im Prinzip sowohl die Eingangs- als auch die Ausgangsgrößen bekannt sind, kann bei bekannten Betriebszuständen die Drehzahlinformation auch zur Überprüfung der Richtigkeit der Drucksensoren der einzelnen Brennräume des Verbrennungsmotors verwendet werden.Due to the fact that in the previously described differential equation of the crank mechanism, which forms the basis for determining the torque loss and the effective torque of the internal combustion engine, both the input and output variables are known in principle on the basis of the determination of the indicated engine torque as a function of the combustion chamber pressure In the case of known operating states, the speed information can also be used to check the correctness of the pressure sensors of the individual combustion chambers of the internal combustion engine.

Die Leerlaufregelung und die Ruckeldämpfung des Verbrennungsmotors können durch Identifikation der Parameter dieser Differentialgleichung in einem weiteren Schritt adaptiert werden, so dass diese Parameter nicht mehr in einem langwierigen Prozess für verschiedene Betriebszustände appliziert werden müssen.The idling control and the jerk damping of the internal combustion engine can be adapted by identifying the parameters of this differential equation in a further step so that these parameters no longer need to be applied in a lengthy process for different operating states.

Mit dem Verlustmoment steht eine Modellgröße zur Verfügung, mit deren Hilfe zylinderindividuell zu Diagnosezwecken die Reibung sowie sonstige Verluste im Motor überwacht werden können und auf geeignete Weise darauf reagiert werden kann.With the loss torque is a model size available with the help of cylinder-specific for diagnostic purposes, the friction and other losses in the engine can be monitored and can be responded to in a suitable manner.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
Verbrennungsmotorinternal combustion engine
22
Zylindergehäusecylinder housing
33
Kolbenpiston
44
Kurbelwellecrankshaft
55
Drucksensorpressure sensor
66
Kurbelwellensensorcrankshaft sensor
77
Steuergerätcontrol unit
88th
EinspritzventilInjector
OTOT
Oberer TotpunktTop Dead Center
UTUT
Unterer TotpunktBottom dead center
ϕφ
Kurbelwinkelcrank angle
ββ
PleuelwinkelPleuelwinkel
II
Pleuellängeconnecting rod
rr
Kurbelwellenradiuscrankshaft radius

Claims (11)

  1. Method for controlling an internal combustion engine, the combustion chamber pressure occurring in a combustion chamber (2) of the internal combustion engine (1) as a result of a combustion process being registered as a function of a crank angle (ϕ) of a crankshaft (4) of the internal combustion engine (1) and used to control at least one operating parameter of the internal combustion engine (1), an engine torque indicated by the combustion process in the combustion chamber (2) being derived from the combustion chamber pressure, characterized in that in an idling operating state or a disengaged operating state of the internal combustion engine (1) a torque loss of the internal combustion engine (1) is derived from the indicated engine torque and angular velocity of the crankshaft (4), and that an effective engine torque occurring on the crankshaft (4) due to the combustion is determined from the indicated engine torque and the torque loss and is used for controlling at least one operating parameter of the internal combustion engine (1).
  2. Method according to Claim 1, characterized in that an indicated mean pressure is derived from the combustion chamber pressure and is used for controlling the internal combustion engine (1).
  3. Method according to Claim 2, characterized in that the indicated mean pressure for a high-pressure phase in the combustion chamber is derived from the combustion chamber pressure and is used for controlling the internal combustion engine (1).
  4. Method according to Claim 3, characterized in that the indicated mean pressure pmi_HD is determined as a function of the combustion chamber pressure p and a swept volume Vh of a piston (3) of the internal combustion engine (1) situated in the combustion chamber (2), as follows: p mi_HD = 1 V h h - 180 ° KW 180 ° KW p dV
    Figure imgb0029
  5. Method according to any one of Claims 2 to 4, characterized in that the indicated engine torque is derived from the indicated mean pressure.
  6. Method according to any one of Claims 2 to 5, characterized in that an idling behaviour of the internal combustion engine (1) is controlled as a function of the indicated mean pressure.
  7. Method according to any one of Claims 1 to 4, characterized in that the indicated engine torque Mi is derived from the combustion chamber pressure p and a volume V of the combustion chamber (2) as a function of the crank angle ϕ of the crankshaft (4), according to the correlation M i ϕ = p ϕ . dV ϕ .
    Figure imgb0030
  8. Method according to any one of the preceding claims, characterized in that the torque loss is used to diagnose a deficient state of the internal combustion engine (1).
  9. Method according to any one of the preceding claims, characterized in that the method is performed for specific chambers in a plurality of combustion chambers (2) of the internal combustion engine (1).
  10. Device for controlling an internal combustion engine, comprising crank angle registering means (6) for registering a crank angle (ϕ) of a crankshaft (4) of the internal combustion engine, combustion chamber pressure registering means (5) for registering the combustion chamber pressure occurring in a combustion chamber (2) of the internal combustion engine (1), and a control unit (7) for controlling at least one operating parameter of the internal combustion engine (1) as a function of the combustion chamber pressure registered by the combustion chamber pressure registering means (7) and the crank angle (ϕ) registered by the crank angle registering means (6), the control unit (7) being configured in such a way that it derives an engine torque indicated by the combustion process in the combustion chamber (2) from the combustion chamber pressure, characterized in that the control unit (7) is configured in such a way that in an idling operating state or a disengaged operating state of the internal combustion engine (1) it derives a torque loss of the internal combustion engine (1) from the indicated engine torque and an angular velocity of the crankshaft (4), determines an effective engine torque occurring on the crankshaft (4) due to the combustion from the indicated engine torque and the torque loss, and uses this for controlling at least one operating parameter of the internal combustion engine (1).
  11. Device according to Claim 10, characterized in that the control unit (7) is configured for controlling the internal combustion engine (1) by the method according to any one of Claims 1 to 9.
EP03006785A 2002-04-26 2003-03-26 Method and apparatus for controlling an internal combustion engine Expired - Lifetime EP1365129B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10218736 2002-04-26
DE10218736A DE10218736A1 (en) 2002-04-26 2002-04-26 Diesel engine regulation method detects combustion pressure for calculation of effective engine torque used for regulation of at least one engine operating parameter

Publications (3)

Publication Number Publication Date
EP1365129A2 EP1365129A2 (en) 2003-11-26
EP1365129A3 EP1365129A3 (en) 2005-03-23
EP1365129B1 true EP1365129B1 (en) 2008-03-05

Family

ID=29224786

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03006785A Expired - Lifetime EP1365129B1 (en) 2002-04-26 2003-03-26 Method and apparatus for controlling an internal combustion engine

Country Status (3)

Country Link
EP (1) EP1365129B1 (en)
AT (1) ATE388315T1 (en)
DE (2) DE10218736A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004026213B4 (en) * 2004-05-28 2016-12-15 Volkswagen Ag Method and device for determining losses of an internal combustion engine
DE102005058820B4 (en) * 2005-12-09 2016-11-17 Daimler Ag Method for controlling an internal combustion engine, in particular a self-igniting internal combustion engine
FR2900977A3 (en) * 2006-05-12 2007-11-16 Renault Sas Fuel injection control system for e.g. heat engine, has feedback loop determining quantity of fuel to be injected in chamber based on comparison between average torque threshold and instantaneous average torque calculated by controller
DE102006056708B4 (en) 2006-11-30 2012-03-08 Robert Bosch Gmbh Method, device and computer program for determining cylinder-specific Verbrennugsmerkmale an internal combustion engine
DE102007021021A1 (en) 2007-05-04 2008-11-06 Daimler Ag Regulating structure for a combustion engine comprises an algorithm for optimizing the engine operating parameters
DE102007053719B3 (en) * 2007-11-10 2009-06-04 Audi Ag Internal combustion engine e.g. flat engine, operating device for motor vehicle, involves determining mass of gas in cylinder as parameter for quantity of gas, and determining oxygen concentration of gas as parameter for quality of gas
DE102007055757A1 (en) 2007-12-11 2009-06-18 Zf Friedrichshafen Ag Method for determining the torque of the internal combustion engine of a motor vehicle available at the crankshaft
FR2928974A1 (en) * 2008-03-19 2009-09-25 Renault Sas Combustion controlling system for internal combustion engine of motor vehicle, has control unit with closed control loop utilizing value representing output characteristic parameter of internal combustion engine, as input set point value
US20110079197A1 (en) * 2009-10-01 2011-04-07 Sturman Industries, Inc. Control Method and Apparatus for Multi-Fuel Compression Ignition Engines
US8510016B2 (en) * 2009-10-30 2013-08-13 GM Global Technology Operations LLC Method and system for controlling an engine using in-cylinder pressure sensor signals
DE102010051370B4 (en) * 2010-11-13 2014-02-27 Volkswagen Ag Determining an indicated torque of an internal combustion engine
DE102010051369B4 (en) * 2010-11-13 2023-12-28 Volkswagen Aktiengesellschaft Method and device for determining an indicated torque and an indicated mean pressure of a cylinder of an internal combustion engine
DE102013005655B9 (en) * 2013-04-04 2014-07-31 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for determining the indicated mean pressure in the high-pressure phase during operation of an internal combustion engine
EP3067681B1 (en) * 2015-03-10 2018-02-14 IPG Automotive GmbH Method for operating an engine or power train test stand
FR3100568B1 (en) * 2019-09-06 2022-06-24 Psa Automobiles Sa Method for determining mechanical friction losses of an internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150446A (en) * 1984-01-18 1985-08-08 Toyota Motor Corp Air-fuel ratio control device of internal-combustion engine
US5107815A (en) * 1990-06-22 1992-04-28 Massachusetts Institute Of Technology Variable air/fuel engine control system with closed-loop control around maximum efficiency and combination of otto-diesel throttling
JP2715207B2 (en) * 1992-01-16 1998-02-18 株式会社ユニシアジェックス Electronic control fuel supply device for internal combustion engine
DE19633066C2 (en) * 1996-08-16 1998-09-03 Telefunken Microelectron Method for the cylinder-selective control of a self-igniting internal combustion engine
DE19749815B4 (en) * 1997-11-11 2012-04-26 Robert Bosch Gmbh Method and device for determining the amount of fuel injected
DE19808167C1 (en) * 1998-02-27 1999-08-26 Daimler Chrysler Ag Method for correcting a calculated torque in the drive train of a motor vehicle
DE19931985C2 (en) * 1999-07-09 2003-06-18 Fraunhofer Ges Forschung Method for determining the indicated torque or the indicated mean pressure of internal combustion engines

Also Published As

Publication number Publication date
ATE388315T1 (en) 2008-03-15
EP1365129A2 (en) 2003-11-26
EP1365129A3 (en) 2005-03-23
DE10218736A1 (en) 2003-11-13
DE50309293D1 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
EP1365129B1 (en) Method and apparatus for controlling an internal combustion engine
DE112009001425B4 (en) A fuel system diagnostic method and apparatus by analyzing the engine crankshaft speed signal
DE112009001445B4 (en) Fuel system injection timing diagnosis by analyzing the cylinder pressure signal
DE112014007304B3 (en) Misfire Detection System
EP1034416B1 (en) Method for evaluating the march of pressure in a combustion chamber
DE112017002792T5 (en) Torque estimation in engine control
DE4407167C2 (en) Method for determining operating parameters of an internal combustion engine by evaluating the speed information
DE112009001479B4 (en) Method and apparatus for distinguishing between combustion problems and sensor errors within an engine
EP1921297B1 (en) Method for determining the cylinder pressure in a combustion engine
DE112009000896T5 (en) Fuel system diagnosis by analyzing cylinder pressure signals
EP3523529A1 (en) Method for the combined identification of the phase differences of the inlet valve stroke and the outlet valve stroke of an internal combustion engine with the aid of lines of equal phase position and amplitude
DE102015221809A1 (en) Method and apparatus for diagnosing a variable displacement of a compression ratio in a reciprocating internal combustion engine
WO2019238338A1 (en) Diagnosis of a charge cycle behavior of an internal combustion engine
DE10120032B4 (en) Method and device for detecting misfires in internal combustion engines
DE19706750A1 (en) Method for controlling the mixture in an internal combustion engine and device for carrying it out
DE102005021528B3 (en) Process and device to estimate the ratio between the volume of fuel burnt in combustion engine and the fuel put in cylinder uses signals from sensors in cylinder and crank shaft to calculate cylinder pressures used for estimation
DE102009013409A1 (en) Drive chain particularly for motor vehicle, has drive unit controlled by control unit with multiple cylinders and drive shaft, and condition value of dual mass flywheel is read in controller
EP1712763A1 (en) Apparatus and method to determine an emission value of a fuel injection engine
DE102011087199A1 (en) Method for operating an internal combustion engine
DE102012203669A1 (en) A speed-based estimate of cylinder-filling variables in an internal combustion engine having at least one cylinder
DE102012203671B4 (en) Speed-based combustion position estimation for a combustion engine with at least one cylinder
EP1058108B1 (en) Method and apparatus for diagnosing and controlling an internal combustion engine
DE102011086064B4 (en) Method for determining a filling difference in the cylinders of an internal combustion engine, operating method and computing unit
DE102004026213B4 (en) Method and device for determining losses of an internal combustion engine
DE102021102260A1 (en) Determination of knocking in a cylinder of an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LARINK, JOERG

Inventor name: JESCHKE, JENS

Inventor name: GLOGER, JUERGEN

Inventor name: NITZKE, HANS-GEORG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050923

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50309293

Country of ref document: DE

Date of ref document: 20080417

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080616

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
BERE Be: lapsed

Owner name: VOLKSWAGEN A.G.

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080605

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080805

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

26N No opposition filed

Effective date: 20081208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080326

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080906

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080606

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190327

Year of fee payment: 17

Ref country code: DE

Payment date: 20190331

Year of fee payment: 17

Ref country code: FR

Payment date: 20190328

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50309293

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200326