EP1360703B1 - Verfahren zur herstellung eines kabels - Google Patents

Verfahren zur herstellung eines kabels Download PDF

Info

Publication number
EP1360703B1
EP1360703B1 EP02718013A EP02718013A EP1360703B1 EP 1360703 B1 EP1360703 B1 EP 1360703B1 EP 02718013 A EP02718013 A EP 02718013A EP 02718013 A EP02718013 A EP 02718013A EP 1360703 B1 EP1360703 B1 EP 1360703B1
Authority
EP
European Patent Office
Prior art keywords
envelope
cable sheath
cable
sheath
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02718013A
Other languages
English (en)
French (fr)
Other versions
EP1360703A1 (de
Inventor
Harald Sikora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sikora AG
Original Assignee
Sikora AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sikora AG filed Critical Sikora AG
Publication of EP1360703A1 publication Critical patent/EP1360703A1/de
Application granted granted Critical
Publication of EP1360703B1 publication Critical patent/EP1360703B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0272Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using lost heating elements, i.e. heating means incorporated and remaining in the formed article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/145Pretreatment or after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C2035/0211Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould resistance heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3462Cables

Definitions

  • the invention relates to a method for producing a cable according to the preamble of patent claim 1.
  • Electrical cables for energy transmission basically have the same structure in such a way that at least one centrally guided conductor is provided, which is enveloped by at least one sheath or a layer of electrically insulating material.
  • a multilayered construction of a cable sheath wherein one or more layers of semiconducting material are used for field controlling and shielding effects. Such layers are usually much thinner than the actual insulation layers.
  • the insulation layers of electrical cables made of plastic material, such as PVC, polyethylene (PE) or a suitable elastomer.
  • the plastic material is extruded onto the conductor by means of an extruder, such as in US 3 479 446 .
  • US 458 407 or EP 0 507 988 A1 (there are a large number of documents relating to this prior art, and the given ones are only a small example listing group).
  • cross-linking In order to give the cable sheath the necessary mechanical properties, in particular mechanical and electrical strength, it is necessary to crosslink or vulcanize the plastic material (cross-linking).
  • the long-chain plastic molecules are connected to each other via cross connections. The crosslinking of such plastic shells takes place under pressure and at elevated temperature.
  • the crosslinking is considered complete when each volume element of the cable sheath has reached a predetermined temperature of about 190 ° C.
  • a certain amount of gas is included, which is expelled more or less when heating the cable sheath.
  • Such expulsion of the gas causes bubbles or pores in the insulation and possibly bumps on the outer circumference of the cable sheath, whereby the electro-physical properties of the cable sheath are impaired.
  • a back pressure is generated for example by means of a surrounding the cable sheath gas atmosphere.
  • a long tube is used, in which the extruded cable sheath is introduced under sealing.
  • the necessary temperature is generated and a sufficient pressure, which is above the partial gas pressure at crosslinking temperature in the cable sheath.
  • vapor or saturated vapor into such a vulcanization or CV tube.
  • nitrogen instead of steam.
  • the heating takes place in another way, for example by thermal radiation, inductive heating of the cable, etc.
  • the cable is cooled in a so-called cooling section, which preferably contains water, under pressure, before being wound on a suitable reel or drum becomes.
  • Out US-A-5,431,759 is a method for producing a cable having at least one conductor and at least one surrounding the conductor jacket made of insulating plastic material, in which the plastic material is applied by extrusion on the conductor and then crosslinked in a tubular shell by supplying heat. After extrusion, a sheath is continuously generated around the cable sheath to ensure the counter pressure in the sheath required for the cross-linking.
  • the extrusion of the sheath around the cable sheath does not take place immediately after the extrusion of the cable sheath, but rather is crosslinked in the known method in a first stage in the usual way with the aid of a pressure tube. In a second stage, the crosslinking takes place definitively within said shell.
  • the known method therefore requires a cross-linking or vulcanizing tube.
  • the invention has for its object to provide a method for producing a cable, in which the cross-linking process can be performed easier and less expensive.
  • the sheath is located at a radial distance to the cable sheath, and in the space a gaseous, liquid or solid medium is introduced, which generates a back pressure to counteract the partial gas pressure in the cable sheath.
  • the CV or vulcanization tube used in the prior art is replaced by a shell which is to be newly produced constantly with the cable, and in such a shell the measures necessary for crosslinking the cable sheath, namely production of a sheath, are carried out sufficient heat in the cable sheath and a sufficient back pressure to prevent the formation of gas bubbles from the cable sheath.
  • the required back pressure can already be generated by the thermal expansion of the cable sheath causing a corresponding back pressure in the sheath, which in turn causes a certain amount of stretching because of its elasticity.
  • the shell can be applied from the outset even under tension with the cable sheath, so that a back pressure is already generated at low temperatures.
  • the rising due to the increase in temperature partial gas pressure in the cable jacket does not lead to gas bubble formation, since a corresponding back pressure is applied by the shell.
  • between shell and cable jacket is an annular space into which gas or water vapor is introduced under pressure, similar to the pressure atmosphere in a CV tube.
  • the pressure of the gas medium can also be low, because it can increase greatly by heating. Another possibility is to enter into the gap a liquid or a solid substance. It is also possible, but not necessary, to pressurize this agent.
  • the shell is preferably produced by extrusion.
  • a further extruder can be provided, which is arranged after the extruder for applying the cable sheath.
  • a coextrusion of cable sheath and sheath take place.
  • a suitable material may also be used metallic material or a material which is reinforced or reinforced by a suitable metallic material.
  • the shell is produced as a corrugated tube.
  • Corrugated tubes are well known for various applications. They have the advantage that they are relatively flexible and have a high radial stiffness with low material consumption.
  • the shell may also be constructed of several layers, wherein the layers may be separated by an intermediate layer of a gas or liquid layer. In this layer can be built from the outset a corresponding pressure or generated by the thermal expansion of the cable sheath and / or the medium.
  • the heating of the cable sheath can be carried out in different ways, as is state of the art, for example by radiant heat, contact heat, inductive heating, by steam or by combinations of various heating methods.
  • the use of the casing according to the invention has the advantage that it is possible to transfer the heat in a more effective manner to the cable sheath, so that the heat losses are significantly lower than in conventional methods.
  • the heating may be effected in whole or in part by a current flow in the conductor, immediately during production or at a later time, e.g. only during use after laying the cable.
  • the sleeve according to the invention can later remain on the cable or be removed.
  • the material of the sheath is preferably reusable, either for the production of a sheath or for other purposes. If the case remains on the cable, it can fulfill various functions individually or in combination during use. One is e.g. in that it protects the cable against mechanical stress and against the ingress of liquid or gas. Another possibility is to make the sheath electrically conductive. It can then serve as a shield or as a return conductor.
  • an embodiment of the invention provides that the shell is structured or has a plurality of radial fine passages, whereby a later degassing of the cable sheath material is possible.
  • the conductor may be constructed so that the degassing proceeds via this.
  • gas can also be removed by purging the gap between the cable sheath and the sheath with another gas.
  • the method according to the invention enables a less expensive production of an electrical cable.
  • the spatial and structural conditions are far more favorable than with conventional methods. It is also possible to produce cables directly at the place of installation, even on vehicles and on ships.
  • the invention allows the continuous production of the cable in desired length too. Cable connectors, as they are traditionally required between limited installed cable lengths omitted. Cable connectors increase the installation effort considerably and are defective.
  • a conductor 10 for a cable which may consist of a single wire or of a plurality of stranded wires and the like, in an extruder 12 in a known manner with a cable sheath 14 is provided.
  • the material is, for example, a crosslinkable plastic, eg VPE or a vulcanizable rubber compound, eg EPR.
  • a sheath 18 is produced around the cable 20.
  • the material of the shell 18 may be very different from that for the cable sheath 14. It only needs to meet the requirements that the interlacing of the material of the cable sheath 14 that takes place within the sheath 18 requires.
  • a ring-cylindrical gap 22 is provided.
  • gas under pressure for example nitrogen or water vapor can be introduced or a liquid without pressure or under pressure.
  • the cable sheath 14 heated so that it is brought after a certain time to a cross-linking or vulcanization temperature of, for example, 190 ° C in each volume fraction. This temperature is usually necessary for the crosslinking of the cable material.
  • the pressure in the gap 22 now ensures that when heated in the cable sheath 14 no gases that cause bubbles in the cable sheath 14.
  • the shell 18 can be removed again and the material can be used again for the production of a new shell or for other purposes. It is also possible to leave the sheath on the cable, it being expedient for this case, when the sheath rests directly on the cable sheath.
  • the shell can serve as a mechanical or moisture protection, be used for shielding by being made conductive, or also serve as a return conductor.
  • a pressure vessel 24 is provided, which closes the gap between the extruders 12, 16 tight and in which a higher pressure is generated.
  • the pressure corresponds approximately to the required back pressure for the partial gas pressure in the cable sheath 14.
  • Fig. 2 generated cable 20 has the same structure as the cable 20 after Fig. 1 , like reference numerals are used for the conductor 10 and the cable sheath 14.
  • a single extruder 30 is provided with which both the cable sheath 14 is extruded and a sheath 32 which is comparable to the sheath 18.
  • a gap 34 is again between cable sheath 14 and shell 22.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines Kabels nach dem Oberbegriff des Patentanspruchs 1.
  • Elektrische Kabel für die Energieübertragung haben grundsätzlich einen gleichen Aufbau in der Weise, dass mindestens ein zentrisch geführter Leiter vorgesehen ist, der von mindestens einem Mantel oder einer Schicht aus elektrisch isolierendem Material umhüllt ist. Es ist auch ein mehrschichtiger Aufbau eines Kabelmantels bekannt, wobei eine oder mehrere Schichten aus halbleitendem Material bestehen, die zu feldsteuernden und Abschirmeffekten verwendet werden. Derartige Schichten sind zumeist deutlich dünner als die eigentlichen Isolationsschichten. Es ist auch bekannt, den Kabelmantel mit einer geflechtartigen Abschirmung aus metallischem Material zu umgeben oder mit einem leitenden Mantel. Auf den Aufbau abhängig von den Übertragungsbedingungen der verschiedenen Kabel soll hier nicht eingegangen werden, da er allgemein bekannt und auch nicht Gegenstand der nachfolgend zu beschreibenden Erfindung ist. Außerdem wird nachstehend von dem einfachsten Aufbau eines Kabels ausgegangen, nämlich einem mittigen Leiter und einem einschichtigen Kabelmantel. Es versteht sich, dass alle Beschreibungen auch alle anderen Kabelaufbauten abdecken.
  • Seit längerem werden die Isolationsschichten bei elektrischen Kabeln aus Kunststoffmaterial gefertigt, beispielsweise aus PVC, Polyethylen (PE) oder einem geeigneten Elastomer. Das Kunststoffmaterial wird mit Hilfe eines Extruders auf den Leiter extrudiert, wie dies etwa in US 3 479 446 , US 458 407 oder auch EP 0 507 988 A1 beschrieben ist (es existiert eine große Anzahl von Dokumenten zu diesem Stand der Technik, und die angegebenen stellen nur eine kleine beispielhafte Aufzählung dar). Um dem Kabelmantel die nötigen mechanischen Eigenschaften, insbesondere mechanische und elektrische Festigkeit zu verleihen, ist erforderlich, das Kunststoffmaterial zu vernetzen bzw. vulkanisieren (cross linking). Hierbei werden die langkettigen Kunststoffmoleküle über Querverbindungen miteinander verbunden. Das Vernetzen derartiger Kunststoffmäntel erfolgt unter Druck und mit erhöhter Temperatur. Die Vernetzung ist als abgeschlossen zu betrachten, wenn jedes Volumenelement des Kabelmantels eine vorgegebene Temperatur von etwa 190°C erreicht hat. In dem zu vernetzenden Kunststoffmaterial ist eine gewisse Menge Gas eingeschlossen, das bei der Erwärmung des Kabelmantels mehr oder weniger ausgetrieben wird. Ein derartiges Austreiben des Gases verursacht Bläschen oder Poren in der Isolation und ggf. Unebenheiten am Außenumfang des Kabelmantels, wodurch die elektrophysikalischen Eigenschaften des Kabelmantels beeinträchtigt werden. Es ist daher bekannt, während des Vernetzungsvorgangs um den Kabelmantel herum einen Gegendruck zu erzeugen, der ausreicht, eine Blasenbildung zu unterbinden. Ein solcher Gegendruck wird zum Beispiel mit Hilfe einer den Kabelmantel umgebenden Gasatmosphäre erzeugt. Hierfür wird ein langes Rohr verwendet, in das der extrudierte Kabelmantel unter Abdichtung eingeleitet wird. Im Rohr wird die nötige Temperatur erzeugt sowie ein ausreichender Druck, der oberhalb des partiellen Gasdrucks bei Vernetzungstemperatur im Kabelmantel liegt. Es ist bekannt, Dampf bzw. gesättigten Dampf in ein derartiges Vulkanisations- oder CV-Rohr einzuleiten. Mit Hilfe des erhitzten Dampfes wird der Kabelmantel zugleich auf Vernetzungstemperatur gebracht. Es ist auch bekannt, statt Dampf Stickstoff zu verwenden. In einem solchen Fall erfolgt die Erwärmung auf andere Weise, beispielsweise durch Wärmestrahlung, induktive Erwärmung des Kabels usw. Nach dem Vernetzen wird das Kabel in einer sogenannten Kühlstrecke, die vorzugsweise Wasser enthält, unter Druck abgekühlt, bevor es auf einer geeigneten Haspel oder Trommel aufgewickelt wird. Sollen gewisse Fertigungsgeschwindigkeiten erreicht werden, ist erforderlich, die Vemetzungsstrecke relativ lang zu machen, insbesondere bei dickerwandigen Kabelmänteln, da es naturgemäß einer gewissen Zeit bedarf, bis sich über den gesamten Radius des Kabelmantels mindestens die Vernetzungstemperatur eingestellt hat. So sind so genannte CV-Rohre oder Vulkanisationsrohre von 100 m Länge und mehr keine Seltenheit. Es versteht sich, dass derartige Produktionseinlagen eine entsprechend große Fabrikationsstätte erfordern. Es ist auch bekannt, derartige Anlagen vertikal anzuordnen. Bei horizontaler Anordnung weisen sie zumeist ein Gefälle auf. Dies erfordert entsprechende bauliche Einrichtungen.
  • Aus US-A-5,431,759 ist ein Verfahren zur Herstellung eines Kabels mit mindestens einem Leiter und mindestens einem den Leiter umgebenden Mantel aus isolierendem Kunststoffmaterial bekannt geworden, bei dem das Kunststoffmaterial durch Extrusion auf den Leiter aufgebracht und anschließend in einer rohrartigen Hülle durch Zufuhr von Wärme vernetzt wird. Nach der Extrusion wird eine Hülle fortlaufend um den Kabelmantel herum erzeugt, um den für die Vernetzung erforderlichen Gegendruck im Kabelmantel zu gewährleisten. Die Extrusion der Hülle um den Kabelmantel erfolgt jedoch nicht unmittelbar im Anschluss an die Extrusion des Kabelmantels, vielmehr wird bei dem bekannten Verfahren in einer ersten Stufe auf übliche Weise mit Hilfe eines Druckrohres vernetzt. In einer zweiten Stufe erfolgt die Vernetzung endgültig innerhalb der besagten Hülle. Das bekannte Verfahren erfordert daher ein Vernetzungs- oder Vulkanisierrohr.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Kabels anzugeben, bei dem der Vernetzungsvorgang einfacher und weniger aufwändig durchgeführt werden kann.
  • Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 oder 2 gelöst.
  • Beim erfindungsgemäßen Verfahren nach Patentanspruch 1 wird unmittelbar nach der Extrusion des Kabelmantels eine rohr- oder schlauchförmige Hülle fortlaufend um den Kabelmantel herum erzeugt, und zwar in so innigem Kontakt zu diesem, dass aufgrund der Temperaturerhöhung ein Gegendruck auf dem Kabelmantel erzeugt wird, der trotz des partiellen Gasdruckes nicht zur Gasbläschenbildung im Kabelmantel führt.
  • Bei dem Verfahren nach Patentanspruch 2 liegt die Hülle im radialen Abstand zum Kabelmantel, und in den Zwischenraum wird ein gasförmiges, flüssiges oder festes Medium eingeführt, das einen Gegendruck erzeugt, um dem partiellen Gasdruck im Kabelmantel entgegenzuwirken.
  • Erfindungswesentlich ist, dass das in dem Stand der Technik verwendete CV- oder Vulkanisationsrohr ersetzt wird durch eine ständig mit dem Kabel neu zu produzierende Hülle, und in einer solchen Hülle werden dann die Maßnahmen durchgeführt, die zum Vernetzen des Kabelmantels erforderlich sind, nämlich Erzeugung einer ausreichenden Wärme im Kabelmantel und eines ausreichenden Gegendrucks, um die Bildung von Gasbläschen aus dem Kabelmantel zu verhindern.
  • Liegt die Hülle in innigem Kontakt an der Außenseite des Kabelmantels an und weist die Hülle eine ausreichende radiale Festigkeit auf, kann bereits dadurch der erforderliche Gegendruck erzeugt werden, dass die thermische Dehnung des Kabelmantels einen entsprechenden Gegendruck in der Hülle hervorruft, die ihrerseits eine gewisse Dehnung aufgrund seiner Elastizität erfahren kann. Natürlich kann die Hülle von vornherein auch unter Spannung mit dem Kabelmantel aufgebracht sein, so dass ein Gegendruck bereits bei niedrigen Temperaturen erzeugt ist. Der aufgrund der Temperaturerhöhung ansteigende partielle Gasdruck im Kabelmantel führt nicht zur Gasbläschenbildung, da ein entsprechender Gegendruck von der Hülle aufgebracht wird. Alternativ ist zwischen Hülle und Kabelmantel ein ringförmiger Zwischenraum, in den Gas oder Wasserdampf unter Druck eingeleitet wird, ähnlich der Druckatmosphäre in einem CV-Rohr. Der Druck des Gasmediums kann auch gering sein, weil er sich durch Erwärmung stark erhöhen kann. Eine weitere Möglichkeit besteht darin, in den Spalt eine Flüssigkeit oder eine feste Substanz einzugeben. Hierbei ist ebenfalls möglich, aber nicht erforderlich, dieses Mittel unter Druck zu setzen.
  • Wenn vor- und nachstehend davon gesprochen wird, dass bezüglich der Hülle und der Behandlung des Kabelmantels bestimmte konstruktive und/oder physikalische Maßnahmen durchgeführt werden, dann versteht sich, dass dies auch nur für einen bestimmten Längenabschnitt der Hülle gelten kann.
  • Die Hülle wird vorzugsweise durch Extrusion erzeugt. Hierfür kann ein weiterer Extruder vorgesehen werden, der im Anschluss an den Extruder angeordnet ist zum Aufbringen des Kabelmantels. Alternativ kann auch eine Koextrusion von Kabelmantel und Hülle stattfinden.
  • Eine andere Möglichkeit besteht darin, die Hülle zumindest teilweise durch Wickeln, Flechten, Umbändem oder dergleichen mit einem geeigneten Material zu erzeugen. Als geeignetes Material kann auch metallisches Material verwendet werden oder ein Material, das durch ein geeignetes metallisches Material bewehrt oder armiert ist.
  • Eine andere Ausgestaltung sieht vor, dass die Hülle als gewelltes Rohr erzeugt wird. Wellkohre sind für verschiedene Anwendungszwecke allgemein bekannt. Sie haben den Vorteil, dass sie relativ flexibel sind und bei geringem Materialverbrauch eine hohe radiale Steifigkeit aufweisen.
  • Die Hülle kann auch aus mehreren Schichten aufgebaut sein, wobei die Schichten durch eine Zwischenschicht aus einer Gas- oder Flüssigkeitsschicht voneinander getrennt sein können. In dieser Schicht kann von vornherein ein entsprechender Druck aufgebaut oder durch die thermische Dehnung des Kabelmantels und/oder des Mediums erzeugt werden.
  • Die Erwärmung des Kabelmantels lässt sich auf unterschiedliche Weise durchführen, wie sie Stand der Technik ist, etwa durch Strahlungswärme, Kontaktwärme, induktive Erwärmung, durch Dampf oder auch durch Kombinationen der verschiedensten Erwärmungsmethoden. Hierbei hat die Verwendung der erfindungsgemäßen Hülle den Vorteil, dass es möglich ist, die Wärme auf wirksamere Art und Weise auf den Kabelmantel zu übertragen, so dass die Wärmeverluste signifikant niedriger als bei herkömmlichen Verfahren sind.
  • Alternativ kann die Erwärmung ganz oder teilweise durch einen Stromfluss im Leiter bewirkt werden, und zwar unmittelbar während der Produktion oder zu einem späteren Zeitpunkt, z.B. erst während des Einsatzes nach der Verlegung des Kabels.
  • Die erfindungsgemäße Hülle kann später auf dem Kabel verbleiben oder entfernt werden. In letzterem Fall ist das Material der Hülle vorzugsweise wiederverwendbar, und zwar entweder für die Herstellung einer Hülle oder zu anderen Zwecken. Verbleibt die Hülle auf dem Kabel, kann sie beim Einsatz verschiedene Funktionen einzeln oder in Kombination erfüllen. Eine besteht z.B. darin, dass sie das Kabel gegen mechanische Beanspruchungen und gegen Eindringen von Flüssigkeit oder Gas schützt. Eine andere Möglichkeit ist, die Hülle elektrisch leitend zu machen. Sie kann dann als Abschirmung dienen oder auch als Rückleiter.
  • Verbleibt die Hülle auf dem Kabel, ist es vorteilhaft, wenn die Hülle so aufgerührt ist, dass sie ein Entgasen des Kabelmantels erlaubt. Bekanntlich findet auch nach dem Erkalten des Kabelmantels über einen sehr langen Zeitraum der Austritt von Gas aus dem Kabelmantel statt. Daher sieht eine Ausgestaltung der Erfindung vor, dass die Hülle so strukturiert bzw. eine Vielzahl von radialen feinen Durchlässen aufweist, wodurch eine spätere Entgasung des Kabelmantelmaterials möglich ist. Alternativ kann der Leiter so aufgebaut sein, dass über diesen die Entgasung abläuft. Schließlich kann Gas auch dadurch entfernt werden, dass der Zwischenraum zwischen Kabelmantel und Hülle mit einem anderen Gas gespült wird.
  • Das erfindungsgemäße Verfahren ermöglicht eine weniger aufwendige Herstellung eines elektrischen Kabels. Insbesondere sind die räumlichen und baulichen Voraussetzungen weitaus günstiger als bei herkömmlichen Verfahren. So ist auch möglich, Kabel unmittelbar am Ort der Verlegung herzustellen, auch mobil auf Fahrzeugen und auf Schiffen. Die Erfindung lässt die kontinuierliche Erzeugung des Kabels in gewünschter Länge zu. Kabelverbinder, wie sie herkömmlich zwischen begrenzten verlegten Kabellängen erforderlich sind, entfallen. Kabelverbinder erhöhen den Verlegeaufwand beträchtlich und sind defektträchtig.
  • Die Erfindung wird nachfolgend anhand von zwei in Zeichnungen dargestellten Ausführungsbeispielen näher erläutert.
  • Fig. 1
    zeigt äußerst schematisch die Herstellung eines Kabelmantels mit einer Hülle nach der Erfindung.
    Fig. 2
    zeigt eine andere Ausführungsform der Herstellung eines Kabels mit einer Hülle nach der Erfindung.
  • In Fig. 1 ist zu erkennen, wie ein Leiter 10 für ein Kabel, das aus einem einzigen Draht bestehen kann oder aus einer Vielzahl von verseilten Drähten und dergleichen, in einem Extruder 12 in bekannter Art und Weise mit einem Kabelmantel 14 versehen wird. Das Material ist zum Beispiel ein vernetzbarer Kunststoff, z.B. VPE oder eine vulkanisierbare Gummimischung, z.B. EPR. In einem weiteren Extruder 16 wird eine Hülle 18 um das Kabel 20 herum erzeugt. Das Material der Hülle 18 kann gegenüber dem für den Kabelmantel 14 sehr unterschiedlich sein. Es muss nur die Voraussetzungen erfüllen, die die innerhalb der Hülle 18 stattfindende Vernetzung des Materials des Kabelmantels 14 erfordert. Es ist möglich, die Hülle 18 unmittelbar auf den sich vorbewegenden Kabelmantel 14 zu extrudieren, so dass zwischen beiden Teilen eine innige Anlage besteht. Im gezeichneten Fall ist ein ringzylindrischer Zwischenraum 22 vorgesehen. In den Zwischenraum 22 kann Gas unter Druck, z.B. Stickstoff oder Wasserdampf eingeleitet werden oder auch eine Flüssigkeit drucklos oder unter Druck. Mit Hilfe des Gases oder der Flüssigkeit oder auf eine andere nicht gezeigte, jedoch bekannte Art und Weise wird der Kabelmantel 14 erwärmt, damit er nach einer gewissen Zeit auf eine Vernetzungs- oder Vulkanisationstemperatur von z.B. 190°C in jedem Volumenanteil gebracht wird. Diese Temperatur ist normalerweise für das Vernetzen des Kabelmaterials notwendig. Der Druck im Zwischenraum 22 sorgt nun dafür, dass bei Erwärmung im Kabelmantel 14 keine Gase entstehen, die eine Blasenbildung im Kabelmantel 14 verursachen.
  • Ab einer bestimmten Kabellänge hinter dem Extruder 16 nach erfolgter Vernetzung und Abkühlung kann die Hülle 18 wieder entfernt und das Material erneut zur Herstellung einer neuen Hülle oder zu anderen Zwecken verwendet werden. Es ist auch möglich, die Hülle am Kabel zu belassen, wobei es für diesen Fall zweckmäßig ist, wenn die Hülle unmittelbar am Kabelmantel anliegt. In diesem Fall kann die Hülle als mechanischer oder Feuchtigkeitsschutz dienen, zur Abschirmung herangezogen werden, indem sie leitend gemacht wird, oder auch als Rückleiter dienen.
  • In der Ausführungsform nach Fig. 1 ist ein Druckbehälter 24 vorgesehen, der den Zwischenraum zwischen den Extrudern 12, 16 dicht abschließt und in dem ein höherer Druck erzeugt wird. Der Druck entspricht annähernd dem erforderlichen Gegendruck für den partiellen Gasdruck im Kabelmantel 14.
  • Da das in Fig. 2 erzeugte Kabel 20 den gleichen Aufbau hat wie das Kabel 20 nach Fig. 1, werden auch gleiche Bezugszeichen für den Leiter 10 und den Kabelmantel 14 verwendet. In Fig. 2 ist ein einziger Extruder 30 vorgesehen, mit dem sowohl der Kabelmantel 14 extrudiert wird als auch eine Hülle 32, die der Hülle 18 vergleichbar ist. Zwischen Kabelmantel 14 und Hülle 22 befindet sich wiederum ein Zwischenraum 34, welcher dem Zwischenraum 22 gleicht. Die zur Ausführungsform nach Fig. 1 beschriebenen Verfahrensmaßnahmen und möglichkeiten gelten für die Ausführungsform nach Fig. 2 gleichermaßen, so dass diese im Einzelnen nicht noch einmal erläutert werden sollen.

Claims (24)

  1. Verfahren zur Herstellung eines Kabels mit mindestens einem Leiter (10) und mindestens einem den Leiter (10) umgebenden Mantel (14) aus isolierendem Kunststoffmaterial, bei dem das Kunststoffmaterial durch Extrusion auf den Leiter (10) aufgebracht und in einer rohr- oder schlauchartigen Hülle (48, 32) durch Zufuhr von Wärme vernetzt bzw. vulkanisiert wird, dadurch gekennzeichnet, dass die rohr- oder schlauchartige Hülle (18, 32) unmittelbar nach der Extrusion fortlaufend oder durch Koextrusion mit dem Kabelmantel um den Kabelmantel (14) herum erzeugt wird, und vor der Vernetzung bzw. Vulkanisation des Materials des Kabelmantels so in innigem Kontakt mit dem Kabelmantel gebracht wird, dass aufgrund der Temperaturerhöhung ein Gegendruck auf dem Kabelmantel erzeugt wird, der trotz des partiellen Gasdrucks nicht zur Gasbläschenbildung im Kabelmantel führt.
  2. Verfahren zur Herstellung eines Kabels mit mindestens einem Leiter (10) und mindestens einem den Leiter (10) umgebenden Mantel (14) aus isoliertem Kunststoffmaterial, bei dem das Kunststoffmaterial durch Extrusion auf den Leiter (10) aufgebracht und in einer rohrartigen oder schlauchförmigen Hülle (18, 32) durch Zufuhr von Wärme vernetzt bzw. vulkanisiert wird, dadurch gekennzeichnet, dass das die rohr- oder schlauchförmige Hülle (18, 32) unmittelbar nach der Extrusion fortlaufend oder durch Koextrusion mit dem Kabelmantel um den Kabelmantel (14) herum erzeugt wird, und vor der Vernetzung bzw. Vulkanisation des Materials des Kabelmantels in einem radialen Abstand zu diesem aufgebracht wird, ein gasförmiges, flüssiges oder festes Medium zwischen Hülle und Kabelmantel eingeführt wird, das einen Gegendruck auf den Kabelmantel erzeugt, sodass der bei der Vernetzung oder Vulkanisation ansteigende partielle Gasdruck im Kabelmantel nicht zur Gasbläschenbildung im Kabelmantel führt.
  3. Verfahren nach einem oder beiden Ansprüchen 1 bis 2, dadurch gekennzeichnet, dass die Hülle (18, 32) ganz oder teilweise durch Extrusion erzeugt wird.
  4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein gasförmiges Medium oder Dampf unter Druck zwischen Hülle (18, 32) und Kabelmantel (14) eingeleitet wird.
  5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein gasförmiges, ein flüssiges, ein festes Medium oder eine Kombination von diesen zwischen Hülle und Kabelmantel eingeleitet wird.
  6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein gasförmiges, ein flüssiges, ein festes Medium oder eine Kombination von diesen zwischen Hülle und Kabelmantel eingeleitet wird, das geeignet ist, den bei der Vernetzung oder Vulkanisation der Ader erforderlichen Druck aufzubauen oder aufrechtzuerhalten.
  7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Material oder ein Teil des Materials der Hülle so strukturiert ist bzw. eine Vielzahl von feinen Durchlässen aufweist, wodurch ein späteres Entgasen des Kabelmantels ermöglicht wird.
  8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Leiter (10) so aufgebaut ist, dass ein späteres Entgasen des Kabelmantels ganz oder teilweise über diesen erfolgen kann.
  9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Hülle oder ein Teil der Hülle elektrisch leitend oder halbleitend ist zur Bildung eines Rückleiters bzw. einer Abschirmung.
  10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Hülle oder ein Teil der Hülle als mechanischer Schutz oder als Schutz gegen Eindringen von Wasser oder Feuchtigkeit ausgebildet ist.
  11. Verfahren nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Hülle als ganz oder teilweise entfernbar ausgebildet ist.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Material der Hülle wieder- oder weiterverwendbar ist.
  13. Verfahren nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Hülle unmittelbar im Anschluss an die Extrusion oder in einem späteren Arbeitsgang aufgebracht wird.
  14. Verfahren nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Hülle aus mehreren Schichten aufgebaut ist.
  15. Verfahren nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass ein Gas, ein flüssiges oder festes Medium unter Druck zwischen benachbarten Schichten der Hülle eingebracht wird.
  16. Verfahren nach einem oder mehreren der Ansprüche 1 bis 15, bei dem ein Gas, ein flüssiges oder ein festes Medium zwischen benachbarten Schichten der Hülle eingebracht wird, das geeignet ist, während der Vernetzung oder Vulkanisation den erforderlichen Gegendruck aufzubauen oder aufrechtzuerhalten.
  17. Verfahren nach einem oder mehreren der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Hülle zumindest teilweise durch Wickeln, Flechten, Umbändern oder dergleichen eines geeigneten Materials erzeugt wird.
  18. Verfahren nach einem oder mehreren der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die Hülle armiert wird, vorzugsweise mit metallischem Material.
  19. Verfahren nach einem oder mehreren der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die Hülle ganz oder teilweise als gewelltes Rohr erzeugt wird.
  20. Verfahren nach einem oder mehreren der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Erwärmung des Kabelmantels zum Zwecke der Vernetzung oder Vulkanisation durch Strahlung, Kontaktwärme, induktive Erwärmung, Hochfrequenzeinstrahlung, Dampf oder durch eine Kombination aus diesen erfolgt.
  21. Verfahren nach einem oder mehreren der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Erwärmung zum Zwecke der Vernetzung oder Vulkanisation des Kabelmantels ganz oder teilweise durch Stromfluss im Leiter erfolgt.
  22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass die Erwärmung zum Zwecke der Vernetzung oder Vulkanisation des Kabelmantels ganz oder teilweise durch Strombelastung des Kabels zu einem späteren Zeitpunkt oder im Betrieb erfolgt.
  23. Verfahren nach einem oder mehreren der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass die Herstellung des Kabels auf mobilen Einheiten wie Fahrzeugen oder Schiffen erfolgt.
  24. Verfahren nach einem oder mehreren der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die Herstellung des Kabels auf mobilen Einheiten direkt am Verlegeort des Kabels erfolgt.
EP02718013A 2001-02-03 2002-01-10 Verfahren zur herstellung eines kabels Expired - Lifetime EP1360703B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10104994A DE10104994B4 (de) 2001-02-03 2001-02-03 Verfahren zur Herstellung eines Kabels
DE10104994 2001-02-03
PCT/EP2002/000154 WO2002063639A1 (de) 2001-02-03 2002-01-10 Verfahren zur herstellung eines kabels

Publications (2)

Publication Number Publication Date
EP1360703A1 EP1360703A1 (de) 2003-11-12
EP1360703B1 true EP1360703B1 (de) 2009-12-02

Family

ID=7672805

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02718013A Expired - Lifetime EP1360703B1 (de) 2001-02-03 2002-01-10 Verfahren zur herstellung eines kabels

Country Status (6)

Country Link
US (1) US20040144471A1 (de)
EP (1) EP1360703B1 (de)
CN (1) CN1257515C (de)
AT (1) ATE450870T1 (de)
DE (2) DE10104994B4 (de)
WO (1) WO2002063639A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10311512B3 (de) 2003-03-17 2004-11-04 Troester Gmbh & Co. Kg Anlage zur Herstellung von Kabeln
CN101197201B (zh) * 2007-12-27 2011-01-12 长江电缆有限公司 微波硫化橡套电缆的生产方法
CN101488376B (zh) * 2009-02-23 2011-01-26 四川海洋特种技术研究所 深海水密电缆的制作方法
US8822824B2 (en) * 2011-04-12 2014-09-02 Prestolite Wire Llc Methods of manufacturing wire, multi-layer wire pre-products and wires
US20120261160A1 (en) 2011-04-13 2012-10-18 Prestolite Wire Llc Methods of manufacturing wire, wire pre-products and wires
DE102017200619B3 (de) 2017-01-17 2018-05-30 Leoni Kabel Gmbh Verfahren und Vorrichtung zum Ummanteln eines langgestreckten Bauteils mit Druckgassteuerung
CN107768029B (zh) * 2017-12-04 2023-02-21 长沙恒飞电缆有限公司 硅烷交联电缆的方法及设备
JP6977691B2 (ja) * 2018-09-25 2021-12-08 株式会社オートネットワーク技術研究所 ワイヤハーネス
CN112109248B (zh) * 2020-09-11 2022-08-02 贵州航天电器股份有限公司 电缆线束硫化方法
CN114083726B (zh) * 2021-11-05 2022-12-06 瑞邦电力科技有限公司 内半导电层交联成型装置及交联成型工艺

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US458407A (en) * 1891-08-25 Car-brake
US1736444A (en) * 1924-08-05 1929-11-19 Nat India Rubber Co Method for making insulated electrical conductors
US2331195A (en) * 1939-02-18 1943-10-05 Us Rubber Co Extrusion method and apparatus
US3479446A (en) * 1968-06-27 1969-11-18 Anaconda Wire & Cable Co Strand shielded cable and method of making
DE1912245A1 (de) * 1969-03-06 1970-09-24 Siemens Ag Kunststoffisoliertes Hochspannungskabel
DE2353568A1 (de) * 1973-10-25 1975-05-07 Dunlop Ltd Verfahren und vorrichtung zum vulkanisieren einer kautschuklaenge
US3885085A (en) * 1974-06-11 1975-05-20 Gen Cable Corp High voltage solid extruded insulated power cables
US4043722A (en) * 1975-05-09 1977-08-23 Reynolds Metals Company Apparatus for heat curing electrical insulation provided on a central electrical conductor of an electrical cable
SE440709B (sv) * 1976-06-10 1985-08-12 Asea Ab Sett att med anvendning av en strengsprutmaskin pa en med isolering av icke tverbunden eller tverbunden polyten forsedd kabelledare applicera ett ledande, avrivbart skikt
US4096351A (en) * 1976-08-24 1978-06-20 Borg-Warner Corporation Insulated and braid covered electrical conductor for use in gassy oil wells
US4080131A (en) * 1977-04-27 1978-03-21 General Cable Corporation Curing system for high voltage cross linked cables
US4354992A (en) * 1980-05-06 1982-10-19 Cable Technology Labs., Inc. Electrochemical tree resistant power cable
US4457975A (en) * 1981-02-17 1984-07-03 Cable Technology Laboratories, Inc. Tree resistant power cable
US4415518A (en) * 1981-12-21 1983-11-15 Pochurek Gerald M Continuous curing of cable
US4533789A (en) * 1983-02-11 1985-08-06 Cable Technology Laboratories, Inc. High voltage electric power cable with thermal expansion accommodation
GB8432608D0 (en) * 1984-12-22 1985-02-06 Bp Chem Int Ltd Strippable laminate
EP0227658A1 (de) * 1985-06-24 1987-07-08 PUGH, Paul F. Kabel- und leitungssystem unter gasdruck
US4675474A (en) * 1985-09-04 1987-06-23 Harvey Hubbell Incorporated Reinforced electrical cable and method of forming the cable
DE3627600C3 (de) * 1986-08-14 1997-11-20 Kabel & Draht Gmbh Verfahren und Vorrichtung zum Regenerieren von Starkstromkabeln
US5156715A (en) * 1987-02-09 1992-10-20 Southwire Company Apparatus for applying two layers of plastic to a conductor
CH685336A5 (de) * 1991-04-09 1995-06-15 Zumbach Electronic Ag Verfahren und Einrichtung zur Querschnitts-Vermessung elektrischer Adern.
US5485541A (en) * 1993-06-15 1996-01-16 Rohm And Haas Company Cured composite, processes and composition
US5426264A (en) * 1994-01-18 1995-06-20 Baker Hughes Incorporated Cross-linked polyethylene cable insulation
US5431759A (en) * 1994-02-22 1995-07-11 Baker Hughes Inc. Cable jacketing method
US5920032A (en) * 1994-12-22 1999-07-06 Baker Hughes Incorporated Continuous power/signal conductor and cover for downhole use
FR2747832B1 (fr) * 1996-04-23 1998-05-22 Filotex Sa Procede et dispositif de fabrication d'une gaine aeree en un materiau isolant autour d'un conducteur, et cable coaxial muni d'une telle gaine
US5990419A (en) * 1996-08-26 1999-11-23 Virginia Patent Development Corporation Data cable

Also Published As

Publication number Publication date
EP1360703A1 (de) 2003-11-12
WO2002063639A1 (de) 2002-08-15
US20040144471A1 (en) 2004-07-29
CN1489770A (zh) 2004-04-14
DE50214038D1 (de) 2010-01-14
CN1257515C (zh) 2006-05-24
ATE450870T1 (de) 2009-12-15
DE10104994B4 (de) 2007-10-18
DE10104994A1 (de) 2002-08-08

Similar Documents

Publication Publication Date Title
DE69831870T2 (de) Koaxialkabel und sein herstellungsverfahren
DE60036956T2 (de) Durchflusskabel
EP1154543B1 (de) Isolierung von Statorwicklungen durch Schrumpfschläuche
DE2345326A1 (de) Schutz- und isoliervorrichtung fuer eine verbindungsstelle zwischen leitungen und verfahren zur herstellung derselben
DE2312670A1 (de) Verbindung fuer elektrische kabel und verfahren zu ihrer herstellung
EP1153726A2 (de) Isolierung von Statorwicklungen im Spitzgussverfahren
EP1360703B1 (de) Verfahren zur herstellung eines kabels
DE3008818A1 (de) Verbindungsmuffe fuer kuehlbares hochspannungskabel mit hohlrohrfoermiger isolierung
DE2841143A1 (de) Verfahren zur herstellung einer elektrischen verbindung sowie verbindungsteil, verbindungssatz und abstandshalter zur durchfuehrung des verfahrens
DE2818056A1 (de) Verfahren und vorrichtung zum vulkanisieren von extrudierten elektrischen kabeln
EP0015369B1 (de) Feuchtigkeitsgeschütztes elektrisches kunststoffisoliertes Energiekabel, Verfahren zu seiner Herstellung und Vorrichtung zur Durchführung dieses Verfahrens
EP1154542A1 (de) Isolierung von Spulen
WO2007057251A1 (de) Glimmerverstärkte isolation
DE3226380C2 (de) Kabelgarnitur
DE2908454C2 (de) Feuchtigkeitsgeschütztes Energiekabel mit geschlossenem Metallmantel und Verfahren zu dessen Herstellung
EP0337949B1 (de) Verfahren zur Umhüllungsisolation für Hochspannung führende Leiter
DE3541208C1 (de) Dehnbare, schraubenlinienförmig gewundene elektrische Leitung
DE2514430A1 (de) Verfahren zum fuellen von zwischenraeumen einer verseilten kabelseele mit einer feuchtigkeitsisolierenden verbindung sowie vorrichtung zur durchfuehrung des verfahrens
DE3204887A1 (de) Elektrisches kabel
DE2234386A1 (de) Verfahren und vorrichtung zur herstellung von strangfoermigem gut aus vernetz- oder vulkanisierbaren thermoplasten oder elastomeren
EP3945532A1 (de) Verfahren zum herstellen eines kabelbündels, fertigungsanlage zur herstellung eines kabelbündels, sowie kabelbündel
EP1453651B1 (de) Verfahren zur isolierung von statorwicklungen
DE655924C (de) Hochspannungskabel
WO2024083858A1 (de) Heizschlauch sowie verfahren zur herstellung und verwendung
DE102023121689A1 (de) Heizschlauch sowie verfahren zur herstellung und verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030829

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20080623

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50214038

Country of ref document: DE

Date of ref document: 20100114

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20091202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091202

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091202

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100313

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100402

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091202

BERE Be: lapsed

Owner name: SIKORA A.G.

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

26N No opposition filed

Effective date: 20100903

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091202

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140124

Year of fee payment: 13

Ref country code: DE

Payment date: 20140314

Year of fee payment: 13

Ref country code: FI

Payment date: 20140122

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140122

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214038

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 450870

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150110