EP1344300A2 - Machine a flux transversal unipolaire - Google Patents

Machine a flux transversal unipolaire

Info

Publication number
EP1344300A2
EP1344300A2 EP01989389A EP01989389A EP1344300A2 EP 1344300 A2 EP1344300 A2 EP 1344300A2 EP 01989389 A EP01989389 A EP 01989389A EP 01989389 A EP01989389 A EP 01989389A EP 1344300 A2 EP1344300 A2 EP 1344300A2
Authority
EP
European Patent Office
Prior art keywords
stator
rotor
torque
module
transverse flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01989389A
Other languages
German (de)
English (en)
Inventor
Guenter Kastinger
Hartmut Krueger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1344300A2 publication Critical patent/EP1344300A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/20Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having windings each turn of which co-operates only with poles of one polarity, e.g. homopolar machine

Definitions

  • the invention is based on a unipolar
  • Such a unipolar transverse flux machine which is proposed in the unpublished DE 100 39 466.3, has the advantage of a simple construction in a modular design, the concentricity of the machine improving with an increasing number of module units each consisting of a stator module and a rotor module.
  • the torque curve shows a considerable ripple, the so-called torque ripple.
  • Stator poles spaced 360 electrical degrees from each other, achieving the best efficiency. At the same time, this also maximizes the torque component caused by harmonics or harmonics or harmonics. In order to reduce the harmonic content, the stator poles are now set individually and by different amounts against those determined by the pole pitch
  • the unipolar transverse flux machine according to the invention has the advantage that, due to the symmetrical displacement of the stator pole groups according to claim 1 and the asymmetrical displacement of individual stator pole pairs, each of which is associated with a magnetic circuit, harmonic components in torque are largely " reduced " and thus also with a unipolar - Transversal flux machine with only one or two Module units a fairly good concentricity is achieved. While the symmetrical displacement of the stator pole groups requires a stator pole number that satisfies the relationship 2 n ' with n as an integer, the asymmetrical displacement of the stator pole pairs is tied to an even-numbered stator pole number.
  • 1 is a partial perspective view of a two-strand, 32-pin unipolar
  • FIG. 2 is a schematic plan view of a module unit of the unipolar
  • FIG. 3 shows an arrangement diagram of the stator pole groups in the stator module in FIG. 2 to explain their displacement
  • 4 shows a diagram of the torque curve of the four stator groups formed in the machine according to FIG. 3 over an electrical angle of 360 °
  • FIG. 6 shows a diagram of one of the and 7 amplitude spectra of the torques in FIG. 5,
  • Fig. 9 is an arrangement diagram of the stator poles in
  • FIG. 10 shows a diagram of the torque profiles of three stator groups from a total of sixteen stator pole group pairs
  • FIG. 11 shows a diagram of the resulting total torque from FIG. 10 in comparison with the torque in the case of non-displaced stator pole pairs
  • FIG. 12 shows a diagram of the amplitude spectrum of the resulting total torque in FIG. 11. Description of the embodiments
  • a two-strand, 32-pole unipolar transverse flux machine is shown in perspective. It has a machine housing 10 with a stator 11 held thereon and a coaxial rotor 12 which rotates in the stator 11 and which is non-rotatably seated on a rotor shaft 13 mounted in the machine housing 10.
  • the rotor 12 has two rotor modules 15 and the stator 11 has the same number of stator modules 14.
  • the rotor modules 15 are mounted axially one behind the other directly on the rotor shaft 13 in a rotationally fixed manner, and the stator modules 14 are fastened axially one behind the other in a radial alignment with the associated rotor module 15 on the machine housing 10.
  • the unipolar transverse flux machine designed here in two strands can be designed in a simple manner with one or three or more strands by removing or adding a module unit consisting of stator module 14 and rotor module 15.
  • the rotor module 15 consists of two coaxial, toothed, ferromagnetic rotor rings 16, 17 which sit on the rotor shaft 13 in a rotationally fixed manner and clamp between them a permanent magnet ring 18 which is unipolarly magnetized in the axial direction, that is to say in the direction of the rotor or stator axis 19.
  • Each rotor ring 16, 17 is toothed on its outer circumference facing away from the rotor axis 19 with constant tooth pitch, so that the through. in each case a tooth gap 21 separate teeth 22 of the resulting Zahnre 'ihen a same angle of rotation distance from one another have.
  • the teeth 22 on the rotor ring 16 and on the rotor ring 17 are aligned with each other in the axial direction.
  • the rotor rings 16, 17 with the teeth 22 formed thereon in one piece are laminated and are preferably composed of the same sheet metal die cuts which abut one another in the axial direction.
  • the stator module 14 which concentrically surrounds the rotor module 15 with a radial spacing while leaving air gaps, has an annular coil 23 arranged coaxially to the rotor axis 19 and U-shaped, yoke-like stator poles 24, 25 which extend over the annular coil 23.
  • a magnetic circuit closes via a stator pole 24, a stator pole 25 and a tooth 22 of the rotor 12, the stator poles 24 with their yoke legs overlapping the ring coil 23 and the stator poles 25 with their yoke web lying radially below the ring coil 23, which is why Stator poles 24 ' long and the stator poles 25 have short yoke legs.
  • the stator poles 24, 25, which are also laminated and are composed of stamped sheets to form laminated cores, are fixed here on the machine housing 10 with a pole pitch ⁇ corresponding to half the tooth pitch on the rotor module 15.
  • the stator poles 24, 25 are arranged such that the one yoke leg with the one rotor ring 16 and the other yoke leg are radially aligned with the other rotor ring 17 of the associated rotor module 12, the free end faces of the yoke legs forming the pole faces of the rotor ring 16 and 17 face each other with a radial air gap distance.
  • the two are arranged axially next to one another in the machine housing 10 Stator modules 14 of the two module units are rotated by 90 electrical degrees relative to one another, which corresponds to half a pole pitch ⁇ .
  • the offset angle in the direction of rotation is 5.625 ° spatially.
  • Torque ripples expresses to reduce or to press below a required level. These measures are described below using a module unit as schematically shown in plan view in FIG. 2. The second module unit shown in FIG. 1 is then modified in the same way.
  • Stator pole groups 131-134 formed, which have an equal number of stator poles 24, 25.
  • four stator pole groups 131-134, each with eight stator poles 24, 25, are formed.
  • This k Stator pole groups form m »k / 2 stator pole group pairs, each stator pole group belonging to 131-134 m pairs.
  • stator pole group 131 + 132 stator pole group 133 + 134
  • FIG. 4 shows the torque curve for the four stator pole groups 131-134 over an electrical angle of 360 °.
  • Curve a shows the torque curve for the stator pole group 131
  • curve b the torque curve for the stator pole group 132
  • curve c the torque curve for the stator pole group 133
  • curve d the torque curve for the stator pole group 134.
  • this is the case total moment of the module unit resulting from the summation of these curves a, b, c, d is marked with e.
  • curve f indicates the total torque of the module unit with the stator poles 24, 25 not shifted.
  • stator poles 24, 25 are eight in total Stator pole groups each with four in order to subdivide the stator poles 24, 25 offset from one another ⁇ . These eight stator pole groups alternately belong to a total of twelve stator pole group pairs.
  • FIG. 8 - 12 a second way of reducing the harmonic content in the unko-compensated unipolar transverse flux machine according to FIG. 1 is illustrated.
  • This type of displacement of the stator poles 24, 25 requires a number of stator poles 24, 25 which is only an even number and does not have to satisfy the condition 2 n , with n as an integer.
  • n as an integer.
  • a harmonic reduction in the torque of a 50-pole or 36-pole unipolar transverse flux machine can be achieved.
  • a module unit with thirty-two stator poles 24, 25 is shown in FIG. 8, again shown schematically, wherein all stator poles 24, 25 symmetrically ⁇ by one pole pitch offset from one another are arranged.
  • a stator pole 24 and a stator pole 25 each form a stator pole pair 135.
  • a stator pole pair or a plurality of stator pole pairs 135 are made from their symmetrical angle ß by an electrical angle
  • the size of the angle ⁇ is calculated so that the fundamental vibration generated by the respective stator pole pair 135 is greater in torque than a predetermined upper value and the torque components due to the selected harmonics do not exceed a predetermined upper value.
  • the upper limits are set, for example, so that the amplitude of the harmonics or harmonics is less than 3% of the fundamental oscillation amplitude in the case of an uncompensated machine and, moreover, the fundamental oscillation amplitude is not less than 90% of the fundamental oscillation amplitude in the uncompensated machine.
  • N P is the number of stator poles 24, 25 and N w is the number of possible angular positions ⁇ . From this number N tot of the possible solutions, one filters out those solutions which meet the above-mentioned upper limits, that is to say cause an at least 90% fundamental oscillation amplitude while simultaneously reducing the amplitudes of the harmonics, preferably the 3rd and 5th harmonics, to below 3%.
  • Curve g in the diagram of FIG. 10 shows the accumulated torque curve of the seven undisplaced stator pole pairs 135, the accumulated torque curve of the five stator pole pairs 135 electrically shifted by 36 ° and curve h and the accumulated one
  • the resulting torque of the module unit shows the curve k in FIG. 11.
  • the torque curve of the uncompensated module unit with curve f is shown in FIG.
  • the amplitude spectrum of the torque in FIG. 12 shows that the amplitudes of the 3rd and 5th harmonics are much smaller than in the uncompensated machine (cf. FIG. 7) and are less than 3% of the uncompensated fundamental oscillation amplitude.
  • the amplitude of the torque has not dropped below 90% of the amplitude of the torque of the uncompensated machine.
  • the second harmonic (FIG. 12) still present in the torque of the module unit can also be disregarded here, because the second harmonic, as already explained above, is largely compensated for by the second module unit with its 90 ° shift.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

La présente invention concerne une machine à flux transversal unipolaire, de construction modulaire, qui comprend au moins un module de rotor (15), deux anneaux de rotor ferromagnétiques coaxiaux (16, 17), qui sont dentés sur leur périphérie externe avec un pas de dents constant, un anneau d'aimant permanent (18) à aimantation unipolaire, qui est enserré entre les deux anneaux de rotor, ainsi qu'au moins un module de stator (14), qui est concentrique à ces anneaux et présente un nombre de pôles de stator de type culasse (24, 25) qui correspond au double du nombre de dents du module de rotor (15). Ces pôles de stator sont décalés les uns par rapport aux autres selon un pas polaire (τ) et leurs deux pattes de culasse sont opposées aux deux anneaux de rotor (16, 17), un entrefer se trouvant entre eux. Cette machine comprend également une bobine toroïdale (23). Au moins une paire de groupes de pôles de stator (131-134) présentant un nombre identique de pôles de stator permet de réduire le taux de distorsion harmonique dans le couple de la machine. Ces groupes de pôles de stator sont décalés les uns par rapport aux autres d'un angle électrique α = 180°/ξ, ξ étant le nombre ordinal d'ondes harmoniques supprimées dans ce couple par ce décalage.
EP01989389A 2000-12-13 2001-12-11 Machine a flux transversal unipolaire Withdrawn EP1344300A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10062073A DE10062073A1 (de) 2000-12-13 2000-12-13 Unipolar-Transversalflußmaschine
DE10062073 2000-12-13
PCT/DE2001/004628 WO2002049187A2 (fr) 2000-12-13 2001-12-11 Machine a flux transversal unipolaire

Publications (1)

Publication Number Publication Date
EP1344300A2 true EP1344300A2 (fr) 2003-09-17

Family

ID=7666966

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01989389A Withdrawn EP1344300A2 (fr) 2000-12-13 2001-12-11 Machine a flux transversal unipolaire

Country Status (5)

Country Link
US (1) US6847135B2 (fr)
EP (1) EP1344300A2 (fr)
JP (1) JP2004516780A (fr)
DE (1) DE10062073A1 (fr)
WO (1) WO2002049187A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU195975U1 (ru) * 2019-12-16 2020-02-12 Акционерное общество «АВТОВАЗ» Генератор

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10140303A1 (de) * 2001-08-16 2003-02-27 Bosch Gmbh Robert Unipolar-Transversalflußmaschine
GB2430560A (en) * 2005-09-22 2007-03-28 Alstom Power Conversion Ltd Laminated stator for tubular electrical machines
US7989084B2 (en) * 2007-05-09 2011-08-02 Motor Excellence, Llc Powdered metal manufacturing method and devices
USRE49413E1 (en) 2007-07-09 2023-02-07 Clearwater Holdings, Ltd. Electromagnetic machine with independent removable coils, modular parts and self-sustained passive magnetic bearing
US7830057B2 (en) * 2008-08-29 2010-11-09 Hamilton Sundstrand Corporation Transverse flux machine
EP2340602B1 (fr) 2008-09-26 2019-01-02 Clearwater Holdings, Ltd. Machine motrice à aimants permanents
WO2010062766A2 (fr) 2008-11-03 2010-06-03 Motor Excellence, Llc Systèmes de flux transversaux et/ou commutés polyphasés
WO2011115633A1 (fr) 2010-03-15 2011-09-22 Motor Excellence Llc Systèmes à flux transversal et/ou à flux commuté pour vélos électriques
EP2548289B1 (fr) * 2010-03-15 2019-11-27 Motor Excellence, LLC Systèmes à flux transversal et/ou à flux commuté comprenant une caractéristique de décalage de phase
EP2548288A1 (fr) 2010-03-15 2013-01-23 Motor Excellence, LLC Systèmes à flux transversal et/ou à flux commuté, configurés de façon à réduire les déperditions de flux, à réduire les déperditions d'hystérésis et à réaliser une adaptation de phase
CN103477538A (zh) 2010-11-17 2013-12-25 电动转矩机器公司 具有分段定子层压件的横向和/或换向磁通***
WO2012067896A2 (fr) 2010-11-17 2012-05-24 Motor Excellence, Llc Systèmes à flux commuté et/ou transversal comprenant des tôles de stator segmentées et en poudre
US8854171B2 (en) 2010-11-17 2014-10-07 Electric Torque Machines Inc. Transverse and/or commutated flux system coil concepts
US10505412B2 (en) 2013-01-24 2019-12-10 Clearwater Holdings, Ltd. Flux machine
JP6253520B2 (ja) 2014-05-30 2017-12-27 株式会社東芝 回転電機
US20160126789A1 (en) * 2014-10-31 2016-05-05 GM Global Technology Operations LLC Permanent magnet motor
JP6539465B2 (ja) 2015-03-19 2019-07-03 株式会社東芝 横方向磁束型回転電機
MX2020002079A (es) 2017-09-08 2021-01-20 Clearwater Holdings Ltd Sistemas y métodos para mejorar el almacenamiento eléctrico.
JP7433223B2 (ja) 2017-10-29 2024-02-19 クリアウォーター ホールディングス,リミテッド モジュール化された電磁機械及び製造方法
CN114640232A (zh) * 2022-03-29 2022-06-17 中国人民解放军国防科技大学 一种并排双定子错齿永磁游标电机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983002042A1 (fr) * 1981-12-04 1983-06-09 Oudet, Claude Moteur pas a pas electrique
CH653189A5 (fr) * 1983-04-08 1985-12-13 Portescap Moteur pas a pas electrique.
JPS6169364A (ja) 1984-09-11 1986-04-09 Toshiba Corp ステツプモ−タ
US4703243A (en) * 1986-04-17 1987-10-27 Kollmorgen Technologies Corporation Stepping motor harmonic suppression
JPH10126982A (ja) * 1996-10-24 1998-05-15 Matsushita Electric Ind Co Ltd 永久磁石モータ
JP4091197B2 (ja) * 1999-02-15 2008-05-28 三菱電機株式会社 回転電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FRIEDRICH JÜRGEN K.-H.: "Bauformen und Betriebsverhalten modularer Dauermagnetmaschinen", DISSERTATION VON DER FAKULTAET FUER ELEKTROTECHNIK DER UNIVERSITAET DER BUNDESWEHR MUENCHEN, 1991, NEUBIBERG, GERMANY, pages 1 - 41, XP002387835 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU195975U1 (ru) * 2019-12-16 2020-02-12 Акционерное общество «АВТОВАЗ» Генератор

Also Published As

Publication number Publication date
US6847135B2 (en) 2005-01-25
US20040075357A1 (en) 2004-04-22
DE10062073A1 (de) 2002-06-20
WO2002049187A2 (fr) 2002-06-20
WO2002049187A3 (fr) 2002-10-24
JP2004516780A (ja) 2004-06-03

Similar Documents

Publication Publication Date Title
EP1344300A2 (fr) Machine a flux transversal unipolaire
DE3921725C2 (de) Dreiphasen-Elektromaschine
DE3546226C2 (fr)
EP1421668A1 (fr) Machine a flux transversal unipolaire
DE69829831T2 (de) Elektromotor des Typs mit Dauermagnetläufer
EP2115857B1 (fr) Moteur synchrone 18/8
WO2001086785A1 (fr) Machine a flux transversal unipolaire
EP1208631A1 (fr) Machine unipolaire a flux transversal
DE69633855T2 (de) Hybrider Schrittmotor
DE2506573B1 (de) Polumschaltbare drehstromwicklung
WO2007141230A1 (fr) Générateur de courant alternatif pour véhicules automobiles
EP3038233A1 (fr) Moteur synchrone a aimant permanent et direction assistee electrique
WO2000003469A2 (fr) Machine electrique, en particulier moteur a reluctance
DE102012111930A1 (de) Permanentmagnetläufer und mit dem Läufer versehener Elektromotor
DE10146123A1 (de) Elektronisch kommutierter Elektromotor mit achsparallelen Spulen
WO2013053479A1 (fr) Ensemble de tôles de rotor et procédé de fabrication
DE69926561T2 (de) Elektromotor
DE102010018145B4 (de) Dynamoelektrische Maschine der Klauenpolbauart
DE102021114872A1 (de) Elektrische rotationsmaschine
EP2668712A2 (fr) Machine électrique et procédé pour bobiner un enroulement d'une machine électrique
DE19704769C2 (de) Mehrsträngige Synchronmaschine mit Permanentmagneten und Spulenmodulen
DE102020001861A1 (de) Einen Stator mit geteiltem Kern aufweisender Elektromotor
DE19530918A1 (de) Motor mit gegeneinander bewegbaren Motorteilen
DE2727471C3 (de) Elektronisch kommutierter Reluktanzmotor
DE60036003T2 (de) Elektromagnetische motor oder generator vorrichtungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030714

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20070227

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080701