EP1342968A1 - Verfahren und Vorrichtung zur Herstellung eines hoch reinen Produkts aus einer weniger reinen Einsatzfraktion - Google Patents

Verfahren und Vorrichtung zur Herstellung eines hoch reinen Produkts aus einer weniger reinen Einsatzfraktion Download PDF

Info

Publication number
EP1342968A1
EP1342968A1 EP03004659A EP03004659A EP1342968A1 EP 1342968 A1 EP1342968 A1 EP 1342968A1 EP 03004659 A EP03004659 A EP 03004659A EP 03004659 A EP03004659 A EP 03004659A EP 1342968 A1 EP1342968 A1 EP 1342968A1
Authority
EP
European Patent Office
Prior art keywords
separation column
liquid
product
operating phase
intermediate product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03004659A
Other languages
English (en)
French (fr)
Inventor
Gunther Hauck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1342968A1 publication Critical patent/EP1342968A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/56Ultra high purity oxygen, i.e. generally more than 99,9% O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/58Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/42Separating low boiling, i.e. more volatile components from nitrogen, e.g. He, H2, Ne
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/44Separating high boiling, i.e. less volatile components from nitrogen, e.g. CO, Ar, O2, hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/30Control of a discontinuous or intermittent ("batch") process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/40Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the invention relates to a method for producing a highly pure product from a feed fraction which consists of a less pure air component.
  • less pure preliminary product for example nitrogen or oxygen of technical purity or raw argon
  • the relatively pure product is made from this less pure cryogenic liquid with a relatively uncomplicated apparatus.
  • Air component is understood here to mean any substance which is present in the atmospheric air in elemental form or as a chemical compound, for example nitrogen, oxygen or argon.
  • the method according to the invention is particularly suitable for producing high-purity nitrogen, for example for the semiconductor industry.
  • Feed fraction which consists of a less pure air component
  • the "feed fraction” has, for example, a purity of at least 99.9 mol%, preferably at least 99.99 mol%. It also contains, for example, 0.1 mol% or less, preferably 0.01 mol% or less, for example 0.001 mol% of impurities. It is formed, for example, by the product of an adjacent cryogenic air separation plant and / or removed from a liquid tank. The highly pure product contains less impurities than the feed mixture. For example, it still has impurities of 0.1 ppm or less, preferably 0.01 ppm or less.
  • the invention is therefore based on the object of finding a method and a device which can be implemented economically particularly inexpensively, in particular with little outlay on equipment.
  • an intermediate product is produced from the feed fraction in a separation column, which is purer than the feed fraction, but does not yet have the desired very high purity.
  • This intermediate product is temporarily stored in a liquid tank.
  • the feed fraction into the separation column is interrupted and the column is run empty.
  • the intermediate product is introduced as an insert into the same separation column and is again subjected to a countercurrent mass transfer, through which the highly pure end product is produced.
  • Residual fractions which are drawn from the separation column in addition to the products, discharge the impurities and can be used as a gaseous product of lower purity.
  • the feed fraction is taken from a second liquid store which is connected to a system for pressure build-up evaporation.
  • the pressure build-up evaporation preferably generates a pressure which is sufficient to increase the total pressure drop in the process which occurs in the two operating phases overcome. In this way, the method according to the invention manages completely without complex machines such as compressors or pumps.
  • reflux liquid is preferably generated in a top condenser of the separation column, which is cooled in the first operating phase with bottom liquid of the separation column and in the second operating phase with liquid feed fraction. Together with the liquid feed of the feed fraction in the first operating phase, the process can be supplied with so much cold that internal measures for cooling can be dispensed with.
  • the top condenser is designed as a condenser-evaporator, in the condensation space of which top gas is liquefied from the separation column.
  • the condensing top gas is in indirect heat exchange with a liquid which evaporates in the evaporation space of the top condenser and is formed in the invention by the bottom liquid of the separation column or by the liquid feed fraction.
  • the feed fraction only serves to supply cold during the second operating phase. It is evaporated in the top condenser and drawn off as a gaseous product of lower purity. In addition to the feed fraction, bottom liquid can also be passed from the separation column into the top condenser in the second operating phase.
  • the separation column also has a bottom evaporator.
  • bottom liquid of the separation column is evaporated in the bottom evaporator and returned to the lower area of the separation column.
  • the heat supply in the sump evaporator can be done by electrical heating or by indirect heat exchange with atmospheric air or a water bath.
  • the highly pure product is preferably introduced into a third liquid store.
  • it can be vaporized by indirect heat exchange, in which another process fraction is liquefied.
  • the invention also relates to a device for producing a highly pure product according to claim 7.
  • the invention can be used with particularly great advantage when the gas consumer meets his needs by evaporating medium-purity liquid (for example liquid nitrogen) from a liquid tank.
  • medium-purity liquid for example liquid nitrogen
  • the - otherwise unused - cold that is released on evaporation can be used in the system according to the invention to generate a certain amount of high-purity nitrogen. In such cases, the need for a high-purity product is regularly significantly lower than for evaporated, less pure air components.
  • the system required for this is simple and inexpensive to manufacture.
  • the complicated integration into an existing apparatus or a refrigeration cycle is eliminated. Due to the uncomplicated structure, in particular the complete or extensive elimination of rotating machines, it is low-maintenance.
  • the process can also be operated flexibly, particularly with regard to the liquid content of the product.
  • the appliance can be cold-run in no time.
  • HLIN high-purity nitrogen
  • the apparatus comprises a separating column 1, which is arranged inside a vacuum container 2, which is roughly indicated in the drawing.
  • the vacuum container is preferably double-walled, the space between the two walls being evacuated.
  • first liquid store intermediate product tank
  • second liquid store (LIN tank) 5
  • the intermediate product tank 3 has a similar system for pressure build-up evaporation, which is not shown in the drawing.
  • valve 10 In the first operating phase, valve 10 is open and liquid nitrogen from LIN tank 5 flows via lines 9 and 11 into the bottom of separation column 1. Valve 12 in line 13 is closed. Bottom liquid is drawn off via line 14 and evaporated to a first part 15 in a bottom evaporator 16. Gas 17 formed in the process is returned to the lower section of the separation column 1 and rises in the column. The bottom evaporator is controlled depending on the liquid level in the column.
  • a second part 18 of the bottom liquid 14 is passed via valve 19 into the evaporation space of a top condenser 20. There, the liquid evaporates almost completely (apart from a safety rinse 21) against condensing top gas 22 from the separation column 1. The liquid 23 produced in this way is fed as a return to the top of the separation column 1. Gas produced in the evaporation space is drawn off via line 29.
  • the separation column is first run with total return and one waits until a predetermined purity has been established in the product line 24, which in the example is arranged on the third floor from above. This is determined based on the hydrogen content at this point. If this is below a predetermined threshold, valve 25 is opened so that liquid intermediate product is throttled via lines 24 and 25 into the intermediate product tank 3. The resulting flash gas further reduces the hydrogen content and is removed via line 27.
  • Valve 1 is closed during the transition to the second operating phase. Instead, the intermediate product from the first liquid store 3 is fed via line 37 into the bottom evaporator of the separation column. The bottom evaporator 16 continues to run.
  • the head condenser 20 is now mainly operated by means of liquid nitrogen from the LIN tank 5 by opening valve 12 and the liquid flowing via line 13 to its evaporation space.
  • Valve 25 initially continues to connect lines 24 and 26.
  • Line 24 is the desired one in the same position as in the first operating phase. If the desired high purity is reached in product line 24, the transition to the second operating phase is achieved by switching valve 25 and the liquid from line 24 - now highly pure nitrogen as end product - flows via line 28 into the HLIN tank 4. Via a Fume cupboard 36, the highly pure product can be fed to a larger tank and / or a consumer.
  • the flushing rate with regard to the more volatile impurities is set by means of the valve 32.
  • the flash gases 27 and 30 from intermediate and HLIN tanks 3, 4 and top gas 33 from the separation column are heated together with the steam 29 generated in the top condenser 20 in a heat exchanger 34 to about ambient temperature and can be used as a less pure nitrogen gas in a consumer ,
  • the system according to the invention also acts, so to speak, as a product evaporator for less pure nitrogen from the LIN tank 5, but with the utilization of the cold released in the process to produce a highly pure product.
  • the pressure required for the method according to the invention can also be generated by a pump (not shown).
  • high-purity nitrogen with a total contamination of up to 10 ppb and less can be achieved without problems, even with a relatively high operating pressure of the separation column of 6.5 bar.
  • liquid nitrogen (“less pure air component”) with 5 ppm Ar, 0.2 ppm O 2 , 0.2 ppm CO, 0.04 ppm CH 4 and 0.04 ppm H 2 became more liquid pure nitrogen (“high purity product”) that contains residual impurities of 1 ppb CO and 0.01 ppb H 2 ; Argon, oxygen and methane were completely removed.
  • the number of dividers in the column is determined in a known manner depending on the desired operating pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Das Verfahren und die Vorrichtung dienen zur Herstellung eines hoch reinen Produkts (28, 36) aus einer Einsatzfraktion (11), die aus einer weniger reinen Luftkomponente, insbesondere Stickstoff, Sauerstoff oder Argon, mittlerer Reinheit besteht, mit zwei Betriebsphasen. In einer ersten Betriebsphase wird ein Strom der Einsatzfraktion (11) in flüssiger Form in eine Trennsäule (1) eingeleitet; in der Trennsäule (1) wird mittels Gegenstrom-Stoffaustausch ein flüssiges Zwischenprodukt erzeugt, das eine höhere Reinheit als die Einsatzfraktion (11) aufweist; das Zwischenprodukt (24, 26) wird aus der Trennsäule (1) abgezogen und in einen ersten Flüssigspeicher (3) eingeführt. In einer zweiten Betriebsphase wird ein Strom des Zwischenprodukts aus dem ersten Flüssigspeicher (3) in die Trennsäule (1) eingeleitet, mittels Gegenstrom-Stoffaustausch in der Trennsäule (1) hoch reines Produkt erzeugt, das eine höhere Reinheit als das Zwischenprodukt aufweist, und das hoch reine Produkt (24, 28) aus der Trennsäule (1) abgezogen.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines hoch reinen Produkts aus einer Einsatzfraktion, die aus einer weniger reinen Luftkomponente besteht.
  • Mit Hilfe eines derartigen Systems kann beispielsweise am Ort eines Verbrauchers kostengünstig erhältliches weniger reines Vorprodukt (zum Beispiel Stickstoff oder Sauerstoff technischer Reinheit oder Rohargon) flüssig antransportiert werden; aus diesem weniger reinen tiefkalten Flüssigkeit wird mit einer relativ unkomplizierten Apparatur das benötigte hoch reine Produkt hergestellt.
  • Unter "Luftkomponente" wird hier jeder Stoff verstanden, der in elementarer Form oder als chemische Verbindung in der atmosphärischen Luft enthalten ist, beispielsweise Stickstoff, Sauerstoff oder Argon. Besonders geeignet ist das erfindungsgemäße Verfahren zur Herstellung von hoch reinem Stickstoff, zum Beispiel für die HalbleiterIndustrie.
  • Unter "Einsatzfraktion, die aus einer weniger reinen Luftkomponente besteht," ist ein Vorprodukt zu verstehen, das hauptsächlich aus der entsprechenden Luftkomponente besteht, aber noch verschiedene Verunreinigungen enthält, die leichter und/oder schwerer als die Luftkomponente sieden. Es kann sich beispielsweise um Stickstoff technischer Reinheit handeln. Die "Einsatzfraktion" weist beispielsweise eine Reinheit von mindestens 99,9 mol%, vorzugsweise mindestens 99,99 mol% auf. Er enthält noch beispielsweise 0,1 mol% oder weniger, vorzugsweise 0,01 mol% oder weniger, beispielsweise 0,001 mol% an Verunreinigungen. Sie wird beispielsweise durch das Produkt einer benachbarten Tieftemperatur-Luftzerlegungsanlage gebildet und/oder einem Flüssigtank entnommen. Das hoch reine Produkt enthält weniger Verunreinigungen als das Einsatzgemisch. Es weist zum Beispiel noch Verunreinigungen im Umfang von 0,1 ppm oder weniger, vorzugsweise von 0,01 ppm oder weniger auf.
  • Reinigungsverfahren und -vorrichtungen, die einem ähnlichen Zweck wie der erfindungsgemäße Prozess dienen, sind in JP 02061481 A und US 5421164 beschrieben. Die beiden bekannten Prozesse werden kontinuierlich betrieben.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zufinden, die wirtschaftlich besonders günstig, insbesondere mit niedrigem apparativen Aufwand zu realisieren sind.
  • Diese Aufgabe wird das Verfahren gemäß Patentanspruch 1 gelöst. Das erfindungsgemäße Verfahren wird diskontinuierlich in zwei Betriebsphasen durchgeführt.
  • In einer ersten Betriebsphase wird aus der Einsatzfraktion in einer Trennsäule ein Zwischenprodukt hergestellt, das zwar reiner als die Einsatzfraktion ist, aber noch nicht die gewünschte sehr hohe Reinheit aufweist. Dieses Zwischenprodukt wird in einem Flüssigtank zwischengespeichert. Am Ende der ersten Betriebsphase wird die Zufuhr der Einsatzfraktion in die Trennsäule unterbrochen und die Säule wird leer gefahren. In einer zweiten Betriebsphase wird das Zwischenprodukt als Einsatz in dieselbe Trennsäule eingeleitet und erneut einem Gegenstrom-Stoffaustausch unterworfen, durch den das hoch reine Endprodukt hergestellt wird.
  • Obwohl im Rahmen der Erfindung eine zweistufige destillative Trennung durchgeführt wird, benötigt die entsprechende Apparatur nur eine einzige Trennsäule. Die zweistufige Verfahrensweise erlaubt eine geringe Bodenzahl in der Trennsäule und ein praktisch unbeschränktes Rücklaufverhältnis.
  • Durch die flüssige Zufuhr der Einsatzfraktion wird dem Verfahren mindestens ein Teil der benötigten Kälte zugeführt. Restfraktionen, die neben den Produkten aus der Trennsäule abgezogen werden, schleusen die Verunreinigungen aus und können als gasförmiges Produkt geringerer Reinheit verwendet werden.
  • Es ist günstig, wenn die Einsatzfraktion einem zweiten Flüssigspeicher entnommen wird, der mit einem System zur Druckaufbauverdampfung verbunden ist. Vorzugsweise wird mittels der Druckaufbauverdampfung ein Druck erzeugt, der ausreicht, um den gesamten Druckverlust des Prozesses, der in den beiden Betriebsphasen auftritt, zu überwinden. Auf diese Weise kommt das erfindungsgemäße Verfahren vollkommen ohne aufwändige Maschinen wie Verdichter oder Pumpen aus.
  • Rücklaufflüssigkeit wird bei dem Verfahren vorzugsweise in einem Kopfkondensator der Trennsäule erzeugt, der in der ersten Betriebsphase mit Sumpfflüssigkeit der Trennsäule und in der zweiten Betriebsphase mit flüssiger Einsatzfraktion gekühlt wird. Zusammen mit der flüssigen Zufuhr der Einsatzfraktion in der ersten Betriebsphase kann damit dem Prozess so viel Kälte zugeführt werden, dass interne Maßnahmen zur Kälteerzeugung entfallen können.
  • Der Kopfkondensator ist als Kondensator-Verdampfer ausgebildet, in dessen Kondensationsraum Kopfgas aus der Trennsäule verflüssigt wird. Das kondensierende Kopfgas steht dabei in indirektem Wärmeaustausch mit einer Flüssigkeit, die im Verdampfungsraum des Kopfkondensators verdampft und bei der Erfindung durch Sumpfflüssigkeit der Trennsäule beziehungsweise durch flüssige Einsatzfraktion gebildet wird.
  • Die Einsatzfraktion dient während der zweiten Betriebsphase lediglich zur Lieferung von Kälte. Sie wird in dem Kopfkondensator verdampft und als gasförmiges Produkt geringerer Reinheit abgezogen. Zusätzlich zur Einsatzfraktion kann auch in der zweiten Betriebsphase Sumpfflüssigkeit aus der Trennsäule in den Kopfkondensator geleitet werden.
  • Es ist günstig, wenn die Trennsäule außerdem einen Sumpfverdampfer aufweist. In der ersten oder der zweiten oder vorzugsweise in beiden Betriebsphasen wird Sumpfflüssigkeit der Trennsäule im Sumpfverdampfer verdampft und in den unteren Bereich der Trennsäule zurückgeführt. Die Wärmezufuhr im Sumpfverdampfer kann durch elektrische Heizung oder durch indirekten Wärmeaustausch mit atmosphärischer Luft oder einem Wasserbad erfolgen.
  • Es ist ferner günstig, wenn das Zwischenprodukt und das hoch reine Produkt an derselben Zwischenstelle aus der Trennsäule entnommen werden. In diesem Fall braucht nur eine entsprechende Leitung vorgesehen zu werden.
  • Vorzugsweise wird das hoch reine Produkt in einen dritten Flüssigspeicher eingeleitet. Alternativ dazu kann es durch indirekten Wärmeaustausch verdampft werden, bei dem eine andere Prozessfraktion verflüssigt wird.
  • Die Erfindung betrifft außerdem eine Vorrichtung zur Herstellung eines hoch reinen Produkts gemäß Patentanspruch 7.
  • Mit besonders großem Vorteil kann die Erfindung dann eingesetzt werden, wenn der Gasverbraucher seinen Bedarf durch Verdampfen von Flüssigkeit mittlerer Reinheit (zum Beispiel flüssigem Stickstoff) aus einem Flüssigtank deckt. Die - ansonsten ungenutzte - Kälte, die beim Verdampfen frei wird, kann bei dem erfindungsgemäßen System zur Erzeugung einer gewissen Menge hoch reinen Stickstoffs verwendet werden. Der Bedarf an hoch reinem Produkt ist in solchen Fällen regelmäßig deutlich geringer als der an verdampfter weniger reiner Luftkomponente.
  • Die dazu notwendige Anlage ist einfach und kostengünstig herzustellen. Die komplizierte Einbindung in einen bestehenden Apparat oder einen Kältekreislauf entfällt. Durch den unkomplizierten Aufbau, insbesondere den vollständigen oder weit gehenden Verzicht auf rotierende Maschinen ist sie wartungsarm. Außerdem lässt sich der Prozess flexibel fahren, insbesondere hinsichtlich des Flüssiganteils des Produkts. Der Apparat lässt sich in kürzester Zeit kaltfahren.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert, das zur Erzeugung flüssigen hoch reinen Stickstoffs (HLIN) aus flüssigem Stickstoff geringerer Reinheit (LIN) dient.
  • Die Apparatur umfasst eine Trennsäule 1, die im Inneren eines in der Zeichnung grob angedeuteten Vakuumbehälters 2 angeordnet ist. Der Vakuumbehälter ist vorzugsweise doppelwandig ausgebildet, wobei der Zwischenraum zwischen den beiden Wänden evakuiert ist. Im Innenraum des Vakuumbehälters 2 sind außerdem ein "erster Flüssigspeicher" (Zwischenprodukt-Tank) 3 für Zwischenprodukt und ein "dritter Flüssigspeicher" (HLIN-Tank) 4 für hochreines Produkt angeordnet, jeweils in Ringform konzentrisch um die Trennsäule 1. Ein "zweiter Flüssigspeicher" (LIN-Tank) 5 dient zur Speicherung des zu reinigenden Vorprodukts (der "weniger reinen Luftkomponente"). Er weist ein System 6 -7 - 8 zur Druckaufbauverdampfung mit einem Verdampfer 7 auf. Der Zwischenprodukt-Tank 3 weist ein ähnliches System zur Druckaufbauverdampfung auf, das in der Zeichnung nicht dargestellt ist.
  • In der ersten Betriebsphase ist Ventil 10 geöffnet und flüssiger Stickstoff aus dem LIN-Tank 5 strömt über die Leitungen 9 und 11 in den Sumpf der Trennsäule 1. Ventil 12 in Leitung 13 ist geschlossen. Über Leitung 14 wird Sumpfflüssigkeit abgezogen und zu einem ersten Teil 15 in einem Sumpfverdampfer 16 verdampft. Dabei gebildetes Gas 17 wird in den unteren Abschnitt der Trennsäule 1 zurückgeleitet und steigt in der Säule auf. Der Sumpfverdampfer wird in Abhängigkeit vom Flüssigkeitsstand in der Säule geregelt.
  • Ein zweiter Teil 18 der Sumpfflüssigkeit 14 wird über Ventil 19 in den Verdampfungsraum eines Kopfkondensators 20 geleitet. Dort verdampft die Flüssigkeit fast vollständig (bis auf eine Sicherheitsspülung 21) gegen kondensierendes Kopfgas 22 aus der Trennsäule 1. Die dabei erzeugte Flüssigkeit 23 wird als Rücklauf auf den Kopf der Trennsäule 1 aufgegeben. Im Verdampfungsraum entstandenes Gas wird über Leitung 29 abgezogen.
  • Nach dem Start der ersten Betriebsphase wird die Trennsäule zunächst mit totalem Rücklauf gefahren und man wartet, bis sich in der Produktleitung 24, die in dem Beispiel am dritten Boden von oben angeordnet ist, eine vorbestimmte Reinheit eingestellt hat. Dies wird anhand des Wasserstoffgehalts an dieser Stelle bestimmt. Liegt dieser unterhalb einer vorbestimmten Schwelle, wird Ventil 25 so geöffnet, dass flüssiges Zwischenprodukt über die Leitungen 24 und 25 in den Zwischenprodukt-Tank 3 eingedrosselt wird. Dabei entstehendes Flashgas reduziert den Wasserstoffgehalt weiter und wird über Leitung 27 entfernt.
  • Beim Übergang in die zweite Betriebsphase wird Ventil 1 geschlossen. Stattdessen wird Zwischenprodukt aus dem ersten Flüssigspeicher 3 über Leitung 37 in den Sumpfverdampfer der Trennsäule geleitet. Der Sumpfverdampfer 16 läuft weiter. Der Kopfkondensator 20 wird nunmehr hauptsächlich mittels flüssigen Stickstoffs aus dem LIN-Tank 5 betrieben, indem Ventil 12 geöffnet wird und die Flüssigkeit über Leitung 13 zu dessen Verdampfungsraum strömt.
  • Ventil 25 verbindet zunächst weiterhin die Leitungen 24 und 26. Ist in Leitung 24 die gewünschte in derselben Stellung wie in der ersten Betriebsphase. Ist in Produktleitung 24 die gewünschte hohe Reinheit erreicht, wird der Übergang in die zweite Betriebsphase erreicht, indem Ventil 25 umschaltet und die Flüssigkeit aus Leitung 24 - nunmehr hoch reiner Stickstoff als Endprodukt - strömt über Leitung 28 in den HLIN-Tank 4. Über einen Abzug 36 kann das hoch reine Produkt einem größeren Tank und/oder einem Verbraucher zugeführt werden.
  • In beiden Betriebsphasen wird die Spülrate bezüglich der leichter flüchtigen Verunreinigungen mittels des Ventils 32 eingestellt. Die Flashgase 27 und 30 aus Zwischenprodukt- und HLIN-Tanks 3, 4 sowie Kopfgas 33 aus der Trennsäule werden zusammen mit dem im Kopfkondensator 20 erzeugten Dampf 29 in einem Wärmetauscher 34 auf etwa Umgebungstemperatur angewärmt und können als weniger reines Stickstoffgas in einem Verbraucher eingesetzt werden. Auf diese Weise wirkt das erfindungsgemäße System sozusagen auch als Produktverdampfer für weniger reinen Stickstoff aus dem LIN-Tank 5, allerdings mit Verwertung der dabei frei werdenden Kälte zur Erzeugung von hoch reinem Produkt.
  • Alternativ zur Druckaufbauverdampfung 6 -7 -8 am LIN-Tank kann der für das erfindungsgemäße Verfahren benötigte Druck auch durch eine Pumpe erzeugt werden (nicht dargestellt).
  • Bei dem erfindungsgemäßen Verfahren gemäß dem Ausführungsbeispiel kann hoch reiner Stickstoff mit einer Gesamtverunreinigung bis 10 ppb und weniger problemlos erreicht werden, sogar bei einem relativ hohen Betriebsdruck der Trennsäule von 6,5 bar. In einem am Computer simulierten Zahlenbeispiel wurde aus flüssigem Stickstoff ("weniger reiner Luftkomponente") mit 5 ppm Ar, 0,2 ppm O2, 0,2 ppm CO, 0,04 ppm CH4 und 0,04 ppm H2 flüssiger hoch reiner Stickstoff ("hoch reines Produkt") hergestellt, das Restverunreinigungen von 1 ppb CO und 0,01 ppb H2; Argon, Sauerstoff und Methan wurden vollständig entfernt. Die Anzahl der Trennböden in der Säule wird auf bekannte Weise in Abhängigkeit von dem gewünschten Betriebsdruck ermittelt.

Claims (7)

  1. Verfahren zur Herstellung eines hoch reinen Produkts (28, 36) aus einer Einsatzfraktion (11), die aus einer weniger reinen Luftkomponente, insbesondere Stickstoff, Sauerstoff oder Argon, mittlerer Reinheit besteht, mit zwei Betriebsphasen, wobei in einer ersten Betriebsphase
    a. ein Strom der Einsatzfraktion (11) in flüssiger Form in eine Trennsäule (1) eingeleitet wird,
    b. in der Trennsäule (1) mittels Gegenstrom-Stoffaustausch ein flüssiges Zwischenprodukt erzeugt wird, das eine höhere Reinheit als die Einsatzfraktion (11) aufweist,
    c. das Zwischenprodukt (24, 26) aus der Trennsäule (1) abgezogen und in einen ersten Flüssigspeicher (3) eingeführt wird,
    und wobei in einer zweiten Betriebsphase
    d. ein Strom des Zwischenprodukts aus dem ersten Flüssigspeicher (3) in die Trennsäule (1) eingeleitet wird,
    e. mittels Gegenstrom-Stoffaustausch in der Trennsäule (1) hoch reines Produkt erzeugt wird, das eine höhere Reinheit als das Zwischenprodukt aufweist, und
    f. das hoch reine Produkt (24, 28) aus der Trennsäule (1) abgezogen wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Einsatzfraktion (11) einem zweiten Flüssigspeicher (5) entnommen wird, der mit einem System (6, 7, 8) zur Druckaufbauverdampfung verbunden ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Trennsäule (1) einen Kopfkondensator (20) aufweist, der in der ersten Betriebsphase mit Sumpfflüssigkeit (14, 18) der Trennsäule (1) und in der zweiten Betriebsphase mit flüssiger Einsatzfraktion (13) gekühlt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in der ersten und/oder zweiten Betriebsphase Sumpfflüssigkeit (14, 15) der Trennsäule (1) verdampft (16) und in den unteren Bereich der Trennsäule (1) zurückgeführt (17) wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Zwischenprodukt und das hoch reine Produkt an derselben Zwischenstelle (24) aus der Trennsäule (1) entnommen werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das hoch reine Produkt (28) in einen dritten Flüssigspeicher (4) eingeleitet wird.
  7. Vorrichtung zur Herstellung eines hoch reinen Produkts aus einer Einsatzfraktion, die aus einer weniger reinen Luftkomponente, insbesondere Stickstoff, Sauerstoff oder Argon, mittlerer Reinheit besteht, mit einer Trennsäule (1) und einem ersten Flüssigspeicher (3) und mit
    a. Mitteln (10, 11) zur Einleitung eines Stroms der Einsatzfraktion in flüssiger Form in die Trennsäule (1) während einer ersten Betriebsphase,
    b. Mitteln zur Erzeugung eines flüssigen Zwischenprodukts, das eine höhere Reinheit als die Einsatzfraktion aufweist, in der Trennsäule (1) mittels Gegenstrom-Stoffaustausch während der ersten Betriebsphase,
    c. Mitteln (24, 25, 26) zum Abziehen des Zwischenprodukts aus der Trennsäule (1) und zum Einleiten in den ersten Flüssigspeicher (3) während der ersten Betriebsphase,
    d. Mitteln zur Einleitung eines Stroms des Zwischenprodukts aus dem ersten Flüssigspeicher (3) in die Trennsäule (1) während einer zweiten Betriebsphase,
    e. Mitteln zur Erzeugung eines hoch reinen Produkts, das eine höhere Reinheit als das Zwischenprodukt aufweist, mittels Gegenstrom-Stoffaustausch in der Trennsäule (1) während der zweiten Betriebsphase und
    f. Mitteln (24, 25, 28) zum Abziehen des hoch reinen Produkts aus der Trennsäule (1) während der zweiten Betriebsphase.
EP03004659A 2002-03-08 2003-03-03 Verfahren und Vorrichtung zur Herstellung eines hoch reinen Produkts aus einer weniger reinen Einsatzfraktion Withdrawn EP1342968A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10210324 2002-03-08
DE2002110324 DE10210324A1 (de) 2002-03-08 2002-03-08 Verfahren und Vorrichtung zur Herstellung eines hoch reinen Produkts aus einer Einsatzfraktion

Publications (1)

Publication Number Publication Date
EP1342968A1 true EP1342968A1 (de) 2003-09-10

Family

ID=27740709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03004659A Withdrawn EP1342968A1 (de) 2002-03-08 2003-03-03 Verfahren und Vorrichtung zur Herstellung eines hoch reinen Produkts aus einer weniger reinen Einsatzfraktion

Country Status (2)

Country Link
EP (1) EP1342968A1 (de)
DE (1) DE10210324A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1398586A2 (de) * 2002-08-23 2004-03-17 The Boc Group, Inc. Verfahren und Vorrichtung zur Gewinnung einer gereinigten Flüssigkeit
WO2015109522A1 (en) * 2014-01-24 2015-07-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic enclosure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579566A (en) * 1983-03-08 1986-04-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for producing a gas of high purity by vaporization of a cryogenic liquid
JPH0261481A (ja) * 1988-08-24 1990-03-01 Hitachi Ltd 超高純度窒素の製造方法及び装置
EP0538857A1 (de) * 1991-10-25 1993-04-28 Linde Aktiengesellschaft Anlage zur Tieftemperaturzerlegung von Luft
US5421164A (en) * 1992-10-09 1995-06-06 Brugerolle; Jean-Renaud Process and installation for the production of ultra-pure nitrogen under pressure
US5784898A (en) * 1996-06-07 1998-07-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and device for the preparation of a cry ogenic fluid in the high purity liquid state

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579566A (en) * 1983-03-08 1986-04-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for producing a gas of high purity by vaporization of a cryogenic liquid
JPH0261481A (ja) * 1988-08-24 1990-03-01 Hitachi Ltd 超高純度窒素の製造方法及び装置
EP0538857A1 (de) * 1991-10-25 1993-04-28 Linde Aktiengesellschaft Anlage zur Tieftemperaturzerlegung von Luft
US5421164A (en) * 1992-10-09 1995-06-06 Brugerolle; Jean-Renaud Process and installation for the production of ultra-pure nitrogen under pressure
US5784898A (en) * 1996-06-07 1998-07-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and device for the preparation of a cry ogenic fluid in the high purity liquid state

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 014, no. 235 (M - 0975) 18 May 1990 (1990-05-18) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1398586A2 (de) * 2002-08-23 2004-03-17 The Boc Group, Inc. Verfahren und Vorrichtung zur Gewinnung einer gereinigten Flüssigkeit
EP1398586A3 (de) * 2002-08-23 2004-10-20 The Boc Group, Inc. Verfahren und Vorrichtung zur Gewinnung einer gereinigten Flüssigkeit
US6912872B2 (en) 2002-08-23 2005-07-05 The Boc Group, Inc. Method and apparatus for producing a purified liquid
US7263858B2 (en) 2002-08-23 2007-09-04 The Boc Group, Inc. Method and apparatus for producing a purified liquid
WO2015109522A1 (en) * 2014-01-24 2015-07-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic enclosure

Also Published As

Publication number Publication date
DE10210324A1 (de) 2003-09-18

Similar Documents

Publication Publication Date Title
DE69203111T2 (de) Siedeverfahren und Wärmetauscher zur Verwendung in diesem Verfahren.
DE69618736T2 (de) Verfahren und Vorrichtung zur Verflüssigung und Behandlung von Erdgas
DE2204376A1 (de) Thermisches Kreislaufverfahren zur Verdichtung eines Strömungsmittels durch Entspannung eines anderen Strömungsmittels
EP0092770A2 (de) Verfahren zur Gewinnung von Kohlenmonoxid
DE1267236B (de) Verfahren zur Verfluessigung von Naturgas
DE4425712C2 (de) Verfahren zur Anreicherung des Methangehaltes eines Grubengases
DE69307399T2 (de) Wärmeintegration zwischen Säulen für Mehrsäulendestillationssystem
DE10332863A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP1051588B1 (de) Verfahren und vorrichtung zum verdampfen von flüssigem sauerstoff
EP2322888B1 (de) Verfahren und Vorrichtung zur Gewinnung eines Helium-Neon-Konzentrats aus Luft
DE1039079B (de) Verfahren zum Eindampfen kohlenwasserstoffhaltigen, fluessigen Sauerstoffs und Einrichtung zur Durchfuehrung des Verfahrens
DE3107151A1 (de) Verfahren und vorrichtung zur verfluessigung und zerlegung von luft
DE69008437T2 (de) Erzeugung und Reinigung von Stickstoff.
EP1231440B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP0019905B1 (de) Vorrichtung zur Zerlegung eines Gasgemisches durch Rektifikation
EP1342968A1 (de) Verfahren und Vorrichtung zur Herstellung eines hoch reinen Produkts aus einer weniger reinen Einsatzfraktion
EP3026381A1 (de) Verfahren und vorrichtung zum ausschleusen schwerer als sauer- stoff flüchtiger komponenten aus einer luftzerlegungsanlage
EP0228623B1 (de) Verfahren zur Abtrennung von C5+-Kohlenwasserstoffen aus einem Gasstrom
DE10232430A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE60020500T2 (de) Verfahren zur Luftzerlegung durch Tieftemperaturdestillation
EP1001236B1 (de) Verfahren zur Gewinnung von ultrareinem Stickstoff
DE102013017590A1 (de) Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
DE10332862A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung
EP0904518B1 (de) Verfahren zum anfahren einer anlage zur tieftemperaturzerlegung von luft und anlage zur tieftemperaturzerlegung von luft
DE641250C (de) Zweistufige Rektifikationssaeule

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20040224

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051001