EP1312418B1 - Manually actuated atomiser - Google Patents

Manually actuated atomiser Download PDF

Info

Publication number
EP1312418B1
EP1312418B1 EP02023179A EP02023179A EP1312418B1 EP 1312418 B1 EP1312418 B1 EP 1312418B1 EP 02023179 A EP02023179 A EP 02023179A EP 02023179 A EP02023179 A EP 02023179A EP 1312418 B1 EP1312418 B1 EP 1312418B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
liquid
spring
piston
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02023179A
Other languages
German (de)
French (fr)
Other versions
EP1312418A3 (en
EP1312418A2 (en
Inventor
Joachim Dr. Eicher
Holger Dr. Reinecke
Ralf-Peter Dr. Peters
Holger Hoffmann
Stephen Terence Dr. Dunne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim Microparts GmbH
Original Assignee
Boehringer Ingelheim Microparts GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim Microparts GmbH filed Critical Boehringer Ingelheim Microparts GmbH
Publication of EP1312418A2 publication Critical patent/EP1312418A2/en
Publication of EP1312418A3 publication Critical patent/EP1312418A3/en
Application granted granted Critical
Publication of EP1312418B1 publication Critical patent/EP1312418B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3431Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves
    • B05B1/3436Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves the interface being a plane perpendicular to the outlet axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/109Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle the dispensing stroke being affected by the stored energy of a spring
    • B05B11/1091Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle the dispensing stroke being affected by the stored energy of a spring being first hold in a loaded state by locking means or the like, then released
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • B05B9/08Apparatus to be carried on or by a person, e.g. of knapsack type
    • B05B9/085Apparatus to be carried on or by a person, e.g. of knapsack type with a liquid pump
    • B05B9/0877Apparatus to be carried on or by a person, e.g. of knapsack type with a liquid pump the pump being of pressure-accumulation type or being connected to a pressure accumulation chamber
    • B05B9/0883Apparatus to be carried on or by a person, e.g. of knapsack type with a liquid pump the pump being of pressure-accumulation type or being connected to a pressure accumulation chamber having a discharge device fixed to the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3431Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves
    • B05B1/3447Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves the interface being a cylinder having the same axis as the outlet

Definitions

  • the invention relates to a nebulizer for a liquid whose droplets are to be deposited, for example, on a surface, and which is operated manually.
  • the atomizer is suitable for atomizing aqueous or non-aqueous liquids, emulsions and suspensions, solutions, paints, oils.
  • the atomizer can be miniaturized. It can contain microstructured elements.
  • the invention aims to provide a nebulizer that does not require propellant, which is manually operated and which can be adapted to the properties of different liquids to be atomized as well as the intended use.
  • the pressurized liquid contains a propellant gas or a liquefied propellant, with which the liquid is atomized on exiting a nozzle, optionally in cooperation with the evaporating propellant gas.
  • propellants used hitherto there are gases which are physiologically questionable, or which pollute the environment, or which are combustible.
  • the container for the liquid must withstand the gas pressure, optionally also at elevated temperature, and be tight against the gas pressure. If, during the storage period of the liquid-filled container or during the use of the nebulizer, the valve on the container is not sufficiently gastight and the gas pressure drops because of the partially evolved gas, the usefulness of the container or nebulizer may be limited.
  • atomizers are known in which the liquid is pressed by means of a manually operated by the user pump through a nozzle and thereby atomized.
  • the pressure on the liquid to be atomized and thus the distribution of the droplet size depends on the force with which the user actuates the pump.
  • the pressure with which the liquid is atomized depends on the behavior of the user.
  • the operation of such an atomizer may be difficult for inexperienced persons when the atomized liquid is to be deposited at a predetermined location, for example, on the skin of the user.
  • Another known atomizer consists of an air pump and a container for the liquid to be atomized.
  • the air pump consists of a piston that is manually moved back and forth in a cylinder. The air flows out of a hole at the bottom of the Cylinder out.
  • the liquid container is attached, which is provided with a thin dip tube, which projects into the liquid in the liquid container, the other end of the dip tube is located immediately adjacent to the hole in the bottom of the cylinder.
  • the axis of the dip tube is perpendicular to the direction in which the air flow leaves the cylinder.
  • the liquid is sucked at a sufficiently high velocity of the outflowing air from the container, entrained with the air flow and atomized.
  • the amount of liquid drawn in a stroke of the piston and the distribution of droplet size depend on the rate at which the air exits the hole in the bottom of the cylinder. Both features are difficult to reproduce.
  • the discharge rate and the average droplet size are dependent on the behavior of the user.
  • the achievable pressure is relatively low and is typically less than 0.8 MPa (8 bar).
  • vortex chamber nozzles whose outlet opening has a diameter of more than 300 micrometers, a suitable output for the purpose of use at relatively large average particle size can be achieved.
  • a miniaturized high-pressure atomizer is known, with which small quantities, for example 15 microliters, of a liquid can be atomized at a pressure of 5 to 60 MPa (50 to 600 bar), preferably 10 to 60 MPa (100 to 600 bar).
  • the (hydraulic) diameter of the nozzle channel is less than 100 microns, preferably 1 to 20 microns.
  • the mean droplet diameter is less than 12 microns.
  • the distribution of the droplet size must be set reproducibly. For example, the aerosol can enter the lungs with the breath. The liquid droplets are difficult to precipitate from the air stream on a surface impacted by the aerosol-containing air stream.
  • WO 97/19590 is a Sperrspannwerk specified, which can be used for tensioning a spring in a spring-powered atomizer, the atomizer has two mutually rotatably mounted housing parts.
  • energy storage for example, a coil spring is used, which can be manually clamped by means of a screw-thrust transmission by rotating the two housing parts against each other.
  • the locking mechanism is manually triggered by actuating a trigger button and displaces a piston in a cylinder, whereby a subset of a liquid is ejected and atomized through a nozzle.
  • US 5,662,271 be a device and a method for atomizing a Fluids described.
  • the fluid is preferably atomized at high pressure by means of a nozzle whose nozzle orifice has a small diameter.
  • Preferred is a device which generates a significant secondary flow across the main flow in the nozzle opening in the fluid.
  • a mechanical dispenser for mixing and dispensing fabrics under pressure.
  • the dispenser comprises two mutually manually rotatable housing parts. It contains several collection chambers for the substances to be mixed.
  • two pistons are present, which are displaced in opposite directions in the axis of the mixing chamber.
  • Each piston is provided on its side facing away from the mixing chamber with a piston rod whose end is constantly forcibly guided in a wave-shaped channel over both piston strokes.
  • the guide channel is arranged in the appropriate one of the two housing parts in a plane perpendicular to the housing axis.
  • the mixing chambers with the pistons are housed in the other housing part.
  • the axes of the mixing chambers lie in a plane perpendicular to the housing axis.
  • This dispenser does not contain any storage for mechanical energy.
  • the object is to provide a propellant-free atomizer, with which a subset of a liquid reservoir is atomized discontinuously, which is suitable for purely manual operation, and with the distribution of the droplet size in the atomized beam, regardless of the experience and behavior of the atomizer actuating person can be set reproducibly.
  • the swirl nozzle may be formed as a spiral housing and contain a swirl chamber, in which the liquid is introduced tangentially to the inner wall.
  • the liquid exits the nozzle through a nozzle channel located at the center of the vortex chamber.
  • the mean inner diameter of the vortex chamber is greater than the diameter of the outlet channel. In this swirl nozzle, there is an angle of about 90 degrees between the direction of the fluid introduced into the swirl chamber and the direction of the atomized jet leaving the nozzle.
  • the swirl nozzle may include a cylindrical cavity in which a cylindrical body is present.
  • a guide device in the form of a helix is present.
  • the liquid is introduced parallel to the axis of this swirl nozzle.
  • the liquid receives by the guide device circulation.
  • the liquid exits through a nozzle channel located on the axis of the swirl nozzle.
  • the discharge direction of the liquid is parallel to the direction of entry of the liquid.
  • the guide device consists of a helically wound web, which is preferably mounted on the lateral surface of the cylindrical body, and which bears tightly against the inner wall of the cylindrical cavity.
  • the bridge may be in the form of a single or multi-start screw.
  • the nozzle channel of the swirl nozzle can have a diameter of 30 microns to 300 Micrometers have, according to the invention from 50 microns to 150 microns.
  • the nozzle channel may be from 10 microns to 1000 microns in length, preferably from 50 microns to 300 microns.
  • the mean inner diameter of the swirl chamber in the swirl nozzle or the diameter of the cylindrical cavity of the swirl nozzle is twice to ten times - preferably two and a half times to five times - as large as the diameter of the nozzle channel.
  • the drive device for the piston comprises a storage for mechanical energy.
  • the energy storage may be a spring, preferably a coil spring or a plate spring, which acts as a compression spring. These springs can be made of metal or plastic. Further, a gas spring is suitable, preferably a hermetically closed rolling bellows gas spring.
  • These springs may optionally be biased upon installation in the nebulizer.
  • the coil spring and the diaphragm spring are later brought to the predetermined spring tension.
  • the gas spring is later compressed to the desired gas pressure.
  • the spring is tensioned manually.
  • the spring stores as a working spring, the energy required to move the piston within the cylinder for the purpose of ejecting and atomizing the liquid.
  • the piston For clamping the working spring, the piston may be provided with a rod which protrudes from the housing.
  • the rod is manually pulled out a predetermined piece from the housing by means of a handle, at the same time the working spring is tensioned, the piston is pulled out of the cylinder a piece, and in the space inside the cylinder liquid is sucked from the reservoir.
  • the working spring by pushing together the housing, possibly with only one hand, be stretched, since the housing consists of two parts which are interconnected and mounted in the axial direction against each other.
  • the atomizer housing consists of two parts, which are connected to one another and mounted rotatably relative to one another.
  • the drive device comprises a screw-thrust transmission via which the energy store the required mechanical energy is supplied manually.
  • the two housing parts are manually rotated against each other.
  • the working spring is tensioned.
  • a force is required because of the power transmission, which is smaller than the force that is required when pulling out the rod attached to the piston in the axial direction.
  • the energy stored in the working spring exerts on the subset of the liquid within the cylinder a pressure ranging from 0.5 MPa to 5 MPa (from 5 bar to 50 bar). is, preferably from 2 MPa to 3 MPa (from 20 bar to 30 bar).
  • the drive device may be provided with a locking mechanism which comprises a locking member and a release button, and which holds the piston in a predetermined position after tensioning the working spring. This can pass between the manual clamping of the spring and the triggering of the atomization by manually pressing the shutter button a period of time. During this period, the nebulizer may be brought into the position that is most favorable for manual tensioning of the working spring which the nebulizer is to occupy during the nebulization process.
  • a locking mechanism which comprises a locking member and a release button, and which holds the piston in a predetermined position after tensioning the working spring. This can pass between the manual clamping of the spring and the triggering of the atomization by manually pressing the shutter button a period of time. During this period, the nebulizer may be brought into the position that is most favorable for manual tensioning of the working spring which the nebulizer is to occupy during the nebulization process.
  • the drive device with locking mechanism can be designed as a locking clamping mechanism, which automatically jumps into the blocking state as soon as the piston has reached a predetermined position during the clamping operation of the working spring.
  • the sputtering process connects directly in time to the clamping operation of the working spring, if in the discharge channel for the liquid no valve or an automatically operating valve is present.
  • the effect of a drive mechanism with locking mechanism can also be achieved if in the discharge channel for the liquid a manually openable valve is present.
  • the atomizer contains at least one automatically operating valve in the intake passage. This valve opens at a low negative pressure as soon as the piston is pulled out of the cylinder during tensioning of the working spring. This valve closes as soon as the piston is pressed by the working spring in the cylinder and the sputtering process begins. This valve prevents the backflow of liquid into the reservoir during the atomization process.
  • another valve may be provided if, at a relatively large cross-section of the nozzle channel in the swirl nozzle during the suction of liquid from the reservoir at the same time air is sucked through the discharge channel.
  • This valve may be an automatically operating valve that prevents the intake of air through the swirl nozzle. The valve opens as soon as the piston starts ejecting the fluid through the discharge channel.
  • the valve in the discharge channel may be a non-automatic valve, which is not opened by the maximum pressure generated by the piston, but only opens when manually operated.
  • a valve in the discharge channel has a similar effect on the handling of the atomizer as a locking mechanism in the drive device.
  • the liquid in the cylinder between two clamping operations of the working spring in several smaller quantities one after the other atomized become.
  • the valve in the discharge channel is actuated several times in succession. The user can thus easily adjust the amount of liquid atomized in the discharge channel with each actuation of the valve to the current need.
  • the working spring is stretched again at the latest as soon as the liquid in the cylinder has been completely expelled. However, the working spring can already be re-tensioned before the liquid in the cylinder has been completely expelled.
  • the path of the piston may be shorter than the path by which the working spring is compressed during clamping.
  • the piston abuts when pulling out against a stop before the working spring is compressed in a predetermined manner.
  • the tensioned state of the working spring is located between the movable end of the working spring and the outside of the piston, a gap.
  • the working spring exerts a shock on the piston as soon as the movable end of the working spring rests on the outside of the piston.
  • a pressure surge can be exerted on the liquid in the cylinder.
  • the blocking mechanism may be provided with a stopping device which stops the movement of the piston once or more once the piston has traveled a predetermined distance and before all the liquid contained in the cylinder has been ejected.
  • a stopping device which stops the movement of the piston once or more once the piston has traveled a predetermined distance and before all the liquid contained in the cylinder has been ejected.
  • An atomizer provided with this device can be actuated several times between two clamping operations of the working spring.
  • the stopping device can stop the movement of the piston at previously fixed and subsequently unchangeable positions of the piston.
  • the stop device can be adjusted and actuated from the outside. Then, the positions of the piston at which it is stopped by the stop device can be post-adjusted and changed.
  • a device with a movable bellows may be used.
  • the bellows is pulled by a tensile force, wherein its volume increases and from the reservoir, a portion of the liquid via a suction channel and an automatically acting valve is sucked.
  • the pressure on the liquid contained therein is increased until the automatically acting valve present in the ejection channel opens and the liquid is expelled and atomized through a nozzle.
  • a sputtering nozzle is further a single-jet nozzle with a single nozzle channel, optionally with a mounted in front of the nozzle impact body, or a multi-jet nozzle with a plurality of parallel or intersecting liquid jets suitable.
  • the single jet nozzle contains a single nozzle channel having a (hydraulic) diameter of 50 microns to 150 microns, and which is from 20 microns to 1000 microns long.
  • the multi-jet nozzle may include a plurality of nozzle channels whose axes may be parallel to each other. As a result, the amount of liquid to be atomized in a given time can be increased. Further, this can increase the cross-sectional area of the atomized beam, or the shape of the spray pattern can be adapted to a predetermined shape.
  • the (hydraulic) diameter of the nozzle channels may be the same for all channels of a multi-channel nozzle and be from 50 microns to 150 microns, with a channel length from 20 microns to 1000 microns. On the other hand, it may be appropriate to choose different diameters for the channels of a multi-jet nozzle.
  • the multi-jet nozzle may include at least two mutually inclined nozzle channels, which direct the liquid jets to a point in front of the outside of the nozzle, in which the liquid jets collide.
  • the angle between two inclined liquid jets can be from 30 degrees to 120 degrees. By the impact of several liquid jets on each other, the sputtering can be favored.
  • the (hydraulic) diameter of the two nozzle channels of a two-jet nozzle is preferably less than 180 microns, more preferably from 70 microns to 100 microns, with a channel length of from 20 microns to 1000 microns.
  • a baffle body may be mounted at a distance of 0.1 millimeter to 5 millimeters, on which the liquid jet impinges.
  • a baffle body is preferably a ball or a hemisphere suitable, which has a diameter of 0.1 millimeters to 2 millimeters. In a hemisphere, the liquid jet bounces preferably on the convex side.
  • a baffle plate or a baffle cone may be used, wherein the liquid jet impinges, for example, perpendicular to the baffle plate or to the tip of the baffle cone.
  • An impact body can promote the atomization of the liquid.
  • a substantially annular spray pattern can be generated by an impact body.
  • the direction of the atomized jet may be inclined to the axis of the nozzle channel when the still un-atomized jet impacts the baffle plate at an angle.
  • the impact body can by means of at least one fastening element to the housing attached to the atomizer.
  • a stiff wire or a rod are suitable.
  • it can be fastened to the housing by means of two or three fastening elements. If the length of the fastening elements is variable, the distance of the impact body from the outside of the nozzle can be changed.
  • the mass flow occurring in the nozzle channel in the atomizer according to the invention is less than 0.4 grams per second.
  • the average droplet diameter is less than 50 microns.
  • Fig. 1 is a schematic longitudinal section through an atomizer without the inventively provided screw-thrust transmission.
  • a coil spring is provided which can be manually clamped by means of a handle mounted outside the housing by pulling out the handle.
  • a notch is provided, in which at the end of the tensioning operation of the coil spring engages a (spring-loaded) bolt, whereby the rod is held in the reached position.
  • the bolt By pulling the bolt out of the notch, the atomization process is triggered.
  • a collapsible bag was chosen.
  • the state of the atomizer is shown in an intermediate stage, which between the up to a first stop pulled out of the housing and the piston to a second stop in the cylinder is pressed piston.
  • the coil spring ejects the liquid from the nozzle.
  • the housing (1) made of a rigid material contains a cavity (2) in which a prestressed coil spring (6) is housed.
  • the coil spring is supported at its one end to the bottom of the cavity (2) and presses at its other end on the piston (3).
  • the thinner part of the piston (3) is slidably mounted in the cylinder and sealed against the cylinder wall.
  • the cavity (4) can be sucked into the liquid.
  • the cavity (4) is connected via the suction channel (11) to the reservoir (10) for the liquid to be atomized.
  • an automatically operating spring-loaded suction valve (13) is provided, through which the liquid can flow from the reservoir into the cavity (4) during suction.
  • the reservoir is a collapsible bag which is housed in the cavity (15) within the GeHosues (1).
  • the closed with a lid cavity (15) is provided with an opening (27) through which with decreasing volume of the collapsible bag for the purpose of balancing the pressure difference air can flow from the environment.
  • the cavity (4) is connected to the nozzle (22) via the ejection channel (21).
  • the discharge channel contains a spring-loaded valve (23), which opens as soon as the liquid to be atomized is present in front of the valve with a sufficiently high pressure.
  • the piston (3) is provided at its thicker end with the rod (31) which passes through the coil spring and protrudes from the bottom of the housing.
  • a handle (32) is provided, with which the piston can be manually pulled out a predetermined length from the cylinder, at the same time the coil spring is tensioned.
  • a bolt (33) is provided which holds the rod (31) and thus the piston in a predetermined position as soon as the piston has been pulled out correspondingly far out of the housing.
  • the rod (31) can be retracted by means of an externally accessible and manually operated lever, wherein the spring tensioned and the space (4) is filled with liquid. After releasing the lever, the tensioned spring immediately presses the liquid from the space (4) through the nozzle (22) and atomizes the liquid.
  • the bolt (35) nor the notch (34) is required.
  • the atomizer behaves similar to a hand-operated pump sprayer (Finger pump). However, the pressure acting on the liquid contained in the space (4) inside the cylinder is generated by the tensioned spring in the atomizer according to the invention, the user has no influence on it.
  • Fig. 2 shows a schematic longitudinal section through another embodiment of the atomizer without the inventively provided screw-thrust transmission.
  • the valve does not automatically open in the discharge channel when the liquid pressure in front of the valve is sufficiently high.
  • the valve in the discharge channel - preferably by pressing down - manually operated.
  • the state of the atomizer is shown in an intermediate stage which lies between the piston pulled out of the housing up to a first stop and the piston pushed into the cylinder up to a second stop.
  • This atomizer is similar to the one in Fig. 1 constructed atomizer, but he has no bolt (33) and no notch (34).
  • a manually openable valve (42) is provided in the discharge channel in this embodiment. This atomizer is operated in two steps. First, the spring (6) is tensioned by pulling out the rod (31). At the same time the space (41) is filled with sucked from the reservoir (10) liquid. In the illustrated state, the coil spring pushes the liquid against the valve (42) as long as it is closed. As and when the valve (42) is manually opened and kept open by, for example, depressing the trigger button (46), the liquid flows through the nozzle (45) mounted in the trigger button (46) and is atomized.
  • the user can let a time elapse between the tensioning of the spring and the associated subsequent operations on the one hand and the actuation of the trigger button (46).
  • the attention of the user can be undisturbed directed to the deposition of the atomized liquid on a surface to be treated.
  • Fig. 3 shows a schematic longitudinal section through an atomizer without the inventively provided screw-thrust transmission, which can be operated twice between two clamping operations of the spring, and ejects the liquid present within the cylinder in two subsets and atomized.
  • the rod (31) connected to the piston (3) is provided with two notches (34) and (35) which are a predetermined distance from each other. These notches are preferably formed like a sawtooth, the oblique edges of the notches are - viewed from the handle (32) - behind the perpendicular to the axis of the rod (31) directed flanks.
  • the bolt (33) has, for example, a sawtooth-shaped end. The bolt (33) slides when pulling the rod over the notch (34) and snaps into the notch (35).
  • the spring (6) pushes on the inside of the cylinder Liquid and pushes the first subset of the liquid through the automatic valve (23) to the nozzle (22), in front of which the exiting liquid is atomized.
  • This first operation is completed as soon as the bolt (33) engages in the notch (34).
  • the second process is analogous to the first process. The second process begins as soon as the pin (33) is manually pulled out of the notch (34); it ends as soon as the piston has reached its end position.
  • Fig. 4 shows a longitudinal section through a nebulizer with a working spring as a memory for the mechanical energy.
  • the working spring is manually clamped by means of a locking mechanism, which contains a screw-thrust transmission, by rotating the two rotatably interconnected parts of the housing.
  • the sputtering process is triggered by pressing a release button for a pawl.
  • Fig. 4 represents the state of the nebulizer with already biased coil spring and engaged pawl and completely filled with liquid space within the cylinder before triggering the sputtering process by pressing a shutter button.
  • the atomizer has a cylindrically shaped housing.
  • the lower housing part (51) is rotatably connected by means of a snap connection with the upper part (52) of the atomizer.
  • the top contains a cylinder (53) and a nozzle (60).
  • the upper part is provided with a removable protective cap (54).
  • the spring (62) is held in position by a plug pushed into the end of the hollow piston.
  • the plug is provided with a channel through which the liquid flows into the space (57).
  • the upper edge (56) of the plug may act as a seal of the piston (81) against the cylinder (53).
  • the valve at the inner end of the hollow piston opens automatically when sucking liquid and is closed when ejecting the liquid from the nozzle.
  • the protective cap (54) is removed, and the release button (58) mounted in the lower housing part is manually operated, disengaging the pawl (74).
  • the tensioned coil spring (59) now pressurizes the fluid contained in the space (57).
  • the valve mounted in front of the nozzle is automatically opened, the liquid in the space (57) is ejected and atomized through the nozzle (60).
  • the valve attached to the end of the hollow piston is closed, thereby preventing the backflow of liquid from the space (57) into the reservoir (63).
  • the protective cap (54) is put back on the top of the atomizer.
  • the pawl (74) and the automatically operating valve with ball (70) and spring (71) can (analogous to the representation in Fig. 2 ) there is a trigger button that contains the atomizing nozzle and with which the valve in front of the nozzle is manually opened when actuated. This release button is attached to the top of the atomizer.
  • collapsible bag (63) can be used a non-deformable sealed container, which is provided with an automatically operating vent valve and with a projecting into the container dip tube, optionally in the form of a coil.
  • the seal of the hollow piston against the cylinder by means of the upper edge (56) of the plug can be replaced by an O-ring which is mounted in a groove in the lower end of the cylinder at the point (80).
  • the component (55) containing the hollow piston can be connected to the lower housing part, and the cylinder with the space (57) can be arranged to be movable relative to the lower housing part (51) in the axial direction.
  • a multi-toothed pawl may be provided, which is constantly engaged during tensioning of the coil spring.
  • Fig. 5 shows a cross section through a nozzle with the outside of the nozzle mounted ball as an impact body.
  • the pressurized liquid is expelled from the nozzle orifice (104) in the form of a closed jet (102) impinging on a baffle (106).
  • the liquid passes into the atomized jet (107).
  • Fig. 6 shows a cross section through a nozzle with two mutually inclined nozzle channels.
  • the two liquid jets emerging from the nozzle collide outside of the nozzle.
  • the pressurized liquid is expelled from the two nozzle orifices (108) and (109) in the form of two closed jets (110) and (111). Both beams collide at the point (112).
  • the liquid passes into the atomized jet (113).
  • Fig. 7 is shown a swirl nozzle in the form of a vortex chamber nozzle in the first embodiment.
  • Fig. 7a shows the vortex chamber nozzle in the view from its inside with the cover plate removed.
  • Fig. 7b shows a longitudinal section through the vortex chamber nozzle along the lines A - A in Fig. 7a and parallel to the nozzle axis.
  • Fig. 7c the area around the nozzle channel is shown enlarged.
  • the nozzle channel (122) is disposed in the axis of the swirl chamber nozzle, the liquid to be atomized is passed through, for example, three channels (123) tangentially into the swirl chamber (124).
  • the axes of the channels (123) pass the axis of the nozzle channel.
  • the channels (123) are shown enlarged in comparison to the nozzle channel (122).
  • the cover plate (125) for the swirl chamber and the channels contains in the region of the outer end of the channels (123) each have an opening (126) through which the liquid enters the channels (123).

Landscapes

  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Nozzles (AREA)
  • Special Spraying Apparatus (AREA)
  • Medicinal Preparation (AREA)

Abstract

The manual sputterer for fluids, to apply a droplet spray to a surface, has energy stored by a spring (59) using a coil spring, a plate spring or a gas spring. together with a piston (81) and two channels. The spray action is triggered by manual release (58) of a locking mechanism (74). The spring is outside the fluid storage zone, and acts on the piston to force a small volume of the fluid out of the cylinder (53) at a pressure of 1-5 MPa (10-50 bar). The distribution of the droplet sizes can be adjusted, with a mean droplet size of <= 50 mu m. The mass flow through the jet (60) is <= 0.4 g/second.

Description

Die Erfindung betrifft einen Zerstäuber für eine Flüssigkeit, deren Tröpfchen zum Beispiel auf einer Fläche niedergeschlagen werden sollen, und der manuell betätigt wird. Der Zerstäuber ist geeignet zum Zerstäuben von wässrigen oder nicht-wässrigen Flüssigkeiten, Emulsionen und Suspensionen, Lösungen, Farben, Ölen. Der Zerstäuber kann miniaturisiert sein. Er kann mikrostrukturierte Elemente enthalten.The invention relates to a nebulizer for a liquid whose droplets are to be deposited, for example, on a surface, and which is operated manually. The atomizer is suitable for atomizing aqueous or non-aqueous liquids, emulsions and suspensions, solutions, paints, oils. The atomizer can be miniaturized. It can contain microstructured elements.

Die Erfindung bezweckt, einen Zerstäuber anzugeben, der ohne Treibgas auskommt, der manuell betätigt wird und der an die Eigenschaften unterschiedlicher zu zerstäubender Flüssigkeiten sowie an die vorgesehene Verwendung angepaßt werden kann.The invention aims to provide a nebulizer that does not require propellant, which is manually operated and which can be adapted to the properties of different liquids to be atomized as well as the intended use.

Es sind Zerstäuber bekannt, bei denen die unter Druck stehende Flüssigkeit ein Treibgas oder ein verflüssigtes Treibgas enthält, mit dem die Flüssigkeit beim Austritt aus einer Düse zerstäubt wird, gegebenenfalls unter Mitwirkung des verdampfenden Treibgases. Unter den bisher verwendeten Treibgasen gibt es Gase, die physiologisch bedenklich sind, oder die die Umwelt belasten, oder die brennbar sind. Der Behälter für die Flüssigkeit muß dem Gasdruck, gegebenenfalls auch bei erhöhter Temperatur, standhalten und gegen den Gasdruck dicht sein. Falls während der Lagerzeit des mit Flüssigkeit in der Regel teilweise gefüllten Behälters oder während der Benutzungszeit des Zerstäubers das Ventil am Behälter nicht hinreichend gasdicht ist und der Gasdruck wegen des teilweise entwichenen Gases sinkt, kann die Brauchbarkeit des Behälters oder des Zerstäubers eingeschränkt sein.There are known atomizers in which the pressurized liquid contains a propellant gas or a liquefied propellant, with which the liquid is atomized on exiting a nozzle, optionally in cooperation with the evaporating propellant gas. Among the propellants used hitherto, there are gases which are physiologically questionable, or which pollute the environment, or which are combustible. The container for the liquid must withstand the gas pressure, optionally also at elevated temperature, and be tight against the gas pressure. If, during the storage period of the liquid-filled container or during the use of the nebulizer, the valve on the container is not sufficiently gastight and the gas pressure drops because of the partially evolved gas, the usefulness of the container or nebulizer may be limited.

Weiter sind Zerstäuber bekannt, bei denen die Flüssigkeit mittels einer durch den Benutzer manuell betätigten Pumpe durch eine Düse gedrückt und dabei zerstäubt wird. Der auf die zu zerstäubende Flüssigkeit wirkende Druck und damit die Verteilung der Tröpfchengröße ist abhängig von der Kraft, mit der der Benutzer die Pumpe betätigt. Der Druck, mit dem die Flüssigkeit zerstäubt wird, ist von dem Verhalten des Benutzers abhängig. Die Betätigung eines derartigen Zerstäubers kann für ungeübte Personen schwierig sein, wenn die zerstäubte Flüssigkeit an einer vorgegebenen Stelle zum Beispiel auf der Haut des Benutzers niedergeschlagen werden soll.Furthermore, atomizers are known in which the liquid is pressed by means of a manually operated by the user pump through a nozzle and thereby atomized. The pressure on the liquid to be atomized and thus the distribution of the droplet size depends on the force with which the user actuates the pump. The pressure with which the liquid is atomized depends on the behavior of the user. The operation of such an atomizer may be difficult for inexperienced persons when the atomized liquid is to be deposited at a predetermined location, for example, on the skin of the user.

Ein weiterer bekannter Zerstäuber besteht aus eine Luftpumpe und einem Behälter für die zu zerstäubende Flüssigkeit. Die Luftpumpe besteht aus einem Kolben, der manuell in einem Zylinder hin und her bewegt wird. Die Luft strömt aus einem Loch am Boden des Zylinders aus. An dem Zylinder ist der Flüssigkeitsbehälter angebracht, der mit einem dünnen Tauchrohr versehen ist, das in die Flüssigkeit im Flüssigkeitsbehälter hineinragt, Das andere Ende des Tauchrohres befindet sich unmittelbar neben dem Loch im Boden des Zylinders. Die Achse des Tauchrohres steht senkrecht auf der Richtung, in der der Luftstrom den Zylinder verläßt. Die Flüssigkeit wird bei hinreichend großer Geschwindigkeit der ausströmenden Luft aus dem Behälter angesaugt, mit dem Luftstrom mitgerissen und zerstäubt. Die bei einem Hub des Kolbens angesaugte Menge der Flüssigkeit und die Verteilung der Tröpfchengröße hängen von der Geschwindigkeit ab, mit der die Luft aus dem Loch im Boden des Zylinders austritt. Beide Merkmale sind nur schwer reproduzierbar.Another known atomizer consists of an air pump and a container for the liquid to be atomized. The air pump consists of a piston that is manually moved back and forth in a cylinder. The air flows out of a hole at the bottom of the Cylinder out. On the cylinder, the liquid container is attached, which is provided with a thin dip tube, which projects into the liquid in the liquid container, the other end of the dip tube is located immediately adjacent to the hole in the bottom of the cylinder. The axis of the dip tube is perpendicular to the direction in which the air flow leaves the cylinder. The liquid is sucked at a sufficiently high velocity of the outflowing air from the container, entrained with the air flow and atomized. The amount of liquid drawn in a stroke of the piston and the distribution of droplet size depend on the rate at which the air exits the hole in the bottom of the cylinder. Both features are difficult to reproduce.

Bei den bekannten Zerstäubern mit manuell betätigter Pumpe sind die Austragsmenge und die mittlere Tröpfchengröße vom Verhalten des Benutzers abhängig. Der erreichbare Druck ist relativ gering und beträgt typisch weniger als 0,8 MPa (8 bar). Mit Wirbelkammerdüsen, deren Austrittsöffnung einen Durchmesser von mehr als 300 Mikrometer hat, läßt sich eine für den Verwendungszweck angemessene Austragsmenge bei relativ großer mittlerer Teilchengröße erreichten.In the known atomizers with manually operated pump, the discharge rate and the average droplet size are dependent on the behavior of the user. The achievable pressure is relatively low and is typically less than 0.8 MPa (8 bar). With vortex chamber nozzles whose outlet opening has a diameter of more than 300 micrometers, a suitable output for the purpose of use at relatively large average particle size can be achieved.

Aus WO - 97 / 12687 ist ein miniaturisierter Hochdruck-Zerstäuber bekannt, mit dem kleine Mengen, zum Beispiel 15 Mikroliter, einer Flüssigkeit bei einem Druck von 5 bis 60 MPa (50 bis 600 bar), bevorzugt 10 bis 60 MPa (100 bis 600 bar) zerstäubt werden können. Der (hydraulische) Durchmesser des Düsenkanals beträgt weniger als 100 Mikrometer, bevorzugt 1 bis 20 Mikrometer. In dem erzeugten Aerosol beträgt der mittlere Tröpfchendurchmesser weniger als 12 Mikrometer. Die Verteilung der Tröpfchengröße ist reproduzierbar einzustellen. Das Aerosol kann zum Beispiel mit der Atemluft in die Lunge gelangen. Die Flüssigkeitströpfchen lassen sich aus dem Luftstrom nur schwer auf einer Fläche niederschlagen, auf die der Aerosol-haltige Luftstrom auftrifft.Out WO 97/12687 A miniaturized high-pressure atomizer is known, with which small quantities, for example 15 microliters, of a liquid can be atomized at a pressure of 5 to 60 MPa (50 to 600 bar), preferably 10 to 60 MPa (100 to 600 bar). The (hydraulic) diameter of the nozzle channel is less than 100 microns, preferably 1 to 20 microns. In the aerosol generated, the mean droplet diameter is less than 12 microns. The distribution of the droplet size must be set reproducibly. For example, the aerosol can enter the lungs with the breath. The liquid droplets are difficult to precipitate from the air stream on a surface impacted by the aerosol-containing air stream.

In WO - 97 / 20590 ist ein Sperrspannwerk angegeben, das zum Spannen einer Feder in einem mit Federkraft betriebenen Zerstäuber verwendet werden kann, Der Zerstäuber hat zwei gegeneinander drehbar gelagerte Gehäuseteile. Als Energiespeicher wird zum Beispiel eine Schraubenfeder verwendet, die mittels eines Schraub-Schub-Getriebes durch Drehen der beiden Gehäuseteile gegeneinander manuell gespannt werden kann. Das Sperrspannwerk wird durch Betätigen einer Auslösetaste manuell ausgelöst und verschiebt einen Kolben in einem Zylinder, wodurch eine Teilmenge einer Flüssigkeit durch eine Düse ausgestoßen und zerstäubt wird.In WO 97/19590 is a Sperrspannwerk specified, which can be used for tensioning a spring in a spring-powered atomizer, the atomizer has two mutually rotatably mounted housing parts. As energy storage, for example, a coil spring is used, which can be manually clamped by means of a screw-thrust transmission by rotating the two housing parts against each other. The locking mechanism is manually triggered by actuating a trigger button and displaces a piston in a cylinder, whereby a subset of a liquid is ejected and atomized through a nozzle.

In US - 5 662 271 werden eine Vorrichtung und ein Verfahren zum Zerstäuben eines Fluids beschrieben. Das Fluid wird vorzugweise bei hohem Druck mittels einer Düse zerstäubt, deren Düsenöffnung einen kleinen Durchmesser hat. Bevorzugt wird eine Vorrichtung, die in dem Fluid einen deutlichen Sekundärstrom quer zum Hauptstrom in der Düsenöffnung erzeugt.In US 5,662,271 be a device and a method for atomizing a Fluids described. The fluid is preferably atomized at high pressure by means of a nozzle whose nozzle orifice has a small diameter. Preferred is a device which generates a significant secondary flow across the main flow in the nozzle opening in the fluid.

In US - 4 176 764 wird ein mechanisch arbeitender Spender zum Mischen und zum Abgeben von Stoffen unter Druck angegeben. Der Spender umfaßt zwei gegeneinander von Hand drehbare Gehäuseteile. Er enthält mehrere Sammelkammern für die zu mischenden Stoffe. In jeder Mischkammer sind zwei Kolben vorhanden, die in der Achse der Mischkammer gegenläufig verschiebbar sind. Jeder Kolben ist auf seiner der Mischkammer abgewandten Seite mit einer Kolbenstange versehen, deren Ende in einem wellenförmig verlaufenden Kanal über beide Kolbenhübe ständig zwangsweise geführt wird. Der Führungskanal ist in dem eignen der beiden Gehäuseteile in einer Ebene senkrecht zur Gehäuseachse angeordnet. Die Mischkammern mit den Kolben sind in dem anderen Gehäuseteil untergebracht. Die Achsen der Mischkammern liegen in einer Ebene senkrecht zur Gehäuseachse. Dieser Spender enthält keinen Speicher für mechanische Energie.In US 4,176,764 For example, a mechanical dispenser is disclosed for mixing and dispensing fabrics under pressure. The dispenser comprises two mutually manually rotatable housing parts. It contains several collection chambers for the substances to be mixed. In each mixing chamber, two pistons are present, which are displaced in opposite directions in the axis of the mixing chamber. Each piston is provided on its side facing away from the mixing chamber with a piston rod whose end is constantly forcibly guided in a wave-shaped channel over both piston strokes. The guide channel is arranged in the appropriate one of the two housing parts in a plane perpendicular to the housing axis. The mixing chambers with the pistons are housed in the other housing part. The axes of the mixing chambers lie in a plane perpendicular to the housing axis. This dispenser does not contain any storage for mechanical energy.

Damit ergibt sich die Aufgabe, einen treibgasfreien Zerstäuber anzugeben, mit dem eine Teilmenge aus einem Flüssigkeitsvorrat diskontinuierlich zerstäubt wird, der für rein manuelle Betätigung geeignet ist, und mit dem die Verteilung der Tröpfchengröße im zerstäubten Strahl unabhängig von der Erfahrung und dem Verhalten der den Zerstäuber betätigenden Person reproduzierbar eingestellt werden kann.Thus, the object is to provide a propellant-free atomizer, with which a subset of a liquid reservoir is atomized discontinuously, which is suitable for purely manual operation, and with the distribution of the droplet size in the atomized beam, regardless of the experience and behavior of the atomizer actuating person can be set reproducibly.

Diese Aufgabe wird erfindungsgemäß gelöst mit einem Zerstäuber für manuelle Betätigung, mit dem eine Teilmenge aus einem Flüssigkeitsvorrat zerstäubt wird, und der innerhalb eines zylindrischen Gehäuses, das ein Unterteil (51) und ein Oberteil (52) umfaßt, und beide Gehäuseteile drehbar miteinander verbunden sind, folgende Elemente umfaßt:

  • einen Vorratsbehälter (63) für die zu zerstäubende Flüssigkeit (64), und
  • eine Düse (60) für die zu zerstäubende Flüssigkeit, und
  • einen Zylinder (53) im Oberteil (52), und
  • einen im Zylinder (53) verschiebbaren Kolben, der als Hohlkolben (81) mit einem Kanal (68) ausgebildet ist, der als Ansaugkanal den Vorratsbehälter (63) mit einem Hohlraum (57) innerhalb des Zylinders vor dem Hohlkolben verbindet, und
  • einen Ausstoßkanal, der den Hohlraum (57) mit der Düse (60) verbindet, und mindestens ein automatisch arbeitendes Ventil (61) im Ansaugkanal, und
  • eine Antriebsvorrichtung für den Hohlkolben (81), die einen Speicher für mechanische Energie umfaßt, der außerhalb des Vorratsbehälters angeordnet ist, und die vom Energiespeicher ausgeübte Kraft auf den Hohlkolben wirkt, und
  • ein Schraub-Schub-Getriebe, mit dem dem Energiespeicher mechanische Energie durch manuelles Drehen der beiden Gehäuseteile gegeneinander zugeführt wird, und der
gekennzeichnet ist durch
  • die Düse (60), die als Dralldüse mit einem zylindrischen Hohlraum ausgebildet ist, in dem der durch die Dralldüse strömenden Flüssigkeit eine Zirkulation erteilt wird, und aus dem die Flüssigkeit durch den Düsenkanal (122) austritt, der sich auf der Achse der Dralldüse befindet, und
  • der Düsenkanal einen Durchmesser von 50 Mikrometer bis 150 Mikrometer hat, und
  • der zylindrische Hohlraum einen Durchmesser hat, der zweimal bis zehnrnal so groß wie der Durchmesser des Austrittsanals.
Weitere Merkmale der Erfindung sind in den abhängigen Ansprüchen angegeben.This object is achieved by a sprayer for manual operation, with which a subset of a liquid supply is atomized, and within a cylindrical housing, which comprises a lower part (51) and an upper part (52), and both housing parts are rotatably connected to each other , comprising the following elements:
  • a reservoir (63) for the liquid (64) to be atomized, and
  • a nozzle (60) for the liquid to be atomized, and
  • a cylinder (53) in the upper part (52), and
  • a displaceable in the cylinder (53) piston, which is designed as a hollow piston (81) with a channel (68) connecting the intake tank (63) with a cavity (57) within the cylinder in front of the hollow piston, as an intake passage, and
  • an exhaust passage connecting the cavity (57) to the nozzle (60) and at least one automatically operating valve (61) in the intake passage, and
  • a drive device for the hollow piston (81), which comprises a memory for mechanical energy, which is arranged outside of the reservoir, and the force exerted by the energy storage force acts on the hollow piston, and
  • a screw-thrust transmission, with which the energy storage mechanical energy is supplied by manually rotating the two housing parts against each other, and the
is characterized by
  • the nozzle (60), which is formed as a swirl nozzle with a cylindrical cavity in which the liquid flowing through the swirl nozzle is circulated, and from which the liquid exits through the nozzle channel (122) located on the axis of the swirl nozzle , and
  • the nozzle channel has a diameter of 50 microns to 150 microns, and
  • the cylindrical cavity has a diameter twice to ten times as large as the diameter of the exit port.
Further features of the invention are specified in the dependent claims.

Die Dralldüse kann als Spiralgehäuse ausgebildet sein und eine Wirbelkammer enthalten, in die die Flüssigkeit tangential zur Innenwand eingeleitet wird. Die Flüssigkeit tritt aus der Düse durch einen Düsenkanal aus, der sich im Mittelpunkt der Wirbelkammer befindet. Der mittlere Innendurchmesser der Wirbelkammer ist größer als der Durchmesser des Austrittskanals. Bei dieser Dralldüse besteht zwischen der Richtung der in die Wirbelkammer eingeleiteten Flüssigkeit und der Richtung des die Düse verlassenden zerstäubten Strahls ein Winkel von etwa 90 Grad.The swirl nozzle may be formed as a spiral housing and contain a swirl chamber, in which the liquid is introduced tangentially to the inner wall. The liquid exits the nozzle through a nozzle channel located at the center of the vortex chamber. The mean inner diameter of the vortex chamber is greater than the diameter of the outlet channel. In this swirl nozzle, there is an angle of about 90 degrees between the direction of the fluid introduced into the swirl chamber and the direction of the atomized jet leaving the nozzle.

Bei einer zweiten Ausführungsform kann die Dralldüse einen zylindrischen Hohlraum enthalten, in dem ein zylindrischer Körper vorhanden ist. In dem Zwischenraum zwischen der Außenseite des zylindrischen Körpers und der Innenseite des Hohlraumes der Dralldüse ist eine Leitvorrichtung in Form einer Schraubenlinie vorhanden. Die Flüssigkeit wird parallel zur Achse dieser Dralldüse eingeleitet. Die Flüssigkeit erhält durch die Leitvorrichtung eine Zirkulation. Die Flüssigkeit tritt durch einen Düsenkanal aus, der sich auf der Achse der Dralldüse befindet. Bei dieser Dralldüse ist die Austrittsrichtung der Flüssigkeit parallel zur Eintrittsrichtung der Flüssigkeit. Die Leitvorrichtung besteht aus einem schraubenlinienförmig gewundenen Steg, der bevorzugt auf der Mantelfläche des zylindrischen Körpers angebracht ist, und der an der Innenwand des zylindrischen Hohlraumes dicht anliegt. Der Steg kann die Form einer eingängigen oder einer mehrgängigen Schraube haben.In a second embodiment, the swirl nozzle may include a cylindrical cavity in which a cylindrical body is present. In the space between the outside of the cylindrical body and the inside of the cavity of the swirl nozzle, a guide device in the form of a helix is present. The liquid is introduced parallel to the axis of this swirl nozzle. The liquid receives by the guide device circulation. The liquid exits through a nozzle channel located on the axis of the swirl nozzle. In this swirl nozzle, the discharge direction of the liquid is parallel to the direction of entry of the liquid. The guide device consists of a helically wound web, which is preferably mounted on the lateral surface of the cylindrical body, and which bears tightly against the inner wall of the cylindrical cavity. The bridge may be in the form of a single or multi-start screw.

Der Düsenkanal der Dralldüse kann einen Durchmesser von 30 Mikrometer bis 300 Mikrometer haben, erfindungsgemäß von 50 Mikrometer bis 150 Mikrometer. Der Düsenkanal kann von 10 Mikrometer bis 1000 Mikrometer lang sein, bevorzugt von 50 Mikrometer bis 300 Mikrometer. Der mittlere Innendurchmesser der Wirbelkammer in der Dralldüse oder der Durchmesser des zylindrischen Hohlraumes der Dralldüse ist zweimal bis zehnmal - bevorzugt zwei-einhalb-mal bis fünfmal - so groß wie der Durchmesser des Düsenkanals.The nozzle channel of the swirl nozzle can have a diameter of 30 microns to 300 Micrometers have, according to the invention from 50 microns to 150 microns. The nozzle channel may be from 10 microns to 1000 microns in length, preferably from 50 microns to 300 microns. The mean inner diameter of the swirl chamber in the swirl nozzle or the diameter of the cylindrical cavity of the swirl nozzle is twice to ten times - preferably two and a half times to five times - as large as the diameter of the nozzle channel.

Die Antriebsvorrichtung für den Kolben umfaßt einen Speicher für mechanische Energie. Der Energiespeicher kann eine Feder sein, bevorzugt eine Schraubenfeder oder eine Tellerfeder, die als Druckfeder wirkt. Diese Federn können aus Metall oder aus Kunststoff bestehen. Weiter ist eine Gasfeder geeignet, bevorzugt eine hermetisch geschlossene Rollbalg-Gasfeder.The drive device for the piston comprises a storage for mechanical energy. The energy storage may be a spring, preferably a coil spring or a plate spring, which acts as a compression spring. These springs can be made of metal or plastic. Further, a gas spring is suitable, preferably a hermetically closed rolling bellows gas spring.

Diese Federn können gegebenenfalls beim Einbau in den Zerstäuber vorgespannt werden. Die Schraubenfeder und die Tellerfeder werden später auf die vorgegebene Federspannung gebracht. Die Gasfeder wird später auf den gewünschten Gasdruck zusammengedrückt.These springs may optionally be biased upon installation in the nebulizer. The coil spring and the diaphragm spring are later brought to the predetermined spring tension. The gas spring is later compressed to the desired gas pressure.

Die Feder wird manuell gespannt. Die Feder speichert als Arbeitsfeder die Energie, die zum Verschieben des Kolbens innerhalb des Zylinders zwecks Ausstoßen und Zerstäuben der Flüssigkeit erforderlich ist.The spring is tensioned manually. The spring stores as a working spring, the energy required to move the piston within the cylinder for the purpose of ejecting and atomizing the liquid.

Zum Spannen der Arbeitsfeder kann der Kolben mit einer Stange versehen sein, die aus dem Gehäuse herausragt. Wenn die Stange mittels eines Handgriffs ein vorgegebenes Stück aus dem Gehäuse manuell herausgezogen wird, wird gleichzeitig die Arbeitsfeder gespannt, der Kolben wird ein Stück aus dem Zylinder herausgezogen, und in den Raum innerhalb des Zylinders wird Flüssigkeit aus dem Vorratsbehälter eingesaugt.For clamping the working spring, the piston may be provided with a rod which protrudes from the housing. When the rod is manually pulled out a predetermined piece from the housing by means of a handle, at the same time the working spring is tensioned, the piston is pulled out of the cylinder a piece, and in the space inside the cylinder liquid is sucked from the reservoir.

Weiter kann die Arbeitsfeder durch Zusammenschieben des Gehäuses, gegebenenfalls mit nur einer Hand, gespannt werden, da das Gehäuse aus zwei Teilen besteht, die miteinander verbunden und in axialer Richtung gegeneinander verschiebbar gelagert sind.Further, the working spring by pushing together the housing, possibly with only one hand, be stretched, since the housing consists of two parts which are interconnected and mounted in the axial direction against each other.

Da die zum Spannen der Arbeitsfeder manuell aufzubringende Kraft zu groß sein kann, besteht das Gehäuse des Zerstäubers aus zwei Teilen, die miteinander verbunden und gegeneinander drehbar gelagert sind. Die Antriebsvorrichtung umfasst ein Schraub-Schub-Getriebe, über das dem Energiespeicher die erforderliche mechanische Energie manuell zugeführt wird. Dazu werden die beiden Gehäuseteile manuell gegeneinander gedreht. Über das Schraub-Schub-Getriebe wird die Arbeitsfeder gespannt. Dazu ist wegen der Kraftübersetzung eine Kraft erforderlich, die kleiner ist als die Kraft, die beim Herausziehen der am Kolben angebrachten Stange in axialer Richtung erforderlich ist.Since the force to be applied manually to tension the working spring can be too great, the atomizer housing consists of two parts, which are connected to one another and mounted rotatably relative to one another. The drive device comprises a screw-thrust transmission via which the energy store the required mechanical energy is supplied manually. For this purpose, the two housing parts are manually rotated against each other. About the screw-push gear, the working spring is tensioned. For this purpose, a force is required because of the power transmission, which is smaller than the force that is required when pulling out the rod attached to the piston in the axial direction.

Die in der Arbeitsfeder gespeicherte Energie übt auf die Teilmenge der Flüssigkeit innerhalb des Zylinders einen Druck aus, der von 0,5 MPa bis 5 MPa (von 5 bar bis 50 bar) beträgt, bevorzugt von 2 MPa bis 3 MPa (von 20 bar bis 30 bar).The energy stored in the working spring exerts on the subset of the liquid within the cylinder a pressure ranging from 0.5 MPa to 5 MPa (from 5 bar to 50 bar). is, preferably from 2 MPa to 3 MPa (from 20 bar to 30 bar).

Die Antriebsvorrichtung kann mit einem Sperrmechanismus versehen sein, der ein Sperrglied und eine Auslösetaste umfaßt, und der den Kolben nach dem Spannen der Arbeitsfeder in einer vorgegebenen Position festhält. Damit kann zwischen dem manuellen Spannen der Arbeitsfeder und dem Auslösen des Zerstäubungsvorganges durch manuelles Betätigen der Auslösetaste eine Zeitspanne verstreichen. Während dieser Zeitspanne kann der Zerstäuber aus der Lage, die für das manuelle Spannen der Arbeitsfeder am günstigsten ist, in die Lage gebracht werden, die der Zerstäuber während des Zerstäubungsvorganges einnehmen soll.The drive device may be provided with a locking mechanism which comprises a locking member and a release button, and which holds the piston in a predetermined position after tensioning the working spring. This can pass between the manual clamping of the spring and the triggering of the atomization by manually pressing the shutter button a period of time. During this period, the nebulizer may be brought into the position that is most favorable for manual tensioning of the working spring which the nebulizer is to occupy during the nebulization process.

Die Antriebsvorrichtung mit Sperrmechanismus kann als Sperrspannwerk ausgebildet sein, das automatisch in den Sperrzustand springt, sobald der Kolben während des Spannvorganges der Arbeitsfeder eine vorgegebene Position erreicht hat.The drive device with locking mechanism can be designed as a locking clamping mechanism, which automatically jumps into the blocking state as soon as the piston has reached a predetermined position during the clamping operation of the working spring.

Bei einer Antriebsvorrichtung ohne Sperrmechanismus schließt sich der Zerstäubungsvorgang zeitlich unmittelbar an den Spannvorgang der Arbeitsfeder an, falls im Ausstoßkanal für die Flüssigkeit kein Ventil oder ein automatisch arbeitendes Ventil vorhanden-ist. Die Wirkung einer Antriebsvorrichtung mit Sperrmechanismus kann auch erreicht werden, wenn im Ausstoßkanal ein für die Flüssigkeit ein manuell zu öffnendes Ventil vorhanden ist.In a drive device without locking mechanism, the sputtering process connects directly in time to the clamping operation of the working spring, if in the discharge channel for the liquid no valve or an automatically operating valve is present. The effect of a drive mechanism with locking mechanism can also be achieved if in the discharge channel for the liquid a manually openable valve is present.

Der Zerstäuber enthält im Ansaugkanal mindestens ein automatisch arbeitendes Ventil. Dieses Ventil öffnet sich bei einem geringen Unterdruck, sobald der Kolben beim Spannen der Arbeitsfeder aus dem Zylinder herausgezogen wird. Dieses Ventil schließt sich, sobald der Kolben durch die Arbeitsfeder in den Zylinder gedrückt wird und der Zerstäubungsvorgang beginnt. Dieses Ventil verhinder das Zurückströmen der Flüssigkeit in den Vorratsbehälter während des Zerstäubungsvorganges.The atomizer contains at least one automatically operating valve in the intake passage. This valve opens at a low negative pressure as soon as the piston is pulled out of the cylinder during tensioning of the working spring. This valve closes as soon as the piston is pressed by the working spring in the cylinder and the sputtering process begins. This valve prevents the backflow of liquid into the reservoir during the atomization process.

Im Ausstoßkanal kann ein weiteres Ventil vorhanden sein, falls bei einem relativ großen Querschnitt des Düsenkanals in der Dralldüse während des Ansaugens von Flüssigkeit aus dem Vorratsbehälter gleichzeitig Luft durch den Ausstoßkanal angesaugt wird. Dieses Ventil kann ein automatisch arbeitendes Ventil sein, das das Ansaugen von Luft durch die Dralldüse verhindert. Das Ventil öffnet sich, sobald der Kolben mit dem Ausstoßen der Flüssigkeit durch den Ausstoßkanal beginnt.In the ejection channel, another valve may be provided if, at a relatively large cross-section of the nozzle channel in the swirl nozzle during the suction of liquid from the reservoir at the same time air is sucked through the discharge channel. This valve may be an automatically operating valve that prevents the intake of air through the swirl nozzle. The valve opens as soon as the piston starts ejecting the fluid through the discharge channel.

Das Ventil im Ausstoßkanal kann ein nicht automatisch arbeitendes Ventil sein, das durch den vom Kolben maximal erzeugten- Druck nicht geöffnet wird, sondern erst bei manuellem Betätigen öffnet. Ein solches Ventil im Ausstoßkanal hat eine ähnliche Wirkung auf die Handhabung des Zerstäubers wie ein Sperrmechanismus in der Antriebsvorrichtung. Bei dieser Ausführungsform kann die im Zylinder befindliche Flüssigkeit zwischen zwei Spannvorgängen der Arbeitsfeder in mehreren kleineren Mengen nacheinander zerstäubt werden. Dazu wird das Ventil im Ausstoßkanal mehrmals nacheinander betätigt. Der Benutzer kann damit die bei jeder Betätigung des Ventils im Ausstoßkanal zerstäubte Menge der Flüssigkeit an den momentanen Bedarf auf einfache Weise anpassen. Die Arbeitsfeder wird spätestens wieder gespannt, sobald die im Zylinder befindliche Flüssigkeit vollständig ausgestoßen worden ist. Die Arbeitsfeder kann jedoch bereits wieder gespannt werden, bevor die im Zylinder befindliche Flüssigkeit vollständig ausgestoßen worden ist.The valve in the discharge channel may be a non-automatic valve, which is not opened by the maximum pressure generated by the piston, but only opens when manually operated. Such a valve in the discharge channel has a similar effect on the handling of the atomizer as a locking mechanism in the drive device. In this embodiment, the liquid in the cylinder between two clamping operations of the working spring in several smaller quantities one after the other atomized become. For this purpose, the valve in the discharge channel is actuated several times in succession. The user can thus easily adjust the amount of liquid atomized in the discharge channel with each actuation of the valve to the current need. The working spring is stretched again at the latest as soon as the liquid in the cylinder has been completely expelled. However, the working spring can already be re-tensioned before the liquid in the cylinder has been completely expelled.

Bei einer weiteren Ausgestaltung des Zerstäubers kann der Weg des Kolbens kürzer sein als der Weg, um den die Arbeitsfeder beim Spannen zusammengedrückt wird. Dabei stößt der Kolben beim Herausziehen an einen Anschlag, bevor die Arbeitsfeder in vorgegebener Weise zusammengedrückt wird. Im gespannten Zustand der Arbeitsfeder befindet sich zwischen dem beweglichen Ende der Arbeitsfeder und der Außenseite des Kolbens ein Zwischenraum. Beim Auslösen der Arbeitsfeder übt die Arbeitsfeder auf den Kolben einen Stoß aus, sobald das beweglichen Ende der Arbeitsfeder auf der Außenseite des Kolbens aufliegt. Damit kann auf die im Zylinder befindlichen Flüssigkeit ein Druckstoß ausgeübt werden.In a further embodiment of the atomizer, the path of the piston may be shorter than the path by which the working spring is compressed during clamping. In this case, the piston abuts when pulling out against a stop before the working spring is compressed in a predetermined manner. In the tensioned state of the working spring is located between the movable end of the working spring and the outside of the piston, a gap. Upon release of the working spring, the working spring exerts a shock on the piston as soon as the movable end of the working spring rests on the outside of the piston. Thus, a pressure surge can be exerted on the liquid in the cylinder.

Bei einem Zerstäuber, der im Ausstoßkanal mit einem automatisch arbeitenden Ventil versehen ist, kann der Sperrmechanismus mit einer Stoppvorrichtung versehen sein, die die Bewegung des Kolbens einmal oder mehrmals anhält, sobald der Kolben einen vorgegebenen Weg zurückgelegt hat und bevor die gesamte im Zylinder enthaltene Flüssigkeit ausgestoßen worden ist. Damit kann die im Zylinder enthaltene Flüssigkeit in mehreren reproduzierbar einstellbaren Teilen nacheinander ausgestoßen und zerstäubt werden. Ein mit dieser Vorrichtung versehener Zerstäuber kann zwischen zwei Spannvorgängen der Arbeitsfeder mehrmals betätigt werden. Die Stoppvorrichtung kann die Bewegung des Kolbens an vorher festgesetzten und nachträglich nicht veränderbaren Positionen des Kolbens anhalten. Andererseits kann die Stoppvorrichtung von außen einstellbar und zu betätigen sein. Dann können die Positionen des Kolbens, an denen er von der Stoppvorrichtung angehalten wird, nachträglich eingestellt und verändert werden.In an atomizer provided with an automatically operating valve in the discharge channel, the blocking mechanism may be provided with a stopping device which stops the movement of the piston once or more once the piston has traveled a predetermined distance and before all the liquid contained in the cylinder has been ejected. Thus, the liquid contained in the cylinder can be successively ejected and atomized in several reproducibly adjustable parts. An atomizer provided with this device can be actuated several times between two clamping operations of the working spring. The stopping device can stop the movement of the piston at previously fixed and subsequently unchangeable positions of the piston. On the other hand, the stop device can be adjusted and actuated from the outside. Then, the positions of the piston at which it is stopped by the stop device can be post-adjusted and changed.

Um die aus dem Vorratsbehälter entnommene Teilmenge der Flüssigkeit unter Druck zu setzen, kann weiter eine Vorrichtung mit einem beweglichen Balg benutzt werden. Der Balg wird durch eine Zugkraft langgezogen, wobei sich sein Volumen vergrößert und aus dem Vorratsbehälter ein Teil der Flüssigkeit über einen Ansaugkanal und ein automatisch wirkendes Ventil angesaugt wird. Beim Zusammendrücken des Balgs in Längsrichtung wird der Druck auf die darin enthaltene Flüssigkeit erhöht, bis sich das im Ausstoßkanal vorhandene automatisch wirkende Ventil öffnet und die Flüssigkeit durch eine Düse ausgestoßen und zerstäubt wird.In order to pressurize the subset of liquid withdrawn from the reservoir, a device with a movable bellows may be used. The bellows is pulled by a tensile force, wherein its volume increases and from the reservoir, a portion of the liquid via a suction channel and an automatically acting valve is sucked. When the bellows is compressed longitudinally, the pressure on the liquid contained therein is increased until the automatically acting valve present in the ejection channel opens and the liquid is expelled and atomized through a nozzle.

Als Zerstäubungsdüse ist weiter eine Einstrahl-Düse mit einem einzigen Düsenkanal, gegebenenfalls mit einem vor der Düse angebrachten Prallkörper, oder eine Mehrstrahl-Düse mit mehreren parallel gerichteten oder mit sich kreuzenden Flüssigkeitsstrahlen geeignet.As a sputtering nozzle is further a single-jet nozzle with a single nozzle channel, optionally with a mounted in front of the nozzle impact body, or a multi-jet nozzle with a plurality of parallel or intersecting liquid jets suitable.

Die Einstrahl-Düse enthält einen einzigen Düsenkanal, der einen (hydraulischen) Durchmesser von 50 Mikrometer bis 150 Mikrometer hat, und der von 20 Mikrometer bis 1000 Mikrometer lang ist.The single jet nozzle contains a single nozzle channel having a (hydraulic) diameter of 50 microns to 150 microns, and which is from 20 microns to 1000 microns long.

Die Mehrstrahl-Düse kann mehrere Düsenkanäle enthalten, deren Achsen parallel zueinander verlaufen können. Dadurch kann die in einer vorgegebenen Zeit zu zerstäubende Flüssigkeitsmenge erhöht werden. Weiter kann dadurch die Querschnittsfläche des zerstäubten Strahls vergrößert werden, oder die Form des Sprühbildes kann an eine vorgegebene Form angepaßt werden. Der (hydraulische) Durchmesser der Düsenkanäle kann bei allen Kanälen einer Mehrkanal-Düse gleich groß sein und von 50 Mikrometer bis 150 Mikrometer betragen, bei einer Kanallänge jeweils von 20 Mikrometer bis 1000 Mikrometer. Andererseits kann es zweckmäßig sein, für die Kanäle einer Mehrstrahl-Düse unterschiedliche Durchmesser zu wählen.The multi-jet nozzle may include a plurality of nozzle channels whose axes may be parallel to each other. As a result, the amount of liquid to be atomized in a given time can be increased. Further, this can increase the cross-sectional area of the atomized beam, or the shape of the spray pattern can be adapted to a predetermined shape. The (hydraulic) diameter of the nozzle channels may be the same for all channels of a multi-channel nozzle and be from 50 microns to 150 microns, with a channel length from 20 microns to 1000 microns. On the other hand, it may be appropriate to choose different diameters for the channels of a multi-jet nozzle.

Weiter kann die Mehrstrahl-Düse mindestens zwei gegeneinander geneigte Düsenkanäle enthalten, die die Flüssigkeitsstrahlen auf einen Punkt vor der Außenseite der Düse richten, in dem die Flüssigkeitsstrahlen aufeinander prallen. Der Winkel zwischen zwei geneigten Flüssigkeitsstrahlen kann von 30 Grad bis 120 Grad betragen. Durch den Aufprall mehrerer Flüssigkeitsstrahlen aufeinander kann das Zerstäuben begünstigt werden. Der (hydraulische) Durchmesser der beiden Düsenkanäle einer Zweistrahl-Düse liegt bevorzugt unter 180 Mikrometer, besonders bevorzugt von 70 Mikrometer bis 100 Mikrometer, bei einer Kanallänge jeweils von 20 Mikrometer bis 1000 Mikrometer.Further, the multi-jet nozzle may include at least two mutually inclined nozzle channels, which direct the liquid jets to a point in front of the outside of the nozzle, in which the liquid jets collide. The angle between two inclined liquid jets can be from 30 degrees to 120 degrees. By the impact of several liquid jets on each other, the sputtering can be favored. The (hydraulic) diameter of the two nozzle channels of a two-jet nozzle is preferably less than 180 microns, more preferably from 70 microns to 100 microns, with a channel length of from 20 microns to 1000 microns.

Vor der Düsenöffnung kann in einem Abstand von 0,1 Millimeter bis 5 Millimeter ein Prallkörper angebracht sein, auf den der Flüssigkeitsstrahl aufprallt. Als Prallkörper ist bevorzugt eine Kugel oder eine Halbkugel geeignet, die einen Durchmesser von 0,1 Millimeter bis 2 Millimeter hat. Bei einer Halbkugel prallt der Flüssigkeitsstrahl bevorzugt auf die konvexe Seite. Weiter kann eine Prallplatte oder ein Prallkegel verwendet werden, wobei der Flüssigkeitsstrahl zum Beispiel senkrecht auf die Prallplatte oder auf die Spitze des Prallkegels auftrifft. Ein Prallkörper kann das Zerstäuben der Flüssigkeit begünstigen. Ferner kann durch einen Prallkörper ein im wesentlichen ringförmiges Sprühbild erzeugt werden. Die Richtung des zerstäubten Strahls kann gegen die Achse des Düsenkanals geneigt sein, wenn der noch nicht zerstäubte Strahl unter einem Winkel auf die Prallplatte aufprallt. Bei mehreren parallel zueinander angeordneten Düsenkanälen kann es zweckmäßig sein, eine oder mehrere Prallkörper vorzusehen, mit denen Form und Größe des zerstäubten Strahls und die Richtung des zerstäubten Strahls beeinflußt werden können.In front of the nozzle opening, a baffle body may be mounted at a distance of 0.1 millimeter to 5 millimeters, on which the liquid jet impinges. As a baffle body is preferably a ball or a hemisphere suitable, which has a diameter of 0.1 millimeters to 2 millimeters. In a hemisphere, the liquid jet bounces preferably on the convex side. Further, a baffle plate or a baffle cone may be used, wherein the liquid jet impinges, for example, perpendicular to the baffle plate or to the tip of the baffle cone. An impact body can promote the atomization of the liquid. Furthermore, a substantially annular spray pattern can be generated by an impact body. The direction of the atomized jet may be inclined to the axis of the nozzle channel when the still un-atomized jet impacts the baffle plate at an angle. With several nozzle channels arranged parallel to one another, it may be expedient to provide one or more impact bodies with which the shape and size of the atomized jet and the direction of the atomized jet can be influenced.

Der Prallkörper kann mittels mindestens einem Befestigungselement an dem Gehäuse des Zerstäubers befestigt sein. Als Befestigungselemente sind ein steifer Draht oder ein Stab geeignet. Ferner kann er mittels zwei oder drei Befestigungselementen an dem Gehäuse befestigt sein. Falls die Länge der Befestigungselemente veränderbar ist, kann der Abstand des Prallkörpers von der Außenseite der Düse verändert werden.The impact body can by means of at least one fastening element to the housing attached to the atomizer. As fasteners, a stiff wire or a rod are suitable. Furthermore, it can be fastened to the housing by means of two or three fastening elements. If the length of the fastening elements is variable, the distance of the impact body from the outside of the nozzle can be changed.

Der bei dem erfindungsgemäßen Zerstäuber im Düsenkanal auftretende Massenstrom beträgt weniger als 0,4 Gramm pro Sekunde. Der mittlere Tröpfchendurchmesser beträgt weniger als 50 Mikrometer.The mass flow occurring in the nozzle channel in the atomizer according to the invention is less than 0.4 grams per second. The average droplet diameter is less than 50 microns.

Der erfindungsgemäße Zerstäuber hat folgende Vorteile:

  • Der Ablauf des Zerstäubungsvorganges, der Massenstrom der Flüssigkeit durch den Düsenkanal und die Verteilung der Tröpfchengröße sind unabhängig von der Fingerkraft, die der Benutzer beim Spannen der Arbeitsfeder aufbringt. Diese Merkmale sind durch den Aufbau des Zerstäubers festgelegt und werden reproduzierbar eingehalten.
  • Für das Zerstäuben der Flüssigkeit wird kein Alkohol oder eine andere flüchtige Kohlenwasserstoff-Verbindung benötigt.
  • Der aus dem Zerstäuber austretende Strahl enthält als Gasanteil nur die aus der Umgebung mitgerissenen Luft.
  • Die Verteilung der Tröpfchengröße und der Massenstrom der aus dem Zerstäuber austretenden Flüssigkeit ergeben einen zerstäubten Flüssigkeitsstrahl, der für das Niederschlagen der Tröpfchen auf einer von dem zerstäubten Flüssigkeitsstrahl getroffenen Fläche geeignet ist.
  • Er kann in unterschiedlichen Ausführungen hergestellt werden und an den beabsichtigten Verwendungszweck und an die günstigste Handhabung angepaßt werden.
The atomizer according to the invention has the following advantages:
  • The flow of the atomization process, the mass flow of the liquid through the nozzle channel and the distribution of the droplet size are independent of the finger force that the user applies when tensioning the working spring. These features are determined by the structure of the atomizer and are reproducibly met.
  • The atomization of the liquid requires no alcohol or other volatile hydrocarbon compound.
  • The jet emanating from the atomizer contains as gas content only the air entrained from the environment.
  • The distribution of the droplet size and the mass flow of liquid exiting the nebulizer provide a nebulized jet of liquid suitable for depositing the droplets on a surface struck by the nebulized liquid jet.
  • It can be manufactured in different versions and adapted to the intended use and the most favorable handling.

Der erfindungsgemäße Zerstäuber wird an Hand der Figuren beispielhaft näher erläutert.The atomizer according to the invention will be explained in more detail by way of example with reference to the figures.

Fig 1 ist ein schematischer Längsschnitt durch einen Zerstäuber ohne das erfindungsgemäß vorgesehene Schraube-Schub-Getriebe. Als Speicher für die mechanische Energie (Arbeitsfeder) ist eine Schraubenfeder vorgesehen, die mittels eines außerhalb des Gehäuses angebrachten Handgriffs durch Herausziehen des Handgriffs manuell gespannt werden kann. In dem Stab, der den Handgriff mit dem Kolben verbindet, ist eine Kerbe vorgesehen, in die am Ende des Spannvorganges der Schraubenfeder ein (federbelasteter) Bolzen eingreift, wodurch der Stab in der erreichten Position gehalten wird. Durch Herausziehen des Bolzens aus der Kerbe wird der Zerstäubungsvorgang ausgelöst. Als Vorratsbehälter für die Flüssigkeit wurde ein kollabierbarer Beutel gewählt. In Fig. 1 ist der Zustand des Zerstäubers in einem Zwischenstadium dargestellt, das zwischen dem bis zu einem ersten Anschlag aus dem Gehäuse herausgezogenen Kolben und dem bis zu einem zweiten Anschlag in den Zylinder hineingedrückten Kolben liegt. In dem dargestellten Zustand stößt die Schraubenfeder die Flüssigkeit aus der Düse aus. Fig. 1 is a schematic longitudinal section through an atomizer without the inventively provided screw-thrust transmission. As a memory for the mechanical energy (working spring), a coil spring is provided which can be manually clamped by means of a handle mounted outside the housing by pulling out the handle. In the rod, which connects the handle to the piston, a notch is provided, in which at the end of the tensioning operation of the coil spring engages a (spring-loaded) bolt, whereby the rod is held in the reached position. By pulling the bolt out of the notch, the atomization process is triggered. As a reservoir for the liquid, a collapsible bag was chosen. In Fig. 1 the state of the atomizer is shown in an intermediate stage, which between the up to a first stop pulled out of the housing and the piston to a second stop in the cylinder is pressed piston. In the illustrated state, the coil spring ejects the liquid from the nozzle.

Das Gehäuse (1) aus einem steifen Material enthält einen Hohlraum (2), in dem eine vorgespannte Schraubenfeder (6) untergebracht ist. Die Schraubenfeder stützt sich an ihrem einen Ende auf den Boden des Hohlraums (2) und drückt an ihrem anderen Ende auf den Kolben (3). Der dünnere Teil des Kolbens (3) ist im Zylinder verschiebbar angebracht und gegen die Zylinderwand abgedichtet. Vor dem dünnen Ende des Kolbens befindet sich innerhalb des Zylinders der Hohlraum (4), in den Flüssigkeit eingesaugt werden kann. Der Hohlraum (4) ist über den Ansaugkanal (11) mit dem Vorratsbehälter (10) für die zu zerstäubende Flüssigkeit verbunden. Im Ansaugkanal ist ein automatisch arbeitendes federbelastetes Ansaugventil (13) vorhanden, durch das beim Ansaugen die Flüssigkeit aus dem Vorratsbehälter in den Hohlraum (4) strömen kann. Der Vorratsbehälter ist ein kollabierbarer Beutel, der in dem Hohlraum (15) innerhalb des Gehäsues (1) untergebracht ist. Der mit einem Deckel verschlossene Hohlraum (15) ist mit einer Öffnung (27) versehen, durch die bei abnehmendem Volumen des kollabierbaren Beutels zwecks Ausgleichen des Druckunterschiedes Luft aus der Umgebung einströmen kann. Der Hohlraum (4) ist über den Ausstoßkanal (21) mit der Düse (22) verbunden. Der Ausstoßkanal enthält ein federbelastetes Ventil (23), das sich öffnet, sobald vor dem Ventil die zu zerstäubende Flüssigkeit mit einem hinreichend großen Druck ansteht. Der Kolben (3) ist an seinem dickeren Ende mit dem Stab (31) versehen, der durch die Schraubenfeder hindurch geht und aus dem Boden des Gehäuses herausragt. Am Ende des Stabes (31) ist ein Handgriff (32) vorgesehen, mit dem der Kolben ein vorgegebenes Stück aus dem Zylinder manuell herausgezogen werden kann, wobei gleichzeitig die Schraubenfeder gespannt wird. Am Boden des Gehäuses ist ein Bolzen (33) vorgesehen, der den Stab (31) und damit den Kolben in einer vorgegebenen Position festhält, sobald der Kolben entsprechend weit aus dem Gehäuse herausgezogen worden ist.The housing (1) made of a rigid material contains a cavity (2) in which a prestressed coil spring (6) is housed. The coil spring is supported at its one end to the bottom of the cavity (2) and presses at its other end on the piston (3). The thinner part of the piston (3) is slidably mounted in the cylinder and sealed against the cylinder wall. Before the thin end of the piston is located within the cylinder, the cavity (4), can be sucked into the liquid. The cavity (4) is connected via the suction channel (11) to the reservoir (10) for the liquid to be atomized. In the intake channel, an automatically operating spring-loaded suction valve (13) is provided, through which the liquid can flow from the reservoir into the cavity (4) during suction. The reservoir is a collapsible bag which is housed in the cavity (15) within the Gehäsues (1). The closed with a lid cavity (15) is provided with an opening (27) through which with decreasing volume of the collapsible bag for the purpose of balancing the pressure difference air can flow from the environment. The cavity (4) is connected to the nozzle (22) via the ejection channel (21). The discharge channel contains a spring-loaded valve (23), which opens as soon as the liquid to be atomized is present in front of the valve with a sufficiently high pressure. The piston (3) is provided at its thicker end with the rod (31) which passes through the coil spring and protrudes from the bottom of the housing. At the end of the rod (31), a handle (32) is provided, with which the piston can be manually pulled out a predetermined length from the cylinder, at the same time the coil spring is tensioned. At the bottom of the housing, a bolt (33) is provided which holds the rod (31) and thus the piston in a predetermined position as soon as the piston has been pulled out correspondingly far out of the housing.

Zum erneuten Spannen der Schraubenfeder wird der Stab (31) und der mit dem Stab verbundene Kolben am Handgriff (32) herausgezogen, bis der Bolzen (33) in eine Kerbe (34) einrastet. Durch Zurückziehen des Kolbens (3) wird der Raum (4) innerhalb des Zylinders vergrößert. Aus dem Vorratsbehälter (10) wird bei geöffnetem Ventil (13) über den Ansaugkanal (11) Flüssigkeit in den Raum (4) gesaugt. Das dabei geschlossene Ventil (23) verhindert das Ansaugen von Luft in den Raum (4).To re-tension the coil spring, pull the rod (31) and the piston connected to the rod out of the handle (32) until the pin (33) snaps into a notch (34). By retracting the piston (3), the space (4) within the cylinder is increased. From the storage container (10), liquid is sucked into the space (4) via the intake duct (11) when the valve (13) is open. The thereby closed valve (23) prevents the suction of air into the room (4).

An Stelle des Handgriffs (32) kann der Stab (31) mittels eines von außen zugänglichen und manuell zu betätigenden Hebels zurückgezogen werden, wobei die Feder gespannt und der Raum (4) mit Flüssigkeit gefüllt wird. Nach dem Loslassen des Hebels drückt die gespannte Feder sofort die Flüssigkeit aus dem Raum (4) durch die Düse (22) und zerstäubt die Flüssigkeit. Dazu wird weder der Bolzen (35) noch die Kerbe (34) benötigt. Bei dieser Betätigungsart verhält sich der Zerstäuber ähnlich wie ein handbetätigter Pumpzerstäuber (Fingerpumpe). Der auf die im Raum (4) innerhalb des Zylinders enthaltene Flüssigkeit wirkende Druck wird bei dem erfindungsgemäßen Zerstäuber jedoch von der gespannten Feder erzeugt, der Benutzer hat darauf keinen Einfluß.Instead of the handle (32), the rod (31) can be retracted by means of an externally accessible and manually operated lever, wherein the spring tensioned and the space (4) is filled with liquid. After releasing the lever, the tensioned spring immediately presses the liquid from the space (4) through the nozzle (22) and atomizes the liquid. For this purpose, neither the bolt (35) nor the notch (34) is required. In this type of actuation, the atomizer behaves similar to a hand-operated pump sprayer (Finger pump). However, the pressure acting on the liquid contained in the space (4) inside the cylinder is generated by the tensioned spring in the atomizer according to the invention, the user has no influence on it.

Fig. 2 zeigt einen schematischen Längsschnitt durch eine andere Ausführungsform des Zerstäubers ohne das erfindungsgemäß vorgesehene Schraube-Schub-Getriebe. Bei dieser Ausführung öffnet sich das Ventil im Ausstoßkanal nicht automatisch bei hinreichend großem Flüssigkeitsdruck vor dem Ventil. Zum Auslösen der Zerstäubung wird das Ventil im Ausstoßkanal - bevorzugt durch Hinunterdrücken - manuell betätigt. Auch in Fig. 2 ist der Zustand des Zerstäubers in einem Zwischenstadium dargestellt, das zwischen dem bis zu einem ersten Anschlag aus dem Gehäuse herausgezogenen Kolben und dem bis zu einem zweiten Anschlag in den Zylinder hineingedrückten Kolben liegt. Fig. 2 shows a schematic longitudinal section through another embodiment of the atomizer without the inventively provided screw-thrust transmission. In this embodiment, the valve does not automatically open in the discharge channel when the liquid pressure in front of the valve is sufficiently high. To trigger the atomization, the valve in the discharge channel - preferably by pressing down - manually operated. Also in Fig. 2 the state of the atomizer is shown in an intermediate stage which lies between the piston pulled out of the housing up to a first stop and the piston pushed into the cylinder up to a second stop.

Dieser Zerstäuber ist ähnlich wie der in Fig. 1 dargestellte Zerstäuber aufgebaut, er hat jedoch keinen Bolzen (33) und keine Kerbe (34). An Stelle des sich automatisch öffnenden Ventils (23) ist bei dieser Ausführung ein manuell zu öffnendes Ventil (42) im Ausstoßkanal vorgesehen. Dieser Zerstäuber wird in zwei Schritten betätigt. Zunächst wird durch Herausziehen des Stabes (31) die Feder (6) gespannt. Gleichzeitig wird der Raum (41) mit aus dem Vorratsbehälter (10) angesaugter Flüssigkeit gefüllt. In dem dargestellten Zustand drückt die Schraubenfeder die Flüssigkeit gegen das Ventil (42), so lange dieses geschlossen ist. Sobald und so lange das Ventil (42) zum Beispiel durch Hinunterdrücken der Auslösetaste (46) manuell geöffnet wird und geöffnet gehalten bleibt, strömt die Flüssigkeit durch die in der Auslösetaste (46) angebrachte Düse (45) und wird zerstäubt. Bei diesem Zerstäuber kann der Benutzer zwischen dem Spannen der Feder und den damit zusammenhängenden Folgevorgängen einerseits sowie dem Betätigen der Auslösetaste (46) eine Zeit verstreichen lassen. Die Aufmerksamkeit des Benutzers kann sich ungestört auf das Niederschlagen der zerstäubten Flüssigkeit auf einer zu behandelnde Fläche richten.This atomizer is similar to the one in Fig. 1 constructed atomizer, but he has no bolt (33) and no notch (34). Instead of the automatically opening valve (23), a manually openable valve (42) is provided in the discharge channel in this embodiment. This atomizer is operated in two steps. First, the spring (6) is tensioned by pulling out the rod (31). At the same time the space (41) is filled with sucked from the reservoir (10) liquid. In the illustrated state, the coil spring pushes the liquid against the valve (42) as long as it is closed. As and when the valve (42) is manually opened and kept open by, for example, depressing the trigger button (46), the liquid flows through the nozzle (45) mounted in the trigger button (46) and is atomized. In this atomizer, the user can let a time elapse between the tensioning of the spring and the associated subsequent operations on the one hand and the actuation of the trigger button (46). The attention of the user can be undisturbed directed to the deposition of the atomized liquid on a surface to be treated.

Fig. 3 zeigt einen schematischen Längsschnitt durch einen Zerstäuber ohne das erfindungsgemäß vorgesehene Schraube-Schub-Getriebe, der zwischen zwei Spannvorgängen der Feder zweimal betätigt werden kann, und der die innerhalb des Zylinders vorhandene Flüssigkeit in zwei Teilmengen ausstößt und zerstäubt. Der mit dem Kolben (3) verbundene Stab (31) ist mit zwei Kerben (34) und (35) versehen, die einen vorgegebenen Abstand voneinander haben. Diese Kerben sind bevorzugt sägezahnförmig ausgebildet, die schrägen Flanken der Kerben liegen - vom Handgriff (32) aus betrachtet - hinter den senkrecht zur Achse des Stabes (31) gerichteten Flanken. Der Bolzen (33) hat zum Beispiel ein sägezahnförmiges Ende. Der Bolzen (33) gleitet beim Herausziehen des Stabes über die Kerbe (34) hinweg und rastet erst in die Kerbe (35) ein. Sobald der federbelastete Bolzen aus der Kerbe (35) manuell herausgezogen und sofort wieder losgelassen wird, drückt die Feder (6) auf die innerhalb des Zylinders befindliche Flüssigkeit und drückt die erste Teilmenge der Flüssigkeit durch das automatisch arbeitende Ventil (23) zur Düse (22), vor der die austretende Flüssigkeit zerstäubt wird. Dieser erste Vorgang ist beendet, sobald der Bolzen (33) in die Kerbe (34) einrastet. Der zweite Vorgang verläuft analog zum ersten Vorgang. Der zweite Vorgang beginnt, sobald der Bolzen (33) aus der Kerbe (34) manuell herausgezogen wird; er endet, sobald der Kolben seine Endposition erreicht hat. Fig. 3 shows a schematic longitudinal section through an atomizer without the inventively provided screw-thrust transmission, which can be operated twice between two clamping operations of the spring, and ejects the liquid present within the cylinder in two subsets and atomized. The rod (31) connected to the piston (3) is provided with two notches (34) and (35) which are a predetermined distance from each other. These notches are preferably formed like a sawtooth, the oblique edges of the notches are - viewed from the handle (32) - behind the perpendicular to the axis of the rod (31) directed flanks. The bolt (33) has, for example, a sawtooth-shaped end. The bolt (33) slides when pulling the rod over the notch (34) and snaps into the notch (35). As soon as the spring-loaded bolt is pulled out of the notch (35) manually and immediately released, the spring (6) pushes on the inside of the cylinder Liquid and pushes the first subset of the liquid through the automatic valve (23) to the nozzle (22), in front of which the exiting liquid is atomized. This first operation is completed as soon as the bolt (33) engages in the notch (34). The second process is analogous to the first process. The second process begins as soon as the pin (33) is manually pulled out of the notch (34); it ends as soon as the piston has reached its end position.

Fig. 4 zeigt einen Längsschnitt durch einen Zerstäuber mit einer Arbeitsfeder als Speicher für die mechanische Energie. Die Arbeitsfeder wird mittels eines Sperrspannwerkes, das ein Schraub-Schub-Getriebe enthält, durch Drehen der beiden drehbar miteinander verbundenen Teile des Gehäuses manuell gespannt. Der Zerstäubungsvorgang wird ausgelöst durch Betätigen einer Auslösetaste für eine Sperrklinke. Fig. 4 stellt den Zustand des Zerstäubers bei bereits gespannter Schraubenfeder und eingerasteter Sperrklinke und vollständig mit Flüssigkeit gefülltem Raum innerhalb des Zylinders vor dem Auslösen des Zerstäubungsvorganges durch Betätigen einer Auslösetaste dar. Fig. 4 shows a longitudinal section through a nebulizer with a working spring as a memory for the mechanical energy. The working spring is manually clamped by means of a locking mechanism, which contains a screw-thrust transmission, by rotating the two rotatably interconnected parts of the housing. The sputtering process is triggered by pressing a release button for a pawl. Fig. 4 represents the state of the nebulizer with already biased coil spring and engaged pawl and completely filled with liquid space within the cylinder before triggering the sputtering process by pressing a shutter button.

Der Zerstäuber hat ein zylindrisch geformtes Gehäuse. Das untere Gehäuseteil (51) ist mittels einer Schnappverbindung mit dem Oberteil (52) des Zerstäubers drehbar verbunden. Das Oberteil enthält einen Zylinder (53) und eine Düse (60). Das Oberteil ist mit einer abnehmbaren Schutzkappe (54) versehen. Durch Drehen der Kappe (54) und des damit verbundenen Oberteils (52) des Zerstäubers wird das im unteren Gehäuseteil (51) axial verschiebbar angebrachte Bauteil (55), das den Kolben (81) enthält, mittels eines Schraub-Schub-Getriebes von dem Zylinder (53) weggedrückt, bis eine im e.g. Bauteil (55) angebrachte Sperrklinke (74) hinter einen Vorsprung im unteren Gehäuseteil (51) springt. Dabei wird der Raum (57) innerhalb des Zylinders vergrößert. Gleichzeitig wird ein Teil der Flüssigkeit (64) aus dem als kollabierbarer Beutel ausgebildeten Vorratsbehälter (63) durch den Kanal (68) im Hohlkolben (81) in den Raum (57) gesaugt, und die Schraubenfeder (59) wird gespannt. In dem Kanal, der den Raum (57) mit der Düse (60) verbindet, ist ein automatisch arbeitendes Ventil vorhanden, das aus einer mit einer Feder (71) belasteten Kugel (70) besteht. Dieses Ventil verhindert das Eindringen von Luft in den Raum (57) während des Ansaugens von Flüssigkeit und ermöglicht, den Raum (57) blasenfrei mit Flüssigkeit zu füllen. An dem Ende des Hohlkolbens (81), das sich innerhalb des Zylinders (53) befindet, ist ein Ventil angebracht, das aus einer mit der Feder (62) belasteten Kugel (61) besteht. Die Feder (62) wird durch einen in das Ende des Hohlkolbens gedrückten Stopfen in ihrer Position gehalten. Der Stopfen ist mit einem Kanal versehen, durch den die Flüssigkeit in den Raum (57) strömt. Der obere Rand (56) des Stopfens kann als Dichtung des Kolbens (81) gegen den Zylinder (53) wirken. Das Ventil am inneren Ende des Hohlkolbens öffnet sich beim Ansaugen von Flüssigkeit automatisch und ist beim Ausstoßen der Flüssigkeit aus der Düse geschlossen.The atomizer has a cylindrically shaped housing. The lower housing part (51) is rotatably connected by means of a snap connection with the upper part (52) of the atomizer. The top contains a cylinder (53) and a nozzle (60). The upper part is provided with a removable protective cap (54). By turning the cap (54) and the associated upper part (52) of the atomizer in the lower housing part (51) axially slidably mounted member (55) containing the piston (81) by means of a screw-thrust transmission of the Cylinder (53) pushed away until a in the eg component (55) mounted pawl (74) jumps behind a projection in the lower housing part (51). In this case, the space (57) is increased within the cylinder. At the same time, a portion of the liquid (64) is sucked from the reservoir (63) formed as a collapsible bag through the channel (68) in the hollow piston (81) in the space (57), and the coil spring (59) is tensioned. In the channel connecting the space (57) to the nozzle (60) there is an automatically operating valve consisting of a ball (70) loaded with a spring (71). This valve prevents the ingress of air into the space (57) during the aspiration of liquid and allows the space (57) to be filled with liquid without bubbles. At the end of the hollow piston (81), which is located inside the cylinder (53), a valve is mounted, which consists of a ball (61) loaded with the spring (62). The spring (62) is held in position by a plug pushed into the end of the hollow piston. The plug is provided with a channel through which the liquid flows into the space (57). The upper edge (56) of the plug may act as a seal of the piston (81) against the cylinder (53). The valve at the inner end of the hollow piston opens automatically when sucking liquid and is closed when ejecting the liquid from the nozzle.

Zum Zerstäuben der im Raum (57) innerhalb des Zylinders enthaltenen Flüssigkeit wird die Schutzkappe (54) abgenommen, und die im unteren Gehäuseteil angebrachte Auslösetaste (58) wird manuell betätigt, wobei die Sperrklinke (74) ausgerückt wird. Die gespannte Schraubenfeder (59) setzt nun die im Raum (57) enthaltenen Flüssigkeit unter Druck. Dadurch wird das vor der Düse angebrachte Ventil automatisch geöffnet, die Flüssigkeit in dem Raum (57) wird durch die Düse (60) ausgestoßen und zerstäubt. Während des Ausstoßens der Flüssigkeit ist das am Ende des Hohlkolbens angebrachte Ventil geschlossen, wodurch das Zurückströmen von Flüssigkeit aus dem Raum (57) in den Vorratsbehälter (63) verhindert wird. Nachdem das Zerstäuben beendet ist, wird die Schutzkappe (54) wieder auf das Oberteil des Zerstäubers aufgesteckt.To atomize the liquid contained in the space (57) inside the cylinder, the protective cap (54) is removed, and the release button (58) mounted in the lower housing part is manually operated, disengaging the pawl (74). The tensioned coil spring (59) now pressurizes the fluid contained in the space (57). Thereby, the valve mounted in front of the nozzle is automatically opened, the liquid in the space (57) is ejected and atomized through the nozzle (60). During the ejection of the liquid, the valve attached to the end of the hollow piston is closed, thereby preventing the backflow of liquid from the space (57) into the reservoir (63). After the sputtering is finished, the protective cap (54) is put back on the top of the atomizer.

An Stelle der Auslösetaste (58), der Sperrklinke (74) und des automatisch arbeitenden Ventils mit Kugel (70) und Feder (71) kann (analog zu der Darstellung in Fig. 2) eine Auslösetaste vorhanden sein, die die Zerstäubungsdüse enthält, und mit der beim Betätigen manuell das Ventil vor der Düse geöffnet wird. Diese Auslösetaste ist am oberen Ende des Zerstäubers angebracht.Instead of the trigger button (58), the pawl (74) and the automatically operating valve with ball (70) and spring (71) can (analogous to the representation in Fig. 2 ) there is a trigger button that contains the atomizing nozzle and with which the valve in front of the nozzle is manually opened when actuated. This release button is attached to the top of the atomizer.

Statt des kollabierbaren Beutels (63) kann ein nicht verformbarer verschlossener Behälter verwendet werden, der mit einem automatisch arbeitenden Belüftungsventil sowie mit einem in den Behälter hineinragenden Tauchrohr, gegebenenfalls in Form einer Rohrschlange, versehen ist.Instead of the collapsible bag (63) can be used a non-deformable sealed container, which is provided with an automatically operating vent valve and with a projecting into the container dip tube, optionally in the form of a coil.

Die Dichtung des Hohlkolbens gegen den Zylinder mittels des oberen Randes (56) des Stopfens kann durch einen O-Ring ersetzt werden, der in einer Nut im unteren Ende des Zylinders an der Stelle (80) angebracht ist.The seal of the hollow piston against the cylinder by means of the upper edge (56) of the plug can be replaced by an O-ring which is mounted in a groove in the lower end of the cylinder at the point (80).

Bei einer weiteren Ausführungsform des Zerstäubers kann das den Hohlkolben enthaltende Bauteil (55) mit dem unteren Gehäuseteil verbunden sein, und der Zylinder mit dem Raum (57) können gegenüber dem unteren Gehäuseteil (51) in axialer Richtung bewegbar angeordnet sein.In a further embodiment of the atomizer, the component (55) containing the hollow piston can be connected to the lower housing part, and the cylinder with the space (57) can be arranged to be movable relative to the lower housing part (51) in the axial direction.

Zwecks leichterer Handhabung des Zerstäubers kann eine vielzähnige Sperrklinke vorgesehen sein, die beim Spannen der Schraubenfeder ständig eingerastet ist.For ease of handling of the atomizer, a multi-toothed pawl may be provided, which is constantly engaged during tensioning of the coil spring.

Da zum Spannen der Schraubenfeder eine relativ große Kraft erforderlich sein kann, wird ein Schraub-Schub-Getriebe verwendet, das um mehr als 360 Grad gedreht werden kann. Damit läßt sich die zum Spannen der Schraubenfeder durch Drehen der beiden Gehäuseteile gegeneinander manuell aufzubringende Kraft hinreichend weit verkleinern.Since a relatively large force may be required for tensioning the coil spring, a screw-thrust transmission is used, which can be rotated by more than 360 degrees. Thus, for clamping the coil spring by turning the two housing parts against each other manually applied force can be sufficiently reduced.

Fig. 5 zeigt einen Querschnitt durch eine Düse mit außen vor der Düse angebrachter Kugel als Prallkörper. Die unter Druck stehende Flüssigkeit wird aus der Düsenöffnung (104) in Form eines geschlossenen Strahls (102) ausgestoßen, der auf einen Prallkörper (106) aufprallt. Dabei geht die Flüssigkeit in den zerstäubten Strahl (107) über. Fig. 5 shows a cross section through a nozzle with the outside of the nozzle mounted ball as an impact body. The pressurized liquid is expelled from the nozzle orifice (104) in the form of a closed jet (102) impinging on a baffle (106). The liquid passes into the atomized jet (107).

Fig. 6 zeigt einen Querschnitt durch eine Düse mit zwei gegeneinander geneigten Düsenkanälen. Die beiden aus der Düse austretenden Flüssigkeitsstrahlen prallen außerhalb der Düse aufeinander. Die unter Druck stehende Flüssigkeit wird aus den beiden Düsenöffnungen (108) und (109) in Form zweier geschlossener Strahlen (110) und (111) ausgestoßen. Beide Strahlen prallen an der Stelle (112) aufeinander. Dabei geht die Flüssigkeit in den zerstäubten Strahl (113) über. Fig. 6 shows a cross section through a nozzle with two mutually inclined nozzle channels. The two liquid jets emerging from the nozzle collide outside of the nozzle. The pressurized liquid is expelled from the two nozzle orifices (108) and (109) in the form of two closed jets (110) and (111). Both beams collide at the point (112). The liquid passes into the atomized jet (113).

In Fig. 7 ist eine Dralldüse in Form einer Wirbelkammerdüse in der ersten Ausführung dargestellt.. Fig. 7a zeigt die Wirbelkammerdüse in der Ansicht von ihrer Innenseite bei abgenommener Deckplatte. Fig. 7b zeigt einen Längsschnitt durch die Wirbelkammerdüse entlang der Lini A - A in Fig. 7a und parallel zur Düsenachse. In Fig. 7c ist der Bereich um den Düsenkanal vergrößert dargestellt.In Fig. 7 is shown a swirl nozzle in the form of a vortex chamber nozzle in the first embodiment. Fig. 7a shows the vortex chamber nozzle in the view from its inside with the cover plate removed. Fig. 7b shows a longitudinal section through the vortex chamber nozzle along the lines A - A in Fig. 7a and parallel to the nozzle axis. In Fig. 7c the area around the nozzle channel is shown enlarged.

Bei der Wirbelkammerdüse (121) ist der Düsenkanal (122) in der Achse der Wirbelkammerdüse angeordnet, die zu zerstäubende Flüssigkleit wird durch beispielsweise drei Kanäle (123) tangential in die Wirbelkammer (124) geleitet. Die Achsen der Kanäle (123) laufen an der Achse des Düsenkanals vorbei. Die Kanäle (123) sind im Vergleich zum Düsenkanal (122) vergrößert dargestellt. Die Deckplatte (125) für die Wirbelkammer und die Kanäle enthält im Bereich des äußeren Endes der Kanäle (123) jeweils eine Öffnung (126), durch die die Flüssigkeit in die Kanäle (123) eintritt.In the swirl chamber nozzle (121), the nozzle channel (122) is disposed in the axis of the swirl chamber nozzle, the liquid to be atomized is passed through, for example, three channels (123) tangentially into the swirl chamber (124). The axes of the channels (123) pass the axis of the nozzle channel. The channels (123) are shown enlarged in comparison to the nozzle channel (122). The cover plate (125) for the swirl chamber and the channels contains in the region of the outer end of the channels (123) each have an opening (126) through which the liquid enters the channels (123).

Claims (10)

  1. Atomiser for manual actuation, with which a partial quantity is atomised from a fluid supply, and which comprises, within a cylindrical housing having a lower part (51) and an upper part (52), the two housing parts being rotatably connected to one another, the following elements:
    - a storage container (63) for the fluid (64) to be atomised, and
    - a nozzle (60) for the fluid to be atomised, and
    - a cylinder (53) in the upper part (52), and
    - a piston displaceable in the cylinder (53), in the form of a hollow piston (81) with a duct (68) that acts as an intake duct and connects the storage container (63) to a hollow chamber (57) within the cylinder in front of the hollow piston, and
    - an ejection duct that connects the hollow chamber (57) to the nozzle (60), and
    - at least one automatically operating valve (61) in the intake duct, and
    - a drive device for the hollow piston (81), which comprises a storage device for mechanical energy which is arranged outside the storage container, the force exerted by the energy storage device acting on the hollow piston, and
    - a helical thrust gear with which mechanical energy is supplied to the energy storage device by manually rotating the two housing parts relative to one another, which is characterised by
    - the nozzle (60) which is in the form of a swirl nozzle with a cylindrical hollow chamber, in which circulation is imparted to the fluid flowing through the swirl nozzle, and from which the fluid exits through a nozzle duct (122) which is located on the axis of the swirl nozzle, and
    - the nozzle duct has a diameter of 50 microns to 150 microns,
    - and the cylindrical hollow chamber has a diameter which is twice to ten times the diameter of the outlet duct.
  2. Atomiser according to claim 1, wherein
    - the drive device for the hollow piston comprises a locking catch (74) and a release button (58).
  3. Atomiser according to claim 1, wherein
    - the energy storage device is a spring, preferably acting as a compression spring, preferably a helical spring (59) or a plate spring.
  4. Atomiser according to claim 1, wherein
    - the energy storage device is a gas spring, preferably a roll-formed bellows-type gas spring.
  5. Atomiser according to claim 1, wherein
    - another valve (70) is present in the ejection duct, and operates automatically.
  6. Atomiser according to claim 1, wherein
    - another valve (70) is present in the ejection duct, and has to be opened manually.
  7. Atomiser according to claim 1, wherein
    - the swirl nozzle contains a cylindrical hollow space as the whirl chamber, into which the fluid is conveyed tangentially with respect to the inner wall.
  8. Atomiser according to claim 1, wherein
    - the swirl nozzle contains a cylindrical hollow chamber in which there is a cylindrical body, and in the gap between the outside of the cylindrical body and the inside of the hollow chamber of the swirl nozzle there is a helical baffle device, and the fluid is introduced parallel to the axis of the swirl nozzle.
  9. Atomiser according to one of claims 1, 7 and 8, wherein
    - the nozzle duct is from 10 microns to 1000 microns in length.
  10. Atomiser according to claim 1, wherein
    - the diameter of the cylindrical hollow chamber is from two-and-a-half to five times the diameter of the nozzle duct.
EP02023179A 2001-11-07 2002-10-16 Manually actuated atomiser Expired - Lifetime EP1312418B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10154237A DE10154237A1 (en) 2001-11-07 2001-11-07 Manual sputterer, to spray liquid droplets on to a surface, has a spring acting on a piston with a manual release, to spray a portion of the stored liquid with a controlled droplet size
DE10154237 2001-11-07

Publications (3)

Publication Number Publication Date
EP1312418A2 EP1312418A2 (en) 2003-05-21
EP1312418A3 EP1312418A3 (en) 2003-11-05
EP1312418B1 true EP1312418B1 (en) 2008-08-27

Family

ID=7704647

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02023179A Expired - Lifetime EP1312418B1 (en) 2001-11-07 2002-10-16 Manually actuated atomiser

Country Status (6)

Country Link
US (1) US7341208B2 (en)
EP (1) EP1312418B1 (en)
AT (1) ATE406215T1 (en)
DE (2) DE10154237A1 (en)
DK (1) DK1312418T3 (en)
ES (1) ES2312516T3 (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004034923A1 (en) * 2002-10-17 2004-04-29 Braun Gmbh Mouth rinse and spray nozzle for creating a liquid jet and teeth-cleaning system
GB0300939D0 (en) * 2003-01-16 2003-02-12 Unilever Plc Method of creating a cosmetic spray
DE10323603A1 (en) * 2003-05-20 2004-12-30 Ing. Erich Pfeiffer Gmbh Dosing device with a pump device
US20050017089A1 (en) * 2003-07-21 2005-01-27 Marc Rohrschneider Finger operated spray pump
US20050272001A1 (en) * 2004-06-03 2005-12-08 Blain Christopher C Oral care device
US8444416B2 (en) * 2005-04-26 2013-05-21 Braun Gmbh Valves for personal care devices
US20070017582A1 (en) * 2005-07-20 2007-01-25 Chenvainu Alexander T Fluid couplings
DE102005057685A1 (en) * 2005-12-01 2007-06-06 Boehringer Ingelheim Pharma Gmbh & Co. Kg Inhaler and storage for a dry drug formulation and methods and use thereof
DE102007028184A1 (en) 2007-06-20 2008-12-24 Braun Gmbh Brush head for a toothbrush
US20090113642A1 (en) * 2007-11-06 2009-05-07 Arrow Line S.R.L. Device for washing liquid turbulation for rotary jet heads, especially water-cleaning machines
EP2077132A1 (en) 2008-01-02 2009-07-08 Boehringer Ingelheim Pharma GmbH & Co. KG Dispensing device, storage device and method for dispensing a formulation
GB0800709D0 (en) * 2008-01-16 2008-02-20 Dunne Stephen T Double jet impinging nozzle
EP2244837B1 (en) 2008-02-19 2016-10-19 Boehringer Ingelheim International Gmbh Cartridge system
DE102008036976A1 (en) 2008-08-08 2010-02-11 Behr Gmbh & Co. Kg Pumping device and method for operating a pumping device
DE102008052589A1 (en) 2008-10-21 2010-04-22 Behr Gmbh & Co. Kg Fluid discharge device for use in air freshener device of air conditioning system of motor vehicle, has controlled valve devices actuated by common actuation device, where controlled valve devices are formed as valve device
ES2657238T3 (en) 2009-02-18 2018-03-02 Boehringer Ingelheim International Gmbh Device, cartridge and method for distributing a liquid
WO2010094305A1 (en) * 2009-02-18 2010-08-26 Boehringer Ingelheim International Gmbh Device, cartridge and method for dispensing a liquid
JP5670421B2 (en) 2009-03-31 2015-02-18 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Component surface coating method
EP2432531B1 (en) 2009-05-18 2019-03-06 Boehringer Ingelheim International GmbH Adapter, inhalation device and nebulizer
AU2009324259B1 (en) * 2009-06-03 2010-12-02 Mcneil Ab A hand-held dispensing device
DK2473161T3 (en) 2009-08-31 2017-09-11 Dr Reddys Laboratories Ltd TOPICAL FORMULATIONS INCLUDING A STEROID
GB201006080D0 (en) * 2010-04-13 2010-05-26 Univ Salford The Aerosol spray device
JP5715640B2 (en) 2009-11-25 2015-05-13 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Nebulizer
EP2504051B1 (en) 2009-11-25 2019-09-04 Boehringer Ingelheim International GmbH Nebulizer
US10016568B2 (en) 2009-11-25 2018-07-10 Boehringer Ingelheim International Gmbh Nebulizer
WO2011121698A1 (en) * 2010-03-29 2011-10-06 日本たばこ産業株式会社 Liquid tank for aerosol aspirator
US9943654B2 (en) 2010-06-24 2018-04-17 Boehringer Ingelheim International Gmbh Nebulizer
EP2694220B1 (en) 2011-04-01 2020-05-06 Boehringer Ingelheim International GmbH Medical device comprising a container
US11154876B2 (en) 2011-04-19 2021-10-26 Dlhbowles, Inc. Multi-inlet, multi-spray fluidic cup nozzle with shared interaction region and spray generation method
US9827384B2 (en) 2011-05-23 2017-11-28 Boehringer Ingelheim International Gmbh Nebulizer
US9415401B2 (en) 2012-04-04 2016-08-16 Alternative Packaging Solutions Llc One turn actuated duration spray pump mechanism
WO2013152894A1 (en) 2012-04-13 2013-10-17 Boehringer Ingelheim International Gmbh Atomiser with coding means
US8973847B2 (en) * 2012-07-09 2015-03-10 Easy Spray Llc Non-aerosol liquid spray device with continuous spray
US9539408B2 (en) * 2012-10-31 2017-01-10 Trudell Medical International Nebulizer apparatus
EP3030298B1 (en) 2013-08-09 2017-10-11 Boehringer Ingelheim International GmbH Nebulizer
ES2836977T3 (en) 2013-08-09 2021-06-28 Boehringer Ingelheim Int Nebulizer
US20160184431A1 (en) 2014-03-11 2016-06-30 Promius Pharma Llc Topical compositions comprising a corticosteroid
PL3139984T3 (en) 2014-05-07 2021-11-08 Boehringer Ingelheim International Gmbh Nebulizer
CN106255554B (en) 2014-05-07 2021-05-04 勃林格殷格翰国际有限公司 Container, sprayer and use
CN106232166B (en) 2014-05-07 2020-04-14 勃林格殷格翰国际有限公司 Sprayer with a spray tube
CN106573258B (en) * 2014-08-15 2020-03-13 Dlh鲍尔斯公司 Multiple inlets with shared interaction region, multiple jet cup nozzle and jet generation method
US9989552B2 (en) * 2015-03-25 2018-06-05 Arcus Hunting, Llc Air movement visualization device
US9894893B2 (en) 2015-04-23 2018-02-20 Wyndscent, Llc Breath-powered vapor distribution device
US9585981B2 (en) * 2015-04-23 2017-03-07 Fourth Arrow, LLC Device for creating and distributing vaporized scent
US10278382B2 (en) * 2015-04-23 2019-05-07 Wyndscent, Llc Device for creating and distributing vaporized scent
WO2017011539A2 (en) 2015-07-13 2017-01-19 Cook Regentec Llc Catheters and systems useful for delivery of material to the lung
JP6961600B2 (en) * 2016-01-25 2021-11-05 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Nebulizer
US10786638B2 (en) 2016-07-08 2020-09-29 Trudell Medical International Nebulizer apparatus and method
US10881818B2 (en) 2016-07-08 2021-01-05 Trudell Medical International Smart oscillating positive expiratory pressure device
MX2019006702A (en) 2016-12-09 2019-08-01 Trudell Medical Int Smart nebulizer.
FR3065653B1 (en) * 2017-04-27 2021-10-22 Aptar France Sas FLUID PRODUCT DISTRIBUTION HEAD.
CN111032133B (en) * 2017-07-21 2022-10-21 勃林格殷格翰国际有限公司 Sprayer with a spray tube
JP7194722B2 (en) * 2017-07-21 2022-12-22 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング nebulizer and container
CA3020746C (en) 2017-10-13 2023-10-17 Wyndscent, Llc Electronic vapor dispenser for hunting
MX2020007026A (en) 2018-01-04 2020-12-03 Trudell Medical Int Smart oscillating positive expiratory pressure device.
CN112533656A (en) * 2018-08-10 2021-03-19 索芙特海尔公司 High pressure suction device
JP7171908B2 (en) * 2018-09-27 2022-11-15 エスエイチエル・メディカル・アーゲー Tensioning device for aerosol dispenser and aerosol dispenser
JP2022547826A (en) 2019-08-27 2022-11-16 トゥルーデル メディカル インターナショナル Vibrating positive expiratory pressure device
US20230019775A1 (en) * 2021-06-30 2023-01-19 The Procter & Gamble Company Spray nozzle for dispensing a structured composition and a spray product comprising the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB331141A (en) * 1929-09-12 1930-06-26 Fred Camile Phillips Improvements in or relating to reciprocating pumps
FR1147172A (en) * 1956-03-06 1957-11-20 Apparatus for spraying liquid
US3185355A (en) * 1963-06-04 1965-05-25 Valve Corp Of America Pump for liquid containers
US3771728A (en) * 1971-03-17 1973-11-13 F Polnauer Spray nozzles with spiral flow of fluid and method of constructing the same
GB1408497A (en) * 1972-04-15 1975-10-01 Yoshino Kogyosho Co Ltd Liquid spraying devic3
US4071196A (en) * 1975-08-28 1978-01-31 Vca Corporation Aerosol valve tip and insert assembly
US4074861A (en) * 1976-06-18 1978-02-21 Realex Corporation Spray pattern control structure and method
US4167941A (en) * 1976-10-05 1979-09-18 James D. Pauls, Ltd. (Limited Partnership) Mechanically operated dispensing device for increasing discharge pressure and dispensing time
EP0346417B1 (en) * 1987-12-11 1994-10-05 DEUTSCHE FORSCHUNGSANSTALT FÜR LUFT- UND RAUMFAHRT e.V. Whirl nozzle for atomizing a liquid
SG45171A1 (en) * 1990-03-21 1998-01-16 Boehringer Ingelheim Int Atomising devices and methods
AU659618B2 (en) * 1990-12-04 1995-05-25 Boeringer Ingelheim International Gmbh Nozzle assembly for preventing back-flow
DE19536902A1 (en) 1995-10-04 1997-04-10 Boehringer Ingelheim Int Miniature fluid pressure generating device
DE19545226C1 (en) 1995-12-05 1997-06-19 Boehringer Ingelheim Int Locking mechanism for a spring-operated output
US6413246B1 (en) * 2000-05-18 2002-07-02 John E. Harrold Metered, mechanically propelled, liquid dispenser
DE10048935A1 (en) * 2000-10-04 2002-04-11 Bosch Gmbh Robert Fuel injector
US6685109B2 (en) * 2001-09-24 2004-02-03 Daniel Py System and method for a two piece spray nozzle

Also Published As

Publication number Publication date
DE10154237A1 (en) 2003-05-15
ES2312516T3 (en) 2009-03-01
EP1312418A3 (en) 2003-11-05
US20030209238A1 (en) 2003-11-13
US7341208B2 (en) 2008-03-11
ATE406215T1 (en) 2008-09-15
DE50212700D1 (en) 2008-10-09
DK1312418T3 (en) 2008-10-13
EP1312418A2 (en) 2003-05-21

Similar Documents

Publication Publication Date Title
EP1312418B1 (en) Manually actuated atomiser
EP0306066B1 (en) Manual device for dispersing a fluid
DE69636875T2 (en) Miniaturized apparatus for producing high pressure in fluids to be sprayed
EP3924022B1 (en) Portable device for administering a physiologically active liquid
DE2826784A1 (en) SPRAY NOZZLE AND THE SPRAY NOZZLE CONTAINING DEVICE AND METHOD FOR MANUFACTURING IT
EP0408786A1 (en) Nozzle head
DE1475156B1 (en) Pump chamber atomizers, especially for cosmetic and pharmaceutical fluids
DE2722467A1 (en) CONTAINER FOR DISPENSING A LIQUID
DE2236042A1 (en) METHOD AND DEVICE FOR GENERATING A FLAT COLOR FAN BEAM
WO2005079895A1 (en) Atomiser
DE2340936A1 (en) SPRAYER
DE2462461A1 (en) AEROSOL SPRAYER TRAINED AS A HAND SPRAY CAN
EP0705140B1 (en) Device for discharging free flowing media
EP0451615A2 (en) Discharge device for at least one medium
EP0497255B1 (en) Delivering nozzle for media
DE60304774T2 (en) Finger-operated atomizer pump
WO2018015201A1 (en) Liquid dispenser with a discharge head
DE2811864A1 (en) DEVICE FOR THE RECEPTION AND DISTRIBUTION OF A LIQUID PRODUCT
EP0880997A2 (en) Liquid nozzle and jetting head
EP1449594A1 (en) Dispenser for dispensing fluid medium from a container
WO2022258462A1 (en) Liquid dispenser for nasal applications
DE4331279A1 (en) Method and device for producing an aerosol
WO2021175611A1 (en) Spray gun, in particular a pressurised air atomisation paint spray gun, in particular a hand-held pressurised air atomisation paint spray gun
DE202005017275U1 (en) Sprayer head for perfume container, has guide ring provided at periphery of air supply hose opening which is connected to air passage, where both ends of air passage are provided with crossed groove and fluid conduit, respectively
AT223311B (en) Compressed gas atomizer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040430

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20070814

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOEHRINGER INGELHEIM MICROPARTS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50212700

Country of ref document: DE

Date of ref document: 20081009

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2312516

Country of ref document: ES

Kind code of ref document: T3

BERE Be: lapsed

Owner name: BOEHRINGER INGELHEIM MICROPARTS G.M.B.H.

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090127

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

26N No opposition filed

Effective date: 20090528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20091026

Year of fee payment: 8

Ref country code: CZ

Payment date: 20091013

Year of fee payment: 8

Ref country code: DE

Payment date: 20091026

Year of fee payment: 8

Ref country code: DK

Payment date: 20091014

Year of fee payment: 8

Ref country code: ES

Payment date: 20091023

Year of fee payment: 8

Ref country code: FI

Payment date: 20091015

Year of fee payment: 8

Ref country code: IE

Payment date: 20091028

Year of fee payment: 8

Ref country code: SE

Payment date: 20091014

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20091016

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091110

Year of fee payment: 8

Ref country code: GB

Payment date: 20091022

Year of fee payment: 8

Ref country code: IT

Payment date: 20091023

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081016

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081128

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110501

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101016

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101016

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110501

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101016

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50212700

Country of ref document: DE

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101018

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20111121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502