EP1303684B1 - Method for operating a gas and steam turbine installation and corresponding installation - Google Patents

Method for operating a gas and steam turbine installation and corresponding installation Download PDF

Info

Publication number
EP1303684B1
EP1303684B1 EP01967162A EP01967162A EP1303684B1 EP 1303684 B1 EP1303684 B1 EP 1303684B1 EP 01967162 A EP01967162 A EP 01967162A EP 01967162 A EP01967162 A EP 01967162A EP 1303684 B1 EP1303684 B1 EP 1303684B1
Authority
EP
European Patent Office
Prior art keywords
pressure
gas
steam
partial
partial flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01967162A
Other languages
German (de)
French (fr)
Other versions
EP1303684A1 (en
Inventor
Werner Schwarzott
Erich Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP01967162A priority Critical patent/EP1303684B1/en
Publication of EP1303684A1 publication Critical patent/EP1303684A1/en
Application granted granted Critical
Publication of EP1303684B1 publication Critical patent/EP1303684B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler

Definitions

  • the invention relates to a method of operation a gas and steam turbine plant, in which the one from both with gas as well as oil operable gas turbine exiting Flue gas is passed through a heat recovery steam generator, its heating surfaces in the water-steam cycle of a Number of pressure stages having steam turbine connected are, wherein in the heat recovery steam generator preheated condensate as compared to this under high pressure feed water heated and fed as steam to the steam turbine becomes.
  • a gas and steam turbine plant In a gas and steam turbine plant is in the relaxed Working fluid or flue gas contained in the gas turbine Heat for generating steam for in a water-steam cycle switched steam turbine used.
  • the heat transfer takes place in one of the gas turbine downstream Heat recovery steam generator or boiler, in which heating surfaces in Form of pipes or tube bundles are arranged. These in turn are in the water-steam cycle of the steam turbine connected.
  • the water-steam cycle usually includes several, for example two or three, pressure stages, in each pressure stage as heating surfaces, a preheater and an evaporator and a superheater are provided.
  • a Such gas and steam turbine plant is for example from EP 0 523 467 B1.
  • the total amount of water carried in the water-steam cycle is thereby dimensioned such that the leaving the heat recovery steam generator Flue gas due to heat transfer to a temperature is cooled from about 70 ° C to 100 ° C.
  • the hot flue gas exposed heating surfaces and provided for a water-steam separation pressure drums are designed for full load or nominal operation, at which achieves plant efficiency of currently around 55% to 60% becomes.
  • the temperatures of the individual heating surfaces guided and under different pressure Feed water as close as possible to the temperature profile of the along the heat recovery steam generator due to the heat exchange cooling flue gas.
  • the goal here is the temperature difference between over the individual heating surfaces guided feedwater and the flue gas in each area of the To keep heat recovery steam generator as low as possible.
  • the gas turbine of such a gas and steam turbine plant can be designed for operation with different fuels be. Is the gas turbine designed for heating oil and natural gas, so is fuel oil as fuel for the gas turbine only for one short operating time, for example, for 100 to 500H / a, as so-called backup provided for natural gas. This is the gas and Steam turbine plant usually urgent for natural gas operation the gas turbine designed and optimized. In order to in fuel oil operation, especially when changing from gas operation on the oil operation, a sufficiently high inlet temperature of the condensate flowing into the heat recovery steam generator can ensure the necessary heat to different Way removed from the heat recovery steam generator itself become.
  • an effective degassing of the condensate to ensure the condensate temperature in the feedwater tank usually in a temperature range between 130 ° C and 160 ° C held.
  • This is usually a preheat condensate over one with low pressure steam or Provided hot water from an economizer-fed preheater, so that the warm-up period of the condensate in the feedwater tank kept as small as possible.
  • It is in particular in two- or three-pressure systems a hot water extraction from the high-pressure economizer required to heat enough to provide.
  • Three-pressure systems or circuits have the considerable disadvantage that an external, additional condensate preheater needed which is responsible for the high pressures and high temperatures or high temperature differences must be designed. These Method is therefore already due to the considerable costs and the additional space required for the condensate preheater extremely undesirable.
  • the invention is therefore based on the object, a method for operating a gas and steam turbine plant of the above Specify type, the same at low equipment and operating expenses in more effective and re the plant efficiency favorable way a change from gas operation to oil operation of the gas turbine under cover a wide temperature range of the inlet temperature of the condensate flowing into the heat recovery steam generator guaranteed. Furthermore, one should be carried out the process particularly suitable gas and steam turbine plant be specified.
  • the object is achieved according to the invention by the features of claim 1.
  • the heated feed water or Hot water is used in a two-pressure system, i. H. at a Two-pressure system from a high-pressure drum and one Three-pressure system or in a three-pressure system from the High-pressure drum and / or from a medium-pressure drum as first partial flow taken.
  • the removal of the first partial flow also at the outlet of the high-pressure economizer or the medium-pressure economizer done.
  • the pressure of the low-pressure system be raised to heat contained in the flue gas the low-pressure system downstream of this flue gas side Move condensate preheater out.
  • Essential here is that the water-steam cycle at a suitable place removed heated feed water in the form of a partial flow mixture from feedwater partial streams of different temperature without warming up, d. H. without heat exchange in an additional heat exchanger mixed with the cold condensate becomes.
  • the invention is based on the consideration that on a additional heat exchanger, which is the water-steam cycle withdrawn heated feed water or heating water before its pressure reduction to the temperature level of the condensate system cools, thereby causing the formation of steam in the Connection to prevent the pressure reduction, be waived can, if the heated feed water before its pressure reduction such a partial flow of feed water with also high pressure, but comparatively low temperature is admixed that the adjusting mixing temperature is below the boiling point in the condensate system.
  • the object is achieved according to the invention by the features of claim 6.
  • the system includes a condensate preheater Supply line for the heated feed water with a Zumischstelle for supplying the relatively cool Feedwater.
  • the advantages achieved by the invention are in particular in that one required in oil operation of the gas turbine and increased compared to gas operation of the gas turbine Water inlet temperature in the heat recovery steam generator, too without additional heat exchanger or external condensate preheater by direct, i. heat exchangerless admixing of set to a suitable mixing temperature, heated and high pressure feed water to the cold Condensate with particularly simple means is adjustable.
  • by providing a partial flow mixture from two feedwater partial streams of different temperature one below the boiling temperature of the preheated or preheated condensate lying mixing temperature of the cold condensate in oil operation directly mixed partial flow mixture in a very simple and effective way getting produced.
  • FIG. 1 shows schematically one designed for a change of operation from gas to oil Gas and steam turbine plant.
  • the gas and steam turbine plant 1 comprises a gas turbine plant 1a and a steam turbine plant 1b.
  • the gas turbine plant 1a comprises a gas turbine 2 with coupled Air compressor 4 and one of the gas turbine 2 upstream Combustion chamber 6, to a fresh air line 8 of the Air compressor 4 is connected.
  • In the combustion chamber. 6 opens a fuel line 10, via the combustion chamber. 6 optionally gas or oil as fuel B can be fed. This is under supply of compressed air L to the working medium or Fuel gas burned for the gas turbine 2.
  • the gas turbine 2 and the air compressor 4 and a generator 12 sit on one common turbine shaft 14.
  • the steam turbine installation 1 b comprises a steam turbine 20 coupled generator 22 and in a water-steam cycle 24 a steam turbine 20 downstream capacitor 26 and a heat recovery steam generator 30.
  • the steam turbine 20 has a first pressure stage or a high pressure part 20a and a second compression stage or a medium-pressure member 20b as well a third pressure stage or a low pressure part 20c on, via a common turbine shaft 32, the generator 22 drive.
  • Exhaust pipe 34 For supplying relaxed in the gas turbine 2 working fluid or flue gas AM in the heat recovery steam generator 30 is a Exhaust pipe 34 to an input 30 a of the heat recovery steam generator 30 connected. That is along the heat recovery steam generator 30 due to indirect heat exchange with the water-steam cycle 24 guided condensate K and feed water S cooling flue gas AM from the gas turbine 2 leaves the heat recovery steam generator 30 via its output 30b in the direction of a fireplace, not shown.
  • the heat recovery steam generator 30 comprises as heating surfaces Condensate preheater 36, the input side via a condensate line 38, in which a condensate pump 40 is connected, is fed with condensate K from the condenser 40.
  • Condensate preheater 36 is the output side to the suction side of a Feedwater pump 42 out.
  • the condensate preheater 36 is this with a bypass line 44, in which a valve 46 is connected, bridged.
  • the feedwater pump 42 is a high-pressure feed pump with Medium pressure taken trained. It brings the condensate K to one for a high-pressure part 20 a of the steam turbine 20 associated high-pressure stage 50 of the water-steam cycle 24th suitable pressure level of about 120 bar to 150 bar. About the Medium pressure is the condensate K by means of the feedwater pump 42 on a for a the medium-pressure part 20 b of Steam turbine 20 associated medium-pressure stage 70 suitable Pressure level from about 40 bar to 60 bar.
  • the feed water S is also partially under medium pressure via a check valve 71 and one of these downstream Valve 72 a feedwater or medium pressure economizer 73 supplied. This is the output side via a valve 74 connected to a medium-pressure drum 75. Analogous is as part of the low pressure part 20c of the steam turbine 20 associated low pressure stage 90 of the water-steam cycle 24 of the condensate preheater 36 on the output side via a Valve 91 is connected to a low-pressure drum 92.
  • the medium-pressure drum 75 is connected to a heat recovery steam generator 30 arranged medium-pressure evaporator 76 for the formation a water-steam circulation 77 connected.
  • Steam side is on the intermediate-pressure drum 75 is connected to a reheater 78, the output side (hot ZÜ) to an input 79th the medium-pressure part 20b is guided and in the input side (cold ZÜ) one with an outlet 80 of the high pressure part 20a of the steam turbine 20 connected exhaust steam line 81 out is.
  • a steam line 95 opens one with an output 97 of the Mitteldruckteils 20b connected overflow 98.
  • An output 99 of the low-pressure part 20c is via a steam line 100 connected to the capacitor 26.
  • the gas turbine 2 of the combined cycle power plant 1 is both operable with natural gas as well as fuel oil as fuel B
  • this has the heat recovery steam generator 30 supplied working fluids or flue gas AM a comparatively high purity, wherein the water-steam cycle 24 and the system components to this operating state designed and in terms of its efficiency is optimized.
  • this operating state is a valve 101 closed, in a via the valve 55 with the Pressure side of the feedwater pump 42 connected partial flow line 102 is located.
  • the valve 101 When switching from gas operation to oil operation of the gas turbine 2 the valve 101 is opened.
  • the partial flow line 102 is connected to a mixing point 103 of a supply line 104, the downstream in the flow direction 105 via a Mixing point 106 is connected to the condensate line 38.
  • In the supply line 104 is in the flow direction 105 before Zumischstelle 103 a check valve 107 and behind the Zumischstelle 103 a valve 108th
  • an adjustable first partial flow t 1 of heated feed water S ' is introduced into the admixing line 104, which is taken from the water side via a valve 109, preferably the high-pressure drum 54.
  • the heated feed water S 'as an adjustable first partial flow t 1 via a valve 110 to the first high-pressure economizer 51 or via a valve 111 to the second high-pressure economizer 52 are taken on the output side.
  • a second partial stream t 2 of comparatively cool feedwater S is admixed with the first partial stream t 1 of heated feedwater S 'at the admixing point 103.
  • the guided over the partial flow line 102 second partial flow t 2 is adjustable by means of the valve 101.
  • the partial stream mixture t 1,2 formed in this case is added to the cold condensate K via the mixing point 106.
  • the temperature T S 'of the first partial flow t 1 at its removal as a heated feed water S' from the high-pressure drum 54 for example, 320 ° C.
  • a mixing temperature T M of the partial flow mixture t 1,2 of about 210 ° C.
  • T S formed partial stream mixture t 1.2 to the cold condensate K can with very simple means and in particular without the interposition of an additional heat exchanger a in the oil operation of the gas turbine 2 required and compared to the gas operation increased water or boiler inlet temperature T K ' of eg 120 to 130 ° C are set.

Abstract

The invention relates to a method for operating a gas and steam turbine installation (1) comprising a gas turbine (2) which can be operated with gas and with oil. When the turbine is switched from operation with gas to operation with oil, a mixture of partial flows (t12) consisting of a first partial flow (t1) of heated supply water (S') and a second partial flow (t2) of comparatively cold supply water (S) is added to the cold condensate (K) directly and therefore without a heat exchanger. To this end, the installation (1) comprises a supply line (104) leading to the condensate preheater (36) for the heated water (S'), said supply line having a mixing point (103) for supplying the comparatively cold supply water (S).

Description

Die Erfindung bezieht sich auf ein Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage, bei dem das aus einer sowohl mit Gas als auch mit Öl betreibbaren Gasturbine austretende Rauchgas über einen Abhitzedampferzeuger geführt wird, dessen Heizflächen in den Wasser-Dampf-Kreislauf einer eine Anzahl von Druckstufen aufweisenden Dampfturbine geschaltet sind, wobei im Abhitzedampferzeuger vorgewärmtes Kondensat als im Vergleich zu diesem unter hohem Druck stehendes Speisewasser aufgeheizt und als Dampf der Dampfturbine zugeführt wird.The invention relates to a method of operation a gas and steam turbine plant, in which the one from both with gas as well as oil operable gas turbine exiting Flue gas is passed through a heat recovery steam generator, its heating surfaces in the water-steam cycle of a Number of pressure stages having steam turbine connected are, wherein in the heat recovery steam generator preheated condensate as compared to this under high pressure feed water heated and fed as steam to the steam turbine becomes.

Bei einer Gas- und Dampfturbinenanlage wird die im entspannten Arbeitsmittel oder Rauchgas aus der Gasturbine enthaltene Wärme zur Erzeugung von Dampf für die in einen Wasser-Dampf-Kreislauf geschaltete Dampfturbine genutzt. Die Wärmeübertragung erfolgt dabei in einem der Gasturbine nachgeschalteten Abhitzedampferzeuger oder -kessel, in dem Heizflächen in Form von Rohren oder Rohrbündeln angeordnet sind. Diese wiederum sind in den Wasser-Dampf-Kreislauf der Dampfturbine geschaltet. Der Wasser-Dampf-Kreislauf umfaßt dabei üblicherweise mehrere, beispielsweise zwei oder drei, Druckstufen, wobei in jeder Druckstufe als Heizflächen ein Vorwärmer und ein Verdampfer sowie ein Überhitzer vorgesehen sind. Eine derartige Gas - und Dampfturbinenanlage ist beispielsweise aus der EP 0 523 467 B1 bekannt.In a gas and steam turbine plant is in the relaxed Working fluid or flue gas contained in the gas turbine Heat for generating steam for in a water-steam cycle switched steam turbine used. The heat transfer takes place in one of the gas turbine downstream Heat recovery steam generator or boiler, in which heating surfaces in Form of pipes or tube bundles are arranged. These in turn are in the water-steam cycle of the steam turbine connected. The water-steam cycle usually includes several, for example two or three, pressure stages, in each pressure stage as heating surfaces, a preheater and an evaporator and a superheater are provided. A Such gas and steam turbine plant is for example from EP 0 523 467 B1.

Die im Wasser-Dampf-Kreislauf geführte Gesamtwassermenge ist dabei derart bemessen, dass das den Abhitzedampferzeuger verlassende Rauchgas infolge der Wärmeübertragung auf eine Temperatur von ca. 70°C bis 100°C abgekühlt wird. Dies bedeutet insbesondere, dass die dem heißen Rauchgas ausgesetzten Heizflächen und für eine Wasser-Dampf-Trennung vorgesehene Druck-Trommeln für Volllast- oder Nennbetrieb ausgelegt sind, bei dem ein Anlagenwirkungsgrad von derzeit etwa 55% bis 60% erreicht wird. Aus thermodynamischen Gründen wird dabei auch angestrebt, dass die Temperaturen des in den einzelnen Heizflächen geführten und unter unterschiedlichem Druck stehenden Speisewassers möglichst nahe am Temperaturverlauf des sich entlang des Abhitzedampferzeugers infolge des Wärmetausches abkühlenden Rauchgases liegen. Ziel dabei ist, die Temperaturdifferenz zwischen dem über die einzelnen Heizflächen geführten Speisewassers und dem Rauchgas in jedem Bereich des Abhitzedampferzeugers möglichst gering zu halten. Um dabei einen möglichst hohen Anteil der im Rauchgas enthaltenen Wärmemenge umzusetzen, ist im Abhitzedampferzeuger zusätzlich ein Kondensatvorwärmer zum Aufwärmen von kondensiertem Wasser aus der Dampfturbine vorgesehen.The total amount of water carried in the water-steam cycle is thereby dimensioned such that the leaving the heat recovery steam generator Flue gas due to heat transfer to a temperature is cooled from about 70 ° C to 100 ° C. this means in particular, that the hot flue gas exposed heating surfaces and provided for a water-steam separation pressure drums are designed for full load or nominal operation, at which achieves plant efficiency of currently around 55% to 60% becomes. For thermodynamic reasons, it will also sought that the temperatures of the individual heating surfaces guided and under different pressure Feed water as close as possible to the temperature profile of the along the heat recovery steam generator due to the heat exchange cooling flue gas. The goal here is the temperature difference between over the individual heating surfaces guided feedwater and the flue gas in each area of the To keep heat recovery steam generator as low as possible. To go with it the highest possible proportion of those contained in the flue gas Heat to implement, is in the heat recovery steam generator in addition a condensate preheater for heating condensed water provided from the steam turbine.

Die Gasturbine einer derartigen Gas- und Dampfturbinenanlage kann für den Betrieb mit verschiedenen Brennstoffen ausgelegt sein. Ist die Gasturbine für Heizöl und für Erdgas ausgelegt, so ist Heizöl als Brennstoff für die Gasturbine nur für eine kurze Betriebsdauer, beispielsweise für 100 bis 500H/a, als sogenanntes Backup zum Erdgas vorgesehen. Dabei wird die Gas- und Dampfturbinenanlage üblicherweise vordringlich für Erdgasbetrieb der Gasturbine ausgelegt und optimiert. Um dann bei Heizölbetrieb, insbesondere bei einem Wechsel vom Gasbetrieb auf den Ölbetrieb, eine ausreichend hohe Eintrittstemperatur des in den Abhitzedampferzeuger einströmenden Kondensats sicherzustellen, kann die notwendige Wärme auf verschiedene Weise aus dem Abhitzedampferzeuger selbst entnommen werden.The gas turbine of such a gas and steam turbine plant can be designed for operation with different fuels be. Is the gas turbine designed for heating oil and natural gas, so is fuel oil as fuel for the gas turbine only for one short operating time, for example, for 100 to 500H / a, as so-called backup provided for natural gas. This is the gas and Steam turbine plant usually urgent for natural gas operation the gas turbine designed and optimized. In order to in fuel oil operation, especially when changing from gas operation on the oil operation, a sufficiently high inlet temperature of the condensate flowing into the heat recovery steam generator can ensure the necessary heat to different Way removed from the heat recovery steam generator itself become.

Eine Möglichkeit besteht darin, den Kondensatvorwärmer ganz oder teilweise zu umführen und das Kondensat in einem in den Wasser-Dampf-Kreislauf geschalteten Speisewasserbehälter durch Zuführen von Niederdruck-Dampf aufzuheizen. Eine solche Methode erfordert jedoch bei geringen Dampfdrücken ein großvolumiges und unter Umständen mehrstufiges Heizdampfsystem im Speisewasserbehälter, was bei großen Aufheizspannen eine üblicherweise im Speisewasserbehälter stattfindende Entgasung gefährden kann.One possibility is to completely remove the condensate preheater or partially to circulate and the condensate in one in the Water-steam cycle switched feed water tank by heating with low-pressure steam. Such However, method requires a large volume at low vapor pressures and possibly multi-stage heating steam system in Feed water tank, which is a common at large Aufheizspannen Degassing taking place in the feed water tank can endanger.

Insbesondere um eine wirkungsvolle Entgasung des Kondensats sicherzustellen, wird die Kondensattemperatur im Speisewasserbehälter üblicherweise in einem Temperaturbereich zwischen 130°C und 160°C gehalten. Dabei wird in der Regel eine Vorwärmung des Kondensats über einen mit Niederdruck-Dampf oder Heißwasser aus einem Economizer bespeisten Vorwärmer vorgesehen, damit die Aufwärmspanne des Kondensats im Speisewasserbehälter möglichst klein gehalten wird. Dabei ist insbesondere bei Zwei- oder Dreidruckanlagen eine Heißwasserentnahme aus dem Hochdruck-Economizer erforderlich, um genügend Wärme zur Verfügung zu stellen. Dies hat jedoch insbesondere bei Drei-Druck-Anlagen oder -Schaltungen den erheblichen Nachteil, dass ein externer, zusätzlicher Kondensatvorwärmer benötigt wird, der für die hohen Drücke und hohen Temperaturen bzw. hohen Temperaturdifferenzen ausgelegt werden muss. Diese Methode ist daher schon aufgrund der erheblichen Kosten und des zusätzlichen Platzbedarfes für den Kondensatvorwärmer äußerst unerwünscht.In particular, an effective degassing of the condensate to ensure the condensate temperature in the feedwater tank usually in a temperature range between 130 ° C and 160 ° C held. This is usually a preheat condensate over one with low pressure steam or Provided hot water from an economizer-fed preheater, so that the warm-up period of the condensate in the feedwater tank kept as small as possible. It is in particular in two- or three-pressure systems a hot water extraction from the high-pressure economizer required to heat enough to provide. However, this is especially true Three-pressure systems or circuits have the considerable disadvantage that an external, additional condensate preheater needed which is responsible for the high pressures and high temperatures or high temperature differences must be designed. These Method is therefore already due to the considerable costs and the additional space required for the condensate preheater extremely undesirable.

Auch besteht die Möglichkeit, bei Ölbetrieb der Gasturbine die Kondensataufheizung im Speisewasserbehälter oder im Entgaser mit einem Teilstrom von einem Zwischenüberhitzer zugeführtem Dampf vorzunehmen oder zu unterstützen. Jedoch ist auch diese Methode insbesondere bei modernen Anlagenschaltungen ohne Speisewasserbehälter oder ohne Entgaser nicht anwendbar, zumal entsprechende Vorrichtungen oder Apparate zur Mischvorwärmung fehlen.There is also the possibility of oil operation of the gas turbine condensate heating in the feed water tank or in the degasser supplied with a partial flow from a reheater Make or support steam. However, that is also this method, especially in modern plant circuits without feed water tank or without degasser not applicable, especially corresponding devices or apparatus for Mixing preheating missing.

Zwar ist aus der DE 197 36 889 C1 ein im Vergleich zu den beschriebenen Methoden mit geringem apparativem und betrieblichem Aufwand durchführbares Verfahren bekannt, das auf einer Verschiebung von Abgaswärme in Richtung der Kondensatvorwärmung infolge eines Abbaus im Niederdruckbereich sowie auf einer Installation von wasserseitigen Economizer-Umführungen beruht. Jedoch stößt auch diese Methode bei bestimmten Anforderungen an Grenzen der Realisierung.Although from DE 197 36 889 C1 a compared to those described Methods with low equipment and operational Expenditure feasible method known on a Displacement of exhaust heat in the direction of condensate preheating as a result of degradation in the low pressure range and on a Installation of water-side economizer bypasses based. However, this method also meets certain requirements at the limits of realization.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage der obengenannten Art anzugeben, das bei gleichzeitig geringem apparativen und betrieblichen Aufwand in effektiver und bezüglich des Anlagenwirkungsgrades günstiger Art und Weise einen Wechsel von Gasbetrieb auf Ölbetrieb der Gasturbine unter Abdeckung eines weiten Temperaturbereiches der Eintrittstemperatur des in den Abhitzedampferzeuger einströmenden Kondensats gewährleistet. Des Weiteren soll eine zur Durchführung des Verfahrens besonders geeignete Gas- und Dampfturbinenanlage angegeben werden.The invention is therefore based on the object, a method for operating a gas and steam turbine plant of the above Specify type, the same at low equipment and operating expenses in more effective and re the plant efficiency favorable way a change from gas operation to oil operation of the gas turbine under cover a wide temperature range of the inlet temperature of the condensate flowing into the heat recovery steam generator guaranteed. Furthermore, one should be carried out the process particularly suitable gas and steam turbine plant be specified.

Bezüglich des Verfahrens wird die Aufgabe erfindungsgemäß gelöst durch die Merkmale des Anspruchs 1. Dazu ist vorgesehen, dass im Vergleich zum Kondensat unter hohem Druck stehendes und eine im Vergleich zum Kondensat hohe Temperatur aufweisendes Speisewasser zweckmäßigerweise über eine zusätzliche Rohrleitung dem kalten Kondensat wärmetauscherlos und damit direkt zugemischt wird. Das aufgeheizte Speisewasser oder Heißwasser wird bei einem Zwei-Drucksystem, d. h. bei einer Zwei-Druck-Anlage aus einer Hochdruck-Trommel und bei einem Drei-Druck-System bzw. bei einer Drei-Druck-Anlage aus der Hochdruck-Trommel und/oder aus einer Mitteldruck-Trommel als erster Teilstrom entnommen. Alternativ kann die Entnahme des ersten Teilstroms auch am Austritt des Hochdruck-Economizers bzw. des Mitteldruck-Economizers erfolgen.With respect to the method, the object is achieved according to the invention by the features of claim 1. For this purpose, it is provided that in comparison to the condensate under high pressure and a high temperature compared to the condensate Feedwater expediently via an additional Piping the cold condensate heat exchangerless and thus is added directly. The heated feed water or Hot water is used in a two-pressure system, i. H. at a Two-pressure system from a high-pressure drum and one Three-pressure system or in a three-pressure system from the High-pressure drum and / or from a medium-pressure drum as first partial flow taken. Alternatively, the removal of the first partial flow also at the outlet of the high-pressure economizer or the medium-pressure economizer done.

Bedarfsweise kann zusätzlich der Druck des Niederdruck-Systems angehoben werden, um im Rauchgas enthaltene Wärme aus dem Niederdruck-System zum diesem rauchgasseitig nachgeordneten Kondensatvorwärmer hin zu verschieben. Wesentlich dabei ist, dass das dem Wasser-Dampf-Kreislauf an geeigneter Stelle entnommene aufgeheizte Speisewasser in Form eines Teilstromgemisches aus Speisewasser-Teilströmen unterschiedlicher Temperatur ohne vorherige Aufwärmung, d. h. ohne Wärmetausch in einem zusätzlichen Wärmetauscher dem kalten Kondensat zugemischt wird.If necessary, in addition, the pressure of the low-pressure system be raised to heat contained in the flue gas the low-pressure system downstream of this flue gas side Move condensate preheater out. Essential here is that the water-steam cycle at a suitable place removed heated feed water in the form of a partial flow mixture from feedwater partial streams of different temperature without warming up, d. H. without heat exchange in an additional heat exchanger mixed with the cold condensate becomes.

Die Erfindung geht dabei von der Überlegung aus, dass auf einen zusätzlichen Wärmetauscher, der das dem Wasser-Dampf-Kreislauf entnommene aufgeheizte Speisewasser oder Heizwasser vor dessen Druckreduzierung auf das Temperaturniveau des Kondensatsystems abkühlt, um dadurch die Entstehung von Dampf im Anschluss an den Druckabbau zu verhindern, verzichtet werden kann, wenn dem aufgeheizten Speisewasser vor dessen Druckabsenkung ein solcher Teilstrom von Speisewasser mit ebenfalls hohem Druck, jedoch vergleichsweise niedriger Temperatur zugemischt wird, dass die sich einstellende Mischtemperatur unter der Siedetemperatur im Kondensatsystem liegt.The invention is based on the consideration that on a additional heat exchanger, which is the water-steam cycle withdrawn heated feed water or heating water before its pressure reduction to the temperature level of the condensate system cools, thereby causing the formation of steam in the Connection to prevent the pressure reduction, be waived can, if the heated feed water before its pressure reduction such a partial flow of feed water with also high pressure, but comparatively low temperature is admixed that the adjusting mixing temperature is below the boiling point in the condensate system.

Dabei kann, insbesondere bei einem Drei-Druck-System, aufgeheiztes Speisewasser aus dem Mitteldruck-System, aus dem Hochdruck-System oder aus beiden Systemen entnommen werden. Die Entnahme hängt dabei im Wesentlichen von der benötigten Aufheizwärme für das Kondensat sowie davon ab, welcher Anlagenwirkungsgrad beim nur als Backup dienenden Ölbetrieb der Gasturbine mindestens aufrechterhalten werden soll.It can, especially in a three-pressure system, heated Feedwater from the medium pressure system, from the High-pressure system or be taken from both systems. The removal depends essentially on the required Heating heat for the condensate as well as on which system efficiency when serving only as a backup oil operation of Gas turbine should be maintained at least.

Bezüglich der Anlage wird die Aufgabe erfindungsgemäß gelöst durch die Merkmale des Anspruchs 6. Um bei einem Betriebswechsel von Gas auf Öl das aus dem ersten Teilstrom von aufgeheiztem Speisewasser und aus dem zweiten Teilstrom vergleichsweise kühlen Speisewassers gebildete Teilstromgemisch dem kalten Kondensat direkt und damit wärmetauscherlos zuzumischen, umfasst die Anlage eine zum Kondensatvorwärmer geführte Zuführleitung für das aufgeheizte Speisewasser mit einer Zumischstelle zum Zuführen des vergleichsweise kühlen Speisewassers. With regard to the system, the object is achieved according to the invention by the features of claim 6. In case of a change of business from gas to oil that from the first partial stream of heated Feedwater and from the second partial flow comparatively cool feedwater formed partial flow mixture mix directly with the cold condensate and without heat exchange, The system includes a condensate preheater Supply line for the heated feed water with a Zumischstelle for supplying the relatively cool Feedwater.

Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche 7 bis 10.Advantageous embodiments are the subject of the dependent claims 7 to 10.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass eine beim Ölbetrieb der Gasturbine erforderliche und im Vergleich zum Gasbetrieb der Gasturbine erhöhte Wassereintrittstemperatur in den Abhitzedampferzeuger auch ohne zusätzlichen Wärmetauscher oder externen Kondensatvorwärmer durch direktes, d.h. wärmetauscherloses Zumischen von auf eine geeignete Mischtemperatur eingestelltem, aufgeheiztem und unter hohem Druck stehendem Speisewasser zum kalten Kondensat mit besonders einfachen Mitteln einstellbar ist. Dabei kann durch die Bereitstellung eines Teilstromgemisches aus zwei Speisewasser-Teilströmen unterschiedlicher Temperatur eine unterhalb der Siedetemperatur des vorgewärmten oder vorzuwärmenden Kondensats liegende Mischtemperatur des dem kalten Kondensat bei Ölbetrieb direkt zugemischten Teilstromgemisches auf besonders einfache und effektive Weise hergestellt werden. Da zudem über das rückgeführte Speisewasser der Durchsatz im Kondensatvorwärmer entsprechend ansteigt, kann auf bisher erforderliche Kondensatumwälzpumpen verzichtet werden. Insbesondere ist ohne Schaltungsmodifikation die Abdeckung eines weiten Temperaturbereichs der Dampferzeuger- oder Kesseleintrittstemperatur möglich.The advantages achieved by the invention are in particular in that one required in oil operation of the gas turbine and increased compared to gas operation of the gas turbine Water inlet temperature in the heat recovery steam generator, too without additional heat exchanger or external condensate preheater by direct, i. heat exchangerless admixing of set to a suitable mixing temperature, heated and high pressure feed water to the cold Condensate with particularly simple means is adjustable. In this case, by providing a partial flow mixture from two feedwater partial streams of different temperature one below the boiling temperature of the preheated or preheated condensate lying mixing temperature of the cold condensate in oil operation directly mixed partial flow mixture in a very simple and effective way getting produced. In addition, because of the recycled feed water the throughput in the condensate preheater increases accordingly, can on previously required Kondensatumwälzpumpen be waived. In particular, without circuit modification the cover of a wide temperature range of the steam generators or boiler inlet temperature possible.

Erkanntermaßen können auf diese Weise auch die Kapazitätsreserven der Hochdruck-Speisewasserpumpe ausgenutzt werden, da üblicherweise bei Ölbetrieb im Vergleich zum Gasbetrieb aufgrund einer geringeren Gasturbinen-Leistung auch geringere Fördermengen erforderlich sind. Infolge des schaltungstechnisch in besonders effektiver Weise erweiterten Betriebsbereiches ist auch eine Standardisierung möglich. Ferner sind die Investitionskosten besonders gering.As can be seen, in this way, the spare capacity the high-pressure feed water pump to be exploited because usually in oil operation compared to gas operation due lower gas turbine power even lower Flow rates are required. As a result of circuit technology in a particularly effective way extended operating range is also a standardization possible. Further are the investment costs are particularly low.

Aufgrund der vergleichsweise weniger komplexen Regelungen und Umschaltungen ist einerseits eine vergleichsweise einfache Betriebsweise und zudem auch eine vergleichsweise hohe Zuverlässigkeit erreicht, da insgesamt weniger aktive Komponenten notwendig sind. Wegen des vergleichsweise geringeren Komponentenumfangs sind vorteilhafterweise auch der Wartungsaufwand und die Ersatzteilhaltung reduziert.Due to the comparatively less complex regulations and Switching is on the one hand a comparatively simple Operation and also a relatively high reliability achieved, as a total of less active components necessary. Because of the comparatively smaller component size are advantageously also the maintenance and reduced spare parts inventory.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigt die Figur schematisch eine für einen Betriebswechsel von Gas auf Öl ausgelegte Gas- und Dampfturbinenanlage.An embodiment of the invention will be described below a drawing explained in more detail. Therein, the figure shows schematically one designed for a change of operation from gas to oil Gas and steam turbine plant.

Die Gas- und Dampfturbinenanlage 1 gemäß der Figur umfasst eine Gasturbinenanlage 1a und eine Dampfturbinenanlage 1b. Die Gasturbinenanlage 1a umfasst eine Gasturbine 2 mit angekoppeltem Luftverdichter 4 und eine der Gasturbine 2 vorgeschaltete Brennkammer 6, die an eine Frischluftleitung 8 des Luftverdichters 4 angeschlossen ist. In die Brennkammer 6 mündet eine Brennstoffleitung 10, über die der Brennkammer 6 wahlweise Gas oder Öl als Brennstoff B zuführbar ist. Dieser wird unter Zufuhr verdichteter Luft L zum Arbeitsmittel oder Brenngas für die Gasturbine 2 verbrannt. Die Gasturbine 2 und der Luftverdichter 4 sowie ein Generator 12 sitzen auf einer gemeinsamen Turbinenwelle 14.The gas and steam turbine plant 1 according to the figure comprises a gas turbine plant 1a and a steam turbine plant 1b. The gas turbine plant 1a comprises a gas turbine 2 with coupled Air compressor 4 and one of the gas turbine 2 upstream Combustion chamber 6, to a fresh air line 8 of the Air compressor 4 is connected. In the combustion chamber. 6 opens a fuel line 10, via the combustion chamber. 6 optionally gas or oil as fuel B can be fed. This is under supply of compressed air L to the working medium or Fuel gas burned for the gas turbine 2. The gas turbine 2 and the air compressor 4 and a generator 12 sit on one common turbine shaft 14.

Die Dampfturbinenanlage 1b umfasst eine Dampfturbine 20 mit angekoppeltem Generator 22 und in einem Wasser-Dampf-Kreislauf 24 einen der Dampfturbine 20 nachgeschalteten Kondensator 26 sowie einen Abhitzedampferzeuger 30. Die Dampfturbine 20 weist eine erste Druckstufe oder einen Hochdruckteil 20a und eine zweite Druckstufe oder einen Mitteldruckteil 20b sowie eine dritte Druckstufe oder einen Niederdruckteil 20c auf, die über eine gemeinsame Turbinenwelle 32 den Generator 22 antreiben.The steam turbine installation 1 b comprises a steam turbine 20 coupled generator 22 and in a water-steam cycle 24 a steam turbine 20 downstream capacitor 26 and a heat recovery steam generator 30. The steam turbine 20 has a first pressure stage or a high pressure part 20a and a second compression stage or a medium-pressure member 20b as well a third pressure stage or a low pressure part 20c on, via a common turbine shaft 32, the generator 22 drive.

Zum Zuführen von in der Gasturbine 2 entspanntem Arbeitsmittel oder Rauchgas AM in den Abhitzedampferzeuger 30 ist eine Abgasleitung 34 an einen Eingang 30a des Abhitzedampferzeugers 30 angeschlossen. Das sich entlang des Abhitzedampferzeugers 30 infolge indirekten Wärmetausches mit im Wasser-Dampf-Kreislauf 24 geführtem Kondensat K und Speisewasser S abkühlende Rauchgas AM aus der Gasturbine 2 verlässt den Abhitzedampferzeuger 30 über dessen Ausgang 30b in Richtung auf einen nicht dargestellten Kamin.For supplying relaxed in the gas turbine 2 working fluid or flue gas AM in the heat recovery steam generator 30 is a Exhaust pipe 34 to an input 30 a of the heat recovery steam generator 30 connected. That is along the heat recovery steam generator 30 due to indirect heat exchange with the water-steam cycle 24 guided condensate K and feed water S cooling flue gas AM from the gas turbine 2 leaves the heat recovery steam generator 30 via its output 30b in the direction of a fireplace, not shown.

Der Abhitzedampferzeuger 30 umfasst als Heizflächen einen Kondensatvorwärmer 36, der eingangsseitig über eine Kondensatleitung 38, in die eine Kondensatpumpe 40 geschaltet ist, mit Kondensat K aus dem Kondensator 40 gespeist wird. Der Kondensatvorwärmer 36 ist ausgangsseitig an die Saugseite einer Speisewasserpumpe 42 geführt. Zur bedarfsweisen Umführung des Kondensatvorwärmers 36 ist dieser mit einer Bypassleitung 44, in die ein Ventil 46 geschalten ist, überbrückt.The heat recovery steam generator 30 comprises as heating surfaces Condensate preheater 36, the input side via a condensate line 38, in which a condensate pump 40 is connected, is fed with condensate K from the condenser 40. Of the Condensate preheater 36 is the output side to the suction side of a Feedwater pump 42 out. For on-demand detour the condensate preheater 36 is this with a bypass line 44, in which a valve 46 is connected, bridged.

Die Speisewasserpumpe 42 ist als Hochdruckspeisepumpe mit Mitteldruckentnahme ausgebildet. Sie bringt das Kondensat K auf ein für eine dem Hochdruckteil 20a der Dampfturbine 20 zugeordnete Hochdruckstufe 50 des Wasser-Dampf-Kreislaufs 24 geeignetes Druckniveau von etwa 120 bar bis 150 bar. Über die Mitteldruckentnahme wird das Kondensat K mittels der Speisewasserpumpe 42 auf ein für eine dem Mitteldruckteil 20b der Dampfturbine 20 zugeordnete Mitteldruckstufe 70 geeignetes Druckniveau von etwa 40 bar bis 60 bar.The feedwater pump 42 is a high-pressure feed pump with Medium pressure taken trained. It brings the condensate K to one for a high-pressure part 20 a of the steam turbine 20 associated high-pressure stage 50 of the water-steam cycle 24th suitable pressure level of about 120 bar to 150 bar. About the Medium pressure is the condensate K by means of the feedwater pump 42 on a for a the medium-pressure part 20 b of Steam turbine 20 associated medium-pressure stage 70 suitable Pressure level from about 40 bar to 60 bar.

Das über die Speisewasserpumpe 42 geführte Kondensat K, das auf der Druckseite der Speisewasserpumpe 42 als Speisewasser S bezeichnet wird, wird teilweise mit hohem Druck einem ersten Hochdruck-Economizer 51 oder Speisewasservorwärmer und über diesen einem zweiten Hochdruck-Economizer 52 zugeführt. Dieser ist ausgangsseitig über ein Ventil 53 an eine Hochdruck-Trommel 54 angeschlossen.The guided via the feedwater pump 42 condensate K, the on the pressure side of the feedwater pump 42 as feed water S is partially high pressure a first High pressure economizer 51 or feedwater heater and fed via this a second high-pressure economizer 52. This is the output side via a valve 53 to a high-pressure drum 54 connected.

Das Speisewasser S wird zudem teilweise mit mittlerem Druck über eine Rückschlagklappe 71 und ein dieser nachgeschaltetes Ventil 72 einem Speisewasservorwärmer oder Mitteldruck-Economizer 73 zugeführt. Dieser ist ausgangsseitig über ein Ventil 74 an eine Mitteldruck-Trommel 75 angeschlossen. Analog ist als Teil einer dem Niederdruckteil 20c der Dampfturbine 20 zugeordneten Niederdruckstufe 90 des Wasser-Dampf-Kreislaufs 24 der Kondensatvorwärmer 36 ausgangsseitig über ein Ventil 91 an eine Niederdruck-Trommel 92 angeschlossen.The feed water S is also partially under medium pressure via a check valve 71 and one of these downstream Valve 72 a feedwater or medium pressure economizer 73 supplied. This is the output side via a valve 74 connected to a medium-pressure drum 75. Analogous is as part of the low pressure part 20c of the steam turbine 20 associated low pressure stage 90 of the water-steam cycle 24 of the condensate preheater 36 on the output side via a Valve 91 is connected to a low-pressure drum 92.

Die Mitteldruck-Trommel 75 ist mit einem im Abhitzedampferzeuger 30 angeordneten Mitteldruck-Verdampfer 76 zur Bildung eines Wasser-Dampf-Umlaufs 77 verbunden. Dampfseitig ist an die Mitteldruck-Trommel 75 ein Zwischenüberhitzer 78 angeschlossen, der ausgangsseitig (heiße ZÜ) an einen Eingang 79 des Mitteldruckteils 20b geführt ist und in den eingangsseitig (kalte ZÜ) eine mit einem Ausgang 80 des Hochdruckteils 20a der Dampfturbine 20 verbundene Abdampfleitung 81 geführt ist.The medium-pressure drum 75 is connected to a heat recovery steam generator 30 arranged medium-pressure evaporator 76 for the formation a water-steam circulation 77 connected. Steam side is on the intermediate-pressure drum 75 is connected to a reheater 78, the output side (hot ZÜ) to an input 79th the medium-pressure part 20b is guided and in the input side (cold ZÜ) one with an outlet 80 of the high pressure part 20a of the steam turbine 20 connected exhaust steam line 81 out is.

Hochdruckseitig ist die Speisewasserpumpe 42 über zwei Ventile 55, 56 sowie über den ersten Hochdruck-Economizer 51 und den diesem speisewasserseitig nachgeschalteten und innerhalb des Abhitzedampferzeugers 30 rauchgasseitig vorgeordneten zweiten Hochdruck-Economizer 52 sowie über ein bedarfsweise vorgesehenes weiteres Ventil 57 an die Hochdruck-Trommel 54 geführt. Diese ist wiederum mit einem im Abhitzedampferzeuger 30 angeordneten Hochdruck-Verdampfer 58 zur Bildung eines Wasser-Dampf-Umlaufs 59 verbunden. Zum Abführen von Frischdampf F ist die Hochdruck-Trommel 54 an einen im Abhitzedampferzeuger 30 angeordneten Hochdruck-Überhitzer 60 angeschlossen, der ausgangsseitig mit einem Eingang 61 des Hochdruckteils 20a der Dampfturbine 20 verbunden ist.High pressure side, the feedwater pump 42 via two valves 55, 56 and via the first high-pressure economizer 51 and downstream of this feed water side and within the waste heat steam generator 30 upstream flue gas side second high pressure economizer 52 as well as on demand provided additional valve 57 to the high-pressure drum 54th guided. This is in turn with a in the heat recovery steam generator 30 arranged high-pressure evaporator 58 to form a Water-steam circulation 59 connected. For removing live steam F is the high-pressure drum 54 to a in the heat recovery steam generator 30 arranged high pressure superheater 60 connected the output side with an input 61 of the high pressure part 20a of the steam turbine 20 is connected.

Die Hochdruck-Economizer 51, 52 und der Hochdruck-Verdampfer 58 sowie der Hochdruck-Überhitzer 59 bilden zusammen mit dem Hochdruckteil 20a die Hochdruckstufe 50 des Wasser-Dampf-Kreislaufs 24. Der Mitteldruck-Verdampfer 76 und der Zwischenüberhitzer 78 bildet zusammen mit dem Mitteldruckteil 20b die Mitteldruckstufe 70 des Wasser-Dampf-Kreislaufs 24. Analog bildet ein im Abhitzedampferzeuger 30 angeordneter und zur Bildung eines Wasser-Dampf-Umlaufs 93 mit der Niederdruck-Trommel 94 verbundener Niederdruck-Verdampfer 94 zusammen mit dem Niederdruckteil 20c der Dampfturbine 20 die Niederdruckstufe 90 des Wasser-Dampf-Kreislaufs 24. Dazu ist die Niederdruck-Trommel 92 dampfseitig über eine Dampfleitung 95 mit einem Eingang 96 des Niederdruckteils 20c verbunden. In die Dampfleitung 95 mündet eine mit einem Ausgang 97 des Mitteldruckteils 20b verbundene Überströmleitung 98. Ein Ausgang 99 des Niederdruckteils 20c ist über eine Dampfleitung 100 mit dem Kondensator 26 verbunden.The high pressure economizers 51, 52 and the high pressure evaporator 58 and the high pressure superheater 59 together with the High-pressure part 20a, the high-pressure stage 50 of the water-steam cycle 24. The medium-pressure evaporator 76 and the reheater 78 forms together with the medium-pressure part 20b, the medium-pressure stage 70 of the water-steam cycle 24th Analog forms a arranged in the heat recovery steam generator 30 and to form a water-steam circulation 93 with the low-pressure drum 94 connected low-pressure evaporator 94 together with the low-pressure part 20c of the steam turbine 20 the Low pressure stage 90 of the water-steam cycle 24. This is the low-pressure drum 92 on the steam side via a steam line 95 connected to an input 96 of the low pressure part 20c. In the steam line 95 opens one with an output 97 of the Mitteldruckteils 20b connected overflow 98. An output 99 of the low-pressure part 20c is via a steam line 100 connected to the capacitor 26.

Die Gasturbine 2 der Gas- und Dampfturbinenanlage 1 ist sowohl mit Erdgas als auch mit Heizöl als Brennstoff B betreibbar. Beim Gasbetrieb der Gasturbine 2 weist das dem Abhitzedampferzeuger 30 zugeführte Arbeitsmittel oder Rauchgas AM eine vergleichsweise hohe Reinheit auf, wobei der Wasser-Dampf-Kreislauf 24 und die Anlagenkomponenten auf diesen Betriebszustand ausgelegt und hinsichtlich seines Wirkungsgrades optimiert ist. In diesem Betriebszustand ist ein Ventil 101 geschlossen, das in einer über das Ventil 55 mit der Druckseite der Speisewasserpumpe 42 verbundenen Teilstromleitung 102 liegt.The gas turbine 2 of the combined cycle power plant 1 is both operable with natural gas as well as fuel oil as fuel B When gas operation of the gas turbine 2, this has the heat recovery steam generator 30 supplied working fluids or flue gas AM a comparatively high purity, wherein the water-steam cycle 24 and the system components to this operating state designed and in terms of its efficiency is optimized. In this operating state is a valve 101 closed, in a via the valve 55 with the Pressure side of the feedwater pump 42 connected partial flow line 102 is located.

Beim Wechsel von Gasbetrieb auf Ölbetrieb der Gasturbine 2 wird das Ventil 101 geöffnet. Die Teilstromleitung 102 ist mit einer Zumischstelle 103 einer Zuführleitung 104 verbunden, die in Strömungsrichtung 105 abströmseitig über eine Mischstelle 106 mit der Kondensatleitung 38 verbunden ist. In der Zuführleitung 104 liegt in Strömungsrichtung 105 vor der Zumischstelle 103 eine Rückschlagklappe 107 und hinter der Zumischstelle 103 ein Ventil 108.When switching from gas operation to oil operation of the gas turbine 2 the valve 101 is opened. The partial flow line 102 is connected to a mixing point 103 of a supply line 104, the downstream in the flow direction 105 via a Mixing point 106 is connected to the condensate line 38. In the supply line 104 is in the flow direction 105 before Zumischstelle 103 a check valve 107 and behind the Zumischstelle 103 a valve 108th

Mit dem oder im Anschluß an das Öffnen des Ventils 101 im Ölbetrieb der Gasturbine 2 wird in die Zumischleitung 104 ein einstellbarer erster Teilstrom t1 aufgeheizten Speisewassers S' eingeleitet, das über ein Ventil 109 vorzugsweise der Hochdruck-Trommel 54 wasserseitig entnommen wird. Alternativ kann das aufgeheizte Speisewasser S' als einstellbarer erster Teilstrom t1 auch über ein Ventil 110 dem ersten Hochdruck-Economizer 51 oder über ein Ventil 111 dem zweiten Hochdruck-Economizer 52 ausgangsseitig entnommen werden.With or following the opening of the valve 101 in the oil operation of the gas turbine 2, an adjustable first partial flow t 1 of heated feed water S 'is introduced into the admixing line 104, which is taken from the water side via a valve 109, preferably the high-pressure drum 54. Alternatively, the heated feed water S 'as an adjustable first partial flow t 1 via a valve 110 to the first high-pressure economizer 51 or via a valve 111 to the second high-pressure economizer 52 are taken on the output side.

Bei dem dargestellten Drei-Druck-System kann alternativ oder zusätzlich als einstellbarer erster Teilstrom t1 auch dem Mitteldruck-Economizer 73 ausgangsseitig über ein Ventil 112 oder der Mitteldruck-Trommel 75 wasserseitig über ein Ventil 113 aufgeheiztes Speisewasser S' entnommen werden.In the illustrated three-pressure system can alternatively or additionally as adjustable first partial flow t 1 and the medium-pressure economizer 73 on the output side via a valve 112 or the medium-pressure drum 75 water side via a valve 113 heated feed water S 'are removed.

Dem ersten Teilstrom t1 aufgeheizten Speisewassers S' wird an der Zumischstelle 103 ein zweiter Teilstrom t2 vergleichsweise kühlen Speisewassers S zugemischt. Der über die Teilstromleitung 102 geführte zweite Teilstrom t2 ist mittels des Ventils 101 einstellbarer. Das dabei gebildete Teilstromgemisch t1,2 wird über die Mischstelle 106 dem kalten Kondensat K zugemischt. Dabei beträgt die Temperatur TS' des ersten Teilstroms t1 bei dessen Entnahme als aufgeheiztes Speisewasser S' aus der Hochdruck-Trommel 54 beispielsweise 320°C.A second partial stream t 2 of comparatively cool feedwater S is admixed with the first partial stream t 1 of heated feedwater S 'at the admixing point 103. The guided over the partial flow line 102 second partial flow t 2 is adjustable by means of the valve 101. The partial stream mixture t 1,2 formed in this case is added to the cold condensate K via the mixing point 106. In this case, the temperature T S 'of the first partial flow t 1 at its removal as a heated feed water S' from the high-pressure drum 54, for example, 320 ° C.

Bei einer Temperatur TS des zweiten Teilstroms t2 als vergleichsweise kühles Speisewasser S von z.B. 150°C stellt sich durch entsprechende Einstellung der Mengen der beiden Teilströme t1 und t2 mittels der Ventile 109 bis 112 bzw. 101 eine Mischtemperatur TM des Teilstromgemisches t1,2 von etwa 210°C ein. Durch die Vermischung der beiden Teilströme t1 und t2 unterschiedlicher Speisewassertemperatur TS' bzw. TS wird sichergestellt, dass das dem Wasser-Dampf-Kreislauf 24 entnommene aufgeheizte Speisewasser oder Heizwasser S' vor dessen Druckreduzierung bei Einleitung über die Mischstelle 106 in die Kondensatleitung 38 auf das Temperaturniveau des Kondensatsystems und somit auf unterhalb von 200°C abgekühlt ist. Dadurch ist die Entstehung von Dampf im Anschluss an den Druckabbau verhindert, wobei das Ventil 108 zur Druckreduzierung des Teilstromgemisches t12 dient.At a temperature T S of the second partial flow t 2 as a comparatively cool feed water S of 150 ° C, for example, by adjusting the amounts of the two partial streams t 1 and t 2 by means of the valves 109 to 112 and 101, a mixing temperature T M of the partial flow mixture t 1,2 of about 210 ° C. By mixing the two partial streams t 1 and t 2 different feedwater temperature T S ' and T S is ensured that the water-steam cycle 24 removed heated feed water or heating water S' before its pressure reduction when introduced via the mixing point 106 in the Condensate line 38 is cooled to the temperature level of the condensate system and thus to below 200 ° C. As a result, the formation of steam is prevented following the pressure reduction, wherein the valve 108 is used to reduce the pressure of the partial flow mixture t 12 .

Durch die direkte, d. h. wärmetauscherlose Zumischung des aus den beiden Speisewasser-Teilströmen t1 und t2 unterschiedlicher Temperatur TS',TS gebildeten Teilstromgemisches t1,2 zum kalten Kondensat K kann mit besonders einfachen Mitteln und insbesondere ohne Zwischenschaltung eines zusätzlichen Wärmetauschers eine beim Ölbetrieb der Gasturbine 2 erforderliche und im Vergleich zum Gasbetrieb erhöhte Wasser- oder Kesseleintrittstemperatur TK' von z.B. 120 bis 130°C eingestellt werden.By the direct, ie heat exchangerless admixing of the two feedwater streams t 1 and t 2 different temperature T S ' , T S formed partial stream mixture t 1.2 to the cold condensate K can with very simple means and in particular without the interposition of an additional heat exchanger a in the oil operation of the gas turbine 2 required and compared to the gas operation increased water or boiler inlet temperature T K ' of eg 120 to 130 ° C are set.

Claims (10)

  1. Method of operating a gas and steam turbine installation (1), in which the flue gas (AM) issuing from a gas turbine (2) which can be operated with both gas and oil is directed via a waste-heat steam generator (30), the heating surfaces of which are connected in the water/steam cycle (24) of a steam turbine (20) having a number of pressure stages (20a, 20b, 20c), condensate preheated in the waste-heat steam generator (30) being heated as feedwater (S), which is under high pressure in relation to said condensate, and being fed as steam (F) to the steam turbine (20), characterized in that, during a change in operation from gas to oil, a partial-flow mixture (t12) formed from a first partial flow (t1) of heated feedwater (S') and from a second partial flow (t2) of comparatively cool feedwater (S) is directly admixed with the cold condensate (K).
  2. Method according to Claim 1, characterized in that the second partial flow (t2) admixed with the first partial flow (t1) before the pressure of the latter is reduced to the pressure level of the condensate (K) is set in such a way that the temperature (TM) of the partial-flow mixture (t12) lies below the temperature of ebullition of the condensate (K) to be preheated.
  3. Method according to Claim 1 or 2, characterized in that the first partial flow (t1) is extracted from a high-pressure stage (50) and/or from an intermediate-pressure stage (70) of the water/steam cycle (24).
  4. Method according to one of Claims 1 to 3, characterized in that the first partial flow (t1) is extracted on the outlet side from a high-pressure economizer (51, 52) or intermediate-pressure economizer (73) provided as heating surface in the waste-heat steam generator (30).
  5. Method according to one of Claims 1 to 4, characterized in that the first partial flow (t1) is extracted from a high-pressure drum (54) or intermediate-pressure drum (75) connected in the water/steam cycle (24).
  6. Gas and steam turbine installation (1) having a gas turbine (2) which can be operated with both gas and oil and having a waste-heat steam generator (30) which is connected downstream of the gas turbine (2) on the exhaust-gas side and whose heating surfaces are connected in the water/steam cycle (24) of a steam turbine (20) comprising at least one low-pressure stage (20c) and a high-pressure stage (20b), characterized by a feed line (104) which is directed on the outflow side to the inlet side of a condensate preheater (36) arranged as heating surface in the waste-heat steam generator (30), has an admixing point (103) and is directed on the inflow side to the water side of a pressure drum (54, 75) connected in the water/steam cycle (24) and/or to the outlet side of an economizer (51, 52, 73) arranged as heating surface in the waste-heat steam generator (30), it being possible for an adjustable second partial flow (t2) of comparatively cool feedwater (S) to be fed via the admixing point (103) to a first partial flow (t1) of heated feedwater (S'), this first partial flow (t1) being extracted from the pressure drum (54, 75) or from the economizer (51, 52, 73) and being directed via the feed line (104).
  7. Gas and steam turbine installation according to Claim 6, characterized in that a valve (108) for reducing the pressure of the first partial flow (t1) and/or of the partial-flow mixture (t12) is connected in the feed line (104) downstream of the admixing point (103) in the flow direction (105) of the partial-flow mixture (t12) formed from the first partial flow (t1) and the second partial flow (t2).
  8. Gas and steam turbine installation according to Claim 6 or 7, characterized in that, for setting the first partial flow (t1), at least one valve (109 to 113) is connected in the feed line (104) upstream of the admixing point (103) in the flow direction (105) of said first partial flow (t1).
  9. Gas and steam turbine installation according to one of Claims 6 to 8, characterized by a partial-flow line (102) which opens on the outlet side into the admixing point (103) and is connected on the inlet side to the pressure side of a feedwater pump (42).
  10. Gas and steam turbine installation according to Claim 9, characterized in that a valve (101) for setting the second partial flow (t2) is connected in the partial-flow line (102).
EP01967162A 2000-07-25 2001-07-12 Method for operating a gas and steam turbine installation and corresponding installation Expired - Lifetime EP1303684B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01967162A EP1303684B1 (en) 2000-07-25 2001-07-12 Method for operating a gas and steam turbine installation and corresponding installation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00115909 2000-07-25
EP00115909 2000-07-25
PCT/EP2001/008079 WO2002008577A1 (en) 2000-07-25 2001-07-12 Method for operating a gas and steam turbine installation and corresponding installation
EP01967162A EP1303684B1 (en) 2000-07-25 2001-07-12 Method for operating a gas and steam turbine installation and corresponding installation

Publications (2)

Publication Number Publication Date
EP1303684A1 EP1303684A1 (en) 2003-04-23
EP1303684B1 true EP1303684B1 (en) 2005-05-11

Family

ID=8169340

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01967162A Expired - Lifetime EP1303684B1 (en) 2000-07-25 2001-07-12 Method for operating a gas and steam turbine installation and corresponding installation

Country Status (9)

Country Link
US (1) US6823674B2 (en)
EP (1) EP1303684B1 (en)
JP (1) JP3679094B2 (en)
CN (1) CN1313714C (en)
BR (1) BR0112691A (en)
DE (1) DE50106214D1 (en)
ES (1) ES2240512T3 (en)
TW (1) TW541393B (en)
WO (1) WO2002008577A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1413554A1 (en) * 2002-10-23 2004-04-28 Siemens Aktiengesellschaft Gas and steam power plant for desalination of water
JP2005312284A (en) * 2005-01-12 2005-11-04 Masakazu Ushijima Inverter circuit for current resonance discharge tube
EP1736638A1 (en) * 2005-06-21 2006-12-27 Siemens Aktiengesellschaft Method of starting up a gas and steam turbine plant
US8112997B2 (en) * 2008-04-28 2012-02-14 Siemens Energy, Inc. Condensate polisher circuit
EP2224164A1 (en) * 2008-11-13 2010-09-01 Siemens Aktiengesellschaft Method of operating a waste heat steam generator
US8069667B2 (en) * 2009-02-06 2011-12-06 Siemens Energy, Inc. Deaerator apparatus in a superatmospheric condenser system
US8007729B2 (en) * 2009-03-20 2011-08-30 Uop Llc Apparatus for feed preheating with flue gas cooler
CN103759247B (en) * 2014-01-29 2016-03-30 国家电网公司 Combustion engine waste heat boiler steam water-level whole-process automatic control system and method
JP6516993B2 (en) * 2014-09-26 2019-05-22 三菱日立パワーシステムズ株式会社 Combined cycle plant and boiler steam cooling method
KR102052016B1 (en) * 2015-12-22 2019-12-04 지멘스 에너지, 인코포레이티드 Chimney Energy Control in Combined Cycle Power Plants
US11199113B2 (en) 2018-12-21 2021-12-14 General Electric Company Combined cycle power plant and method for operating the combined cycle power plant
US11085336B2 (en) 2018-12-21 2021-08-10 General Electric Company Method for operating a combined cycle power plant and corresponding combined cycle power plant
US10851990B2 (en) 2019-03-05 2020-12-01 General Electric Company System and method to improve combined cycle plant power generation capacity via heat recovery energy control

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756023A (en) * 1971-12-01 1973-09-04 Westinghouse Electric Corp Heat recovery steam generator employing means for preventing economizer steaming
CH621187A5 (en) * 1977-06-16 1981-01-15 Bbc Brown Boveri & Cie
CH623888A5 (en) * 1977-10-04 1981-06-30 Bbc Brown Boveri & Cie
US4799461A (en) * 1987-03-05 1989-01-24 Babcock Hitachi Kabushiki Kaisha Waste heat recovery boiler
JP2554101B2 (en) 1987-09-28 1996-11-13 三菱重工業株式会社 Exhaust gas boiler
DE3804605A1 (en) * 1988-02-12 1989-08-24 Siemens Ag METHOD AND SYSTEM FOR THE PRODUCTION OF HEAT-STEAM
US4932204A (en) * 1989-04-03 1990-06-12 Westinghouse Electric Corp. Efficiency combined cycle power plant
ES2083627T3 (en) 1991-07-17 1996-04-16 Siemens Ag PROCEDURE FOR THE OPERATION OF A GAS AND STEAM TURBINE INSTALLATION AND INSTALLATION FOR THE PERFORMANCE OF THE PROCEDURE.
EP0582898A1 (en) * 1992-08-10 1994-02-16 Siemens Aktiengesellschaft Method of operating a steam and gas turbine system and system for carrying out the method
DE4321081A1 (en) * 1993-06-24 1995-01-05 Siemens Ag Process for operating a gas and steam turbine plant and a combined cycle gas plant
DE4333439C1 (en) * 1993-09-30 1995-02-02 Siemens Ag Device for cooling the refrigerant of a cooled gas turbine of a gas and steam turbine system
DE19512466C1 (en) * 1995-04-03 1996-08-22 Siemens Ag Steam generator operating method for gas and steam turbine plant
DE19736889C1 (en) 1997-08-25 1999-02-11 Siemens Ag Operating method for combined gas-and-steam turbine plant
EP1076761B1 (en) * 1998-05-06 2003-09-10 Siemens Aktiengesellschaft Gas and steam turbine installation

Also Published As

Publication number Publication date
JP3679094B2 (en) 2005-08-03
DE50106214D1 (en) 2005-06-16
ES2240512T3 (en) 2005-10-16
CN1443270A (en) 2003-09-17
US20040025510A1 (en) 2004-02-12
CN1313714C (en) 2007-05-02
US6823674B2 (en) 2004-11-30
BR0112691A (en) 2003-06-24
JP2004504538A (en) 2004-02-12
EP1303684A1 (en) 2003-04-23
TW541393B (en) 2003-07-11
WO2002008577A1 (en) 2002-01-31

Similar Documents

Publication Publication Date Title
EP0819209B1 (en) Method of operating a waste-heat steam generator, and a waste-heat steam generator operated by this method
EP1009919B1 (en) Method for operating a gas and steam turbine installation and steam turbine installation for carrying out said method
DE69916099T2 (en) KOMBIKRAFTWERK WITH IMPROVED COOLING AND OPERATING PROCESS THEREFOR
EP0720689B1 (en) Device for cooling the gas-turbine coolant in a combined gas and steam turbine installation
DE60126721T2 (en) Combined circulation system with gas turbine
EP0591163B1 (en) Combined gas and steam turbine plant
EP1119688B1 (en) Gas and steam turbine installation
EP1303684B1 (en) Method for operating a gas and steam turbine installation and corresponding installation
EP0898641B1 (en) Gas and steam turbine plant and method of operating the same
EP1248897B1 (en) Gas and steam turbine installation
EP1320665B1 (en) Method for operating a gas and steam turbine system and a corresponding system
EP1105624B1 (en) Gas and steam turbine unit
EP1099041B1 (en) Gas and steam turbine installation
EP1099042B1 (en) Gas and steam turbine installation
EP0523466B1 (en) Method for operating a gas and steam turbine plant and plant for carrying out the method
EP3420202B1 (en) Condensate recirculation
EP0826096B2 (en) Process and device for degassing a condensate
EP0595009B1 (en) Method of operating a power plant and power plant working according to this method
EP0840837B1 (en) Process for running a gas and steam turbine plant and plant run by this process
EP1425079B1 (en) Method and device for thermal de-gassing of the active substance of a two-phase process
WO2014048742A2 (en) Gas and steam turbine system having feed-water partial-flow degasser
DE4409811C1 (en) Method of driving heat steam producer partic. for gas and steam turbine installation
DE10004187C1 (en) Gas-and-steam turbine plant operating method
DE102016104538B3 (en) Thermal steam power plant with improved waste heat recovery and method of operation thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021108

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES GB IT PT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT PT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050511

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50106214

Country of ref document: DE

Date of ref document: 20050616

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2240512

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120906

Year of fee payment: 12

Ref country code: ES

Payment date: 20120808

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130710

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130727

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50106214

Country of ref document: DE

Effective date: 20140201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20141010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130713

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140712