EP1300200B1 - Method and apparatus for indentification and separation of plastic particles - Google Patents

Method and apparatus for indentification and separation of plastic particles Download PDF

Info

Publication number
EP1300200B1
EP1300200B1 EP02022206.3A EP02022206A EP1300200B1 EP 1300200 B1 EP1300200 B1 EP 1300200B1 EP 02022206 A EP02022206 A EP 02022206A EP 1300200 B1 EP1300200 B1 EP 1300200B1
Authority
EP
European Patent Office
Prior art keywords
material particles
plastics material
inclined plane
nozzle
spectrometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02022206.3A
Other languages
German (de)
French (fr)
Other versions
EP1300200A1 (en
Inventor
Jürgen BOHLEBER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1300200A1 publication Critical patent/EP1300200A1/en
Application granted granted Critical
Publication of EP1300200B1 publication Critical patent/EP1300200B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3425Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3422Sorting according to other particular properties according to optical properties, e.g. colour using video scanning devices, e.g. TV-cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3425Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain
    • B07C5/3427Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain by changing or intensifying the optical properties prior to scanning, e.g. by inducing fluorescence under UV or x-radiation, subjecting the material to a chemical reaction

Definitions

  • the present invention relates to a method for the separation of materials according to part 1 of claim 1.
  • it relates to the separation of plastics of various types such.
  • plastics of various types such.
  • polyethylene terephthalate in blends with polyolefins, polycarbonate, polyvinyl chloride, etc., as well as for the sorting of colored with different colors plastics under colorless plastics and for the elimination of metals and other substances such.
  • aluminum, wood, paper, etc. in process streams that are designed for the recycling of valuable materials.
  • the process is an example of the recycling process of plastics, which originate from beverage bottles and have already been filled at least once with mineral water or soft drinks or misappropriated with pollutants explained.
  • it is equally suitable for the separation of various constituents of other free-flowing multicomponent mixtures.
  • plastic parts eg. B. beverage bottles or other food packaging, crushed into small pieces with the edge lengths of 5 to 12 mm, subjected to a continuous cleaning process and then tested with a camera systems on colors. All colored plastic parts are blown out of the plastic stream via air nozzles in a subsequent sorter and to lower quality plastics further processed.
  • a sorting out of PVC plastic parts takes place in addition, by making use of the fact that, due to heating, a blackening of this type of plastic occurs which is recognized by the color sorter.
  • the basic principle of sorters according to the prior art is that the material to be sorted when passing parabolic orbits in the air in the case of bad detection of perpendicular to the trajectory nozzle jet pulses have been deflected so that they land in a separate collection container for low-grade plastics. Because of the statistically strongly fluctuating shape and fluctuating weight of the plastic pieces, however, the respective trajectory of the plastic pieces deviates in part greatly from the parabolic shape, which is why the sorting nozzles must be mounted to avoid collisions with the plastic pieces at a great distance from the ideal trajectory.
  • the WO 9606690A also refers to pure glass separation of broken glass fragments.
  • a pure color detection is carried out and then corresponding ejection stations are operated, which operate on a vibrating rail arrangement. From conveyor belts 3a and 3b, the waste glass parts are guided through a subsequent measuring and control arrangement, which is sorted and then in the ejection device ejects pneumatically.
  • US Pat. No. 6,060,677A is able to quickly and roughly detect a wide variety of materials by means of diffusely reflected IR spectra or other electromagnetic radiation spectra. For this purpose, the particles are guided on an inclined plane over a slot where there is a separate IR source at each detection point.
  • the IR sources emit from optical fibers and transmit through the conveyed material, whereby the thus influenced IR radiation is directed to the detector. Downstream of the detection points air nozzles can then be activated, which can eject objects.
  • the plant can also roughly sort plastics, a finer distinction is impossible due to the inaccuracy of the IR spectroscopy. Sorting of the waste particles can be done via the strength of air streams from nozzles.
  • US 4848590 A describes the sorting of metal parts by an inclined plane or grid, which has a lateral boundary and is not suitable for plastics.
  • WO 0100333 A explains gutters in a vibrating table, which causes the products to fall down in parallel rows - but there is no exact plastic separation.
  • US 4549659 A describes the charging of free-flying particles by corona discharge for a rotationally symmetric distribution.
  • US 5917585 A deals with the distinction of polyethylene naphthalate (PEN) from other plastics, such as polyolefins and especially the similar polyethylene terephthalate (PET), by fluorescence measurements at certain wavelengths without spectrometer. Others, this accompanying plastics, such as PVC; Polyolefins, polyamides, etc. can not be determined or separated therefrom.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • the object is achieved by a method having the features of claim 1. Furthermore, the invention also relates to an apparatus for carrying out the method with the features of claim 9.
  • Advantageous developments emerge from the dependent claims.
  • the material particles are irradiated by radiation sources having a different emission spectrum and the resulting optical transmission / reflection beam is detected by at least one suitable spectrometer.
  • the spectrometers are eg fluorescence spectrometers, IR spectrometers, UV / VIS spectrometers.
  • a further light source is used for irradiating the plastic particles and in particular for the efficient improvement of the recognition of colors and for the detection of non-fluorescent and / or non-transparent substances, such as Wood or metal particles, serves.
  • the separation unit comprises a plurality of channel-shaped channels, in which, for example, in the low point of the cross-sectional profile, nozzles, in particular clocked nozzles for sorting out characteristic material particles are integrated into at least two material fractions.
  • a plurality of nozzles in each channel groove may be accommodated on a surface which is not larger than the area of the smallest material particle to be sorted.
  • the channel channels Preferably, in the region of the nozzle, the channel channels have a depression in order to guide the particles to the nozzle.
  • the inclined plane has channel troughs, wherein in each Channel gutter, preferably several nozzles are housed on a surface which is not larger than the area of the smallest material particle to be sorted.
  • FIG. 1 illustrated system for carrying out the method has a conveyor unit 4 for the material particles 14, an inclined plane 13 with supersonic nozzles 15, lighting devices 6, 7 for fluorescence, a separation unit for high-quality and low-grade material, an optical spectrometer 10 with beam scanner, evaluation and valve control is , as in FIG. 1 shown in a reservoir 1 to be analyzed optically analyzed and then separated into different fractions 2 and 3 to be separated particulate material 14 with a conveyor system 4 on the inclined plane 5, on which it slides down by gravity.
  • plastic material particles When illuminated with the light sources 6 and 7 with a high UV component, most of the plastic material particles emit fluorescent light 8, which is detected by a known scanner system 9 transversely to the transport direction over the entire width of the inclined plane and directed onto an optical spectrometer 10.
  • a likewise known per se analysis system 11 calculated from the spectra both the type of the respective plastic, as well as the color, as well as any contamination of the plastic particles, eg by gasoline, diesel, engine oil, paint thinner, urine, pesticides, etc. If pure, ie for Food packaging suitable plastic material, such as polyethylene, it travels by gravity in the channel 2 and is supplied to the plastic recycling for beverage bottles or other food packaging.
  • the so classified material particles are deflected by supersonic jet into the channel 3 and used in the context of a recycling for the production of minor plastics.
  • the channel grooves on a recess as seen from Fig. 4a seen.
  • the channels of the inclined plane end immediately after the nozzles 21 and the trajectories of the material particles 14 end, supported by a separating plate directly in the collecting containers.
  • all nozzles 15 are supplied with compressed air via a common transverse pipe 18 and are pulsed on and off under the control of the analysis unit.
  • the particle material 14 reaching the inclined plane 13 from the vibratory linear conveyor 12 is sorted by gravity through the supersonic nozzle 15 into the recycling channel 16 for inferior plastics or, alternatively, into the recycling channel 17 for food grade plastics.
  • a plurality of identical nozzles 15 are not shown in their entirety in the figures, arranged at a distance from the dimensions of the material components 14. All nozzles 15, 25 are supplied with oil-free, dry compressed air via the transverse channel 18.
  • the respective nozzle 15 is connected via a branch line 19 and the quick-acting valve 20 to the transverse channel 18.
  • the opening and closing function of the respective quick-acting valve 20 takes place according to control by the analysis unit 11 Fig.
  • An essential part of the invention is based on the use of high-speed, in particular supersonic nozzles 15.
  • the latter is due to the fact that for economic reasons, a minimum mass flow of material particles 14 must be supported by the arrangement. such that the particle velocity on the inclined plane 13 reaches values requiring a maximum velocity of a supersonic jet 21 to prevent. that too many high-quality material particles 14 are passed undesirably into the inferior fraction before or after the blow-out process of the particle to be sorted out.
  • the inclined plane 13 off Fig.2 exists according to Fig. 4a / b of numerous channel-shaped tracks 30, which are concave in cross section 31 and ensure a precise guidance of the material particles 14 relative to the nozzle openings 15.
  • each nozzle unit is according to Fig. 4a / b provided with a plurality of nozzle openings 15. This ensures that the critical expansion ratio required for supersonic speed is achieved in any case and that a mechanical force impulse evenly distributed over the material particle surface results.
  • the lighting of the material ponds 14 takes place here for excitation with light from both sides Fig. 2 by means of two light sources 36 and 37.
  • the latter are provided with a translucent disc 23 made of quartz glass, which has a smaller angle of inclination relative to the channel in order to ensure a trouble-free transition between Ridge and glass to reach.
  • the respectively on the spectrometer with analysis system 11 according to Fig.1 The fluorescent light beam is incident through the rays 22 in the Figures 2 and 3 shown. To optimize the color detection is in the embodiment of the Fig.
  • a light source 41 which transilluminates the material particles, with a downstream color spectrometer, for example, the existing of milky polyolefins or aluminum caps of beverage bottles are identified.
  • a downstream color spectrometer for example, the existing of milky polyolefins or aluminum caps of beverage bottles are identified.
  • contaminants such as wood and metal foils can be identified and removed.
  • the passage of light through the channel 30 through a UV radiation-reflecting filter 38 which directs the radiation of the light source for exciting fluorescent light on the underside of the plastic parts, in combination with an optical high-pass filter 40, which light a halogen light source 41 above a Wavelength of about 480 nm for spectral analysis passes allows.
  • the filter 38 is protected by a protective plate 42 against wear, in particular mechanical.
  • the particle separation is carried out together with the jet stream process and that the particles to be sorted out according to Fig. 4c an electric charge is sprayed on a metal tip 44 via a high-voltage corona discharge 43 and these electrostatically charged material particles are subsequently deflected by an electric field 45 during the free fall and thus high-grade 46 and low-grade plastics 47 are separated into the fractions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Sorting Of Articles (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Trennung von Materialien nach Teil 1 des Patentanspruches 1. Insbesondere bezieht es sich auf die Trennung von Kunststoffen verschiedener Typen wie z. B. die Selektierung von Polyethylenteraphtalat in Mischungen mit Polyolefinen, Polycarbonat, Polyvinylchlorid, etc. sowie zur Aussortierung von mit verschiedenen Farben eingefärbten Kunststoffen unter farblosen Kunststoffen und zur Ausscheidung von Metallen und anderen Stoffen, wie z. B. Aluminium, Holz, Papier etc. in Prozessströmen, die zur Wiederverwertung von Wertstoffen konzipiert sind. Das Verfahren sei beispielhaft am Recyclingprozess von Kunststoffen, welche aus Getränkeflaschen stammen und bereits mindestens einmal mit Mineralwasser oder Softdrinks oder zweckentfremdet mit Schadstoffen befüllt waren erläutert. Es ist jedoch in gleicher Weise, auch zur Trennung verschiedener Bestandteile anderer rieselfähiger Multikomponenten Stoffgemische geeignet.The present invention relates to a method for the separation of materials according to part 1 of claim 1. In particular, it relates to the separation of plastics of various types such. As the selection of polyethylene terephthalate in blends with polyolefins, polycarbonate, polyvinyl chloride, etc., as well as for the sorting of colored with different colors plastics under colorless plastics and for the elimination of metals and other substances such. As aluminum, wood, paper, etc. in process streams that are designed for the recycling of valuable materials. The process is an example of the recycling process of plastics, which originate from beverage bottles and have already been filled at least once with mineral water or soft drinks or misappropriated with pollutants explained. However, it is equally suitable for the separation of various constituents of other free-flowing multicomponent mixtures.

Zur Herstellung von Kunststoff Getränkeflaschen - bspw. aus Polyethylenteraphtalat PET wird in der Regel neues Material, welches aus Polymerisationsprozessen stammt, verwendet, In neuerer Zeit geht man jedoch dazu über die bereits als Lebensmittelverpackungen verwendeten Gebinde nach einem Recyclingprozess wieder für die Verpackung von Lebensmitteln, insbesondere für Getränkeflaschen, einzusetzen. Der Vorteil dieser Vorgehensweise liegt einerseits in einem günstigeren Preis für das recyclierte PET Material im Vergleich zu Neumaterial und andererseits darin. daß die Entsorgungsproblematik für gebrauchte Kunststoffe entfällt. Zur Garantie der Lebensmittelqualität müssen jedoch zusätzliche sensorsystemtechnische Massnahmen, mit dem Ziel der Aussortierung unzulässiger Bestandteile getroffen werden, welche die Vorschriften der internationalen Gesetzgebung erfüllenFor the production of plastic beverage bottles - eg. From polyethylene teraphthalate PET is usually new material, which originates from polymerization processes, used in recent time, however, it goes to the already used as food packaging containers after a recycling process again for the packaging of food, especially for beverage bottles. The advantage of this approach is on the one hand in a cheaper price for the recycled PET material compared to new material and on the other hand therein. that the disposal problem for used plastics is eliminated. However, in order to guarantee the quality of food, additional sensor system measures must be taken with the aim of sorting out inadmissible components which comply with the regulations of international legislation

Gemäß dem Stand der Technik werden derzeit die zu recyclierenden Kunststoffteile, z. B. Getränkeflaschen oder andere Lebensmittelverpackungen, in kleine Stücke mit den Kantenlängen von 5 bis 12 mm zerkleinert, einem kontinuierlichen Reinigungsprozess unterzogen und danach mit einem Kamerasystemen auf Farben geprüft. Alle gefärbten Kunststoffteile werden in einem sich anschliessenden Sortierer aus dem Plastikstrom über Luftdüsen herausgeblasen und zu niederwertigeren Kunststoffen weiterverarbeitet. In weiterentwickelten Anordnungen gemäß dem Stand der Technik erfolgt zusätzlich eine Aussortierung von PVC - Kunststoffteilen, indem ausgenutzt wird, daß durch Erhitzung eine Schwärzung dieses Kunststofftyps auftritt weiche vom Farbsortierer erkannt wird.According to the prior art currently being recycled plastic parts, eg. B. beverage bottles or other food packaging, crushed into small pieces with the edge lengths of 5 to 12 mm, subjected to a continuous cleaning process and then tested with a camera systems on colors. All colored plastic parts are blown out of the plastic stream via air nozzles in a subsequent sorter and to lower quality plastics further processed. In further developed arrangements according to the state of the art, a sorting out of PVC plastic parts takes place in addition, by making use of the fact that, due to heating, a blackening of this type of plastic occurs which is recognized by the color sorter.

Das Grundprinzip von Sortierern gemäß dem Stand der Technik besteht - darin, daß das zu sortierende Material beim Durchlaufen von Parabelbahnen in der Luft im Falle der Schlechtdetektion von senkrecht zur Flugbahn verlaufenden Düsenstrahlimpulsen so abgelenkt worden, dass sie in einem separaten Auffangbehätter für niederwertigere Kunststoffe landen. Wegen der statistisch stark schwankenden Form und schwankendem Gewicht der Kunststoffstücke weicht die jeweilige Flugbahn der Kunststoffstücke jedoch zum Teil stark von der Parabelform ab, weshalb die Sortierdüsen zur Vermeidung von Kollisionen mit den Kunststoffstücken in grossem Abstand von der Idealflugbahn montiert werden müssen. Aus dieser Entfernung werden die vorbeifliegenden Schlechtstoffe nicht mehr vom konzentrierten Düsenstrahl unmittelbar vor der Düsenöffnung selektiv erfasst, sondern nur noch von einem aufgeweiteten und mit Turbulenzen behafteten, schwachen Düsenstrahl zusammen mit sich in der Nähe befindlichem Gutstoff unsicher abgelenkt. Die Folge ist eine Vermischung von hoch- und niederwertigen Kunststoffen verbunden mit einem Qualitätsverlust sowie einem Mengenverlust der hochwertigen Kunststofffraktion. Beide Nachteile führen zu wirtschaflichen Problemen, die die Ökonomie des Gesamtprozesses gefährden.The basic principle of sorters according to the prior art is that the material to be sorted when passing parabolic orbits in the air in the case of bad detection of perpendicular to the trajectory nozzle jet pulses have been deflected so that they land in a separate collection container for low-grade plastics. Because of the statistically strongly fluctuating shape and fluctuating weight of the plastic pieces, however, the respective trajectory of the plastic pieces deviates in part greatly from the parabolic shape, which is why the sorting nozzles must be mounted to avoid collisions with the plastic pieces at a great distance from the ideal trajectory. From this distance, the passing bad substances are no longer selectively detected by the concentrated nozzle jet immediately in front of the nozzle opening, but deflected uncertainly only by an expanded and turbulence-afflicted, weak jet together with nearby accepts. The result is a mixture of high and low-grade plastics associated with a loss of quality and a loss of quantity of high-quality plastic fraction. Both disadvantages lead to economic problems that jeopardize the economy of the overall process.

Aus der EP 0461616A ist eine Farberkennung für farbige Glasbruchstücke bekannt, wobei Teilchen auf einer glatten Gleitrutsche eine Farberkennungseinrichtung passieren und eine pneumatische Trenneinrichtung mit einer glatten schiefen Ebene durch die Farberkennungseinrichtung mit mehreren Messstellen betätigt wird. Es kann nur farbiges Glas sortiert werden und es ist keine sonstige Materialerkennung möglich.From the EP 0461616A a color detection for colored glass fragments is known, wherein particles pass on a smooth slide a color detection device and a pneumatic separator is operated with a smooth inclined plane by the color detection device with multiple measuring points. Only colored glass can be sorted and no other material recognition is possible.

Die WO 9606690A bezieht sich ebenfalls auf reine Glastrennung von Altglasbruchstücken. Es wird eine reine Farberkennung durchgeführt und dann werden ent- sprechend Auswurfstationen betätigt, die auf einer Schwingschienenanordnung arbeiten. Aus Förderbändern 3a und 3b werden die Altglasteile durch eine anschlies- sende Meß- und Steueranordnung geführt, die sortiert und dann in der Auswurfvor- richtung pneumatisch auswirft. US 6 060 677A kann verschiedenste Materialien anhand von diffus reflektierten IR-Spektren od. anderen elektromagnetischen Strahlungsspektren schnell überschlägig grob detektieren. Dazu werden die Teilchen auf einer schiefen Ebene über einen Schlitz geführt, wo eine getrennte IR-Quelle an jedem Detektionspunkt vorliegt. Die IR-Quellen emittieren aus Lichtwellenleitern und durchstrahlen das geförderte Material, wobei die so beeinflusste IR-Strahlung auf den Detektor leitet. Stromabwärts der Detektionspunkte können dann Luftdüsen aktiviert werden, die Objekte ausstoßen können. Die Anlage kann auch grob Kunststoffe sortieren, eine feinere Unterscheidung ist aufgrund der Ungenauigkeit der IR-Spektroskopie unmöglich. Eine Sortierung der Abfallteilchen kann über die Stärke von Luftströmen aus Düsen erfolgen. US 4848590 A beschreibt das Sortieren von Metallteilen durch eine schiefe Ebene oder Gitter, die eine seitliche Begrenzung hat und ist nicht für Kunststoffe geeignet. WO 0100333 A erläutert Rinnen in einem Vibrationstisch, wodurch die Produkte in parallelen Reihen herunterfallen - es findet aber keine exakte Kunststofftrennung statt. US 4549659 A beschreibt die Aufladung von frei fliegenden Teilchen durch Coronaentladung für eine rotationssymmetrische Verteilung.
US 5917585 A beschäftigt sich mit der Unterscheidung von Polyethylennaphthalat (PEN) von anderen Kunststoffen, wie Polyolefinen und insbesondere dem ähnlichen Polyethylenterephthalat (PET), durch Fluoreszenz-Messungen bei bestimmten Wellenlängen ohne Spektrometer. Andere, dieses begleitende Kunststoffe, wie PVC; Polyolefine, Polyamide etc. können darüber nicht bestimmt oder abgetrennt werden. Somit eignet sich die Anlage der US 5 917 585 A aussschliesslich für die Isolation von PEN, nicht aber für die Auftrennung verschiedener Kunststoffe. DE 42 31 477 A bezieht sich ausschliesslich auf die fluoreszierende bunte Markierung von Kunststoffteilchen für eine später durchzuführenden Fluoreszenzespektralana- lyse und danach erfolgender Trennung. Danach lernt der Fachmann, dass ungefärbte Kunststoffe nicht oder nur schlecht sortierbar sind. GB 2 264 558 A beschreibt, dass die Zumischung eines im FIR oder NIR fluoreszierenden Farbstoffes zu Kunststoffen für deren spätere Sortierbarkeit eine conditio sine qua non ist. Demzufolge vermag GB 2264 558 keinesfalls die Aufgabe, normalen Kunststoffmüll zu trennen, zu lösen.
The WO 9606690A also refers to pure glass separation of broken glass fragments. A pure color detection is carried out and then corresponding ejection stations are operated, which operate on a vibrating rail arrangement. From conveyor belts 3a and 3b, the waste glass parts are guided through a subsequent measuring and control arrangement, which is sorted and then in the ejection device ejects pneumatically. US Pat. No. 6,060,677A is able to quickly and roughly detect a wide variety of materials by means of diffusely reflected IR spectra or other electromagnetic radiation spectra. For this purpose, the particles are guided on an inclined plane over a slot where there is a separate IR source at each detection point. The IR sources emit from optical fibers and transmit through the conveyed material, whereby the thus influenced IR radiation is directed to the detector. Downstream of the detection points air nozzles can then be activated, which can eject objects. The plant can also roughly sort plastics, a finer distinction is impossible due to the inaccuracy of the IR spectroscopy. Sorting of the waste particles can be done via the strength of air streams from nozzles. US 4848590 A describes the sorting of metal parts by an inclined plane or grid, which has a lateral boundary and is not suitable for plastics. WO 0100333 A explains gutters in a vibrating table, which causes the products to fall down in parallel rows - but there is no exact plastic separation. US 4549659 A describes the charging of free-flying particles by corona discharge for a rotationally symmetric distribution.
US 5917585 A deals with the distinction of polyethylene naphthalate (PEN) from other plastics, such as polyolefins and especially the similar polyethylene terephthalate (PET), by fluorescence measurements at certain wavelengths without spectrometer. Others, this accompanying plastics, such as PVC; Polyolefins, polyamides, etc. can not be determined or separated therefrom. Thus, the system is the US Pat. No. 5,917,585 A Exclusively for the isolation of PEN, but not for the separation of different plastics. DE 42 31 477 A refers exclusively to the fluorescent colorful marking of plastic particles for a fluorescence spectral analysis to be carried out later and subsequent separation. Thereafter, the skilled artisan learns that undyed plastics are not or only poorly sortable. GB 2 264 558 A describes that the admixing of a dye which fluoresces in FIR or NIR to plastics for their later sortability is a conditio sine qua non. As a result, it is possible GB 2264 558 in no way the task to separate normal plastic waste to solve.

Es ist demgegenüber Aufgabe der vorliegenden Erfindung, die Nachteile des Standes der Technik zu vermeiden.It is accordingly an object of the present invention to avoid the disadvantages of the prior art.

Die Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Patentanspruches 1 gelöst.
Ferner bezieht sich die Erfindung auch auf eine Vorrichtung zur Durchführung des Verfahrens mit den Merkmalen des Patentanspruches 9. Vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Ansprüchen. Bei der Auswertung von verschiedenen Spektralbereiche bzw. physikalischen Phänomenen zur Identifikation der zu separierenden Teilchen werden die Materialteilchen von Strahlungsquellen mit einem anderen Emissions-Spektrum durchstrahlt und der resultierende optische Transmissions/Reflexionsstrahl mit mindestens einem dafür geeignetem Spektrometer erfasst. Die Spektrometer sind z.B. Fluoreszenz-Spektrometern, IR-Spektrometern, UV/VIS-Spektrometern. Gemäß der Erfindung wird zusätzlich zu einer die Kunststoffteile beleuchtenden Lichtquelle zur Erzeugung von Fluoreszenzlicht eine weitere Lichtquelle eingesetzt, die zur Durchstrahlung der Kunststoffteilchen und insbesondere zur effizienten Verbesserung der Erkennung von Farben sowie zur Erkennung von nicht fluoreszierenden und/oder nicht transparenten Stoffen, wie z.B. von Holz oder von Metallteilchen, dient. Die Separationseinheit umfasst mehrere rinnenförmige Kanäle, in welche, z.B im Tiefpunkt des Querschnittprofils, Düsen, insbesondere getaktete Düsen zur Aussortierung charakteristischer Materialteilchen in mindestens zwei Materialfraktionen integriert sind. Dabei können mehrere Düsen in jeder Kanalrinne auf einer Fläche untergebracht sein, die nicht größer ist als die Fläche des kleinsten zu sortierenden Materialteilchens ist. Bevorzugt weisen im Bereich der Düse die Kanalrinnen eine Vertiefung auf, um die Teilchen an die Düse zu führen. Die schiefe Ebene weist Kanalrinnen auf, wobei in jeder Kanalrinne, vorzugweise mehrere Düsen auf einer Fläche untergebracht sind, die nicht größer ist als die Fläche des kleinsten zu sortierenden Materialteilchens ist.
The object is achieved by a method having the features of claim 1.
Furthermore, the invention also relates to an apparatus for carrying out the method with the features of claim 9. Advantageous developments emerge from the dependent claims. In the evaluation of different spectral regions or physical phenomena for the identification of the particles to be separated, the material particles are irradiated by radiation sources having a different emission spectrum and the resulting optical transmission / reflection beam is detected by at least one suitable spectrometer. The spectrometers are eg fluorescence spectrometers, IR spectrometers, UV / VIS spectrometers. According to the invention, in addition to a light source illuminating the plastic parts for generating fluorescent light, a further light source is used for irradiating the plastic particles and in particular for the efficient improvement of the recognition of colors and for the detection of non-fluorescent and / or non-transparent substances, such as Wood or metal particles, serves. The separation unit comprises a plurality of channel-shaped channels, in which, for example, in the low point of the cross-sectional profile, nozzles, in particular clocked nozzles for sorting out characteristic material particles are integrated into at least two material fractions. In this case, a plurality of nozzles in each channel groove may be accommodated on a surface which is not larger than the area of the smallest material particle to be sorted. Preferably, in the region of the nozzle, the channel channels have a depression in order to guide the particles to the nozzle. The inclined plane has channel troughs, wherein in each Channel gutter, preferably several nozzles are housed on a surface which is not larger than the area of the smallest material particle to be sorted.

Vorteilhafterweise sind die Düsen als Überschalldüsen ausgebildet. Alle Düsen werden bevorzugt über ein gemeinsames Querrohr (18) mit Druckluft versorgt und gepulst unter Ansteuerung durch die Analyseeinheit ein- und ausgeschaltet. Bspw. können die Materialteilchen aber auch über einen schwachen Düsenstrahl aus dem Kanal angehoben und anschliessend über eine mit Unterdruck beaufschlagte Haube abgesaugt werden.
Dabei können die Kanäle der schiefen Ebene im Abschnitt zwischen Materialaufgabe und der Separiereinrichtung auf der Oberseite verschlossen sein , wobei innerhalb der Kanäle ein Gasstrom erzeugt wird, der die Beschleunigung der Materialteilchen während dem Hinabrutschen unterstützt und im weiteren Verlauf auf gleichmässiger Geschwindigkeit hält.
Es kann sinnvoll sein, daß die Kanäle der schiefen Ebene unmittelbar nach den Düsen enden und die Flugbahnen der Materialteilchen unterstützt durch ein Trennblech direkt in den Sammelbehältern enden. Gemeinsam mit dem Düsenstrahlverfahren kann die Separationseinheit den auszusortierenden Materialteilchen über eine Koronaentladung an einer Metallspitze über dem Materialstrom in jedem Kanal eine elektrische Ladung aufsprühen und diese so selektiv geladenen Materialteilchen anschliessend während eines freien Falls durch ein elektrisches Feld abgelenkt und somit separiert werden. Durch die Erfindung ist es möglich, eine verbesserte Trennung der verschiedenen Materialfraktionen zu erzielen. Es kann auch sinnvoll sein, daß die über einen schwachen Düsenstrahl aus dem Kanal angehobenen Materialteilchen anschliessend über eine mit Unterdruck beaufschlagte Haube abgesaugt werden. Erfindungsgemäss werden die auf einer schiefen Ebene gleitenden Kunststoffteile mit optischer Strahlung beleuchtet, wobei aus der von den Kunststoffteilen als Folge der Beleuchtung ausgesandten Fluoreszenz durch Spektralanalyse der Kunststofftyp, ggf. die Farbe und eventuelle Kontaminationen des jeweiligen Kunststoffteilchens infolge von Fremdstoffen ermittelt werden und als minderwertig erkannte Kunststoffteile von einer in der schiefen Ebene integrierten Düse mit einem Druckluftimpuls ausgestossen werden. Für die Erfindung wesentlich ist dabei die Tatsache, dass die in der schiefen Ebene integrierte Druckluftöffnung als Düse zur Erzeugung einer konzentriert gebündelten Hochgeschwindigkeitsströmung, sogar mit Überschallgeschwindigkeit, z.B, als Lavaldüse, ausgebildet ist.
Nachfolgend werden bevorzugte Ausführungsformen der Erfindung anhand der nachfolgenden Beschreibung sowie der Zeichnung näher erläutert, auf die diese keineswegs beschränkt ist. Dabei zeigt:

  • Fig. 1 ein Beispiel einer Vorrichtung gemäß der vorliegenden Offenbarung;
  • Fig. 2 Eine weitere Ausführungsform einer erfindungsgemäßen Vorrichtung
  • Fig. 3 eine Detailansicht der Düsen in Fig. 2
  • Fig 4a/4b: Detailansichten der schiefen Ebene der Fig. 2
  • Fig. 4c eine Detailansicht einer Partikeltrennung durch elektrostatische Ladung, und
  • Fig. 5: eine Detailansicht einer Transmissionsmessung in der schiefen Ebene In den Figuren werden gleich wirkende Einrichtungen mit gleichen Bezugszeichen bezeichnet.
Advantageously, the nozzles are designed as supersonic nozzles. All nozzles are preferably supplied with compressed air via a common transverse pipe (18) and pulsed on and off under the control of the analysis unit. For example. However, the material particles can also be lifted out of the channel via a weak jet and then sucked off via a hood pressurized with negative pressure.
In this case, the channels of the inclined plane may be closed in the section between material application and the separating device on the top, wherein within the channels, a gas stream is generated, which assists the acceleration of the material particles during the slide down and keeps at a steady speed in the course.
It may be useful that the channels of the inclined plane ends immediately after the nozzles and the trajectories of the material supports supported by a baffle directly in the collection containers. Together with the jet stream method, the separation unit can spray an electrical charge on the material particles to be sorted via a corona discharge on a metal tip over the material flow in each channel and subsequently deflecting these selectively charged material particles through an electric field during a free fall and thus separating them. By the invention it is possible to achieve an improved separation of the different material fractions. It may also be expedient that the material particles which have been lifted out of the channel via a weak nozzle jet are subsequently sucked off via a hood acted upon by a vacuum. According to the invention, the plastic parts sliding on an inclined plane are illuminated with optical radiation, the spectrum of the plastics emitted by the plastic parts as a consequence of the illumination being determined by spectral analysis, If necessary, the color and possible contamination of the respective plastic particle as a result of foreign substances are determined and as inferior recognized plastic parts are ejected from an integrated in the inclined plane nozzle with a compressed air pulse. Essential for the invention is the fact that the integrated in the inclined plane compressed air opening as a nozzle for generating a concentrated bundled high-speed flow, even at supersonic speed, for example, as a Laval nozzle is formed.
Hereinafter, preferred embodiments of the invention with reference to the following description and the drawings are explained in more detail, to which this is by no means limited. Showing:
  • Fig. 1 an example of a device according to the present disclosure;
  • Fig. 2 Another embodiment of a device according to the invention
  • Fig. 3 a detailed view of the nozzles in Fig. 2
  • Fig. 4a / 4b : Detailed views of the inclined plane of the Fig. 2
  • Fig. 4c a detailed view of a particle separation by electrostatic charge, and
  • Fig. 5 : a detailed view of a transmission measurement in the inclined plane In the figures, like-acting devices are denoted by the same reference numerals.

Die in Fig. 1 dargestellte Anlage zur Durchführung des Verfahrens besitzt eine Fördereinheit 4 für die Materialteilchen 14, eine schiefe Ebene 13 mit Überschalldüsen 15, Beleuchtungseinrichtungen 6, 7 für Fluoreszenz, eine Separationseinheit für hochwertiges und niederwertiges Material, ein optisches Spektrometer 10 mit Strahlscanner, Auswerteeinheit und Ventilansteuerung Dabei wird, wie in Figur 1 gezeigt, das in einem Vorratsbehälter 1 enthaltene optisch zu analysierende und anschliessend in verschiedene Fraktionen 2 und 3 zu trennende teilchenförmige Material 14 mit einem Fördersystem 4 auf die schiefe Ebene 5 gebracht, über die es durch Schwerkraftwirkung hinabgleitet. Bei Beleuchtung mit den Lichtquellen 6 und 7 mit hohem UV-Anteil emittieren die meisten Kunststoff-Materialteilchen Fluoreszenzlicht 8 , welches mit einem an sich bekannten Scannersystem 9 quer zur Transportrichtung auf der gesamten Breite der schiefen Ebene erfasst und auf ein optisches Spektrometer 10 geleitet wird. Ein ebenfalls an sich bekanntes Analysesystem 11 berechnet aus den Spektren sowohl den Typ des jeweiligen Kunststoffes, als auch die Farbe, als auch eventuelle Verunreinigungen der Kunststoffpartikel , z.B. durch Benzin, Diesel, Motoröl, Farbverdünner, Urin, Pflanzenschutzmittel etc. Sofern reines, d.h. für Lebensmittelverpackungen geeignetes Kunststoffmaterial, wie Polyethylen, detektiert wird, läuft es per Schwerkraft in den Kanal 2 und wird dem Kunststoffrecycling für Getränkeflaschen oder für andere Lebensmittelverpackungen zugeführt. Sollten Kontaminationen oder Einfärbungen oder andere Kunststoffmaterialien vorliegen, werden die so klassifizierten Materialteilchen per Überschallstrahl in den Kanal 3 abgelenkt und im Rahmen einer Wiederverwertung zur Erzeugung untergeordneter Kunststoffe eingesetzt.
Hier weisen im Bereich der Düse die Kanalrinnen eine Vertiefung auf, wie aus Fig. 4a ersichtlich. Die Kanäle der schiefen Ebene enden unmittelbar nach den Düsen 21 und die Flugbahnen der Materialteilchen 14 enden, unterstützt durch ein Trennblech direkt in den Sammelbehältern.
Hier werden alle Düsen 15 über ein gemeinsames Querrohr 18 mit Druckluft versorgt und gepulst unter Ansteuerung durch die Analyseeinheit ein- und ausgeschaltet. Beim Verfahren zur erfindungsgemäßen Trennung der Materialteilchen per Vielfach Überschall - Düsensystem gemäss Fig, 2 , Fig. 3 und Fig. 4a/b wird das vom Vibrationslinearförderer 12 auf die schiefe Ebene 13 gelangende Teilchenmaterial 14 durch die Überschalldüse 15 in den Recyclingkanal 16 für minderwertigere Kunststoffe bzw. alternativ in den Recyclingkanal 17 für lebensmitteltaugliche Kunststoffe per Schwerkraft sortiert. Quer zur Transportrichtung sind eine Vielzahl von identischen Düsen 15 in den Figuren in ihrer Gesamtheit nicht dargestellt , im Abstand der Abmessungen der Materialteiichen 14 angeordnet. Sämtliche Düsen 15, 25 werden mit ölfreier, trockener Druckluft über den Querkanal 18 versorgt. Die jeweilige Düse 15 ist über eine Stichleitung 19 und das Schnellschaltventil 20 mit dem Querkanal 18 verbunden Die Öffnungs- und Schließfunktion des jeweiligen Schnellschaltventils 20 erfolgt nach Ansteuerung durch die Analyseeinheit 11 gemäß Fig. 1. Ein wesentlicher Teil der Erfindung beruht auf dem Einsatz von Hochgeschwindigkeits- , insbesondere Überschalldüsen 15. Letzteres ist dadurch bedingt, dass aus Wirtschaftlichkeitsgründen ein Mindestmassenstrom von Materialteilchen 14 durch die Anordnung gefördert werden muß. so dass die Teilchengeschwindigkeit auf der schiefen Ebene 13 Werte erreicht, die eine maximale Geschwindigkeit eines Überschallstrahles 21 erfordern, um zu verhindern. dass zu viele, hochwertige Materialteilchen 14 vor bzw. nach dem Ausblasprozess des jeweils auszusortierenden Teilchens unerwünscht in die minderwertige Fraktion geleitet werden. Die schiefe Ebene 13 aus Fig.2 besteht gemäß Fig, 4a/b aus zahlreichen rinnenförmigen Spuren 30 , die konkav gemäß Querschnitt 31 ausgebildet sind und eine präzise Führung der Materialteilchen 14 relativ zu den Düsenöffnungen 15 gewährleisten. Vorteilhafterweise ist jede Düseneinheit gemäß Fig. 4a/b mit mehreren Düsenöffnungen 15 versehen. Dadurch wird sichergestellt, dass das für Überschallgeschwindigkeit erforderliche kritische Expansionsverhältnis auf jeden Fall erreicht wird und dass ein auf die Materialteilchenfläche gleichmässig verteilter mechanischer Kraftstoß resultiert.
In the Fig. 1 illustrated system for carrying out the method has a conveyor unit 4 for the material particles 14, an inclined plane 13 with supersonic nozzles 15, lighting devices 6, 7 for fluorescence, a separation unit for high-quality and low-grade material, an optical spectrometer 10 with beam scanner, evaluation and valve control is , as in FIG. 1 shown in a reservoir 1 to be analyzed optically analyzed and then separated into different fractions 2 and 3 to be separated particulate material 14 with a conveyor system 4 on the inclined plane 5, on which it slides down by gravity. When illuminated with the light sources 6 and 7 with a high UV component, most of the plastic material particles emit fluorescent light 8, which is detected by a known scanner system 9 transversely to the transport direction over the entire width of the inclined plane and directed onto an optical spectrometer 10. A likewise known per se analysis system 11 calculated from the spectra both the type of the respective plastic, as well as the color, as well as any contamination of the plastic particles, eg by gasoline, diesel, engine oil, paint thinner, urine, pesticides, etc. If pure, ie for Food packaging suitable plastic material, such as polyethylene, it travels by gravity in the channel 2 and is supplied to the plastic recycling for beverage bottles or other food packaging. If contamination or coloring or other plastic materials are present, the so classified material particles are deflected by supersonic jet into the channel 3 and used in the context of a recycling for the production of minor plastics.
Here, in the region of the nozzle, the channel grooves on a recess, as seen from Fig. 4a seen. The channels of the inclined plane end immediately after the nozzles 21 and the trajectories of the material particles 14 end, supported by a separating plate directly in the collecting containers.
Here all nozzles 15 are supplied with compressed air via a common transverse pipe 18 and are pulsed on and off under the control of the analysis unit. In the process for the separation of the material particles according to the invention by a multiple supersonic nozzle system according to Fig. 2 . Fig. 3 and Fig. 4a / b, the particle material 14 reaching the inclined plane 13 from the vibratory linear conveyor 12 is sorted by gravity through the supersonic nozzle 15 into the recycling channel 16 for inferior plastics or, alternatively, into the recycling channel 17 for food grade plastics. Transverse to the transport direction, a plurality of identical nozzles 15 are not shown in their entirety in the figures, arranged at a distance from the dimensions of the material components 14. All nozzles 15, 25 are supplied with oil-free, dry compressed air via the transverse channel 18. The respective nozzle 15 is connected via a branch line 19 and the quick-acting valve 20 to the transverse channel 18. The opening and closing function of the respective quick-acting valve 20 takes place according to control by the analysis unit 11 Fig. 1 , An essential part of the invention is based on the use of high-speed, in particular supersonic nozzles 15. The latter is due to the fact that for economic reasons, a minimum mass flow of material particles 14 must be supported by the arrangement. such that the particle velocity on the inclined plane 13 reaches values requiring a maximum velocity of a supersonic jet 21 to prevent. that too many high-quality material particles 14 are passed undesirably into the inferior fraction before or after the blow-out process of the particle to be sorted out. The inclined plane 13 off Fig.2 exists according to Fig. 4a / b of numerous channel-shaped tracks 30, which are concave in cross section 31 and ensure a precise guidance of the material particles 14 relative to the nozzle openings 15. Advantageously, each nozzle unit is according to Fig. 4a / b provided with a plurality of nozzle openings 15. This ensures that the critical expansion ratio required for supersonic speed is achieved in any case and that a mechanical force impulse evenly distributed over the material particle surface results.

Die Beleuchtung der Materialteichen 14 erfolgt hier zur Anregung mit Licht von beiden Seiten gemäss Fig. 2 mittels zwei Lichtquellen 36 und 37. Um den Lichtdurchgang durch die rinnenförmigen Spuren 30, 31 zu gewährleisten, sind letztere mit einer lichtdurchlässigen Scheibe 23 aus Quarzglas versehen, die gegenüber der Rinne einen kleineren Neigungswinkel aufweist, um einen störungsfreien Übergang zwischen Rinne und Glas zu erreichen. Der jeweils auf das Spektrometer mit Analysesystem 11 gemäss Fig.1 treffende Fluoreszenzlichtstrahl ist durch die Strahlene 22 in den Figuren 2 und 3 dargestellt.
Zur Optimierung der Farberkennung ist in der Ausführungsform der Fig. 5 eine Lichtquelle 41, die die Materialteilchen durchleuchtet wobei mit einem nachgeschalteten Farbspektrometer z.B. die aus milchigen Polyolefinen oder aus Aluminium bestehenden Verschlußkappen von Getränkeflaschen identifiziert werden. Mit dieser Anordnung können insbesondere auch Störstoffe, wie z.B. Holz und Metallfolien identifiziert und ausgeschleust werden. Zu diesem Zweck wird der Lichtdurchtritt durch die Rinne 30 durch ein UV-Strahlung reflektierendes Filter 38 , das die Strahlung der Lichtquelle zur Anregung von Fluoreszenzlicht auf die Unterseite der Kunststoffteile lenkt, in Kombination mit einem optischen Hochpassfilter 40 , welches Licht einer Halogenlichtquelle 41 oberhalb einer Wellenlange von ca. 480 nm zur Spektralanalyse durchläßt, ermöglicht. Das Filter 38 wird durch eine Schutzscheibe 42 vor Verschleiss, insbesondere mechanischem, geschützt.
The lighting of the material ponds 14 takes place here for excitation with light from both sides Fig. 2 by means of two light sources 36 and 37. To ensure the passage of light through the channel-shaped tracks 30, 31, the latter are provided with a translucent disc 23 made of quartz glass, which has a smaller angle of inclination relative to the channel in order to ensure a trouble-free transition between Ridge and glass to reach. The respectively on the spectrometer with analysis system 11 according to Fig.1 The fluorescent light beam is incident through the rays 22 in the Figures 2 and 3 shown.
To optimize the color detection is in the embodiment of the Fig. 5 a light source 41, which transilluminates the material particles, with a downstream color spectrometer, for example, the existing of milky polyolefins or aluminum caps of beverage bottles are identified. With this arrangement, in particular, contaminants such as wood and metal foils can be identified and removed. For this purpose, the passage of light through the channel 30 through a UV radiation-reflecting filter 38, which directs the radiation of the light source for exciting fluorescent light on the underside of the plastic parts, in combination with an optical high-pass filter 40, which light a halogen light source 41 above a Wavelength of about 480 nm for spectral analysis passes allows. The filter 38 is protected by a protective plate 42 against wear, in particular mechanical.

In einer besonderen Ausbildung der Erfindung erfolgt die Partikelrennung gemeinsam mit dem Düsenstrahlverfahren auch daß den auszusortierenden Teilchen gemäß Fig. 4c über eine Hochspannungskoronaentladung 43 an einer Metallspitze 44 eine elektrische Ladung aufgesprüht wird und diese elektrostatisch geladenen Materialteilchen anschliessend während des freien Falls durch ein elektrisches Feld 45 abgelenkt und somit in die Fraktionen hochwertige 46 und niederwertige Kunststoffe 47 separiert werden.
Während die Erfindung anhand einer bevorzugten Ausführungsform und möglicher Alternativen beschrieben worden ist, sind dem Fachmann, an den sich diese Beschreibung richtet, mannigfache alternative Anordnungen und Auslegungen zur Durchführung der Erfindung, wie sie durch die Ansprüche definiert wird, offensichtlich und geläufig.
In a particular embodiment of the invention, the particle separation is carried out together with the jet stream process and that the particles to be sorted out according to Fig. 4c an electric charge is sprayed on a metal tip 44 via a high-voltage corona discharge 43 and these electrostatically charged material particles are subsequently deflected by an electric field 45 during the free fall and thus high-grade 46 and low-grade plastics 47 are separated into the fractions.
While the invention has been described in terms of a preferred embodiment and possible alternatives, various alternative arrangements and embodiments for carrying out the invention as defined by the claims will be obvious and familiar to those skilled in the art to which this description pertains.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Vorratsbehälterreservoir
22
Fraktion oder KanalFaction or channel
33
Fraktionfraction
44
Fördersystemconveyor system
55
schiefe Ebeneinclined plane
66
Lichtquellelight source
77
Lichtquellelight source
88th
Fluoreszenzlichtfluorescent light
99
Scannersystemscanner system
1010
Spektrometerspectrometer
1111
Analysesystem oder AnalyseeinheitAnalysis system or analysis unit
1212
VibrationslinearfördererLinear vibratory conveyor
1313
schiebe Ebeneslide level
1414
Teilchenmaterialparticulate
1515
Überschalldüse oder DüsenöffnungSupersonic nozzle or nozzle opening
1616
Recyclingkanalrecycling channel
1717
Recyclingkanalrecycling channel
1818
QuerkanalQuerkanal
1919
Stichleitungstub
2020
SchnellschaltventilFast switching valve
2121
ÜberschallstrahlSupersonic jet
2222
Strahlbeam
2323
Scheibedisc
2525
Überschalldüse oder DüsenöffnungSupersonic nozzle or nozzle opening
3030
Spuren, RinnenTraces, gutters
3131
Querschnitt durch 30Cross section through 30
3636
Lichtquellelight source
3737
Lichtquellelight source
3838
Filterfilter
3939
UV-LichtquelleUV-light source
4040
HochpassfilterHigh Pass Filter
4141
Lichtquellelight source
4242
Schutzscheibewindscreen
4343
HochspannungskoronaentladungHigh-voltage corona discharge
4444
Metallspitzemetal tip
4545
elektrisches Feldelectric field
4646
Kunststoffeplastics
4747
Kunststoffeplastics

Claims (8)

  1. Method for identifying and separating plastics material particles having at least two light sources (6, 7) for producing fluorescent light (8) and for irradiating the plastics material particles, wherein the at least two light sources have different emission spectrums,
    an optical recognition system comprising at least one optical spectrometer (10) onto which the fluorescent light (8) emitted by the plastics material particles is directed and at least one additional spectrometer which detects the transmitted and/or reflected light from the plastics material particles,
    an analysis system (11) for evaluating spectrums, wherein the analysis system (11) by means of spectral analysis using the light (8) absorbed by the spectrometers (10) calculates the type of the respective plastics material, the colour and impurities of the plastics material particles,
    a separation unit having an inclined plane for conveying and separating the plastics material particles, wherein the plastics material particles during their path on the inclined plane (13) are classified by the optical recognition system in accordance with the signals of the at least two optical spectrometers (10) and are separated into at least two material fractions in accordance with the classification, wherein the inclined plane has channel grooves, wherein at least one nozzle is arranged in each channel groove, wherein the surface-area of the nozzle in the channel groove and the surface-area of the smallest plastics material particle which is intended to be sorted are adapted to each other in such a manner that the surface-area of the nozzle is no greater than the surface-area of the smallest material particle which is intended to be sorted.
  2. Method according to claim 1, characterised in that the separation unit sprays an electrical charge onto the material particles (14) which are intended to be sorted via a corona discharge (43) at a metal tip (44) above the material flow in each channel and these material particles (14) which are selectively charged in this manner are subsequently redirected during a free fall by an electrical field (45) and consequently separated.
  3. Method according to claims 1 to 2, characterised in that the material particles are lifted out of the channel by means of a weak nozzle jet and subsequently drawn away via a hood which is acted on with reduced pressure.
  4. Method according to claims 1 to 3, characterised in that the channels of the inclined plane (13) are closed in the portion between the material charging member and the separation device at the upper side and there is produced within the channels a gas flow which supports the acceleration of the material particles (14) while they slide down and subsequently maintains a uniform speed.
  5. Method according to claims 1 to 4, characterised in that the channels of the inclined plane (13) terminate directly downstream of the nozzles (15, 25) and the flight paths of the material particles (14), supported by a partition sheet, terminate directly in the collection containers.
  6. Method according to claims 1 to 5, characterised in that all the nozzles (15) are supplied with compressed air via a common transverse pipe (18) and the nozzles (15) are switched on and off in a pulsed manner by means of control by the analysis unit.
  7. Method according to claims 1 to 6, characterised in that the at least one spectrometer is selected from fluorescence spectrometers, IR spectrometers, UV/VIS spectrometers.
  8. Device for identifying and separating plastics material particles, suitable for carrying out a method according to at least one of claims 1 to 7, comprising
    at least two light sources (6, 7) for producing fluorescent light (8) and for irradiating the plastics material particles, wherein the at least two light sources have different emission spectrums,
    an optical recognition system having at least one optical spectrometer (10) onto which the fluorescent light (8) emitted by the plastics material particles is directed and at least one additional spectrometer which detects the transmitted and/or reflected light from the plastics material particles,
    and having an analysis system (11) for evaluating spectrums, wherein the analysis system (11) is constructed, by means of spectral analysis using the light (8) absorbed by at least two spectrometers (10), to calculate the type of the respective plastics material, the colour and impurities of the plastics material particles,
    a separation unit having an inclined plane for conveying and separating the plastics material particles, wherein
    the plastics material particles during their path on the inclined plane (13) are classified by the optical recognition system in accordance with the signals of the at least two optical spectrometers (10) and are separated by means of the separation unit into at least two material fractions in accordance with the classification, wherein the inclined plane has channel grooves, wherein at least one nozzle is arranged in each channel groove, wherein the surface-area of the nozzle in the channel groove and the surface-area of the smallest plastics material particle which is intended to be sorted are adapted to each other in such a manner that the surface-area of the nozzle is no greater than the surface-area of the smallest material particle which is intended to be sorted.
EP02022206.3A 2001-10-02 2002-10-01 Method and apparatus for indentification and separation of plastic particles Expired - Lifetime EP1300200B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10149505A DE10149505A1 (en) 2001-10-02 2001-10-02 Method and device for selecting plastics and other materials with regard to color and composition
DE10149505 2001-10-02

Publications (2)

Publication Number Publication Date
EP1300200A1 EP1300200A1 (en) 2003-04-09
EP1300200B1 true EP1300200B1 (en) 2017-09-27

Family

ID=7701744

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02022206.3A Expired - Lifetime EP1300200B1 (en) 2001-10-02 2002-10-01 Method and apparatus for indentification and separation of plastic particles

Country Status (2)

Country Link
EP (1) EP1300200B1 (en)
DE (1) DE10149505A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO322775B1 (en) 2004-09-24 2006-12-11 Tomra Systems Asa Device and method for detecting a medium
ES2323618B1 (en) * 2007-03-05 2010-04-27 Picvisa Machine Vision Systems S.L. MACHINE WITH ARTIFICIAL VISION FOR THE AUTOMATIC SEPARATION OF RECYCLABLE PLASTICS BY COMPOSITION AND COLORS, WITH MULTIESPECTRAL VISION.
DE102010048101A1 (en) 2010-01-25 2011-07-28 Krieg, Gunther, Prof. Dr.-Ing., 76227 Method and device for detecting and sorting out optically inactive substances
CH702891B1 (en) * 2010-03-25 2013-07-15 Qualysense Ag Apparatus and method for sorting agricultural particles.
BR112016030481A2 (en) * 2014-06-23 2021-01-12 Tsi Inc QUICK ANALYSIS OF MATERIALS WITH THE USE OF SPECTROSCOPY LIBS
DE102014111871B3 (en) 2014-08-20 2015-12-31 Unisensor Sensorsysteme Gmbh Sorting plant and process for separating material fractions
CN104299315B (en) * 2014-10-29 2016-09-28 云南大学 A kind of Waste sorting recycle method
US10316173B2 (en) 2016-02-01 2019-06-11 Sensors Unlimited, Inc. Systems and methods for marking plastics
DE102016214496A1 (en) * 2016-08-04 2018-02-08 Gunther Krieg Device for the identification of substances
US10478861B2 (en) * 2016-11-28 2019-11-19 Hydro Aluminium Rolled Products Gmbh System for analyzing and sorting material
SE1751115A1 (en) 2017-09-14 2019-03-15 Bomill Ab Object conveying and/or sorting system
DE102019127708A1 (en) * 2019-10-15 2021-04-15 Kurtz Gmbh Method and device for sorting and / or measuring the amount of foam particles
DE102019215878B4 (en) * 2019-10-15 2023-11-30 Adidas Ag Method and device for sorting and/or measuring the amount of foam particles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549659A (en) * 1982-08-04 1985-10-29 Cra Exploration Pty. Ltd. Particle sorting apparatus utilizing controllable corona discharge needle
EP0476416A2 (en) * 1990-09-14 1992-03-25 Bayer Ag Method for the masking of plastics
WO1992016312A1 (en) * 1991-03-14 1992-10-01 Wellman, Inc. Method and apparatus of sorting plastic items
GB2264558A (en) * 1992-02-26 1993-09-01 British Petroleum Co Plc Method of identifying polymer materials
DE4231477A1 (en) * 1992-09-19 1994-03-24 Han Kyung Tae Sorting and sepn. of plastic waste and into its component types - by marking with a suitable dye during mfr. and combined measurement of fluorescent wavelength and lifetime
US5329127A (en) * 1992-04-23 1994-07-12 Bayer Ag Method for the identification of plastics
US5917585A (en) * 1997-09-22 1999-06-29 Roe; Mitchell Gregg Method for distinguishing pen from other materials
JP2001009384A (en) * 1999-07-01 2001-01-16 Etaanaru:Kk Color sorting device for granulated material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3119329C2 (en) * 1981-05-15 1983-03-31 Gerresheimer Glas AG, 4000 Düsseldorf Device for color sorting of old hollow glass
CA1242260A (en) 1986-04-24 1988-09-20 Leonard Kelly Multisorting method and apparatus
JPH01249181A (en) * 1988-03-31 1989-10-04 Tdk Corp Parts sorting method for automatic appearance screening machine for chip parts
DE4019203A1 (en) 1990-06-15 1991-12-19 Hubertus Exner METHOD AND DEVICE FOR SORTING OLD GLASS
US6060677A (en) 1994-08-19 2000-05-09 Tiedemanns-Jon H. Andresen Ans Determination of characteristics of material
WO1996006690A2 (en) 1994-08-25 1996-03-07 Zmb Maschinenbau Gmbh Sorting installation (colour sorting 'fsa'/presorting 'vs'/air separation 'ws') for sorting hollow glass articles, particularly recycled glass
BE1013056A3 (en) 1999-06-28 2001-08-07 Barco Elbicon Nv Method and device for sorting products.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549659A (en) * 1982-08-04 1985-10-29 Cra Exploration Pty. Ltd. Particle sorting apparatus utilizing controllable corona discharge needle
EP0476416A2 (en) * 1990-09-14 1992-03-25 Bayer Ag Method for the masking of plastics
WO1992016312A1 (en) * 1991-03-14 1992-10-01 Wellman, Inc. Method and apparatus of sorting plastic items
GB2264558A (en) * 1992-02-26 1993-09-01 British Petroleum Co Plc Method of identifying polymer materials
US5329127A (en) * 1992-04-23 1994-07-12 Bayer Ag Method for the identification of plastics
DE4231477A1 (en) * 1992-09-19 1994-03-24 Han Kyung Tae Sorting and sepn. of plastic waste and into its component types - by marking with a suitable dye during mfr. and combined measurement of fluorescent wavelength and lifetime
US5917585A (en) * 1997-09-22 1999-06-29 Roe; Mitchell Gregg Method for distinguishing pen from other materials
JP2001009384A (en) * 1999-07-01 2001-01-16 Etaanaru:Kk Color sorting device for granulated material

Also Published As

Publication number Publication date
EP1300200A1 (en) 2003-04-09
DE10149505A1 (en) 2003-04-10

Similar Documents

Publication Publication Date Title
EP1300200B1 (en) Method and apparatus for indentification and separation of plastic particles
EP1105715B1 (en) Method and device for detecting and differentiating between contaminations and accepts as well as between different colors in solid particles
EP0530934B1 (en) Method for recovering pure fractions of plastics
EP1433541A1 (en) Device for ejecting metal fractions from a stream of bulk material
EP3967413A1 (en) Sorting apparatus with libs laser device
DE2212515A1 (en) Sorting device
EP2700456A1 (en) Arrangement and method for the sorting of plastic material
EP2392414A1 (en) Method and device for detecting an object containing a target mineral
EP0897762B1 (en) Device for sorting raw, pre-treated or recycled bulk material
EP0461616B1 (en) Method and device for sorting waste glass
DE3828067C2 (en)
DE19816881B4 (en) Method and device for detecting and distinguishing between contaminations and acceptances as well as between different colors in solid particles
EP2348304B1 (en) Device for detecting and sorting out optical inactive substances
DE19852369C1 (en) Apparatus for continually checking cylindrical test pieces e.g. bottle closures for manufacturing faults and picking out those with faults
EP1023945B1 (en) Method and device for sorting a waste mixture
DE10123304A1 (en) Line for automatic sorting of waste includes station with compressed air jets for ballistic separation of film from heavier particles
DE4305562A1 (en) Method and device for sorting packaging wastes
WO1996006690A2 (en) Sorting installation (colour sorting 'fsa'/presorting 'vs'/air separation 'ws') for sorting hollow glass articles, particularly recycled glass
DE9106292U1 (en) Device for sorting waste material, especially waste glass, according to its colour
EP0426893A1 (en) Method and device for sorting
DE102005032493A1 (en) Equipment separating natural- and artificial corks, illuminates them with electromagnetic beam and compares reflected and emitted spectra with results from natural cork
DE4437162C2 (en) Linear sorter
DE3731402A1 (en) Plant for separating waste hollow glass items, in particular bottles, at least in terms of clear and coloured glass
DE20310406U1 (en) Plastic waste sorting unit, consists of detection stations with sensors for material, shape and colour, and an ejection system with compressed air nozzles
DE4302736C2 (en) Method and device for sorting plastic containers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031009

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20061103

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBX Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2E

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170421

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 931511

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50216255

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50216255

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171001

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171227

26N No opposition filed

Effective date: 20180628

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20211013

Year of fee payment: 20

Ref country code: DE

Payment date: 20211013

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211019

Year of fee payment: 20

Ref country code: CH

Payment date: 20211014

Year of fee payment: 20

Ref country code: BE

Payment date: 20211013

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50216255

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20221001

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 931511

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221001