EP1294956B1 - Corrosion resistant material - Google Patents

Corrosion resistant material Download PDF

Info

Publication number
EP1294956B1
EP1294956B1 EP01942857A EP01942857A EP1294956B1 EP 1294956 B1 EP1294956 B1 EP 1294956B1 EP 01942857 A EP01942857 A EP 01942857A EP 01942857 A EP01942857 A EP 01942857A EP 1294956 B1 EP1294956 B1 EP 1294956B1
Authority
EP
European Patent Office
Prior art keywords
less
equal
cold
strength
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01942857A
Other languages
German (de)
French (fr)
Other versions
EP1294956A1 (en
Inventor
Herbert Aigner
Josef Bernauer
Gabriele Saller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH
Schoeller Bleckmann Oilfield Technology GmbH and Co KG
Original Assignee
Schoeller Bleckmann Oilfield Technology GmbH and Co KG
Boehler Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3685991&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1294956(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schoeller Bleckmann Oilfield Technology GmbH and Co KG, Boehler Edelstahl GmbH filed Critical Schoeller Bleckmann Oilfield Technology GmbH and Co KG
Publication of EP1294956A1 publication Critical patent/EP1294956A1/en
Application granted granted Critical
Publication of EP1294956B1 publication Critical patent/EP1294956B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys

Definitions

  • the invention relates to a material with high corrosion resistance in media with high chloride concentration, suitable for facilities in oilfield technology, in particular for drill string components consisting of the elements Carbon (C), silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), nickel (Ni), copper (Cu), nitrogen (N), iron (Fe) and production-related Impurities, which material thermoformed and after cooling cold-worked.
  • drill string components consisting of the elements Carbon (C), silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), nickel (Ni), copper (Cu), nitrogen (N), iron (Fe) and production-related Impurities, which material thermoformed and after cooling cold-worked.
  • Corrosion resistant materials showing paramagnetic behavior and high strength are for facilities in the oil field technology, in particular for drill string components, usable. However, they are getting higher Parts requirements and stricter standards of materials gestelit or created.
  • the material For directional measurements when drilling or sinking a hole with to perform a necessary accuracy, the material must have a Permeability of less than 1.005.
  • a high mechanical strength in particular a high 0.2% elongation value, is in the With regard to an advantageous plant engineering conception and a high Operational safety of the parts required because the stresses of the same up provided for the limits of the respective material load capacity and always larger drilling depths are required. Furthermore, a notched impact strength of Material important because often abrupt or jerky high loads from the Parts have to be endured.
  • the parts are often mounted or used at low temperatures, so that also the toughness transition temperature (FATT) of the material a high Significance.
  • FATT toughness transition temperature
  • the invention sets itself the goal of a paramagnetic material with high Yield point, high notched impact strength and high permanent fatigue strength as well to create a low toughness transition temperature at the same time corrosion resistant, in particular resistant to pitting, in chloride-containing media.
  • the advantages achieved by the invention are in particular in the alloying effect of a balanced nitrogen concentration. It It has surprisingly been found that in the production of parts a particular high output can be achieved. Although in a hot deformation no nitride precipitations can be given, the deformability of the Material at fluctuating forging heat at contents above 0.29 wt .-% Nitrogen leaps and bounds. Also can in the narrow concentration range of 0.17 to 0.29 wt.% N is an excretion of dissociated phases be prevented easily when the other alloying elements in the salary ranges. Nitrogen, nickel and molybdenum synergistically provide an extremely high resistance Pitting.
  • the carbon content of the alloy is of a corrosion-chemical Limited reasons, with a further reduction of the same Corrosion resistance of the material, especially the hole and Stress corrosion cracking, increase.
  • the silicon content in the material according to the invention 0.89 wt .-%, from corrosion-chemical reasons and in particular the low magnetic Because of permeability, do not exceed.
  • the nitrogen solubility of the alloy and austenite stabilization are achieved Promoted manganese.
  • the manganese content with 4.49 wt .-% limited to the top and for nickel are introduced into the alloy.
  • a minimum content of 0.51% by weight Manganese is needed for effective sulfur fixation.
  • chromium is the basis for the formation of a Passive layer on the surface of the parts represents.
  • Alloy elements in particular Mo and N to prevent a large extent, are Contents of at least 25.1 wt.% Cr required. Due to higher contents than 38,9 Wt .-% increases the risk of excretion of intermetallic phases.
  • the alloying element nickel is important in the intended concentrations Stabilization of the cubic face-centered atomic lattice, ie for small ones Permeability, and interactive with chromium and molybdenum effective for one Prevention of pitting corrosion. Up to 38.9 wt .-% are the toughness, the FATT and the fatigue strength advantageously increased. When falling below of 22.9% by weight, the stabilizing effect is increasingly reduced with regard to corrosion, in particular stress corrosion cracking, in chloride-containing media and regarding the magnetic values in the Cold deformation; So it increases the tendency to form zones with Verformungsmartentsit.
  • the nitrogen content is synergistic to the rest Alloy composition matched.
  • This content of 0.17 to 0.29% by weight has the further advantage that a block solidify under atmospheric pressure can be left without gas bubbles by exceeding the Solubility limit in the solidification are formed in this.
  • High mechanical property values at a relative magnetic Permeability of 1.004 and smaller are achieved when the material is in the precipitation-free state at least 3.6 times hot-formed and at one Temperature of 100 to 590 ° C, preferably from 360 to 490 ° C, with a Forming degree of less than 38%, preferably from 6 to 19%, cold-worked.
  • the material has a hole corrosion potential in neutral Solution at room temperature greater than 1100 mVH / 1000 ppm chlorides and / or 1000 mVH / 80000 ppm chlorides.
  • Table 1 shows the chemical composition of the alloys according to the invention and of the comparative materials. Furthermore, the figures for the hot deformation and the cold deformation of the forgings of this table can be removed. Table 2 shows the magnetic and mechanical characteristics of these materials. With the sample designation 1 to 5 are comparative alloys and with the sample designation A to E, alloys composed according to the invention are summarized in Table 1. The test results of the materials are shown in Table 2, which will be briefly described below.
  • the alloys 1 to 3 have low nitrogen contents , therefore show no desired solidification in a cold molding , as can be seen from the R p0,2 values, and also for the permanent fatigue strength were low numerical values (not shown in the table) of ⁇ 270, 210 and 290 N / mm 2 determined. Corrosion-wise, neither the SCC nor the CPT values are sufficient, which is due in particular to low Mo contents and, in the case of material 2, to a low Cr content. Alloys 4 and 5 have a not sufficiently high and an excessive nitrogen concentration, which leads to higher yield strength values and also raises the value of flexural fatigue strength ( ⁇ 308, 340 N / mm 2 ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)
  • Heat Treatment Of Steel (AREA)
  • Earth Drilling (AREA)
  • Heat Treatment Of Articles (AREA)
  • Hard Magnetic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

The invention relates to a material with high corrosion resistance in media with high chloride concentration, suitable for equipment in oil-field technology. According to the invention, for making a paramagnetic material with high yield strength, high notched impact strength, high a fatigue strength under reversed stresses and a low ductile transition temperature with concomitant improved high corrosion resistance, in particular, resistance to hole corrosion there is provided a material consisting essentially of the elements in wt. %: carbon (C) less than/equal to 0.03; silicon (Si) less than/equal to 0.89; manganese (Mn) 0.51 to 4.49; chromium (Cr) 25.1 to 38.9; molybdenum (Mo) 2.1 to 5.9; nickel (Ni) 22.9 to 38.9; copper (Cu) 0.51 to 1.49; nitrogen (N) 0.17 to 0.19; iron (Fe) the remainder, along with impurities arising during production. Said material is hot formed in a state free of nitride precipitates and other precipitated associated phases and, after cooling, is cold formed in a ferrite-free state and has a permeability of less than 1.0048; a yield strength (Rp02) greater than 710 N/mm2; a notched impact strength of over 60 J; a fatigue strength under reversed stresses of at least ±310 N/mm 2, where N=107 load reversals and a fracture appearance transition temperature of less than -28° C. (FATT).

Description

Die Erfindung betrifft einen Werkstoff mit großer Korrosionsbeständigkeit in Medien mit hoher Chloridkonzentration, geeignet für Einrichtungen in der Ölfeldtechnik, insbesondere für Bohrstrangkomponenten, bestehend aus den Elementen Kohlenstoff (C), Silizium (Si), Mangan (Mn), Chrom (Cr), Molybdän ( Mo), Nickel (Ni), Kupfer (Cu), Stickstoff (N), Eisen (Fe) sowie herstellungsbedingten Verunreinigungen, welcher Werkstoff warmverformt und nach einer Abkühlung kaltverformt ist.The invention relates to a material with high corrosion resistance in media with high chloride concentration, suitable for facilities in oilfield technology, in particular for drill string components consisting of the elements Carbon (C), silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), nickel (Ni), copper (Cu), nitrogen (N), iron (Fe) and production-related Impurities, which material thermoformed and after cooling cold-worked.

Korrosionsbeständige Werkstoffe, die paramagnetisches Verhalten zeigen und hohe Festigkeit aufweisen, sind für Einrichtungen in der Ölfeldtechnik, insbesondere für Bohrstrangkomponenten, verwendbar. Allerdings werden immer höhere Anforderungen an die Teile und immer strengere Maßstäbe an die Werkstoffe gestelit bzw. angelegt.Corrosion resistant materials showing paramagnetic behavior and high strength, are for facilities in the oil field technology, in particular for drill string components, usable. However, they are getting higher Parts requirements and stricter standards of materials gestelit or created.

Um Richtungsmessungen bei einem Abteufen bzw. Niederbringen einer Bohrung mit einer notwendigen Genauigkeit durchführen zu können, muß der Werkstoff eine Permeabilität von kleiner als 1,005 haben.For directional measurements when drilling or sinking a hole with to perform a necessary accuracy, the material must have a Permeability of less than 1.005.

Eine hohe mechanische Festigkeit, insbesondere ein hoher 0,2% Dehnwert, ist im Hinblick auf eine vorteilhafte anlagentechnische Konzeption und auf eine hohe Betriebssicherheit der Teile erforderlich, weil die Beanspruchungen derselben bis zu den Grenzwerten der jeweiligen Werkstoffbelastbarkeit vorgesehen und immer größere Bohrtiefen erforderlich sind. Weiters ist eine Kerbschlagzähigkeit des Materials wichtig, weil oft schlagartig oder stoßartig hohe Belastungen von den Teilen ertragen werden müssen.A high mechanical strength, in particular a high 0.2% elongation value, is in the With regard to an advantageous plant engineering conception and a high Operational safety of the parts required because the stresses of the same up provided for the limits of the respective material load capacity and always larger drilling depths are required. Furthermore, a notched impact strength of Material important because often abrupt or jerky high loads from the Parts have to be endured.

Insbesondere für Bohrstrangteile und Schwerstangen ist in vielen Fällen eine hohe Dauerwechselfestigkeit von Bedeutung, weil bei einer Rotation der Teile bzw. der Schwerstangen schwellende oder wechselnde Beanspruchungen vorliegen können.In particular, for drill string parts and drill collars is in many cases a high Permanence fatigue strength of importance, because in a rotation of the parts or the Schwerstangen swelling or changing stresses may be present.

Die Teile werden oft bei niedrigen Temperaturen montiert oder eingesetzt, so daß auch der Zähigkeitsübergangstemperatur (FATT) des Werkstoffes ein hoher Stellenwert zukommt.The parts are often mounted or used at low temperatures, so that also the toughness transition temperature (FATT) of the material a high Significance.

Entscheidende Bedeutung besitzt das Korrosionsverhalten für in der Ölfeldtechnik verwendete Teile, das sind einerseits die Spannungsrißkorrosion (SCC) und andererseits die Lochkorrosion ( Pitting, CPT).Of decisive importance is the corrosion behavior in oil field technology parts used, these are on the one hand the stress corrosion cracking (SCC) and on the other hand pitting corrosion (pitting, CPT).

Wie aus obigen Darlegungen hervorgeht, sind Werkstoffe mit großer Korrosionsbeständigkeit in Medien mit hoher Chloridkonzentration wie z.B. JP-A-0104781 die für Einrichtungen in der Ölfeldtechnik geeignet sind, gleichzeitig einer Vielzahl von hohen Beanspruchungen ausgesetzt.As can be seen from the above, are materials with large Corrosion resistance in high chloride media such as e.g. JP-A-0104781 for Facilities in oil field technology are suitable, at the same time a variety of exposed to high loads.

Im stand der Technik gibtes außerdem Legierungen die unter dem Namen URANUS SB8 oder URANUS B28 schon bekannt sind.In the state of the art there are also alloys under the name URANUS SB8 or URANUS B28 are already known.

Die Erfindung setzt sich zum Ziel, einen paramagnetischen Werkstoff mit hoher Dehngrenze, hoher Kerbschlagzähigkeit und hoher Dauerwechselfestigkeit sowie einer niedrigen Zähigkeitsübergangstemperatur zu erstellen, der gleichzeitig korrosionsbeständig, insbesondere beständig gegen Lochkorrosion, in chloridhaltigen Medien ist.The invention sets itself the goal of a paramagnetic material with high Yield point, high notched impact strength and high permanent fatigue strength as well to create a low toughness transition temperature at the same time corrosion resistant, in particular resistant to pitting, in chloride-containing media.

Dieses Ziel wird bei einem Werkstoff der eingangs genannten Art dadurch erreicht, daß diese im wesentlichen aus den Elementen in Gew.-% Kohlenstoff (C) kleiner/gleich 0,03 Silizium (Si) kleiner/gleich 0,89 Mangan (Mn) 0,51 bis 4,49 Chrom (Cr) 25,1 bis 38,9 Molybdän (Mo) 2,1 bis 5,9 Nickel (Ni) 22,9 bis 38,9 Kupfer (C) 0,51 bis 1,49 Stickstoff (N) 0,17 bis 0,29 Eisen (Fe) Rest sowie herstellungsbedingte Verunreinigungen besteht, welcher Werkstoff im nitridausscheidungsfreien Zustand und ohne ausgeschiedene vergesellschaftete Phasen warmverformt und nach einer Abkühlung im ferritfreien Zustand kaltverformt ist und
eine Permeabilität von kleiner als 1,0048
eine Dehngrenze (Rp0,2) von größer als 710 N/mm2
eine Kerbschlagzähigkeit von über 60 J
eine Dauerwechselfestigkeit von größer ±310 N/mm2
bei N = 107 Lastwechsel und
eine Zähigkeitstemperatur von unter -28°C (FATT)
aufweist.
This goal is achieved in a material of the type mentioned in that it consists essentially of the elements in wt .-% Carbon (C) less than or equal to 0.03 Silicon (Si) less than or equal to 0.89 Manganese (Mn) 0.51 to 4.49 Chrome (Cr) 25.1 to 38.9 Molybdenum (Mo) 2.1 to 5.9 Nickel (Ni) 22.9 to 38.9 Copper (C) 0.51 to 1.49 Nitrogen (N) 0.17 to 0.29 Iron (Fe) rest as well as production-related impurities, which material is thermoformed in nitridausscheidungsfreien condition and without excreted socialized phases and cold-formed after cooling in the ferrite-free state, and
a permeability of less than 1.0048
a yield strength (R p0.2 ) greater than 710 N / mm 2
an impact strength of more than 60 J
a permanent fatigue strength of greater than ± 310 N / mm 2
at N = 10 7 load changes and
a toughness temperature below -28 ° C (FATT)
having.

Die durch die Erfindung erreichten Vorteile liegen insbesondere in der legierungstechnischen Wirkung einer ausgewogenen Stickstoffkonzentration. Es wurde überraschend gefunden, daß bei der Herstellung von Teilen ein besonders hohes Ausbringen erreicht werden kann. Obwohl bei einer Warmverformung keinerlei Nitridausscheidungen gegeben sein können, wird die Verformbarkeit des Werkstoffes bei schwankender Schmiedehitze bei Gehalten über 0,29 Gew.-% Stickstoff sprunghaft verschlechtert. Auch kann im engen Konzentrationsbereich von 0,17 bis 0,29 Gew.-% N eine Ausscheidung von vergeseltschafteten Phasen auf einfache Weise verhindert werden, wenn die weiteren Legierungselemente in den vorgesehenen Gehaltsbereichen vorliegen. Stickstoff, Nickel und Molybdän erbringen dabei auch synergetisch eine äußerst hohe Resistenz gegen Lochkorrosion (Pitting).The advantages achieved by the invention are in particular in the alloying effect of a balanced nitrogen concentration. It It has surprisingly been found that in the production of parts a particular high output can be achieved. Although in a hot deformation no nitride precipitations can be given, the deformability of the Material at fluctuating forging heat at contents above 0.29 wt .-% Nitrogen leaps and bounds. Also can in the narrow concentration range of 0.17 to 0.29 wt.% N is an excretion of dissociated phases be prevented easily when the other alloying elements in the salary ranges. Nitrogen, nickel and molybdenum synergistically provide an extremely high resistance Pitting.

Mit 0,03 Gew.-% ist der Kohlenstoffgehalt der Legierung aus korrosionschemischen Gründen nach oben begrenzt, wobei eine weitere Senkung desselben die Korrosionsbeständigkeit des Werkstoffes, insbesondere die Loch-und Spannungsrißkorrosion, erhöhen.At 0.03% by weight, the carbon content of the alloy is of a corrosion-chemical Limited reasons, with a further reduction of the same Corrosion resistance of the material, especially the hole and Stress corrosion cracking, increase.

Der Siliziumgehalt soll beim erfindungsgemäßen Werkstoff 0,89 Gew.-%, aus korrosionschemischen Gründen und insbesondere der niedrigen magnetischen Permeabilität wegen, nicht überschreiten.The silicon content in the material according to the invention 0.89 wt .-%, from corrosion-chemical reasons and in particular the low magnetic Because of permeability, do not exceed.

Die Stickstofflöslichkeit der Legierung und die Austenitstabilisierung werden durch Mangan gefördert. Allerdings müssen im Hinblick auf eine Verhinderung von Lochkorrosion die Mangangehalte mit 4,49 Gew.-% nach oben hin beschränkt und dafür Nickel in die Legierung eingeführt werden. Ein Mindestgehalt an 0,51 Gew.-% Mangan ist für eine wirkungsvolle Schwefelabbindung erforderlich.The nitrogen solubility of the alloy and austenite stabilization are achieved Promoted manganese. However, with regard to prevention of Pitting corrosion the manganese content with 4.49 wt .-% limited to the top and for nickel are introduced into the alloy. A minimum content of 0.51% by weight Manganese is needed for effective sulfur fixation.

Eines der besonders wichtigen Legierungselemente im Hinblick auf den Korrosionswiderstand ist Chrom, weil Chrom die Grundlage für die Bildung einer Passivschicht an der Oberfläche der Teile darstellt. Um ein gegebenenfalls stellenweises Durchbrechen dieser Schicht, in Synergiewirkung mit den übrigen Legierungselementen, insbesondere Mo und N in hohem Maße zu verhindern, sind Gehalte von mindestens 25,1 Gew.% Cr erforderlich. Durch höhere Gehalte als 38,9 Gew.-% steigt die Gefahr einer Auscheidung von intermetallischen Phasen.One of the most important alloying elements with regard to Corrosion resistance is chromium, because chromium is the basis for the formation of a Passive layer on the surface of the parts represents. To an if necessary break through this layer in layers, in synergy with the rest Alloy elements, in particular Mo and N to prevent a large extent, are Contents of at least 25.1 wt.% Cr required. Due to higher contents than 38,9 Wt .-% increases the risk of excretion of intermetallic phases.

Wenn auch das Legierungslemente Molybdän äußerst wichtig für eine Beständigkeit des Werkstoffes gegen Spalt- und Lochkorrosion ist, sollte der Gehalt 5,9 Gew.-% nicht überschreiten, weil dann eine Neigung zur Bildung von vergesellschafteten Phasen sprunghaft steigt. Niedrigere Gehalte als 2,1 Gew.-% verschlechtern das Korrosionsverhalten des Werkstoffes überproportional.Even though the alloying element molybdenum is extremely important for durability of the material against crevice and pitting corrosion, the content should be 5.9% by weight not exceed, because then a tendency to the formation of socialized Phases rise dramatically. Lower contents than 2.1% by weight deteriorate this Corrosion behavior of the material disproportionately.

Das Legierungselement Nickel ist in den vorgesehenen Konzentrationen wichtig zur Stabilisierung des kubisch flächenzentrierten Atomgitters, also für geringe Permeabilität, und interaktiv mit Chrom und Molybdän wirkungsvoll für eine Vermeidung der Lochkorrosion. Bis 38,9 Gew.-% werden die Zähigkeit, die FATT und die Dauerwechselfestigkeit vorteilhaft angehoben. Bei einem Unterschreiten von 22,9 Gew.-% verringert sich in zunehmendem Maße der stabilisierende Effekt hinsichtlich der Korrosion, insbesondere der Spannungsrißkorrosion, in chloridhaltigen Medien und betreffend die magnetischen Werte bei der Kaltverformung; es erhöht sich also die Neigung zur Ausbildung von Zonen mit Verformungsmartentsit.The alloying element nickel is important in the intended concentrations Stabilization of the cubic face-centered atomic lattice, ie for small ones Permeability, and interactive with chromium and molybdenum effective for one Prevention of pitting corrosion. Up to 38.9 wt .-% are the toughness, the FATT and the fatigue strength advantageously increased. When falling below of 22.9% by weight, the stabilizing effect is increasingly reduced with regard to corrosion, in particular stress corrosion cracking, in chloride-containing media and regarding the magnetic values in the Cold deformation; So it increases the tendency to form zones with Verformungsmartentsit.

Zur Steigerung der Korrosionsbeständigkeit ist auch ein Kupfergehalt in Grenzen der Legierung vorgesehen wenn auch die Wirkung dieses Elementes verschiedentlich in Frage gestellt wird. To increase the corrosion resistance and a copper content is limited provided the alloy albeit the effect of this element is questioned several times.

Wie früher erwähnt, ist der Stickstoffgehalt synergetisch auf die übrige Legierungszusammensetzung abgestimmt. Dieser Gehalt von 0,17 bis 0,29 Gew.-% besitzt den weiteren Vorteil, daß ein Block unter Atmosphärendruck erstarren gelassen werden kann, ohne daß Gaseinschlüsse durch eine Überschreitung der Löslichkeitsgrenze bei der Erstarrung in diesem gebildet werden.As mentioned earlier, the nitrogen content is synergistic to the rest Alloy composition matched. This content of 0.17 to 0.29% by weight has the further advantage that a block solidify under atmospheric pressure can be left without gas bubbles by exceeding the Solubility limit in the solidification are formed in this.

Auf einem besonders hohem Niveau können die magnetischen, die mechanischen und insbesondere die Werte der Korrosionsbeständigkeit des Werkstoffes eingestellt werden, wenn dieser im wesentlichen aus den Elementen in Gew.-%

C =
kleiner/gleich 0,02, vorzugsweise 0,01 bis 0,02
Si=
kleiner/gleich 0,75, vorzugsweise 0,20 bis 0,70
Mn =
1,1 bis 2,9, vorzugsweise 2,01 bis 2,6
Cr=
26,1 bis 27,9, vorzugsweise 26,5 bis 27,5
Mo=
2,9 bis 5,9, vorzugsweise 3,2 bis 3,8
Ni=
27,9 bis 32,5, vorzugsweise 30,9 bis 32,1
Cu=
0,98 bis 1,45, vorzugsweise 1,0 bis 1,4
N =
0,175 bis 0,29, vorzugsweise 0,18 bis 0,22
Fe und herstellungsbedingte Verunreinigungen = Rest
besteht.At a particularly high level, the magnetic, mechanical and in particular the corrosion resistance values of the material can be adjusted if it consists essentially of the elements in% by weight.
C =
less than or equal to 0.02, preferably from 0.01 to 0.02
Si =
less than or equal to 0.75, preferably 0.20 to 0.70
Mn =
1.1 to 2.9, preferably 2.01 to 2.6
Cr =
26.1 to 27.9, preferably 26.5 to 27.5
Mo =
2.9 to 5.9, preferably 3.2 to 3.8
Ni =
27.9 to 32.5, preferably 30.9 to 32.1
Cu =
0.98 to 1.45, preferably 1.0 to 1.4
N =
0.175 to 0.29, preferably 0.18 to 0.22
Fe and production-related impurities = residual
consists.

Hohe mechanische Eigenschaftswerte bei einer relativen magnetischen Permeabilität von 1.004 und kleiner werden erreicht, wenn der Werkstoff im ausscheidungsfreien Zustand mindestens 3,6-fach warmverformt und bei einer Temperatur von 100 bis 590°C, vorzugsweise von 360 bis 490°C, mit einem Umformgrad von kleiner als 38%, vorzugsweise von 6 bis 19 %, kaltverformt ist. Erfindungsgemäß weist der Werkstoff ein Lochkorrosionspotential in neutraler Lösung bei Raumtemperatur von größer als 1100 mVH/1000 ppm Chloride und/oder 1000 mVH/80000 ppm Chloride auf.High mechanical property values at a relative magnetic Permeability of 1.004 and smaller are achieved when the material is in the precipitation-free state at least 3.6 times hot-formed and at one Temperature of 100 to 590 ° C, preferably from 360 to 490 ° C, with a Forming degree of less than 38%, preferably from 6 to 19%, cold-worked. According to the invention, the material has a hole corrosion potential in neutral Solution at room temperature greater than 1100 mVH / 1000 ppm chlorides and / or 1000 mVH / 80000 ppm chlorides.

Anhand von Beispielen wird die Erfindung näher erläutert.
In der Tabelle 1 ist die chemische Zusammensetzung der erfindungsgemäßen Legierungen und der Vergleichswerkstoffe angegeben. Weiters sind die Kennzahlen für die Warmverformung und die Kaltverformung der Schmiedestücke dieser Tabelle entnehmbar.
Aus der Tabelle 2 sind die magnetischen und die mechanischen Kennwerte dieser Werkstoffe ersichtlich.
Mit der Probenbezeichnung 1 bis 5 sind Vergleichslegierungen und mit der Probenbezeichnung A bis E sind erfindungsgemäß zusammengesetzte Legierungen in der Tabelle 1 zusammengestellt. Die Untersuchungsergebnisse der Werkstoffe sind der Tabelle 2 zu entnehmen, auf welche Ergebnisse nachfolgend kurz eingegangen wird.
Die Legierungen 1 bis 3 weisen geringe Stickstoffgehalte auf, zeigen deshalb keine gewünschte Verfestigung bei einer Kaltverfomung, wie aus den Rp0,2-Werten hervorgeht, und auch für die Dauerwechselfestigkeit wurden niedrige Zahlenwerte (in der Tabelle nicht angegeben) von ± 270, 210 und 290 N/mm2 ermittelt.
Korrosionschemisch sind weder die SCC- noch die CPT-Werte ausreichend, was insbesondere auf jeweils niedrige Mo-Gehalte und beim Werkstoff 2 auf einen niedrigen Cr-Gehalt zurückzuführen ist.
Die Legierungen 4 und 5 besitzen eine nicht ausreichend hohe und eine überhöhte Stickstoffkonzentration, was zu höheren Streckgrenzenwerten führt und auch den Wert der Biegewechselfestigkeit (± 308, 340 N/mm2) anhebt. Auf Grund eines geringen Cr-Gehaltes ist beim Werkstoff 4 ein nachteiliges DUAL-Mikrogefüge (Anätzungen an den Komgrenzen) gegeben, wobei weiter anzumerken ist, daß auch der Werkstoff 5 trotz jeweils ausreichender Mo-Konzentrationen der geringeren Cr-Gehalte wegen, die Anforderungen an die Korrosionsbeständigkeit nicht erfüllt. Die Ergebnisse der Legierungen A bis E zeigen, daß die Stickstoffgehalte zu einer gewünschten Verfestigung durch eine Kaltumformung führen und die jeweiligen Konzentrationen von Stickstoff, Nickel und Molybdän synergetisch eine hohe Korrosionsbeständigkeit des Werkstoffes in chloridhaltigen Medien, insbesondere einen hohen Widerstand gegen Pitting, bewirken.

Figure 00070001
Figure 00080001
The invention will be explained in more detail by way of examples.
Table 1 shows the chemical composition of the alloys according to the invention and of the comparative materials. Furthermore, the figures for the hot deformation and the cold deformation of the forgings of this table can be removed.
Table 2 shows the magnetic and mechanical characteristics of these materials.
With the sample designation 1 to 5 are comparative alloys and with the sample designation A to E, alloys composed according to the invention are summarized in Table 1. The test results of the materials are shown in Table 2, which will be briefly described below.
The alloys 1 to 3 have low nitrogen contents , therefore show no desired solidification in a cold molding , as can be seen from the R p0,2 values, and also for the permanent fatigue strength were low numerical values (not shown in the table) of ± 270, 210 and 290 N / mm 2 determined.
Corrosion-wise, neither the SCC nor the CPT values are sufficient, which is due in particular to low Mo contents and, in the case of material 2, to a low Cr content.
Alloys 4 and 5 have a not sufficiently high and an excessive nitrogen concentration, which leads to higher yield strength values and also raises the value of flexural fatigue strength (± 308, 340 N / mm 2 ). Due to a low Cr content of the material 4 is a disadvantageous DUAL microstructure (etchings at the grain boundaries) given, it should be further noted that the material 5, despite each sufficient Mo concentrations of lower Cr contents due to, the requirements of the corrosion resistance is not met. The results of Alloys A to E show that the nitrogen contents result in a desired solidification by cold working and the respective concentrations of nitrogen, nickel and molybdenum synergistically provide high corrosion resistance of the material in chloride containing media, particularly high resistance to pitting.
Figure 00070001
Figure 00080001

Claims (4)

  1. A cold-formed material with a high degree of corrosion resistance in media with a high chloride concentration, suitable for devices in the field of oil recovery, in particular for drilling-rod components, consisting in the elements in % by weight: carbon (C) less than / equal to 0·03 silicon (Si) less than / equal to 0·89 manganese (Mn) 0·51 to 4·49 chromium (Cr) 25·1 to 38·9 molybdenum (Mo) 2·1 to 5·9 nickel (Ni) 22·9 to 38·9 copper (Cu) 0·51 to 1·49 nitrogen (N) 0·17 to 0·29 iron (Fe) remainder,
    as well as impurities resulting from the production, which material is hot-formed in a state free of nitride precipitations and without precipitated associated phases and is cold-formed after cooling in a ferrite-free state and after the cold forming it has
    a magnetic permeability of less than 1·0048 G/Oe
    a yield strength (Rp0·2) of greater than 710 N/mm2
    a notched-bar impact strength of over 60 J
    an alternating-stress fatigue strength of at least ± 310 N/mm2
       at N = 107 load alternation and
    a toughness transition temperature of below -28°C (FATT).
  2. A material according to Claim 1, consisting in the elements in % by weight:
    C =
    less than / equal to 0·02, preferably from 0·01 to 0·02
    Si =
    less than / equal to 0·75, preferably from 0·20 to 0·70
    Mn =
    1·1 to 2·9, preferably from 2·01 to 2·6
    Cr =
    26·1 to 27·9, preferably from 26·5 to 27·5
    Mo =
    2·9 to 5·9, preferably from 3·2 to 3·8
    Ni =
    27·9 to 32·5, preferably from 30·9 to 32·1
    Cu =
    0·98 to 1·45, preferably from 1·0 to 1·4
    N =
    0·175 to 0·29, preferably from 0·18 to 0·22
    Fe and impurities resulting from the production = remainder.
  3. A material according to Claim 1 or 2, which is hot-formed at least 3·6-fold in the precipitation-free state and is cold-formed at a temperature of from 100 to 590°C, preferably from 360 to 490°C, with a deformation strain of less than 38%, preferably from 6 to 19%.
  4. A material according to one of Claims 1 to 3, which has a pitting potential in a neutral solution at room temperature of greater than 1100 mVH/1000 ppm of chlorides and/or 1000 mVH/80000 ppm of chlorides.
EP01942857A 2000-06-30 2001-06-08 Corrosion resistant material Expired - Lifetime EP1294956B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT113300 2000-06-30
AT0113300A AT408889B (en) 2000-06-30 2000-06-30 CORROSION-RESISTANT MATERIAL
PCT/AT2001/000188 WO2002002837A1 (en) 2000-06-30 2001-06-08 Corrosion resistant material

Publications (2)

Publication Number Publication Date
EP1294956A1 EP1294956A1 (en) 2003-03-26
EP1294956B1 true EP1294956B1 (en) 2004-12-15

Family

ID=3685991

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01942857A Expired - Lifetime EP1294956B1 (en) 2000-06-30 2001-06-08 Corrosion resistant material

Country Status (9)

Country Link
US (1) US6764647B2 (en)
EP (1) EP1294956B1 (en)
AT (2) AT408889B (en)
AU (1) AU2001265657A1 (en)
CA (1) CA2396207C (en)
DE (1) DE50104841D1 (en)
ES (1) ES2231505T3 (en)
NO (1) NO330002B1 (en)
WO (1) WO2002002837A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE525252C2 (en) * 2001-11-22 2005-01-11 Sandvik Ab Super austenitic stainless steel and the use of this steel
AT410550B (en) * 2002-01-23 2003-05-26 Boehler Edelstahl Material used as a tool material in the glass industry, especially as a molding material for machine pressed glass consists of an alloy containing carbon, silicon, chromium, nickel and nitrogen
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
US20080000554A1 (en) * 2006-06-23 2008-01-03 Jorgensen Forge Corporation Austenitic paramagnetic corrosion resistant material
US10351922B2 (en) 2008-04-11 2019-07-16 Questek Innovations Llc Surface hardenable stainless steels
US8808471B2 (en) * 2008-04-11 2014-08-19 Questek Innovations Llc Martensitic stainless steel strengthened by copper-nucleated nitride precipitates
US10053758B2 (en) * 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9347121B2 (en) 2011-12-20 2016-05-24 Ati Properties, Inc. High strength, corrosion resistant austenitic alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
RU2611252C1 (en) * 2015-10-13 2017-02-21 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Method of producing high-strength rolled product of austenite stainless steel with nanostructure
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
DE102018133251A1 (en) 2018-12-20 2020-06-25 Schoeller-Bleckmann Oilfield Technology Gmbh Drill string component with high corrosion resistance and process for their manufacture
DE102018133255A1 (en) 2018-12-20 2020-06-25 Voestalpine Böhler Edelstahl Gmbh & Co Kg Super austenitic material
CN114502757B (en) * 2019-10-10 2023-04-07 日本制铁株式会社 Alloy material and seamless pipe for oil well

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI760020A (en) * 1976-01-07 1977-07-08 Rauma Repola Oy
US4201575A (en) * 1979-05-18 1980-05-06 Carpenter Technology Corporation Austenitic stainless corrosion-resistant alloy
US4400349A (en) * 1981-06-24 1983-08-23 Sumitomo Metal Industries, Ltd. Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
US4421571A (en) 1981-07-03 1983-12-20 Sumitomo Metal Industries, Ltd. Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
DE3716665A1 (en) 1987-05-19 1988-12-08 Vdm Nickel Tech CORROSION RESISTANT ALLOY
US4824638A (en) * 1987-06-29 1989-04-25 Carondelet Foundry Company Corrosion resistant alloy
JPS6447817A (en) 1987-08-13 1989-02-22 Nippon Steel Corp Production of austenitic stainless steel having excellent seawater corrosion resistance
DE4342188C2 (en) 1993-12-10 1998-06-04 Bayer Ag Austenitic alloys and their uses
DE19748205A1 (en) * 1997-10-31 1999-05-06 Abb Research Ltd Process for producing a workpiece from a chrome alloy and its use

Also Published As

Publication number Publication date
WO2002002837A1 (en) 2002-01-10
US20030024612A1 (en) 2003-02-06
CA2396207A1 (en) 2002-01-10
NO330002B1 (en) 2011-02-07
NO20022917D0 (en) 2002-06-18
ATA11332000A (en) 2001-08-15
DE50104841D1 (en) 2005-01-20
ATE284979T1 (en) 2005-01-15
ES2231505T3 (en) 2005-05-16
AT408889B (en) 2002-03-25
NO20022917L (en) 2002-06-18
US6764647B2 (en) 2004-07-20
EP1294956A1 (en) 2003-03-26
AU2001265657A1 (en) 2002-01-14
CA2396207C (en) 2007-08-14

Similar Documents

Publication Publication Date Title
EP1294956B1 (en) Corrosion resistant material
DE69404937T2 (en) Nickel alloy
DE60216806T2 (en) MARTENSITIC STAINLESS STEEL
AT412727B (en) CORROSION RESISTANT, AUSTENITIC STEEL ALLOY
DE60214456T2 (en) Martensitic stainless steel with high hardness and good corrosion resistance
DE69506537T2 (en) STAINLESS STEEL TWO-PHASE STEEL
DE3751267T2 (en) Corrosion-resistant, high-strength nickel alloy.
DE69329004T2 (en) High strength and corrosion resistant stainless steel and treatment process
DE102006033973A1 (en) Stainless austenitic cast steel and its use
DE69706224T2 (en) Heat resistant steel and steam turbine rotor
EP2632628B1 (en) Ni-fe-cr-mo alloy
DE69510060T2 (en) STAINLESS STEEL MARTENSITE STEEL WITH EXCELLENT PROCESSABILITY AND SULFUR INDUCED STRESS CORROSION RESISTANCE
DE69003202T2 (en) High-strength, heat-resistant, low-alloy steels.
DE1301586B (en) Austenitic precipitation hardenable steel alloy and process for its heat treatment
DE60016286T2 (en) Low alloy and heat resistant steel, heat treatment process and turbine rotor
DE69505603T2 (en) Component made of heat-resistant austenitic steel with excellent strength at high temperatures
DE3851948T2 (en) CORROSION RESISTANT ALLOY.
DE69128293T2 (en) Stainless steel
EP0455625B1 (en) High strength corrosion-resistant duplex alloy
DE3113844A1 (en) "FERRITE-FREE, EXHAUST-RETARDABLE STAINLESS STEEL"
DE69110707T2 (en) High strength stainless steel.
DE60129223T2 (en) AUSTENITIC ALLOY
DE3937857A1 (en) IMPROVED AUSTENITE-CR-NI ALLOY FOR TUBULAR PRODUCTS FOR APPLICATION IN PETROLEUM AREAS
DE10124393B4 (en) Heat-resistant steel, process for the thermal treatment of heat-resistant steel, and components made of heat-resistant steel
DE102018133251A1 (en) Drill string component with high corrosion resistance and process for their manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20030805

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50104841

Country of ref document: DE

Date of ref document: 20050120

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2231505

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050608

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: EDELSTAHL WITTEN KREFELD GMBH

Effective date: 20050915

ET Fr: translation filed
NLR1 Nl: opposition has been filed with the epo

Opponent name: EDELSTAHL WITTEN KREFELD GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

BERE Be: lapsed

Owner name: *SCHOELLER-BLECKMANN OILFIELD TECHNOLOGY G.M.B.H.

Effective date: 20050630

Owner name: *BOHLER EDELSTAHL G.M.B.H.

Effective date: 20050630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050515

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20090618

NLR2 Nl: decision of opposition

Effective date: 20090618

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200629

Year of fee payment: 20

Ref country code: FR

Payment date: 20200625

Year of fee payment: 20

Ref country code: FI

Payment date: 20200629

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200626

Year of fee payment: 20

Ref country code: GB

Payment date: 20200629

Year of fee payment: 20

Ref country code: SE

Payment date: 20200629

Year of fee payment: 20

Ref country code: IT

Payment date: 20200619

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200520

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200701

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50104841

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20210607

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210607

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 284979

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210608

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210609