EP1294956A1 - Corrosion resistant material - Google Patents

Corrosion resistant material

Info

Publication number
EP1294956A1
EP1294956A1 EP01942857A EP01942857A EP1294956A1 EP 1294956 A1 EP1294956 A1 EP 1294956A1 EP 01942857 A EP01942857 A EP 01942857A EP 01942857 A EP01942857 A EP 01942857A EP 1294956 A1 EP1294956 A1 EP 1294956A1
Authority
EP
European Patent Office
Prior art keywords
less
resistance
equal
corrosion
free state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01942857A
Other languages
German (de)
French (fr)
Other versions
EP1294956B1 (en
Inventor
Herbert Aigner
Josef Bernauer
Gabriele Saller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH
Schoeller Bleckmann Oilfield Technology GmbH and Co KG
Original Assignee
Schoeller Bleckmann Oilfield Technology GmbH and Co KG
Boehler Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3685991&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1294956(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schoeller Bleckmann Oilfield Technology GmbH and Co KG, Boehler Edelstahl GmbH filed Critical Schoeller Bleckmann Oilfield Technology GmbH and Co KG
Publication of EP1294956A1 publication Critical patent/EP1294956A1/en
Application granted granted Critical
Publication of EP1294956B1 publication Critical patent/EP1294956B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys

Definitions

  • the invention relates to a material with great corrosion resistance in media with a high chloride concentration, suitable for devices in oilfield technology, in particular for drill string components, consisting of the elements carbon (C), silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), nickel (Ni), copper (Cu), nitrogen (N), iron (Fe) and manufacturing-related impurities, which material is thermoformed and cold-formed after cooling.
  • drill string components consisting of the elements carbon (C), silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), nickel (Ni), copper (Cu), nitrogen (N), iron (Fe) and manufacturing-related impurities, which material is thermoformed and cold-formed after cooling.
  • Corrosion-resistant materials that show paramagnetic behavior and have high strength can be used for equipment in oilfield technology, especially for drill string components. However, ever higher demands are placed on the parts and ever stricter standards for the materials.
  • the material must have a permeability of less than 1.005 in order to be able to carry out directional measurements with a necessary accuracy when drilling or sinking a hole.
  • a high mechanical strength, in particular a high 0.2% elongation value, is necessary with regard to an advantageous system design and high operational reliability of the parts, because the stresses on the parts are intended up to the limit values of the respective material load capacity and ever greater drilling depths are required. Furthermore, a notched impact strength of the material is important because the parts have to endure high loads suddenly or suddenly.
  • a high fatigue strength is of importance in many cases, in particular for drill string parts and drill collars, because swelling or changing stresses can be present when the parts or drill collars rotate.
  • the parts are often assembled or used at low temperatures, so that The toughness transition temperature (FATT) of the material is also of great importance.
  • FATT toughness transition temperature
  • Corrosion behavior is of crucial importance for parts used in oilfield technology, that is stress corrosion cracking (SCC) and pitting corrosion (pitting, CPT).
  • SCC stress corrosion cracking
  • CPT pitting corrosion
  • materials with high corrosion resistance in media with a high chloride concentration which are suitable for devices in oil field technology, are simultaneously exposed to a large number of high loads.
  • the aim of the invention is to create a paramagnetic material with a high yield strength, high impact strength and high fatigue strength as well as a low toughness transition temperature, which is at the same time corrosion-resistant, in particular resistant to pitting, in chloride-containing media.
  • Iron (Fe) rest as well as production-related impurities exist, which material in the nitride excretion-free state and without excreted socialized
  • the advantages achieved by the invention lie in particular in the alloying effect of a balanced nitrogen concentration. It has surprisingly been found that a particularly high output can be achieved in the production of parts. Although there are no nitride precipitates during hot forming, the formability of the material is suddenly deteriorated when the forging heat fluctuates at levels above 0.29% by weight nitrogen. In the narrow concentration range from 0.17 to 0.29% by weight N, separation of associated phases can be prevented in a simple manner if the further alloying elements are present in the intended content ranges. Nitrogen, nickel and molybdenum also synergistically provide extremely high resistance to pitting.
  • the upper limit of the carbon content of the alloy for corrosion-chemical reasons is 0.03% by weight, a further reduction of which increases the corrosion resistance of the material, in particular pitting and stress corrosion cracking.
  • the silicon content in the material according to the invention should not exceed 0.89% by weight, for reasons of corrosion chemistry and in particular because of the low magnetic permeability.
  • the nitrogen solubility of the alloy and the austenite stabilization are promoted by manganese.
  • manganese levels are 4.49% by weight and nickel is introduced into the alloy.
  • a minimum content of 0.51% by weight of manganese is required for effective sulfur binding.
  • chromium is the basis for the formation of a passive layer on the surface of the parts. Contents of at least 25.1% by weight of Cr are necessary in order to largely prevent this layer from possibly breaking through, in synergy with the other alloying elements, in particular Mo and N. Levels higher than 38.9% by weight increase the risk of intermetallic phases being eliminated.
  • the alloying element nickel is important in the intended concentrations for stabilizing the face-centered cubic atomic lattice, i.e. for low permeability, and interactively with chromium and molybdenum is effective for avoiding pitting corrosion.
  • the toughness, the FATT and the fatigue strength are advantageously increased. If the value falls below 22.9% by weight, the stabilizing effect with regard to corrosion, in particular stress corrosion cracking, in chloride-containing media and with regard to the magnetic values during cold working is increasingly reduced; the tendency to form zones with deformation martensite increases.
  • a copper content is also provided within the limits of the alloy, although the effect of this element is questioned in various ways.
  • the nitrogen content is synergistically matched to the rest of the alloy composition. This content of 0.17 to 0.29% by weight has the further advantage that a block can be solidified under atmospheric pressure without gas inclusions being formed by exceeding the solubility limit during solidification.
  • the magnetic, mechanical and in particular the corrosion resistance values of the material can be set at a particularly high level if the material consists essentially of the elements in% by weight.
  • Si less than or equal to 0.75, preferably 0.20 to 0.70
  • Mn 1.1 to 2.9, preferably 2.01 to 2.6
  • Ni 27.9 to 32.5, preferably 30.9 to 32.1
  • N 0.15 to 0.29, preferably 0.18 to 0.22
  • High mechanical property values with a relative magnetic permeability of 1.004 and less are achieved if the material is thermoformed at least 3.6 times in the precipitation-free state and at a temperature of 100 to 590 ° C, preferably 360 to 490 ° C, with a degree of deformation of less than 38%, preferably from 6 to 19%, is cold worked.
  • the material has a pitting corrosion potential in neutral solution at room temperature of greater than 1100 mVH / 1000 ppm chlorides and / or 1000 mVH / 80,000 ppm chlorides.
  • Table 1 shows the chemical composition of the alloys according to the invention and of the comparison materials. Furthermore, the key figures for the hot forming and the cold forming of the forgings in this table.
  • Table 2 shows the magnetic and mechanical parameters
  • sample designation 1 to 5 are comparative alloys and with the
  • Sample designations A to E are alloys composed according to the invention in Table 1.
  • Table 2 The test results of the materials can be found in Table 2, the results of which are briefly discussed below.
  • Alloys 1 to 3 have low nitrogen contents, therefore do not show any desired hardening during cold deformation, as can be seen from the R ⁇ values, and low numerical values (not shown in the table) of 1,270, 210 and 290 were also used for the fatigue strength N / mm 2 determined. Neither the SCC nor the CPT values are sufficient in terms of corrosion chemistry, which can be attributed in particular to the low Mo content and, in the case of material 2, to a low Cr content.
  • Alloys 4 and 5 have an insufficiently high and an excessive nitrogen concentration, which leads to higher yield strength values and also increases the value of the fatigue strength (+ 308, 340 N / mm 2 ). Due to a low Cr content, material 4 has a disadvantageous DUAL microstructure (etchings at the grain boundaries), although it should also be noted that material 5 also meets the requirements despite the sufficient Cr concentrations due to the lower Cr contents does not meet the corrosion resistance.
  • the results of alloys A to E show that the nitrogen contents lead to a desired hardening by cold working and the respective concentrations of nitrogen, nickel and molybdenum synergistically bring about a high corrosion resistance of the material in chloride-containing media, in particular a high resistance to pitting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)
  • Heat Treatment Of Steel (AREA)
  • Earth Drilling (AREA)
  • Heat Treatment Of Articles (AREA)
  • Hard Magnetic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

The invention relates to a material with high corrosion resistance in media with high chloride concentration, suitable for devices in oil-field applications. According to the invention, a paramagnetic material with high yield strength, high notched impact resistance, high fatigue resistance and a low ductile transition temperature with concomitant improved high corrosion resistance, in particular, resistance to hole corrosion can be achieved by production of a material comprising essentially the following elements in wt. %: carbon (C) less than or equal to 0.03; silicon (Si) less than or equal to 0.89; manganese (Mn) 0.51 to 4.49; chromium (Cr) 25.1 to 38.9; molybdenum (Mo) 2.1 to 5.9; nickel (Ni) 22.9 to 38.9; copper (Cu) 0.51 to 1.49; nitrogen (N) 0.17 to 0.19; iron (Fe) the remainder, along with impurities arising during production. Said material is hot-formed in a state free from nitride precipitates and other associated precipitates and, after cooling to give a ferrite-free state is cold-formed and has a permeability of less than 1.0048; a yield strength (Rp02) greater than 710 N/mm<2>; a notch impact resistance of over 60 J; a fatigue resistance of at least <u>+</u> 310 N/mm<2>, where N = 10<7> load reversals and a ductile transition temperature of below - 28 DEG C (FATT).

Description

Korrosionsbeständiger Werkstoff Corrosion resistant material
Die Erfindung betrifft einen Werkstoff mit großer Korrosionsbeständigkeit in Medien mit hoher Chloridkonzentration, geeignet für Einrichtungen in der Ölfeldtechnik, insbesondere für Bohrstrangkomponenten, bestehend aus den Elementen Kohlenstoff (C), Silizium (Si), Mangan (Mn), Chrom (Cr), Molybdän ( Mo), Nickel (Ni), Kupfer (Cu), Stickstoff (N), Eisen (Fe) sowie herstellungsbedingten Verunreinigungen, welcher Werkstoff warmverformt und nach einer Abkühlung kaltverformt ist.The invention relates to a material with great corrosion resistance in media with a high chloride concentration, suitable for devices in oilfield technology, in particular for drill string components, consisting of the elements carbon (C), silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), nickel (Ni), copper (Cu), nitrogen (N), iron (Fe) and manufacturing-related impurities, which material is thermoformed and cold-formed after cooling.
Korrosionsbeständige Werkstoffe, die paramagnetisches Verhalten zeigen und hohe Festigkeit aufweisen, sind für Einrichtungen in der Ölfeldtechnik, insbesondere für Bohrstrangkomponenten, verwendbar. Allerdings werden immer höhere Anforderungen an die Teile und immer strengere Maßstäbe an die Werkstoffe gestellt bzw. angelegt.Corrosion-resistant materials that show paramagnetic behavior and have high strength can be used for equipment in oilfield technology, especially for drill string components. However, ever higher demands are placed on the parts and ever stricter standards for the materials.
Um Richtungsmessungen bei einem Abteufen bzw. Niederbringen einer Bohrung mit einer notwendigen Genauigkeit durchführen zu können, muß der Werkstoff eine Permeabilität von kleiner als 1,005 haben.The material must have a permeability of less than 1.005 in order to be able to carry out directional measurements with a necessary accuracy when drilling or sinking a hole.
Eine hohe mechanische Festigkeit, insbesondere ein hoher 0,2% Dehnwert, ist im Hinblick auf eine vorteilhafte anlagentechnische Konzeption und auf eine hohe Betriebssicherheit der Teile erforderlich, weil die Beanspruchungen derselben bis zu den Grenzwerten der jeweiligen Werkstoffbelastbarkeit vorgesehen und immer größere Bohrtiefen erforderlich sind. Weiters ist eine Kerbschlagzähigkeit des Materials wichtig, weil oft schlagartig oder stoßartig hohe Belastungen von den Teilen ertragen werden müssen.A high mechanical strength, in particular a high 0.2% elongation value, is necessary with regard to an advantageous system design and high operational reliability of the parts, because the stresses on the parts are intended up to the limit values of the respective material load capacity and ever greater drilling depths are required. Furthermore, a notched impact strength of the material is important because the parts have to endure high loads suddenly or suddenly.
Insbesondere für Bohrstrangteile und Schwerstangen ist in vielen Fällen eine hohe Dauerwechselfestigkeit von Bedeutung, weil bei einer Rotation der Teile bzw. der Schwerstangen schwellende oder wechselnde Beanspruchungen vorliegen können.A high fatigue strength is of importance in many cases, in particular for drill string parts and drill collars, because swelling or changing stresses can be present when the parts or drill collars rotate.
Die Teile werden oft bei niedrigen Temperaturen montiert oder eingesetzt, so daß auch der Zahigkeitsubergangstemperatur (FATT) des Werkstoffes ein hoher Stellenwert zukommt.The parts are often assembled or used at low temperatures, so that The toughness transition temperature (FATT) of the material is also of great importance.
Entscheidende Bedeutung besitzt das Korrosionsverhalten für in der Ölfeldtechnik verwendete Teile, das sind einerseits die Spannungsrißkorrosion (SCC) und andererseits die Lochkorrosion ( Pitting, CPT).Corrosion behavior is of crucial importance for parts used in oilfield technology, that is stress corrosion cracking (SCC) and pitting corrosion (pitting, CPT).
Wie aus obigen Darlegungen hervorgeht, sind Werkstoffe mit großer Korrosionsbeständigkeit in Medien mit hoher Chloridkonzentration, die für Einrichtungen in der Ölfeldtechnik geeignet sind, gleichzeitig einer Vielzahl von hohen Beanspruchungen ausgesetzt.As can be seen from the above explanations, materials with high corrosion resistance in media with a high chloride concentration, which are suitable for devices in oil field technology, are simultaneously exposed to a large number of high loads.
Die Erfindung setzt sich zum Ziel, einen paramagnetischen Werkstoff mit hoher Dehngrenze, hoher Kerbschlagzähigkeit und hoher Dauerwechselfestigkeit sowie einer niedrigen Zahigkeitsubergangstemperatur zu erstellen, der gleichzeitig korrosionsbeständig, insbesondere beständig gegen Lochkorrosion, in chloridhaltigen Medien ist.The aim of the invention is to create a paramagnetic material with a high yield strength, high impact strength and high fatigue strength as well as a low toughness transition temperature, which is at the same time corrosion-resistant, in particular resistant to pitting, in chloride-containing media.
Dieses Ziel wird bei einem Werkstoff der eingangs genannten Art dadurch erreicht, daß diese im wesentlichen aus den Elementen in Gew.-%This goal is achieved in the case of a material of the type mentioned at the outset in that it essentially consists of the elements in% by weight
Kohlenstoff (C) kleiner/gleich 0,03Carbon (C) 0.03 or less
Silizium (Si) kleiner/gleich 0,89Silicon (Si) less than or equal to 0.89
Mangan (Mn) 0,51 bis 4,49Manganese (Mn) 0.51 to 4.49
Chrom (Cr) 25,1 bis 38,9Chromium (Cr) 25.1 to 38.9
Molybdän (Mo) 2,1 bis 5,9Molybdenum (Mo) 2.1 to 5.9
Nickel (Ni) 22;9 bis 38,9Nickel (Ni) 22; 9 to 38.9
Kupfer (C) 0,51 bis 1,49Copper (C) 0.51 to 1.49
Stickstoff (N) 0,17 bis 0,29Nitrogen (N) 0.17 to 0.29
Eisen (Fe) Rest sowie herstellungsbedingte Verunreinigungen besteht, welcher Werkstoff im nitridausscheidungsfreien Zustand und ohne ausgeschiedene vergesellschafteteIron (Fe) rest as well as production-related impurities exist, which material in the nitride excretion-free state and without excreted socialized
Phasen warmverformt und nach einer Abkühlung im ferritfreien Zustand kaltverformt ist und eine Permeabilität von kleiner als 1,0048 eine Dehngrenze (R^.,) von größer als 710 N/mm2 eine Kerbschlagzähigkeit von über 60 J eine Dauerwechselfestigkeit von größer +310 N/mm3 bei N = 107 Lastwechsel und eine Zähigkeitstemperatur von unter -28°C ( FATT) aufweist.Phases are thermoformed and cold-formed after cooling in the ferrite-free state and a permeability of less than 1.0048 a proof stress (R ^.,) of greater than 710 N / mm 2 a notched impact strength of over 60 J, a fatigue strength of greater than +310 N / mm 3 at N = 10 7 load changes and a toughness temperature of below -28 ° C (FATT).
Die durch die Erfindung erreichten Vorteile liegen insbesondere in der legierungstechnischen Wirkung einer ausgewogenen Stickstoffkonzentration. Es wurde überraschend gefunden, daß bei der Herstellung von Teilen ein besonders hohes Ausbringen erreicht werden kann. Obwohl bei einer Warmverformung keinerlei Nitridausscheidungen gegeben selfTKönήen, wird die Verformbarkeit des Werkstoffes bei schwankender Schmiedehitze bei Gehalten über 0,29 Gew.-% Stickstoff sprunghaft verschlechtert. Auch kann im engen Konzentrationsbereich von 0,17 bis 0,29 Gew.-% N eine Ausscheidung von vergesellschafteten Phasen auf einfache Weise verhindert werden, wenn die weiteren Legierungselemente in den vorgesehenen Gehaltsbereichen vorliegen. Stickstoff, Nickel und Molybdän erbringen dabei auch synergetisch eine äußerst hohe Resistenz gegen Lochkorrosion (Pitting).The advantages achieved by the invention lie in particular in the alloying effect of a balanced nitrogen concentration. It has surprisingly been found that a particularly high output can be achieved in the production of parts. Although there are no nitride precipitates during hot forming, the formability of the material is suddenly deteriorated when the forging heat fluctuates at levels above 0.29% by weight nitrogen. In the narrow concentration range from 0.17 to 0.29% by weight N, separation of associated phases can be prevented in a simple manner if the further alloying elements are present in the intended content ranges. Nitrogen, nickel and molybdenum also synergistically provide extremely high resistance to pitting.
Mit 0,03 Gew.-% ist der Kohlenstoffgehalt der Legierung aus korrosionschemischen Gründen nach oben begrenzt, wobei eine weitere Senkung desselben die Korrosionsbeständigkeit des Werkstoffes, insbesondere die Loch-und Spannungsrißkorrosion, erhöhen.The upper limit of the carbon content of the alloy for corrosion-chemical reasons is 0.03% by weight, a further reduction of which increases the corrosion resistance of the material, in particular pitting and stress corrosion cracking.
Der Siliziumgehalt soll beim erfindungsgemäßen Werkstoff 0,89 Gew.-%, aus korrosionschemischen Gründen und insbesondere der niedrigen magnetischen Permeabilität wegen, nicht überschreiten.The silicon content in the material according to the invention should not exceed 0.89% by weight, for reasons of corrosion chemistry and in particular because of the low magnetic permeability.
Die Stickstoff löslichkeit der Legierung und die Austenitstabilisierung werden durch Mangan gefördert. Allerdings müssen im Hinblick auf eine Verhinderung von Lochkorrosion die Mangangehalte mit 4,49 Gew.-% nach oben hin beschränkt und dafür Nickel in die Legierung eingeführt werden. Ein Mindestgehalt an 0,51 Gew.-% Mangan ist für eine wirkungsvolle Schwefelabbindung erforderlich.The nitrogen solubility of the alloy and the austenite stabilization are promoted by manganese. However, with a view to preventing Pitting corrosion restricts the manganese levels to 4.49% by weight and nickel is introduced into the alloy. A minimum content of 0.51% by weight of manganese is required for effective sulfur binding.
Eines der besonders wichtigen Legierungselemente im Hinblick auf den Korrosionswiderstand ist Chrom, weil Chrom die Grundlage für die Bildung einer Passivschicht an der Oberfläche der Teile darstellt. Um ein gegebenenfalls stellenweises Durchbrechen dieser Schicht, in Synergiewirkung mit den übrigen Legierungselementen, insbesondere Mo und N in hohem Maße zu verhindern, sind Gehalte von mindestens 25,1 Gew.% Cr erforderlich. Durch höhere Gehalte als 38,9 Gew.-% steigt die Gefahr einer Auscheidung von intermetallischen Phasen.One of the most important alloying elements in terms of corrosion resistance is chromium, because chromium is the basis for the formation of a passive layer on the surface of the parts. Contents of at least 25.1% by weight of Cr are necessary in order to largely prevent this layer from possibly breaking through, in synergy with the other alloying elements, in particular Mo and N. Levels higher than 38.9% by weight increase the risk of intermetallic phases being eliminated.
Wenn auch das Legierungslemente Molybdän äußerst wichtig für eine Beständigkeit des Werkstoffes gegen Spalt- und Lochkorrosion ist, sollte der Gehalt 5,9 Gew.-% nicht überschreiten, weil dann eine Neigung zur Bildung von vergesellschafteten Phasen sprunghaft steigt. Niedrigere Gehalte als 2,1 Gew.-% verschlechtern das Korrosionsverhalten des Werkstoffes überproportional.Even though the alloying element molybdenum is extremely important for the resistance of the material to crevice and pitting corrosion, the content should not exceed 5.9% by weight, because then the tendency towards the formation of associated phases increases suddenly. Levels lower than 2.1% by weight deteriorate the corrosion behavior of the material disproportionately.
Das Legierungselement Nickel ist in den vorgesehenen Konzentrationen wichtig zur Stabilisierung des kubisch flächenzentrierten Atomgitters, also für geringe Permeabilität, und interaktiv mit Chrom und Molybdän wirkungsvoll für eine Vermeidung der Lochkorrosion. Bis 38,9 Gew.-% werden die Zähigkeit, die FATT und die Dauerwechselfestigkeit vorteilhaft angehoben. Bei einem Unterschreiten von 22,9 Gew.-% verringert sich in zunehmendem Maße der stabilisierende Effekt hinsichtlich der Korrosion, insbesondere der Spannungsrißkorrosion, in chloridhaltigen Medien und betreffend die magnetischen Werte bei der Kaltverformung; es erhöht sich also die Neigung zur Ausbildung von Zonen mit Verformungsmartentsit.The alloying element nickel is important in the intended concentrations for stabilizing the face-centered cubic atomic lattice, i.e. for low permeability, and interactively with chromium and molybdenum is effective for avoiding pitting corrosion. Up to 38.9% by weight, the toughness, the FATT and the fatigue strength are advantageously increased. If the value falls below 22.9% by weight, the stabilizing effect with regard to corrosion, in particular stress corrosion cracking, in chloride-containing media and with regard to the magnetic values during cold working is increasingly reduced; the tendency to form zones with deformation martensite increases.
Zur Steigerung der Korrosionsbeständigkeit ist auch ein Kupfergehalt in Grenzen der Legierung vorgesehen wenn auch die Wirkung dieses Elementes verschiedentlich in Frage gestellt wird. Wie früher erwähnt, ist der Stickstoffgehalt synergetisch auf die übrige Legierungszusammensetzung abgestimmt. Dieser Gehalt von 0,17 bis 0,29 Gew.-% besitzt den weiteren Vorteil, daß ein Block unter Atmosphärendruck erstarren gelassen werden kann, ohne daß Gaseinschlüsse durch eine Überschreitung der Löslichkeitsgrenze bei der Erstarrung in diesem gebildet werden.In order to increase the corrosion resistance, a copper content is also provided within the limits of the alloy, although the effect of this element is questioned in various ways. As mentioned earlier, the nitrogen content is synergistically matched to the rest of the alloy composition. This content of 0.17 to 0.29% by weight has the further advantage that a block can be solidified under atmospheric pressure without gas inclusions being formed by exceeding the solubility limit during solidification.
Auf einem besonders hohem Niveau können die magnetischen, die mechanischen und insbesondere die Werte der Korrosionsbeständigkeit des Werkstoffes eingestellt werden, wenn dieser im wesentlichen aus den Elementen in Gew.-%The magnetic, mechanical and in particular the corrosion resistance values of the material can be set at a particularly high level if the material consists essentially of the elements in% by weight.
C = kleiner/gleich 0,02, vorzugsweise 0,005 bis 0,02C = less than or equal to 0.02, preferably 0.005 to 0.02
Si = kleiner/gleich 0,75, vorzugsweise 0,20 bis 0,70Si = less than or equal to 0.75, preferably 0.20 to 0.70
Mn = 1,1 bis 2,9, vorzugweise 2,01 bis 2,6Mn = 1.1 to 2.9, preferably 2.01 to 2.6
Cr = 26, 1 bis 27,9, vorzugsweise 26,5 bis 27,5Cr = 26.1 to 27.9, preferably 26.5 to 27.5
Mo = 2,9 bis 5,9, vorzugsweiswe 3,2 bis 3,8Mo = 2.9 to 5.9, preferably we 3.2 to 3.8
Ni = 27,9 bis 32,5, vorzugsweise 30,9 bis 32,1Ni = 27.9 to 32.5, preferably 30.9 to 32.1
Cu = 0,98 bis 1 ,45, vorzugsweise 1 ,0 bis 1 ,4Cu = 0.98 to 1.45, preferably 1.0 to 1.4
N = 0, 175 bis 0,29, vorzugsweise 0, 18 bis 0,22N = 0.15 to 0.29, preferably 0.18 to 0.22
Fe und herstellungsbedingten Verunreinigungen = Rest besteht.Fe and production-related impurities = rest.
Hohe mechanische Eigenschaftswerte bei einer relativen magnetischen Permeabilität von 1.004 und kleiner werden erreicht, wenn der Werkstoff im ausscheidungsfreien Zustand mindestens 3,6-fach warmverformt und bei einer Temperatur von 100 bis 590°C, vorzugsweise von 360 bis 490°C, mit einem Umformgrad von kleiner als 38% , vorzugsweise von 6 bis 19 %, kaltverformt ist. Erfindungsgemäß weist der Werkstoff ein Lochkorrosionspotential in neutraler Lösung bei Raumtemperatur von größer als 1100 mVH/1000 ppm Chloride und/oder 1000 mVH/80000 ppm Chloride auf.High mechanical property values with a relative magnetic permeability of 1.004 and less are achieved if the material is thermoformed at least 3.6 times in the precipitation-free state and at a temperature of 100 to 590 ° C, preferably 360 to 490 ° C, with a degree of deformation of less than 38%, preferably from 6 to 19%, is cold worked. According to the invention, the material has a pitting corrosion potential in neutral solution at room temperature of greater than 1100 mVH / 1000 ppm chlorides and / or 1000 mVH / 80,000 ppm chlorides.
Anhand von Beispielen wird die Erfindung näher erläutert. In der Tabelle 1 ist die chemische Zusammensetzung der erfindungsgemäßen Legierungen und der Vergleichswerkstoffe angegeben. Weiters sind die Kennzahlen für die Warmverformung und die Kaltverformung der Schmiedestücke dieser Tabelle entnehmbar.The invention is explained in more detail with the aid of examples. Table 1 shows the chemical composition of the alloys according to the invention and of the comparison materials. Furthermore, the key figures for the hot forming and the cold forming of the forgings in this table.
Aus der Tabelle 2 sind die magnetischen und die mechanischen Kennwerte dieserTable 2 shows the magnetic and mechanical parameters
Werkstoffe ersichtlich.Materials visible.
M it der Probenbezeichnung 1 bis 5 sind Vergleichslegierungen und mit derWith the sample designation 1 to 5 are comparative alloys and with the
Probenbezeichnung A bis E sind erfindungsgemäß zusammengesetzte Legierungen in der Tabelle 1 zusammengestellt. Die Untersuchungsergebnisse der Werkstoffe sind der Tabelle 2 zu entnehmen, aufweiche Ergebnisse nachfolgend kurz eingegangen wird.Sample designations A to E are alloys composed according to the invention in Table 1. The test results of the materials can be found in Table 2, the results of which are briefly discussed below.
Die Legierungen 1 bis 3 weisen geringe Stickstoffgehalte auf, zeigen deshalb keine gewünschte Verfestigung bei einer Kaltverfomung, wie aus den R^- Werten hervorgeht, und auch für die Dauerwechselfestigkeit wurden niedrige Zahlenwerte (in der Tabelle nicht angegeben) von 1 270, 210 und 290 N/mm2 ermittelt. Korrosionschemisch sind weder die SCC- noch die CPT-Werte ausreichend, was insbesondere auf jeweils niedrige Mo-Gehalte und beim Werkstoff 2 auf einen niedrigen Cr-Gehalt zurückzuführen ist.Alloys 1 to 3 have low nitrogen contents, therefore do not show any desired hardening during cold deformation, as can be seen from the R ^ values, and low numerical values (not shown in the table) of 1,270, 210 and 290 were also used for the fatigue strength N / mm 2 determined. Neither the SCC nor the CPT values are sufficient in terms of corrosion chemistry, which can be attributed in particular to the low Mo content and, in the case of material 2, to a low Cr content.
Die Legierungen 4 und 5 besitzen eine nicht ausreichend hohe und eine überhöhte Stickstoffkonzentration, was zu höheren Streckgrenzenwerten führt und auch den Wert der Biegewechselfestigkeit ( + 308, 340 N/mm2) anhebt. Auf Grund eines geringen Cr-Gehaltes ist beim Werkstoff 4 ein nachteiliges DUAL-Mikrogefüge (Anätzungen an den Korngrenzen) gegeben, wobei weiter anzumerken ist, daß auch der Werkstoff 5 trotz jeweils ausreichender Mo-Konzentrationen der geringeren Cr-Gehalte wegen, die Anforderungen an die Korrosionsbeständigkeit nicht erfüllt. Die Ergebnisse der Legierungen A bis E zeigen, daß die Stickstoffgehalte zu einer gewünschten Verfestigung durch eine Kaltumformung führen und die jeweiligen Konzentrationen von Stickstoff, Nickel und Molybdän synergetisch eine hohe Korrosionsbeständigkeit des Werkstoffes in chloridhaltigen Medien, insbesondere einen hohen Widerstand gegen Pitting, bewirken. Alloys 4 and 5 have an insufficiently high and an excessive nitrogen concentration, which leads to higher yield strength values and also increases the value of the fatigue strength (+ 308, 340 N / mm 2 ). Due to a low Cr content, material 4 has a disadvantageous DUAL microstructure (etchings at the grain boundaries), although it should also be noted that material 5 also meets the requirements despite the sufficient Cr concentrations due to the lower Cr contents does not meet the corrosion resistance. The results of alloys A to E show that the nitrogen contents lead to a desired hardening by cold working and the respective concentrations of nitrogen, nickel and molybdenum synergistically bring about a high corrosion resistance of the material in chloride-containing media, in particular a high resistance to pitting.
A, B, C, D, E => Erfin ungsgemässe Werkstoffe 1 bis 5 => Vergleichswerkstoffe Tabelle 1 A, B, C, D, E => Invention materials 1 to 5 => Comparative materials Table 1
A, B, C, D, E => Erfindungsgernässe Werkstoffe 1 bis 5 => Vergieichswerkstoffe Tabelle 2 A, B, C, D, E => Inventive materials 1 to 5 => Comparative materials Table 2

Claims

Patentansprüche claims
1. Werkstoff mit großer Korrosionsbeständigkeit in Medien mit hoher Chloridkonzentration, geeignet für Einrichtungen in der Ölfeldtechnik, insbesondere für Bohrstrangkomponenten, bestehend im wesentlichen aus den Elementen in Gew.-%1. Material with high corrosion resistance in media with a high chloride concentration, suitable for facilities in oilfield technology, in particular for drill string components, consisting essentially of the elements in% by weight
Kohlenstoff (C) kleiner/gleich 0,03Carbon (C) 0.03 or less
Silizium (Si) kleiner/gleich 0,89Silicon (Si) less than or equal to 0.89
Mangan (Mn) 0,51 bis 4,49Manganese (Mn) 0.51 to 4.49
Chrom (Cr) 25,1 bis 38,9Chromium (Cr) 25.1 to 38.9
Molybdän (Mo) 2,1 bis 5,9Molybdenum (Mo) 2.1 to 5.9
Nickel (Ni) 22,9 bis 38,9Nickel (Ni) 22.9 to 38.9
Kupfer (Cu) 0,51 bis 1,49Copper (Cu) 0.51 to 1.49
Stickstoff (N) 0,17 bis 0,29Nitrogen (N) 0.17 to 0.29
Eisen ( Fe) Rest sowie herstellungsbedingte Verunreinigungen, welcher Werkstoff im nitridausscheidungsfreien Zustand und ohne ausgeschiedene vergesellschafteteIron (Fe) rest as well as production-related impurities, which material in the nitride excretion-free state and without excreted socialized
Phasen warmverformt und nach einer Abkühlung im ferritfreien Zustand kaftverformt ist und eine Permeabilität von kleiner als 1 ,0048 eine Dehngrenze (R^.,) von größer als 710 N/mm2 eine Kerbschlagzähigkeit von über 60 J eine Dauerwechselfestigkeit von mindestens + 310 N/mm2 bei N = 107 Lastwechsel und eine Zahigkeitsubergangstemperatur von unter -28 ° CPhases are thermoformed and after cooling in the ferrite-free state is deformed and a permeability of less than 1, 0048 a proof stress (R ^.,) Of greater than 710 N / mm 2 a notched impact strength of over 60 J a fatigue strength of at least + 310 N / mm 2 at N = 10 7 load changes and a toughness transition temperature of below -28 ° C
(FATT) aufweist.(FATT) has.
2. Werkstoff nach Anspruch 1, bestehend im wesentlichen aus den Elementen in Gew.-%2. Material according to claim 1, consisting essentially of the elements in wt .-%
C = kleiner/gleich 0,02, vorzugsweise 0,01 bis 0,02 Si= kleiner/gleich 0,75, vorzugsweise 0,20 bis 0,70 Mn = 1 ,1 bis 2,9, vorzugsweise 2,01 bis 2,6C = less than or equal to 0.02, preferably 0.01 to 0.02 Si = less than or equal to 0.75, preferably 0.20 to 0.70 Mn = 1.1 to 2.9, preferably 2.01 to 2.6
Cr= 26,1 bis 27,9, vorzugsweise 26,5 bis 27,5 Mo= 2,9 bis 5,9, vorzugsweise 3,2 bis 3,8 Ni= 27,9 bis 32,5, vorzugsweise 30,9 bis 32, 1 Cu= 0,98 bis 1 ,45, vorzugsweise 1 ,0 bis 1 ,4 N = 0, 175 bis 0,29, vorzugsweise 0, 18 bis 0,22 Fe und herstellungsbedingte Verunreinigungen = RestCr = 26.1 to 27.9, preferably 26.5 to 27.5 Mo = 2.9 to 5.9, preferably 3.2 to 3.8 Ni = 27.9 to 32.5, preferably 30.9 to 32.1 Cu = 0.98 to 1.45, preferably 1.0 to 1.4 N = 0.15 to 0.29, preferably 0.18 to 0.22 Fe and production-related impurities = balance
3. Werkstoff nach Anspruch 1 oder 2, der, wie an sich bekannt, im ausscheidungsfreien Zustand mindestens 3,6-fach warmverformt und bei einer Temperatur von 100 bis 590°C, vorzugsweise von 360 bis 490°C , mit einem Umformgrad von kleiner 38%, vorzugsweise von 6 bis 19 % katlverformt ist.3. Material according to claim 1 or 2, which, as is known per se, is thermoformed at least 3.6 times in the excretion-free state and at a temperature of 100 to 590 ° C, preferably from 360 to 490 ° C, with a degree of deformation of less 38%, preferably from 6 to 19%, is molded.
4. Werkstoff nach einem der Ansprüche 1 bis 3, der ein Lochpotential in neutraler Lösung bie Raumtemperatur von größer 1100 mVH/1000 ppm Chloride und/oder 1000 mVH/80000 ppm Chloride aufweist. 4. Material according to one of claims 1 to 3, which has a hole potential in neutral solution at room temperature of greater than 1100 mVH / 1000 ppm chlorides and / or 1000 mVH / 80,000 ppm chlorides.
EP01942857A 2000-06-30 2001-06-08 Corrosion resistant material Expired - Lifetime EP1294956B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT113300 2000-06-30
AT0113300A AT408889B (en) 2000-06-30 2000-06-30 CORROSION-RESISTANT MATERIAL
PCT/AT2001/000188 WO2002002837A1 (en) 2000-06-30 2001-06-08 Corrosion resistant material

Publications (2)

Publication Number Publication Date
EP1294956A1 true EP1294956A1 (en) 2003-03-26
EP1294956B1 EP1294956B1 (en) 2004-12-15

Family

ID=3685991

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01942857A Expired - Lifetime EP1294956B1 (en) 2000-06-30 2001-06-08 Corrosion resistant material

Country Status (9)

Country Link
US (1) US6764647B2 (en)
EP (1) EP1294956B1 (en)
AT (2) AT408889B (en)
AU (1) AU2001265657A1 (en)
CA (1) CA2396207C (en)
DE (1) DE50104841D1 (en)
ES (1) ES2231505T3 (en)
NO (1) NO330002B1 (en)
WO (1) WO2002002837A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE525252C2 (en) * 2001-11-22 2005-01-11 Sandvik Ab Super austenitic stainless steel and the use of this steel
AT410550B (en) * 2002-01-23 2003-05-26 Boehler Edelstahl Material used as a tool material in the glass industry, especially as a molding material for machine pressed glass consists of an alloy containing carbon, silicon, chromium, nickel and nitrogen
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
US20080000554A1 (en) * 2006-06-23 2008-01-03 Jorgensen Forge Corporation Austenitic paramagnetic corrosion resistant material
US10351922B2 (en) 2008-04-11 2019-07-16 Questek Innovations Llc Surface hardenable stainless steels
US8808471B2 (en) * 2008-04-11 2014-08-19 Questek Innovations Llc Martensitic stainless steel strengthened by copper-nucleated nitride precipitates
US10053758B2 (en) * 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9347121B2 (en) 2011-12-20 2016-05-24 Ati Properties, Inc. High strength, corrosion resistant austenitic alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
RU2611252C1 (en) * 2015-10-13 2017-02-21 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Method of producing high-strength rolled product of austenite stainless steel with nanostructure
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
DE102018133251A1 (en) 2018-12-20 2020-06-25 Schoeller-Bleckmann Oilfield Technology Gmbh Drill string component with high corrosion resistance and process for their manufacture
DE102018133255A1 (en) 2018-12-20 2020-06-25 Voestalpine Böhler Edelstahl Gmbh & Co Kg Super austenitic material
CN114502757B (en) * 2019-10-10 2023-04-07 日本制铁株式会社 Alloy material and seamless pipe for oil well

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI760020A (en) * 1976-01-07 1977-07-08 Rauma Repola Oy
US4201575A (en) * 1979-05-18 1980-05-06 Carpenter Technology Corporation Austenitic stainless corrosion-resistant alloy
US4400349A (en) * 1981-06-24 1983-08-23 Sumitomo Metal Industries, Ltd. Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
US4421571A (en) 1981-07-03 1983-12-20 Sumitomo Metal Industries, Ltd. Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
DE3716665A1 (en) 1987-05-19 1988-12-08 Vdm Nickel Tech CORROSION RESISTANT ALLOY
US4824638A (en) * 1987-06-29 1989-04-25 Carondelet Foundry Company Corrosion resistant alloy
JPS6447817A (en) 1987-08-13 1989-02-22 Nippon Steel Corp Production of austenitic stainless steel having excellent seawater corrosion resistance
DE4342188C2 (en) 1993-12-10 1998-06-04 Bayer Ag Austenitic alloys and their uses
DE19748205A1 (en) * 1997-10-31 1999-05-06 Abb Research Ltd Process for producing a workpiece from a chrome alloy and its use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0202837A1 *

Also Published As

Publication number Publication date
WO2002002837A1 (en) 2002-01-10
US20030024612A1 (en) 2003-02-06
CA2396207A1 (en) 2002-01-10
NO330002B1 (en) 2011-02-07
NO20022917D0 (en) 2002-06-18
ATA11332000A (en) 2001-08-15
DE50104841D1 (en) 2005-01-20
ATE284979T1 (en) 2005-01-15
ES2231505T3 (en) 2005-05-16
AT408889B (en) 2002-03-25
NO20022917L (en) 2002-06-18
US6764647B2 (en) 2004-07-20
AU2001265657A1 (en) 2002-01-14
EP1294956B1 (en) 2004-12-15
CA2396207C (en) 2007-08-14

Similar Documents

Publication Publication Date Title
AT408889B (en) CORROSION-RESISTANT MATERIAL
DE69404937T2 (en) Nickel alloy
DE69700057T2 (en) Heat-resistant, ferritic steel with low Cr and Mn content and with excellent strength at high temperatures
DE60214456T2 (en) Martensitic stainless steel with high hardness and good corrosion resistance
EP2199420B1 (en) Austenitic stainless steel
DE602006000160T2 (en) Heat resistant alloy for 900oC sustainable exhaust valves and exhaust valves made from this alloy
DE69018658T2 (en) High-strength heat-resistant steel with improved machinability.
EP2855724B1 (en) Nickel-chromium alloy with good formability, creep strength and corrosion resistance
EP2632628B1 (en) Ni-fe-cr-mo alloy
KR890001135B1 (en) Tube material for sour wells of intermediate depths
DE69506800T2 (en) Ni-Cr-Mo alloys containing copper
DE69003202T2 (en) High-strength, heat-resistant, low-alloy steels.
DE69510060T2 (en) STAINLESS STEEL MARTENSITE STEEL WITH EXCELLENT PROCESSABILITY AND SULFUR INDUCED STRESS CORROSION RESISTANCE
DE2803554A1 (en) STEEL ALLOY
EP1188845B1 (en) Nickel based alloy for high temperature technology
DE69821493T2 (en) Use of heat-resistant cast steel for components of turbine housings
DE60016286T2 (en) Low alloy and heat resistant steel, heat treatment process and turbine rotor
DE69505603T2 (en) Component made of heat-resistant austenitic steel with excellent strength at high temperatures
DE3851948T2 (en) CORROSION RESISTANT ALLOY.
EP0455625B1 (en) High strength corrosion-resistant duplex alloy
DE4203328C1 (en)
DE3522115A1 (en) HEAT-RESISTANT 12 CR STEEL AND TURBINE PARTS MADE OF IT
DE60129223T2 (en) AUSTENITIC ALLOY
DE69110707T2 (en) High strength stainless steel.
DE3937857A1 (en) IMPROVED AUSTENITE-CR-NI ALLOY FOR TUBULAR PRODUCTS FOR APPLICATION IN PETROLEUM AREAS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20030805

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50104841

Country of ref document: DE

Date of ref document: 20050120

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2231505

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050608

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: EDELSTAHL WITTEN KREFELD GMBH

Effective date: 20050915

ET Fr: translation filed
NLR1 Nl: opposition has been filed with the epo

Opponent name: EDELSTAHL WITTEN KREFELD GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

BERE Be: lapsed

Owner name: *SCHOELLER-BLECKMANN OILFIELD TECHNOLOGY G.M.B.H.

Effective date: 20050630

Owner name: *BOHLER EDELSTAHL G.M.B.H.

Effective date: 20050630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050515

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20090618

NLR2 Nl: decision of opposition

Effective date: 20090618

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200629

Year of fee payment: 20

Ref country code: FR

Payment date: 20200625

Year of fee payment: 20

Ref country code: FI

Payment date: 20200629

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200626

Year of fee payment: 20

Ref country code: GB

Payment date: 20200629

Year of fee payment: 20

Ref country code: SE

Payment date: 20200629

Year of fee payment: 20

Ref country code: IT

Payment date: 20200619

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200520

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200701

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50104841

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20210607

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210607

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 284979

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210608

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210609