EP1288483B1 - Procédé et appareil de surveillance d'émissions d'un réservoir pour stockage d'un liquide volatile, notamment d'un réservoir de carburant d'un véhicule - Google Patents

Procédé et appareil de surveillance d'émissions d'un réservoir pour stockage d'un liquide volatile, notamment d'un réservoir de carburant d'un véhicule Download PDF

Info

Publication number
EP1288483B1
EP1288483B1 EP02016161A EP02016161A EP1288483B1 EP 1288483 B1 EP1288483 B1 EP 1288483B1 EP 02016161 A EP02016161 A EP 02016161A EP 02016161 A EP02016161 A EP 02016161A EP 1288483 B1 EP1288483 B1 EP 1288483B1
Authority
EP
European Patent Office
Prior art keywords
temperature
medium
value
storage container
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02016161A
Other languages
German (de)
English (en)
Other versions
EP1288483A2 (fr
EP1288483A3 (fr
Inventor
Juergen Penschuk
Uwe Dworzak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1288483A2 publication Critical patent/EP1288483A2/fr
Publication of EP1288483A3 publication Critical patent/EP1288483A3/fr
Application granted granted Critical
Publication of EP1288483B1 publication Critical patent/EP1288483B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system

Definitions

  • the invention relates to the monitoring of the emission of storage containers for storing volatile media, in particular of fuel tank systems used in motor vehicles.
  • the invention relates to a method, a circuit and a control device for the emission-monitoring operation of such Storage container according to the preambles of the respective independent claims.
  • the present invention is based on the finding that the temperature of the volatile medium has a significant influence on the measurement accuracy in a leak test (leak diagnosis).
  • the above functional tests especially in tank systems, should be carried out only within certain temperature ranges, since with increasing fuel temperature, the outgassing of the medium increases, above a certain temperature by the outgassing an overpressure in the storage container arises and this overpressure finally the overpressure generated in the leak test increases or counteracts the generated negative pressure.
  • erroneous assumptions regarding the pressure conditions are a cause of misdiagnosis.
  • a diagnosis performed with overpressure a leaking storage container erroneously as "tight" and in a diagnosis carried out with negative pressure a se to dense container faulty as "leaking" diagnosed.
  • thermal expansion of the material is to be considered in particular in containers made of plastic. Due to the expansion behavior of the plastic occurring with increasing temperature, uncontrollable changes in volume of the container interior and thus in turn distorted assumptions regarding the present internal pressure conditions.
  • storage container for example, in the case of motor vehicle tank systems for the tightness of the entire tank system important functional elements such as lines and seals includes.
  • the present invention is therefore an object of the invention to provide a method, a circuit and a control device of the type mentioned, which allow an improved over the prior art emission monitoring in said storage containers.
  • this improvement should be done by detecting the current temperature of the stored medium with the least possible technical effort, in particular while avoiding the use of costly temperature sensor in the storage container, so as to increase the accuracy of a leak test carried out on the storage container.
  • the invention is based on the idea to include the temperature of the volatile medium in a functional test described above as a correction and this on the basis of other parameters such as the ambient temperature, the level of the reservoir or, in the case of a motor vehicle, additionally based on operating data of the vehicle (vehicle speed or the like.) Or the vehicle engine (operating time, engine stop time, engine temperature or the like.) To model, ie using a model calculation to determine.
  • the invention provides according to a first variant, to determine the real temperature of the medium (T_ktm) from these parameters by calculation and to include the value of T_ktm thus calculated, as mentioned above, as a correction variable in the test of the functionality of the storage container.
  • a check for the operability of the storage container is only performed if the calculated value of T_ktm is within a predeterminable temperature interval.
  • the correction variable can be determined in each case before carrying out a functional test or temporarily, for example cyclically repeating, by means of the model calculation.
  • the parameters required for the calculation of T_ktm can be stored in the form of a characteristic diagram or in a corresponding table, once for a given type of construction of the storage container or of a motor vehicle, once a model calculation has been carried out and are thus immediately available for subsequent determinations of T_ktm, without the said model calculation having to be carried out again in each case.
  • the model calculation can also include parameters such as the operating or shutdown duration of an internal combustion engine (engine) supplied by the storage container and, in the case of a vehicle, the vehicle speed, the fuel level as a function of the vehicle speed, and / or the altitude location the storage container or a vehicle having such a container received.
  • engine internal combustion engine
  • the respective vehicle series relevant characteristics such as the body shape and / or the engine type can be included in vehicles, which advantageously both different flow conditions with a moving vehicle and consequent different underflow of a fuel tank as well as different mounting positions of the fuel tank and / or the engine in the vehicle chassis, depending on the body shape, can be used. It can also be provided when incorporating a shutdown of the engine in the model calculation to deposit a model-specific cooling curve and to use this as the initial value for the engine temperature when the engine is restarted.
  • the heating curve and / or cooling curve of the medium to be taken into account in the storage container in the context of the model calculation, both in a motor vehicle and in other uses of the storage container, are dependent on the present fill level and the respective series of the container. So lead a relatively high level due to the correspondingly higher heat capacity of the medium to a slower heating of the stored medium and a relatively low level to a faster heating. In the mentioned model calculation, these relationships are considered according to further embodiment.
  • the ambient temperature can be considered multiplicatively in the determination of T_ktm, for example.
  • vehicle and / or engine operating variables such as, for example, the instantaneous or average engine load, vehicle speed, and / or the transmission gear selection can be taken into account or taken as a correction variable (s).
  • T_ktm is only then determined from one or more characteristics, if said Characteristic variable (s) are within a predefinable variance width, ie, if the respective parameter behaves sufficiently constant over a predefinable time interval.
  • a new determination of T_ktm only takes place when the vehicle speed and / or the operating time of the engine exceed a predefinable limit value. This ensures that the influence of situational or environmental fluctuations of the recorded parameters on the value of T_ktm calculated from them is minimized. This ensures that the engine has reached operating temperature and that no subsequent heating of the engine leads to a further increase in T_ktm.
  • the waiting time can, as mentioned above, depending on the type of engine and / or the body shape of the vehicle, eg. Separated for individual vehicle series, are set.
  • a T_ktm determined during operation of an engine connected to the storage container or of a vehicle having such a container is compared and compared with a currently measured ambient temperature during a subsequent startup of the engine or the vehicle.
  • the larger of the two values is used as the initial value for T_ktm.
  • T_ktm is also determined while the vehicle is moving, in order to take into account the influence of the heat build-up on the fuel temperature which forms near the tank when the engine is running.
  • T_ktm also changes after a refueling operation with a medium of a different temperature
  • changes in the tank level are detected by refueling detected in a manner known per se, for example, by means of a tank cap sensor.
  • the setting of a temperature equilibrium can also be awaited until a new determination of T_ktm takes place.
  • an approximate value for example the mean value from the last stored value of T_ktm and the current ambient temperature, can be used, which has the advantage that at least until then a meaningful value is present.
  • a taking place during a service interruption of the vehicle Refueling be recognized that after the start of the engine, the difference between the current tank level and the cached tank level value exceeds a predetermined threshold. It is worth mentioning that the amount of substance in the refueled medium can also be included in the model calculation during the recalculation of T_ktm after a refueling process.
  • the invention allows the use of inexpensive plastic tanks, for example.
  • combustion-powered vehicles without required for leak diagnosis size 0.5 mm, to be arranged in the storage costly temperature sensor.
  • flexible fuel i.
  • the invention also allows the detection of critical Ausgasungstemperaturen.
  • T_ktm in case of failure of one or more sensors (temperature, tank level sensor, etc.) from the available data still allows the determination of a meaningful T_ktm.
  • the associated temperature variable in the model equation can be assigned a substitute value to be empirically determined, for example a mean value of 20 ° C. Accordingly, in the event of a defective tank level sensor, instead of a currently determined T_ktm value, a last stored value of T_ktm can be used.
  • a plausibility check can additionally be carried out in which a currently determined T_ktm is compared with predeterminable upper and / or lower limit values and only then assumed to be correct if T_ktm is within these limits.
  • the current value can be assumed equal to the limit value itself.
  • the invention can be advantageously implemented in an existing control unit, for example an engine control unit, in the form of a control program. In this case, it is beneficial that some or all of the aforementioned parameters are already recorded in such a control unit.
  • the invention can be realized in the form of a dedicated circuit, for example as an Application Specific Integrated Circuit (ASIC).
  • ASIC Application Specific Integrated Circuit
  • the underlying model calculation can be realized in the form of a binary-logic circuit formed from several stages, each stage being considered as a filter for the influence of the respective characteristic on T_ktm.
  • the attenuation of the respective filter varies.
  • at least two filters are used in the model calculation.
  • the ambient air temperature and the altitude of the vehicle can be received and in the at least second filter, the tank level, the vehicle and / or engine stop time and the operating time.
  • control device or the circuit included according to the invention has a read / write memory (RAM) serving for the above-mentioned purpose for storing said characteristic diagram and / or for temporarily storing an already determined T_ktm value.
  • RAM read / write memory
  • storage container also encompasses entire tank installations or the like, including their further components.
  • T_ktm can also be used as a correction variable for functions similar to those of the aforementioned functional test, for example for a tank venting function mentioned in the introduction.
  • Fig. 1 shows the basic sequence of making use of the invention leak diagnostic routine.
  • the temperature of the stockpiled medium T_ktm determined 20.
  • This value T_ktm is in a rewritable memory, for example.
  • a delay stage 35 jumps back to the beginning of the subroutine for the determination of T_ktm.
  • T_ktm is set equal to the maximum value T_max in order to correspond to the 'worst case' value as a safety measure.
  • a leak diagnosis process is started, the value of T_ktm read out of the RAM again and, if a result of the leak diagnosis is present, this result corrected using T_ktm.
  • a leak rate determined during the leak diagnosis can be corrected by means of an increased material outgassing factor due to the wall material of the storage container or due to the overall used seals by a corresponding offset value. Also can be one in the leak diagnosis assumed under or overpressure reduction gradient be corrected accordingly.
  • a method for determining the fuel temperature is described below using the example of a motor vehicle, although the principles that emerge from the following description can also be used correspondingly in other storage containers such as, for example, chemical substance tanks or the like. That in the related FIGS. 2a-2d, the illustrated method can be implemented as a control program in an engine control unit or as a separate circuit (ASIC or the like). In this case, the subsequent method steps, including the nachbelowenen filters, etc., can be implemented in known binary logic.
  • the procedure starts according to Fig. 2a with a step 100 in which an engine (not shown) is started.
  • a step 110 it is checked whether an engine stop time t_maz was longer than a predetermined time. If this is the case, it is assumed that the fuel temperature has adapted to the outside air temperature after a fitting drive, and the value O ° C is assigned to a temperature offset T_ktm_offset, which is stored in a read / write memory, in a step 120 , and the method continues in a step 125.
  • the engine shutdown time t_maz was shorter than or equal to the given time, then it would be directly in one Step 125 measures and stored values taken from the random access memory and there is a maximum selection between the measured value of the outside air temperature T_aluft and a last stored value of the fuel temperature T_ktm (old) instead, with maximum selection means that the greater of the two values in the other Steps of the method is used as a value for the outside air temperature.
  • the actual fuel temperature may be greater than the outside air temperature.
  • an operation counter is started.
  • T_aluft in the described embodiment is a guide, since this parameter, regardless of dynamic characteristics such as the vehicle speed, the fuel temperature influenced the most and incidentally also affects other parameters such as the engine temperature.
  • step 145 the check is made as to whether a fill level sensor (not shown) is defective. If so, in a step 147, the value of the level at the last drive fs_tank_v becomes a variable for the value of the current level fs_tank accepted; otherwise, step 150 follows (see Fig. 2b ).
  • step 150 in Fig. 2b It is checked whether a refueling operation has taken place during a business interruption. For this purpose, the difference between the currently measured tank filling level fs_tank and the tank level fs_tank (old) taken over from the read / write memory and determined during the last drive is formed. If this difference is greater than a predefinable value d_fs_tlfz, it is assumed that refueling has taken place, and in a step 155 a variable for refueling recognition b_kttm is assigned the value '1'. This variable b_kttm later serves as a selection criterion in a step 210 as to whether a refueling process has taken place and then an approximate value for the fuel temperature is determined.
  • a step 160 the check is made as to whether an outside air temperature sensor is defective. If, however, the difference determined in step 150 is smaller than a predefinable value d_fs_tlfz, it is checked directly in step 160 whether the outside air temperature sensor is defective. If this is the case, the value for the outside air temperature T_aluft is assigned the value 20 ° C. in a step 290. This is followed by a step 180, in which it is checked whether the engine was operating shorter than a predefinable threshold time, for example 30 minutes, that is, whether there is a criterion for a short operating time.
  • a predefinable threshold time for example 30 minutes
  • step 180 it is checked only at the first pass of the method the criterion for a short operating time exists. After a short period of operation, no temperature equilibrium has yet set, so that a redetermination of the fuel temperature must not take place. Therefore, after a waiting time of 10 minutes in a step 325, the cycle is performed again from step 160.
  • step 180 if it is found out in step 180 that the operating time of the engine was longer than 30 minutes, then in a step 190 it is checked only at the first pass of the method if a criterion for a short stop time exists, with a time under a short stop time 30 minutes is understood. With a short shutdown time, the fuel temperature has not changed compared to the last operating cycle of the engine, so that here again, a redetermination of the fuel temperature must not take place immediately.
  • step 325 If the criterion for a short shutdown time is present at the first run of the method after the start of the engine, then after a waiting time of For example, in step 325, the cycle is performed again from step 160 for 10 minutes. If the engine shutdown time was longer than, for example, 30 minutes, then in a step 200 ( Fig. 2c ) checks whether the vehicle speed v_can is greater than zero.
  • step 220 (FIG. Fig. 2c ) another check whether the level sensor is defective. If this is the case, then in a step 225 the variable for the filling level fs_tank is assigned the last stored value for the level when driving fs_tank_v. A check of the level sensor at this point is necessary because a correct fill level value is required for the following refueling detection while the engine is running. With a defective tank level sensor, the method can then be continued at least with an automatically assigned level value.
  • step 220 it is checked in a step 210 whether refueling has taken place with the engine running or during an interruption in operation Has. For this purpose, the difference between the currently measured tank level fs_tank and the last measured at a vehicle speed greater than zero tank level fs_tank_v is determined. If the difference is greater than a value d_fs_tel, refueling has taken place while the engine is running. If the value of the variable b_kttm from step 155 is equal to '1', refueling has taken place during the last service interruption.
  • step 310 the operation counter is set to zero and the process is started directly with a step 270 (FIG. Fig. 2d ).
  • step 270 the fuel temperature T_ktm valid at this time is taken over into the read / write memory as the fuel temperature T_ktm (old), the fueling detection variable b_kttm is set equal to '0'. Subsequently, if the engine is still in operation, which is checked in a step 280, the cycle for determining the power-material temperature in step 320 after a wait of 100 milliseconds from step 160.
  • Resetting the operation counter in step 310 causes the process to be performed in the next determination cycle from step 180 as if the engine had been restarted and the criterion for a short operation time existed.
  • the method in the first pass is continued only after a waiting time of 10 minutes.
  • step 230 the variable for the level during travel fs_tank_v is assigned the value of the measured level fs_tank.
  • a step 240 the check is made for a geographical altitude change. This is in detail in Fig. 3 shown.
  • the check whether an altitude change has taken place, starts in Fig. 3 with a step 2410.
  • the altitude can be determined with known measures, eg. By means of a pressure sensor based on the usual pressure dependence of the outside air p_aluft.
  • a step 2420 it is checked whether there is a decrease in the altitude, that is, it is checked whether, for example, a Padedabfahrt takes place.
  • step 2450 the temperature offset T_ktm_offset is set equal to zero, then the altitude change check is terminated in step 2460, and the fuel temperature determination process continues with step 250 (see FIG Fig. 2d ). If, on the other hand, there is no decrease in the altitude, it is checked in a step 2430 whether there is an increase in the altitude. This is the case when the vehicle is on a pass. If there is an increase in the altitude, the value 5 is assigned to the temperature offset T_ktm_offset in a step 2440. This temperature offset is added later in a step 250 of the calculated in a circuit fuel temperature T_ktm. Thus, the fact is taken into account that in a Pndfahrt the outside air temperature decreases faster than the fuel temperature of the outside air temperature can adjust.
  • step 2460 the altitude change check is ended and step 250 follows Fig. 2d .
  • step 250 the fuel temperature T_ktm as a function of the outside air temperature T_a poverty, an attenuation in a mathematical filter "A”, which takes into account the series of the vehicle and the influence of the operating time of the engine on the increase of the fuel temperature, varies depending on the body and engine series and a damping in a mathematical filter "B”, which takes into account the fuel temperature depending on the level of the tank, the tank level fs_tank and the engine stop time t_maz calculated. To the thus determined Value of the fuel temperature, the value of the temperature offset T_ktm_offset is added.
  • step 260 (FIG. Fig. 2c ) checks whether the calculated fuel temperature T_ktm is within a predeterminable temperature interval (minimum / maximum limitation).
  • FIG. 3 is a flowchart of a minimum / maximum fuel temperature limiting method in accordance with step 260.
  • FIG. The method starts in a step 2610.
  • a step 2620 the check is carried out as to whether the fuel temperature T_ktm determined in step 250 is greater than a specifiable maximum value T_ktm_max. If this is the case, the value of the predefinable maximum temperature T_ktm_max is allocated to the variable of the calculated fuel temperature T_ktm in a step 2640, and the method for minimum / maximum limitation is ended in a step 2660, followed by a step 270 (FIG. Fig.
  • step 2620 in which the specific fuel temperature T_ktm and the variables for the operating temperature detection b_kttm are assigned the value zero in the read / write memory of the variables T_ktm (alt). If the check in step 2620 reveals that the specific fuel temperature T_ktm is not greater than the predefinable maximum value T_ktm_max, the check is carried out in a step 2630 as to whether the fuel temperature T_ktm is less than a predefinable minimum value T_ktm_min. If this is the case, the value for the minimum temperature T_ktm_min is assigned to the variable for the fuel temperature T_ktm in a step 2650.
  • step 2660 the minimum / maximum limitation procedure is terminated and step 270 (FIG. Fig. 2 ).
  • step 270 the value of the fuel temperature T_ktm determined in this way is stored as variable T_ktm_alt in the read / write memory. Furthermore, the value for refueling recognition b_kttm is assigned the value zero and stored. Thereafter, it is checked in step 280 whether the engine is still in operation, this is not the case, the process ends (step 290). Otherwise, the above-mentioned method for determining the fuel temperature becomes after a waiting time of 100 milliseconds from the step 160 in FIG Fig. 2a again (step 320).
  • the detection of a refueling situation after a business interruption and detecting a refueling situation while the engine is running can be combined.
  • the value '1' is assigned to the variable b_kttm both during refueling during a service interruption and during a running engine, which value is used in later decision steps or calculations.
  • the tank level, the vehicle speed and the tank level during the last drive are preferably used as initialization values for a sequence of logic operations known per se and calculations in circuits.
  • the added amount can also be taken into account. Especially with a larger amount of fuel, the influence of changes in the outside air temperature on the fuel temperature is lower and thus a correction of the calculated size can be done with the amount of fuel.
  • the engine shutdown time counter is started when the engine is shut down, and stopped when the engine is restarted.
  • the thus determined stop time is stored in the read / write memory as a variable t_maz.
  • the method can also be carried out for determining a temperature of any liquid in any container.
  • at least one further heat and / or cryogenic source for example an air conditioning unit or a cooling unit of the engine, can be taken into account.
  • T_ktm is plotted over T_a poverty and fs_tank, wherein the set of curves shown is parameterized over time t.
  • the dependency of T_ktm as a function of T_a poverty and fs_tank shown in the characteristic diagram is based on the model calculation described above.
  • the characteristics diagram can be generated automatically and T_ktm can be generated automatically without further action be read.
  • the characteristic diagram is n-1-dimensional in the case of n-1 additional parameters and in the parameterization shown with time t.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Examining Or Testing Airtightness (AREA)

Claims (22)

  1. Procédé de surveillance d'émissions d'un réservoir de stockage d'un liquide volatil, notamment d'un réservoir de carburant d'un véhicule automobile, dans lequel on effectue temporairement un essai d'étanchéité du réservoir de stockage, caractérisé en ce que la température du liquide est détectée à l'aide d'au moins une grandeur caractéristique, notamment la température de l'environnement, au moyen d'un calcul modélisé, de manière temporaire ou cyclique, et l'on l'incorpore à titre de grandeur de correction dans l'essai d'étanchéité ou bien l'on effectue l'essai d'étanchéité seulement lorsque la température détectée du fluide est comprise entre un intervalle de températures prédéfinissable.
  2. Procédé selon la revendication 1, caractérisé en ce que le niveau de remplissage du réservoir de stockage est utilisé comme grandeur caractéristique supplémentaire.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que dans le cas d'un véhicule automobile, on utilise au moins une grandeur de fonctionnement du véhicule automobile comme grandeur caractéristique supplémentaire.
  4. Procédé selon la revendication 3, caractérisé en ce que l'on utilise comme grandeur caractéristique supplémentaire au moins une donnée caractéristique concernant les modèles de véhicules.
  5. Procédé selon la revendication 3 ou 4, caractérisé en ce que la durée d'arrêt d'un moteur du véhicule automobile lors du calcul modélisé de la température du liquide est prise en compte, une courbe de refroidissement spécifique aux modèles étant enregistrée et dans le cas d'un redémarrage du moteur du véhicule automobile, étant utilisée comme valeur de départ pour la température du moteur.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la température du liquide, modélisée à l'aide de l'au moins une grandeur caractéristique, est enregistrée par le biais de l'au moins une grandeur caractéristique sous forme d'au moins un diagramme de grandeurs caractéristiques.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la température du liquide n'est déterminée à partir de l'au moins une grandeur caractéristique que lorsque l'au moins une grandeur caractéristique est à l'intérieur d'une gamme de fluctuation prédéfinissable.
  8. Procédé selon l'une quelconque des revendications 3 à 7, caractérisé en ce que la température du liquide n'est détectée que lorsque la vitesse du véhicule et/ou la durée de fonctionnement du moteur du véhicule automobile ont dépassé une valeur limite prédéfinissable.
  9. Procédé selon la revendication 8, caractérisé en ce que la valeur limite est établie en fonction des modèles de moteurs du véhicule automobile et/ou la forme de la carrosserie du véhicule, notamment séparément pour différents modèles de véhicules.
  10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une valeur de température du liquide détectée pendant un fonctionnement du réservoir de stockage et/ou du véhicule est enregistrée temporairement et lors d'une réutilisation subséquente du réservoir de stockage et/ou du véhicule, est comparée avec une température ambiante instantanée mesurée et la plus grande des deux valeurs est utilisée comme valeur initiale de la température du liquide jusqu'à la détection suivante de la température du liquide à l'aide du calcul modélisé.
  11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une variation du niveau de remplissage du réservoir de stockage est détectée sur la base d'un remplissage du réservoir, et est prise en compte lors du calcul modélisé.
  12. Procédé selon la revendication 11, caractérisé en ce que le remplissage du réservoir est détecté par le fait qu'après le démarrage du moteur du véhicule automobile, la différence entre l'état de remplissage instantané du réservoir et une valeur de niveau de remplissage du réservoir enregistrée temporairement dépasse une valeur seuil prédéfinissable.
  13. Procédé selon la revendication 11 ou 12, caractérisé en ce que la quantité de liquide ajoutée dans le réservoir est incorporée dans le calcul modélisé lors du nouveau calcul de la température du liquide.
  14. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que dans le cas d'une panne détectée d'un capteur de température ou de niveau de remplissage, une valeur de remplacement prédéfinissable est rapportée à une variable de température associée dans l'équation modélisée ou une valeur de température du liquide, détectée temporairement, est remplacée par une valeur de température enregistrée.
  15. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on effectue un contrôle de plausibilité, dans lequel une valeur de température du liquide présente instantanément est comparée à des valeurs limites prédéfinissables supérieure et/ou inférieure et n'est considérée comme correcte que si la valeur de température se situe à l'intérieur de ces valeurs limites.
  16. Procédé selon la revendication 15, caractérisé en ce qu'en cas de dépassement d'une des valeurs limites, la valeur de la température est posée comme étant égale à l'une des valeurs limites elles-mêmes.
  17. Procédé pour déterminer la température d'un liquide volatil stocké dans un réservoir de stockage, notamment la température de carburant stocké dans un réservoir de stockage de carburant d'un véhicule automobile, caractérisé en ce que la température du liquide est déterminée à l'aide d'au moins une grandeur caractéristique, en particulier la température ambiante, au moyen d'un calcul modélisé selon l'une quelconque des revendications précédentes.
  18. Circuit, en particulier circuit logique binaire, caractérisé par des moyens de circuit pour la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 16.
  19. Circuit selon la revendication 18, caractérisé par au moins deux étages, chaque étage constituant un filtre pour l'influence de la grandeur caractéristique respective sur la température du liquide, et l'amortissement du filtre respectif variant en fonction des grandeurs caractéristiques et des grandeurs de correction dépendant de l'environnement.
  20. Circuit selon la revendication 19, caractérisé par au moins deux filtres utilisés lors du calcul modélisé, la température ambiante et/ou la hauteur du réservoir de stockage ou du véhicule entrant dans un premier filtre et le niveau de remplissage du réservoir de stockage et/ou le temps d'arrêt du véhicule et/ou le temps d'arrêt du moteur du véhicule et/ou la durée de fonctionnement du réservoir de stockage ou du véhicule automobile entrant dans au moins le deuxième filtre.
  21. Appareil de commande, caractérisé par un programme de commande pour mettre en oeuvre le procédé selon l'une quelconque des revendications 1 à 16.
  22. Appareil de commande selon la revendication 21, caractérisé par une mémoire de lecture/écriture (RAM) pour stocker l'au moins un diagramme de grandeurs caractéristiques et/ou pour stocker temporairement une valeur de température du liquide détectée.
EP02016161A 2001-08-27 2002-07-20 Procédé et appareil de surveillance d'émissions d'un réservoir pour stockage d'un liquide volatile, notamment d'un réservoir de carburant d'un véhicule Expired - Lifetime EP1288483B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10140940 2001-08-21
DE10140954 2001-08-27
DE10140954A DE10140954A1 (de) 2001-08-27 2001-08-27 Verfahren und Vorrichtung zum emissionsüberwachenden Betrieb eines Vorratsbehältnisses zur Bevorratung eines flüchtigen Mediums, insbesondere eines Kraftstoffvorratstanks eines Kraftfahrzeuges

Publications (3)

Publication Number Publication Date
EP1288483A2 EP1288483A2 (fr) 2003-03-05
EP1288483A3 EP1288483A3 (fr) 2005-12-21
EP1288483B1 true EP1288483B1 (fr) 2009-09-23

Family

ID=7696130

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02016161A Expired - Lifetime EP1288483B1 (fr) 2001-08-27 2002-07-20 Procédé et appareil de surveillance d'émissions d'un réservoir pour stockage d'un liquide volatile, notamment d'un réservoir de carburant d'un véhicule

Country Status (3)

Country Link
US (1) US6829555B2 (fr)
EP (1) EP1288483B1 (fr)
DE (2) DE10140954A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10252225A1 (de) * 2002-11-11 2004-05-27 Robert Bosch Gmbh Verfahren zur Bestimmung des Kraftstoff-Dampfdrucks in einem Kraftfahrzeug mit Bordmitteln
US7251997B1 (en) 2004-07-28 2007-08-07 Kavlico Corporation Fuel tank module control system
DE102005005685A1 (de) * 2005-02-08 2006-08-10 Bayerische Motoren Werke Ag Vorrichtung und/oder Verfahren zur Überprüfung der Dichtheit einer Kraftstoff-Tankanlage eines Kraftfahrzeugs
EP1760303B1 (fr) * 2005-08-31 2008-05-07 Audi Ag Procédé pour vérifier l'étanchéité d'un système de purge d'un réservoir de carburant
JP2007231813A (ja) * 2006-02-28 2007-09-13 Denso Corp 燃料性状判定装置、漏れ検査装置、および燃料噴射量制御装置
JP5363466B2 (ja) * 2007-06-06 2013-12-11 ノー スクリュー リミテッド 切削工具ホルダ及び切削工具用の切削インサート
DE102007029801B4 (de) 2007-06-27 2022-10-20 Volkswagen Ag Verfahren zur Steuerung eines für ein Kraftfahrzeug bestimmten Antriebes
US11084485B2 (en) * 2012-07-24 2021-08-10 Magna Steyr Fahrzeugtechnik Ag & Co Kg Method for operating a hybrid vehicle
DE102015214322A1 (de) * 2015-07-29 2017-02-02 Robert Bosch Gmbh Verfahren zum Ermitteln der Beladung eines Speichers für Kohlenwasserstoffe

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251592A (en) * 1991-02-20 1993-10-12 Honda Giken Kogyo Kabushiki Kaisha Abnormality detection system for evaporative fuel control systems of internal combustion engines
US5259424A (en) * 1991-06-27 1993-11-09 Dvco, Inc. Method and apparatus for dispensing natural gas
DE4126880A1 (de) * 1991-06-28 1993-01-07 Bosch Gmbh Robert Tankentlueftungsanlage sowie verfahren und vorrichtung zum ueberpruefen von deren funktionsfaehigkeit
US5411004A (en) * 1993-02-03 1995-05-02 Siemens Automotive Limited Positive pressure canister purge system integrity confirmation
JPH09242621A (ja) * 1996-03-07 1997-09-16 Honda Motor Co Ltd 内燃機関の蒸発燃料制御装置
DE19636431B4 (de) 1996-09-07 2009-05-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage
DE19809384C2 (de) 1998-03-05 2000-01-27 Bosch Gmbh Robert Verfahren zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage
DE19836967C2 (de) 1998-08-14 2000-06-29 Bosch Gmbh Robert Verfahren zur Prüfung der Funktionsfähigkeit eines Behältnisses
US6095793A (en) * 1998-09-18 2000-08-01 Woodward Governor Company Dynamic control system and method for catalytic combustion process and gas turbine engine utilizing same
US6196203B1 (en) * 1999-03-08 2001-03-06 Delphi Technologies, Inc. Evaporative emission control system with reduced running losses

Also Published As

Publication number Publication date
DE50213862D1 (de) 2009-11-05
EP1288483A2 (fr) 2003-03-05
DE10140954A1 (de) 2003-04-03
EP1288483A3 (fr) 2005-12-21
US6829555B2 (en) 2004-12-07
US20030037599A1 (en) 2003-02-27

Similar Documents

Publication Publication Date Title
DE4441101B4 (de) Verfahren und Vorrichtung zur Bestimmung von Diagnoseschwellwerten für einen bestimmten Kraftfahrzeugtyp im Feld
EP0578795B1 (fr) Procede et dispositif pour verifier l'aptitude a fonctionner d'une installation de degazage de reservoir
DE102010031216B4 (de) Verfahren zur Prüfung der Funktionsfähigkeit eines Tankabsperrventils einer Kraftstoff-Tankanlage
DE19713085C2 (de) Verfahren zum Überprüfen der Funktionstüchtigkeit einer Tankentlüftungsanlage für ein Kraftfahrzeug
EP0559854A1 (fr) Procede et dispositif pour controler la capacite fonctionnelle d'un systeme de degazage du reservoir
DE102004044693A1 (de) System zur Detektion eines fehlenden Kraftstofftankdeckels
DE112012005026B4 (de) Verfahren zum Ermitteln einer Leckage in einem Dampfmanagementsystem eines Kraftstoffsystems eines Kraftfahrzeugs sowie Dampfmanagementsysteme für ein Kraftfahrzeug mit Mitteln zum Ermitteln von Leckagen
EP1288483B1 (fr) Procédé et appareil de surveillance d'émissions d'un réservoir pour stockage d'un liquide volatile, notamment d'un réservoir de carburant d'un véhicule
DE102009036263B4 (de) Verfahren zur Dichtheitsprüfung eines Tanksystems und Tanksystem
DE10230834A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102012106058A1 (de) Verfahren zum ermitteln eines versagens einer aktiven luft-klappe
DE19818697A1 (de) Verfahren zur Bestimmung von Leckagen im Kraftstoffversorgungssystem eines Kraftfahrzeuges
DE102008039300A1 (de) Verfahren und Vorrichtung zur Überprüfung der Dichtigkeit eines Kraftstofftanks einer Brennkraftmaschine
DE10006185C1 (de) Verfahren zur Dichtheitsprüfung einer Tankanlage eines Fahrzeugs
EP0635633B1 (fr) Procédé de contrÔle d'un système de dégazage d'un réservoir captant des vapeurs d'essence et les introduisant dans un moteur à combustion interne
EP3368362B1 (fr) Procédé de contrôle de l'étanchéité d'un système d'alimentation en carburant
DE102015207710A1 (de) Verfahren zur Erhöhung der Genauigkeit einer sensorlosen Druckerfassung
DE19548684A1 (de) Verfahren zum Erfassen und Dokumentieren von abgasrelevanten Fehlfunktionen eines Fahrzeugs mit Brennkraftmaschine mit Hilfe bordeigener Mittel
DE102018212277A1 (de) Verfahren zum Überprüfen einer Dichtigkeit eines Hochvoltspeichergehäuses eines Kraftfahrzeugs sowie Dichtigkeitsmessvorrichtung für ein Hochvoltspeichergehäuse eines Kraftfahrzeugs
DE10133826A1 (de) Verfahren und Vorrichtung zur Prüfung der Funktionsfähigkeit eines Behältnisses, insbesondere einer Tankanlage
DE102006045679B3 (de) Verfahren zur Ermittlung des Umgebungsdrucks für ein Kraftfahrzeug, Steuereinrichtung und Brennkraftmaschine
DE112014001033B4 (de) Überwachungseinheit und Verfahren zur Überwachung eines Kraftstoffsystems
DE19836102C2 (de) Verfahren zur Plausibilitätsüberprüfung eines Tankdrucksensors
WO2021013887A1 (fr) Procédé et dispositif permettant d'effectuer le diagnostic d'un système anti-évaporation de carburant d'un moteur à combustion interne
DE102017222559B4 (de) Verfahren und Vorrichtung zur Vorhersage des Ausfallzeitpunktes des Druckbegrenzungsventils einer Kraftstoffhochdruckpumpe eines Kraftfahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20060621

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20061027

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50213862

Country of ref document: DE

Date of ref document: 20091105

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140925

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140721

Year of fee payment: 13

Ref country code: FR

Payment date: 20140724

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140724

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50213862

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150720

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150720

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731