EP1281072A2 - Verfahren und vorrichtung zur auftrennung von markierten biopolymeren - Google Patents

Verfahren und vorrichtung zur auftrennung von markierten biopolymeren

Info

Publication number
EP1281072A2
EP1281072A2 EP01945120A EP01945120A EP1281072A2 EP 1281072 A2 EP1281072 A2 EP 1281072A2 EP 01945120 A EP01945120 A EP 01945120A EP 01945120 A EP01945120 A EP 01945120A EP 1281072 A2 EP1281072 A2 EP 1281072A2
Authority
EP
European Patent Office
Prior art keywords
microcapillaries
takes place
biopolymers
separation
gel matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01945120A
Other languages
English (en)
French (fr)
Inventor
Rudolf Rigler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gnothis Holding SA
Original Assignee
Gnothis Holding SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gnothis Holding SA filed Critical Gnothis Holding SA
Publication of EP1281072A2 publication Critical patent/EP1281072A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing

Definitions

  • the invention relates to a method and a device for the detection of labeled biopolymers, in particular nucleic acid fragments in a gel matrix, a parallel separation taking place in a multiplicity of microcapillaries filled with a gel matrix.
  • labeled DNA molecules are modified chemically in a base-specific manner, partial strand termination is effected, the fragments thus obtained are separated according to size and the sequence is determined on the basis of the label.
  • the object underlying the present invention was to provide a method for the separation of labeled biopolymers and in particular labeled nucleic acid fragments, in which the disadvantages of the prior art are at least partially eliminated, and which in particular enables parallel separation and detection of a large number of traces.
  • This object is achieved by a method for the separation of labeled biopolymers in a gel matrix, the method being characterized in that a parallel separation takes place in a multiplicity of microcapillaries filled with a gel matrix.
  • the method according to the invention enables the separation of labeled biopolymers, for example nucleic acid fragments, in particular DNA or RNA molecules, but also other biopolymers such as peptides, proteins, saccharides.
  • the method is particularly preferably used for the separation of nucleic acid fragment mixtures of different lengths, as they arise in a sequencing reaction.
  • the gel matrix is preferably separated according to the size and / or charge of the biopolymers.
  • non-radioactive labeling groups and particularly preferably labeling groups detectable by optical methods are suitable as labels for the biopolymers.
  • suitable fluorescent labeling groups are rhodamine, Texas red, phycoerythrin, fluorescein or other fluorescent dyes customary in sequencing technology.
  • the labeled biopolymers are separated in parallel in a large number of microcapillaries, it being possible for the microcapillaries to be integrated in a compact body, for example a plate or a block. At least 10 3 microcapillaries and particularly preferably at least 10 5 microcapillaries, for example about 10 6 microcapillaries, are preferably used.
  • the microcapillaries preferably have an essentially identical diameter, which can be in the range from preferably 0.5 ⁇ m to 10 ⁇ m and particularly preferably from 1 ⁇ m to 5 ⁇ m. Furthermore, the microcapillaries preferably have an essentially identical length, which can be in the range from 5 mm or longer, preferably from 5 mm to 200 mm and particularly preferably from 5 mm to 100 mm, and is therefore considerably smaller than in conventional sequencing gels.
  • microcapillaries Suitable arrangements which contain a sufficient number of microcapillaries are, for example, microchannel plates made of glass, such as are used as photomultipliers in night vision detectors. These microchannel plates can be filled with a solution forming the gel matrix by capillary forces. Gel formation can take place within the capillaries after filling.
  • the gel matrix is particularly preferably a denaturing polyacrylamide gel, e.g. Polyacrylamide urea gel.
  • the biopolymers are separated in the microcapillaries of the gel matrix by electrophoretic and / or electroosmotic methods, an electric field being applied, for example, between both ends of the microchannel plate. Due to the short length of the microcapillaries, the separation in the gel matrix can be carried out using a considerably lower voltage than with conventional sequencing gels, e.g. are in the range from 10 to 100 V.
  • the separation method according to the invention takes place in combination with automatic sample application with position addressing of the individual samples.
  • corresponding inkjet or micropipetting devices can be used, with which the approaches to be separated in the respective microcapillaries, e.g. B.
  • a nucleic acid sequencing reaction can be applied to individual openings of the microchannel plate.
  • a sample volume of 10 "12 to 10 " 6 I is applied per microchannel.
  • the method according to the invention preferably further comprises an automatic position-specific detection of the nucleic acid fragments separated in the microchannels.
  • This position-specific detection can include confocal and / or time-resolved detection.
  • the fluorescent markers can be excited via an optical dot matrix, for example a dot matrix of laser dots generated by diffractive optics or a quantum well laser.
  • a confocal detector matrix can be used, which can be an arrangement of fiber-coupled avalanche photodiodes or an avalanche photodiode matrix.
  • an electronic detector matrix for example a CCD camera, can be used, with which a time-resolved detection is made possible.
  • the method according to the invention enables the parallel evaluation of up to more than 1 0 6 , for example 10 7 individual channels.
  • the detection can be carried out according to the method of fluorescence correlation spectroscopy (FCS) described in European Patent 0 679 251.
  • FCS fluorescence correlation spectroscopy
  • This method preferably comprises the measurement of one or a few sample molecules in a measurement volume, the concentration of the molecules to be determined being ⁇ 1 0 '6 mol / l and the measurement volume preferably being ⁇ 1 0 "14 I.
  • the measurement volume preferably is made to the disclosure of European patent 0 679 251. O 01/85990
  • the detection can also be carried out by a time-resolved decay measurement, a so-called time gating, as described, for example, by Rigler et al: Picosecond Single Photon Fluorescence Spectroscopy of Nucleic Acids, in: "Ultrafast Phenomena", D.H. Auston, ed. Springer 1 984.
  • the fluorescence molecules are excited within a measurement volume and then - preferably at a time interval of> 100 ps - the detection interval is opened at the photodetector. In this way, background signals generated by Raman effects can be kept sufficiently low to enable essentially interference-free detection.
  • Another object of the invention is a device for separating labeled nucleic acid fragments by size, comprising (a) a plurality of microcapillaries filled with a gel matrix, (b) means for automatic sample application into the microcapillaries
  • the device can furthermore comprise automatic manipulation devices for positioning microchannel plates in automatic sequencing devices, heating or cooling devices such as Peltier elements in order to maintain a substantially constant temperature, reservoirs and optionally supply lines for sample liquids and reagents as well as electronic evaluation devices.
  • automatic manipulation devices for positioning microchannel plates in automatic sequencing devices, heating or cooling devices such as Peltier elements in order to maintain a substantially constant temperature, reservoirs and optionally supply lines for sample liquids and reagents as well as electronic evaluation devices.
  • the method according to the invention and the device according to the invention can be used for all electrophoretic or electroosmotic methods, for example for the resolution of products of a nucleic acid sequencing reaction, for the analysis of protein fragments or for genome, transcriptome or proteome analysis.
  • the present invention is further to be illustrated by the following figures and examples. Show it:
  • Figure 1 is a schematic representation of a device suitable for performing the method according to the invention.
  • the device contains a microchannel plate (2) with approximately 10 6 microchannels (4) for the separation of nucleic acid fragments.
  • the device also contains an inkjet device (6) for automatic sample application into individual microcapillaries with position addressing and an automatic position-specific detector (8) with which labeled nucleic acids which have passed through the microcapillaries can be detected. The migration of the nucleic acids takes place in an electrical field (from minus to plus).
  • Figure 2 shows a cross section through a microchannel plate.
  • Microchannels (4) are provided with a gel matrix, e.g. filled with a polyacrylamide / 6 M urea gel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Saccharide Compounds (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Nachweis von markierten Biopolymeren, insbesondere Nukleinsäurefragmenten in einer Gelmatrix, wobei eine parallele Auftrennung in einer Vielzahl von mit einer Gelmatrix gefüllten Mikrokapillaren erfolgt.

Description

Verfahren und Vorrichtung zur Auftrennung von markierten Biopolymeren
Beschreibung
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Nachweis von markierten Biopolymeren, insbesondere Nukleinsaurefragmenten in einer Gelmatrix, wobei eine parallele Auftrennung in einer Vielzahl von mit einer Gelmatrix gefüllten Mikrokapillaren erfolgt.
Allgemein sind für die DNA-Sequenzierung zwei Methoden bekannt, nämlich das chemische Abbauverfahren nach Maxam und Gilbert (Proc. Natl. Acad. Sei. USA 74 ( 1 977), 560; Meth. Enzymol. 65 ( 1 980), 499) und die enyzmatische Kettenabbruchmethode nach Sanger et al. (Proc. Natl. Acad. Sei. USA 74 (1 977), 5463).
Bei der Maxam-Gilbert-Methode werden markierte DNA-Moleküle chemisch in basenspezifischer Weise modifiziert, ein partieller Strangabbruch bewirkt, die so erhaltenen Fragmente nach Größe aufgetrennt und die Sequenz anhand der Markierung bestimmt.
Bei der Methode nach Sanger werden, ausgehend von einer DNA-Matrize, viele verschieden lange markierte Nukleinsäurefragmente durch enzymatische Elongation bzw. Extension eines synthetischen Oligonukleotidprimers mit Hilfe von Polymerase und einer Mischung von Deoxyribonukleosidtriphosphaten und Kettenabbruchmolekülen, insbesondere Dideoxyribonukleosidtriphosphaten, hergestellt.
Die Auftrennung der nach diesen und anderen Techniken erzeugten markierten Nukleinsäurefragmente erfolgt üblicherweise durch
Polyacrylamid-Gelelektrophorese unter Verwendung automatischer
Sequenziergeräte in Plattengelen oder einzelnen Kapillaren. Dabei besteht O 01/85990
- 2 - jedoch das Problem, dass nur eine beschränkte Anzahl von Sequenzieransätzen parallel nebeneinander analysiert werden kann.
Die der vorliegenden Erfindung zugrundeliegende Aufgabe bestand darin, ein Verfahren zur Auftrennung von markierten Biopolymeren und insbesondere von markierten Nukleinsaurefragmenten bereitzustellen, bei dem die Nachteile des Standes der Technik mindestens teilweise beseitigt sind, und das insbesondere eine parallele Auftrennung und Detektion einer Vielzahl von Spuren ermöglicht.
Diese Aufgabe wird gelöst durch ein Verfahren zur Auftrennung von markierten Biopolymeren in einer Gelmatrix, wobei das Verfahren dadurch gekennzeichnet ist, dass eine parallele Auftrennung in einer Vielzahl von mit einer Gelmatrix gefüllten Mikrokapillaren erfolgt.
Das erfindungsgemäße Verfahren ermöglicht die Auftrennung von markierten Biopolymeren, beispielsweise Nukleinsaurefragmenten, insbesondere DNA- oder RNA-Molekülen, aber auch anderen Biopolymeren wie Peptiden, Proteinen, Sacchariden. Besonders bevorzugt wird das Verfahren zur Auftrennung von Nukleinsäurefragmentgemischen unterschiedlicher Länge, wie sie bei einer Sequenzierungsreaktion entstehen, eingesetzt. Die Auftrennung in der Gelmatrix erfolgt vorzugsweise nach Größe oder/und Ladung der Biopolymere.
Als Markierungen der Biopolymere kommen insbesondere nichtradioaktive Markierungsgruppen und besonders bevorzugt durch optische Methoden nachweisbare Markierungsgruppen, wie etwa Farbstoffe und insbesondere Fluoreszenzmarkierungsgruppen, in Betracht. Beispiele für geeignete Fluoreszenzmarkierungsgruppen sind Rhodamin, Texasrot, Phycoerythrin, Fluorescein oder andere in der Sequenzieruπgstechnik übliche Fluoreszenzfarbstoffe. Die markierten Biopolymere werden in einer Vielzahl von Mikrokapillaren parallel aufgetrennt, wobei die Mikrokapillaren in einem kompakten Körper, z.B. einer Platte oder einem Block, integriert sein können. Dabei werden vorzugsweise mindestens 103 Mikrokapillaren und besonders bevorzugt mindestens 105 Mikrokapillaren, z.B. etwa 1 06 Mikrokapillaren eingesetzt. Die Mikrokapillaren weisen vorzugsweise einen im wesentlichen gleichen Durchmesser auf, der im Bereich von vorzugsweise 0,5 μm bis 10 μm und besonders bevorzugt von 1 μm bis 5 μm liegen kann. Weiterhin besitzen die Mikrokapillaren vorzugsweise eine im wesentlichen gleiche Länge, die im Bereich von 5 mm oder länger, vorzugsweise von 5 mm bis 200 mm und besonders bevorzugt von 5 mm bis 100 mm liegen kann, und somit erheblich kleiner als bei konventionellen Sequenziergelen ist.
Geeignete Anordnungen, die eine ausreichende Zahl von Mikrokapillaren enthalten, sind beispielsweise Mikrokanalplatten aus Glas, wie sie als Fotomultiplikatoren in Nachtsicht-Detektoren eingesetzt werden. Diese Mikrokanalplatten können durch Kapillarkräfte mit einer die Gelmatrix bildenden Lösung gefüllt werden. Die Gelbildung kann nach dem Befüllen innerhalb der Kapillaren erfolgen. Besonders bevorzugt ist die Gelmatrix ein denaturierendes Polyacrylamidgel, z.B. Polyacrylamid-Harnstoffgel.
Die Auftrennung der Biopolymere in den Mikrokapillaren der Gelmatrix erfolgt durch elektrophoretische und/oder elektroosmotische Methoden, wobei beispielsweise ein elektrisches Feld zwischen beiden Enden der Mikrokanalplatte angelegt wird. Aufgrund der geringen Länge der Mikrokapillaren kann die Auftrennung in der Gelmatrix unter Verwendung einer erheblich geringeren Spannung als bei konventionellen Sequenziergelen, z.B. im Bereich von 10 bis 100 V, liegen.
In einer bevorzugten Ausführungsform erfolgt das erfindungsgemäße Auftrennungsverfahren in Kombination mit automatischem Probenauftrag mit Positionsadressierung der einzelnen Proben. Hierzu können beispielsweise entsprechende InkJet- oder Mikropipettier-Vorrichtungen eingesetzt werden, mit denen die in den jeweiligen Mikrokapillaren a u f z u t r e n n e n d e n A n s ä t z e , z . B . A n s ä t z e a u s e i n e r Nukleinsäuresequenzierreaktion, auf einzelne Öffnungen der Mikrokanalplatte aufgebracht werden. Typischerweise werden pro Mikrokanal ein Probenvolumen von 1 0"12 bis 10'6 I aufgebracht.
Das erfindungsgemäße Verfahren umfasst vorzugsweise weiterhin eine automatische positionsspezifische Detektion der in den Mikrokanälen aufgetrennten Nukleinsäurefragmente. Diese positionsspezifische Detektion kann eine konfokale oder/und zeitaufgelöste Detektion umfassen. Im Falle der bevorzugten Fluoreszenzmarkierungsgruppen kann eine Anregung der Fluoreszenzmarkierungen über eine optische Punktmatrix, z.B. eine Punktmatrix von Laserpunkten erzeugt durch eine Diffraktionsoptik oder einen Quanten-Well-Laser erfolgen. Zur Detektion der angeregten Fluoreszenzgruppen kann eine konfokale Detektormatrix verwendet werden, bei der es sich um eine Anordnung fasergekoppelter Avalanche-Fotodioden oder eine Avalanche-Fotodiodenmatrix handeln kann. Alternativ kann auch eine elektronische Detektormatrix, z.B. eine CCD-Kamera, eingesetzt werden, mit der eine zeitaufgelöste Detektion ermöglicht wird. Das erfindungsgemäße Verfahren ermöglicht die parallele Auswertung von bis zu mehr als 1 06, z.B. 107 einzelnen Kanälen.
Beispielsweise kann die Detektion nach dem im europäischen Patent 0 679 251 beschriebenen Verfahren der Fluoreszenz-Korrelationsspektroskopie (FCS) durchgeführt werden. Dieses Verfahren umfasst vorzugsweise die Messung von einem oder wenigen Probenmolekülen in einem Messvolumen, wobei die Konzentration der zu bestimmenden Moleküle < 1 0'6 Mol/I beträgt und das Messvolumen vorzugsweise < 1 0"14 I ist. Auf Einzelheiten zur Verfahrensdurchführung und apparative Details zu den für das Verfahren verwendeten Vorrichtungen wird auf die Offenbarung des europäischen Patents 0 679 251 verwiesen. O 01/85990
Alternativ kann die Detektion auch durch eine zeitaufgelöste Abklingmessung, ein sogenanntes Time Gating, erfolgen, wie beispielsweise von Rigler et al: Picosecond Single Photon Fluorescence Spectroscopy of Nucleic Acids, in: "Ultrafast Phenomena", D.H. Auston, ed. Springer 1 984, beschrieben. Dabei erfolgt die Anregung der Fluoreszenzmoleküle innerhalb eines Messvolumens und anschließend - vorzugsweise in einem zeitlichen Abstand von > 100 ps - das Öffnen eines Detektionsintervalls am Fotodetektor. Auf diese Weise können durch Raman-Effekte erzeugte Hintergrundsignale ausreichend gering gehalten werden, um eine im Wesentlichen störungsfreie Detektion zu ermöglichen.
Ein weiterer Gegenstand der Erfindung ist eine Vorrichtung zur Auftrennung von markierten Nukleinsaurefragmenten nach Größe, umfassend (a) eine Vielzahl von mit einer Gelmatrix gefüllten Mikrokapillaren, (b) Mittel zum automatischen Probenauftrag in die Mikrokapillaren mit
Positionsadressierung und (c) Mittel zur automatischen positionsspezifischen Detektion von
Nukleinsäuren in den Mikrokapillaren.
Die Vorrichtung kann weiterhin automatische Manipulationsvorrichtungen zur Positionierung von Mikrokanalplatten in Sequenzierautomaten, Heizoder Kühleinrichtungen wie Peltier-Elemente, um eine im Wesentlichen konstante Temperatur zu halten, Reservoirs und gegebenenfalls Zufuhrleitungen für Probenflüssigkeiten und Reagenzien sowie elektronische Auswertungsgeräte umfassen.
Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung können für alle elektrophoretischen oder elektroosmotischen Verfahren b e i s p i e l s we ise z u r A uftre n n u n g vo n P ro d u kte n e i n e r Nukleinsäuresequenzierungsreaktion, zur Analyse von Proteinfragmenten oder zur Genom-, Transkriptom- oder Proteomanalyse eingesetzt werden. Weiterhin soll die vorliegende Erfindung durch die nachfolgenden Figuren und Beispiele erläutert werden. Es zeigen:
Figur 1 die schematische Darstellung einer zur Durchführung des erfindungsgemäßen Verfahrens geeigneten Vorrichtung. Die
Vorrichtung enthält eine Mikrokanalplatte (2) mit etwa 106 Mikrokanälen (4) zur Auftrennung von Nukleinsaurefragmenten. Die Vorrichtung enthält weiterhin eine Inkjet-Vorrichtung (6) zum automatischen Probenauftrag in einzelne Mikrokapillaren mit Positionsadressierung und einen automatischen positionsspezifischen Detektor (8), mit dem markierte Nukleinsäuren, welche die Mikrokapillaren durchwandert haben, nachgewiesen werden können. Die Wanderung der Nukleinsäuren erfolgt in einem elektrischen Feld (von Minus nach Plus).
Figur 2 einen Querschnitt durch eine Mikrokanalplatte. Die
Mikrokanäle (4) sind mit einer Gelmatrix, z.B. einem Polyacrylamid/6 M Harnstoffgel gefüllt.

Claims

Patentansprüche
1 . Verfahren zur Auftrennung von markierten Biopolymeren in einer Gelmatrix, dadurch gekennzeichnet, dass eine parallele Auftrennung in einer Vielzahl von mit einer
Gelmatrix gefüllten Mikrokapillaren erfolgt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Biopolymere aus Nukleinsäuren, Peptiden, Proteinen und Sacchariden ausgewählt werden.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass eine Auftrennung von Nukleinsaurefragmenten erfolgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Biopolymere eine Fluoreszenzmarkierung tragen.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine parallele Auftrennung in mindestens 103 Mikrokapillaren erfolgt.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass eine parallele Auftreinnung in mindestens 105 Mikrokapillaren erfolgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Mikrokapillaren einen Durchmesser im Bereich von 1 μm bis 5 μm aufweisen.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Mikrokapillaren eine Länge im Bereich von 5 mm bis 200 mm aufweisen.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass eine elektrophoretische und/oder elektroosmotische Auftrennung erfolgt.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass ein automatischer Probenauftrag mit Positionsadressierung erfolgt.
1 1 . Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der Probenauftrag durch eine InkJet-Vorrichtung erfolgt.
12. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass eine automatische positionsspezifische Detektion erfolgt.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass eine konfokale oder/und zeitaufgelöste Detektion erfolgt.
4. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die Detektion durch Anregung der Fluoreszenzmarkierungen über eine optische Punktmatrix und eine Detektormatrix erfolgt.
5. Vorrichtungzur Auftrennung von markierten Nukleinsaurefragmenten nach Größe, umfassend
(a) eine Vielzahl von mit einer Gelmatrix gefüllten Mikrokapillaren,
(b) Mittel zum automatischen Probenauftrag in die Mikrokapillaren mit Positionsadressierung und
(c) Mittel zur automatischen positionsspezifischen Detektion von Markierungen in den Mikrokapillaren.
6. Verwendung der Vorrichtung nach Anspruch 1 5 zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 14.
EP01945120A 2000-05-12 2001-05-11 Verfahren und vorrichtung zur auftrennung von markierten biopolymeren Withdrawn EP1281072A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10023422A DE10023422A1 (de) 2000-05-12 2000-05-12 Verfahren und Vorrichtung zur Auftrennung von markierten Biopolymeren
DE10023422 2000-05-12
PCT/EP2001/005409 WO2001085990A2 (de) 2000-05-12 2001-05-11 Verfahren und vorrichtung zur auftrennung von markierten biopolymeren

Publications (1)

Publication Number Publication Date
EP1281072A2 true EP1281072A2 (de) 2003-02-05

Family

ID=7641877

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01945120A Withdrawn EP1281072A2 (de) 2000-05-12 2001-05-11 Verfahren und vorrichtung zur auftrennung von markierten biopolymeren

Country Status (5)

Country Link
US (1) US20030150728A1 (de)
EP (1) EP1281072A2 (de)
AU (1) AU2001267429A1 (de)
DE (1) DE10023422A1 (de)
WO (1) WO2001085990A2 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008451A1 (en) * 1998-08-07 2000-02-17 The Regents Of The University Of California System and method for optically locating microchannel positions

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122248A (en) * 1990-05-18 1992-06-16 Northeastern University Pulsed field capillary electrophoresis
US5080771A (en) * 1990-10-26 1992-01-14 Indiana University Foundation Capillary gels formed by spatially progressive polymerization using migrating initiator
DE4301005A1 (de) * 1993-01-18 1994-07-21 Diagen Inst Molekularbio Verfahren und Vorrichtung zur Bewertung der Fitness von Biopolymeren
JP4000605B2 (ja) * 1996-07-24 2007-10-31 株式会社日立製作所 Dna試料調整装置及びこれを用いる電気泳動分析装置
EP0854362A3 (de) * 1997-01-16 2000-12-20 Japan Science and Technology Corporation Mehrkapillarelektroforesevorrichtung
CA2301557A1 (en) * 1997-09-19 1999-04-01 Aclara Biosciences, Inc. Apparatus and method for transferring liquids
DE19830989C1 (de) * 1998-07-10 2000-04-13 Lion Bioscience Ag Verwendung von porösen Membranmaterialien als Beladungsmaterialien bei der Gelelektrophorese

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008451A1 (en) * 1998-08-07 2000-02-17 The Regents Of The University Of California System and method for optically locating microchannel positions

Also Published As

Publication number Publication date
DE10023422A1 (de) 2001-11-15
US20030150728A1 (en) 2003-08-14
WO2001085990A2 (de) 2001-11-15
AU2001267429A1 (en) 2001-11-20
WO2001085990A3 (de) 2002-05-23

Similar Documents

Publication Publication Date Title
DE69938065T2 (de) Methode zur Bestimmung des Stromflusses in einem Trennungskanal und Zusmmensetzung dafür
EP0731173B1 (de) Verfahren zum direkten Nachweisen weniger Nukleinsäurestränge
DE19844931C1 (de) Verfahren zur DNS- oder RNS-Sequenzierung
WO2002038806A2 (de) Nachweis von nukleinsäure-polymorphismen
WO1996034114A1 (de) Simultane sequenzierung von nukleinsäuren
DE3501306A1 (de) Verfahren fuer die elektrophoretische analyse von dna - fragmenten
DE4445551A1 (de) Elektrophorese-Fraktionssammler für mehrere Proben
DE4011991A1 (de) Verfahren zur dna-basensequenzbestimmung
EP1281084A2 (de) Direkter nachweis von einzelmolekülen
DE102004038359A1 (de) Paralleles Hochdurchsatz-Einzelmolekül-Sequenzierungsverfahren
DE10036174B4 (de) Verfahren und Vorrichtung zum Analysieren von chemischen oder biologischen Proben
WO2002002225A9 (de) Einzelmolekül-sequenzierungsverfahren
DE10162536A1 (de) Evaneszenz-basierendes Multiplex-Sequenzierungsverfahren
EP1281072A2 (de) Verfahren und vorrichtung zur auftrennung von markierten biopolymeren
EP1627921B1 (de) Verfahren zur Messung einer Nukleinsäureamplifikation in Real Time beinhaltend die Positionierung eines Reaktionsgefässes relativ zu einer Detektionseinheit
WO2003046216A1 (de) Nanostruktur insbesondere zur analyse von einzelmolekülen
DE102018207098B4 (de) Mikrofluidische Vorrichtung und Verfahren zur Nanostruktur-Sequenzierung von Nukleotidsträngen
DE10065632A1 (de) Verfahren zum Nachweis von Polynukleotiden
DE60223532T2 (de) Nachweis von Einzelnukleotidpolymorphismen durch Einzelmolekülanalyse
DE102005029811B4 (de) Oligonukleotidanordnungen, Verfahren zu deren Einsatz und deren Verwendung
WO2003076655A2 (de) Verfahren zur bestimmung eines nukleinsäureanalyten
EP1441035B1 (de) Verfahren zur Erstellung von Profilen der differentialen Proteinexpression
DE10211321A1 (de) Verwendung von Abfangsonden beim Nachweis von Nukleinsäuren
DE19948260A1 (de) Fluoreszenz-Multiplex-Sequenzierung
DE10065631A1 (de) Nachweis von Nukleinsäure- Polymorphismen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021118

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20030526

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031028