EP1271614B1 - Lampe à halogénure métallique - Google Patents

Lampe à halogénure métallique Download PDF

Info

Publication number
EP1271614B1
EP1271614B1 EP02014260A EP02014260A EP1271614B1 EP 1271614 B1 EP1271614 B1 EP 1271614B1 EP 02014260 A EP02014260 A EP 02014260A EP 02014260 A EP02014260 A EP 02014260A EP 1271614 B1 EP1271614 B1 EP 1271614B1
Authority
EP
European Patent Office
Prior art keywords
halide
arc tube
lamp
iodide
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP02014260A
Other languages
German (de)
English (en)
Other versions
EP1271614A1 (fr
Inventor
Masanori Higashi
Yoshiharu Nishiura
Shigefumi Oda
Shunsuke Kakisaka
Hiroshi Enami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of EP1271614A1 publication Critical patent/EP1271614A1/fr
Application granted granted Critical
Publication of EP1271614B1 publication Critical patent/EP1271614B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/125Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component

Definitions

  • the present invention relates to an arc tube used for a metal halide lamp.
  • Metal halide lamps using ceramic arc tubes have been used widely for indoor lighting in stores and shops because such metal halide lamps have higher luminous efficiency, higher color rendering and longer service lives when compared to metal halide lamps using quartz arc tubes.
  • FIGs. 5 and 6 show respectively a metal halide lamp using a conventional ceramic arc tube.
  • An arc tube 28 comprises an arc tube container 29 composed of a discharge arc tube portion 30 of a polycrystalline alumina ceramic material and a pair of thin tube portions (31,32) sintered at the both ends of the discharge arc tube portion 30.
  • a pair of tungsten coil electrodes (33,34) are arranged at the both ends of the arc tube 28.
  • Feeding portions (35,36) of niobium or conductive cermet are adhered hermetically to the thin tube portions (31,32) by means of frit 37, and the tungsten electrodes (33,34) are connected to the respective feeding portions (35,36).
  • a luminescent material 38 comprising a metal halide, mercury as a buffer gas, and a start-aiding rare gas such as argon are filled in the arc tube 28.
  • the arc tube 28 composing a lamp 39 is disposed inside an outer bulb 40 of either quartz or hard glass, and a base 41 is attached to the outer bulb 40.
  • About 50 kPa of a nitrogen-based gas is filled in the outer bulb 40.
  • the lamp 39 is turned on by means of a copper-iron inductance ballast or an electron ballast with a built-in starter.
  • references such as JP-57(1982)-92747 A and USP 5973453 describe the use of cerium iodide in combination with sodium iodide for a luminescent material applicable for a typical metal halide lamp for indoor/outdoor use.
  • the luminescent material of cerium iodide can provide improved luminous efficiency since many of the emission spectra of cerium are distributed in a region with a higher relative luminosity factor regarding human eyes.
  • USP 5973453 and Tokuhyo-2000-501563 (published Japanese translation of PCT international publication for patent application) describe a suitable NaI/CeI 3 molar composition ratio in a range from 3 to 25 (corresponding to a CeI 3 composition ratio from 12.2 wt% to 53.7 wt%), which is suitable for obtaining white light source color.
  • a conventional metal halide lamp filled with a luminescent material of cerium iodide and sodium iodide has a problem of a drastic change in the lamp color temperature as well as a remarkable lowering in the flux maintenance factor over the lighting time.
  • a metal halide lamp arc tube according to the present invention can be identical to that of a conventional technique, or a conventional metal halide lamp arc tube can be applied to the present invention.
  • the present invention provides a material that is more reactive with a ceramic material than is a cerium halide in order to maintain a high flux maintenance factor while preventing a drastic change in the lamp color temperature.
  • the reactive material is at least one halide of a rare earth element selected from the group consisting of scandium halide, gadolinium halide, terbium halide, dysprosium halide, holmium halide, erbium halide, thulium halide, ytterbium halide, lutetium halide, samarium halide, yttrium halide, and europium halide.
  • a preferred halogen is either bromine (Br) or iodine (I).
  • scandium halide (ScI 3 ) is particularly preferred.
  • the filling amount of a halide of a rare earth element is in a range from 1.5 molar parts to 100 molar parts when a filling amount of the cerium halide is 100 molar parts. Accordingly, the oxide-based translucent ceramic material will react preferentially with a halide of a rare earth element other than cerium halide, and thus a reaction between the oxide-based translucent ceramic material and the cerium halide can be suppressed. This can suppress the decrease of cerium halide that serves for light emission, and also reduce changes in the lamp color temperature.
  • thallium halide and indium halide also are filled in the arc tube.
  • the metal halide lamp according to the present invention has a rated service life of at least 12000 hrs and a lamp efficiency of at least 117 lm/W in its initial state.
  • 'initial state' denotes a condition at an aging time of 100 hrs.
  • the present invention provides a metal halide lamp that can prevent lowering of flux maintenance factor and color temperature, and the metal halide lamp can be applied for general indoor and outdoor use.
  • the metal halide lamp emitting white light is a high-wattage and long-life type, and it has high luminous efficiency, higher light color temperature and a higher general color rendering index.
  • FIGs. 1 and 2 Embodiments of the present invention will be described below by referring to FIGs. 1 and 2.
  • FIGs. 1 and 2 respectively show structures of an arc tube of a metal halide lamp having an alumina ceramic tube with 200 W, and an entire lamp including the arc tube.
  • An arc tube 1 comprises an arc tube container 2 composed of a discharge arc tube portion 3 made of a polycrystalline alumina ceramic and a pair of thin tubes (4,5) sintered at the both ends of the discharge arc tube portion 3.
  • the arc tube container 2 is not limited to the polycrystalline alumina ceramic but any oxide-based translucent ceramics can be used similarly.
  • Al 2 O 3 (alumina), Y 3 Al 5 O 3 (YAG), BeO, MgO, Y 2 O 3 , Yb 2 O 3 , and ZrO 2 can be used.
  • a pair of tungsten coil electrodes (6,7) are formed at the both ends of the arc tube 1, and the respective tungsten coil electrodes (6,7) comprise tungsten electrode rods (8,9) and tungsten coils (10,11).
  • the electrodes are arranged with a distance of 18.0 mm.
  • Feeding portions (12,13) of a conductive cermet are adhered hermetically to the thin tube portions (4,5) by means of frit 14.
  • Each of the tungsten rods (8,9) is welded to one end of each of the feeding portions (12,13), while niobium outer leads (15,16) are welded to the other ends of the feeding portions (12,13) respectively.
  • a cerium halide-based luminescent material 17, mercury as a buffer gas and a start-aiding rare gas containing an argon gas are filled in the arc tube 1.
  • FIG. 2 is a general view of a lamp 18 comprising the arc tube 1.
  • the arc tube 1 is arranged in the interior of an outer bulb 19 made of hard glass.
  • a start-aiding conductor 20 made of a molybdenum wire is attached along the discharge arc tube portion 3 of the arc tube container 2.
  • An inert gas such as a 50kP of a nitrogen gas is filled in the outer bulb 19.
  • the interior of the outer bulb can be evacuated.
  • Numeral 21 denotes a base.
  • a lamp 18 comprising an arc tube 1 was prepared.
  • the arc tube 1 was previously filled with 6 mg of a luminescent material 17 composed of 35 wt% (14 mol%) of CeI 3 , 60 wt% (83.5 mol%) of NaI, and 5 wt% (2.5 mol%) of ScI 3 .
  • the flux maintenance factor of the lamp was improved drastically to 65% when the aging time was about 12000 hrs.
  • the color temperature change during the aging was not more than -150 K, and this was better in comparison with a lamp that was not filled with ScI 3 .
  • the flux and the luminous efficiency were 22800 lm and 117 lm/W respectively i.e., initial values thereof were kept substantially, while the light color temperature and the general color rendering index Ra were improved. That is, the light color temperature was as high as 4300 K at an initial stage, and the general color rendering index Ra exceeded a desired value of 65 and reached 70. The light source color also was improved.
  • a lamp 18 comprising a conventional arc tube 1 was prepared.
  • the lamp 18 was filled with 6 mg of a luminescent material 17 composed of cerium-sodium iodides (36 wt% (13.9 mol%) of CeI 3 + 64 wt% (86.1 mol%) of NaI).
  • This NaI/CeI 3 composition ratio according to the conventional technique provides a white light source color in a range from about 3500 K to about 4000 K.
  • the initial properties of the lamp were measured at an aging time of 100 hrs.
  • the lamp flux was 23600 lm and the luminous efficiency was 118 lm/W (both are average values of four lamps).
  • a desired value (117 ml/W) of luminous efficiency was obtained barely, though the general color rendering index was 60, i.e., lower than the desired value of 65.
  • the flux maintenance factor dropped to 50% within the aging time of about 6800 hrs.
  • a lifetime of a metal halide lamp is defined by an aging time at which a flux maintenance factor drops to 50%.
  • the lamp light color was lowered gradually from the initial value of 4100 K to 3700 K during the service life of 5000 hrs.
  • both the flux maintenance factor and the light color of the lamp 18 filled with (CeI 3 + NaI) dropped drastically. This is caused by a combination of two phenomena. First, cerium iodide in the tube reacts with the alumina ceramic (Al 2 O 3 ) of the arc tube and decreases. Secondly, since the discharge arc is focused and bent towards the arc tube wall, the temperature of the arc tube is raised locally to accelerate the reaction between the cerium iodide and the alumina ceramic. In other words, a ratio of CeI 3 that presents high luminous efficiency and high color temperature was decreased faster than NaI during the service life, and thus the flux and the light color were lowered.
  • Example 1 An analysis of the Example 1 and Comparative Example shows that a basic measure for suppressing a reaction of cerium during a service life of the lamp is effective. That is, a lanthanoid-based metal halide is added to the interior of the arc tube so that the lanthanoid-based metal halide will react with the inner wall of the tube in an initial stage of lamp aging.
  • This lanthanoid-based metal halide is required to have a smaller standard Gibbs energy in formation of an oxide than that of the cerium halide, so that the lanthanoid-based metal halide can react with alumina easily.
  • Examples of effective lanthanoid-based metal halides include scandium iodide (ScI 3 ), gadolinium iodide (GdI 3 ), terbium iodide (TbI 3 ), dysprosium iodide (DyI 3 ), holmium iodide (HoI 3 ), erbium iodide (ErI 3 ), thulium iodide (TmI 3 ), ytterbium iodide (YbI 3 ), lutetium iodide (LuI 3 ), samarium iodide (SmI 3 ) (diatomic Sm), and europium iodide (EuI 3 ) (diatomic Eu). Scandium iodide is most favorable among these iodides.
  • a lamp was prepared under the same condition of Example 1 except that the filling amount of scandium iodide was varied in a range from 0 to 200 molar parts with respect to 100 molar parts of CeI 3 , and the lamp was subjected to an aging test.
  • the amount of the scandium iodide exceeded 100 molar parts, the tungsten electrodes (6,7) were deformed and worn and also the arc tube was blackened, and this caused lowering of the flux maintenance factor.
  • the amount of the scandium iodide was less than 1.5 molar parts, no specific effects were expressed in suppressing a reaction between alumina and cerium halide.
  • the test results show that a preferred range of the amount of scandium iodide is from 1.5 molar parts to 100 molar parts when CeI 3 is 100 molar parts.
  • a small amount of aluminum was detected in the tube of a lamp in which at least 150 molar parts of ScI 3 had been filled.
  • the aluminum is derived from aluminum iodide (AlI 3 ), which was formed by a reaction between scandium iodide and the alumina ceramic Al 2 O 3 .
  • a reaction formula is as follows. 2ScI 3 + Al 2 O 3 ⁇ Sc 2 O 3 + 2AlI 3
  • the aluminum iodide is considered to cause the above-described wear of electrode and blackening of the arc tube.
  • a metal halide lamp comprising an alumina ceramic tube can provide a rated service life of at least 12000 hrs and luminous efficiency of at least 117 lm/W, when 1.5-100 molar parts of scandium iodide (0.5-20 molar parts relative to the entire filling) with respect to 100 molar parts of CeI 3 in an alumina ceramic tube in which a luminescent material of cerium iodide and sodium iodide are filled.
  • the light color and general color rendering index are also improved.
  • Such a lamp can provide a high wattage, high luminous efficiency and a long service life in indoor and outdoor use.
  • Similar lamps were prepared for examining the service life in aging, to which 2 to 200 molar parts of metal iodide other than scandium iodide was added.
  • the metal iodide were gadolinium iodide (GdI 3 ), terbium iodide (TbI 3 ), dysprosium iodide (DyI 3 ), holmium iodide (HoI 3 ), erbium iodide (ErI 3 ), thulium iodide (TmI 3 ), ytterbium iodide (YbI 3 ), lutetium iodide (LuI 3 ), samarium iodide (SmI 3 ) (diatomic Sm), and europium iodide (EuI 3 ) (diatomic Eu).
  • the result is shown as a line of Ce /lanthanoid-based iodide / Na
  • the service life was improved as much as the case using scandium iodide, though the flux maintenance factor at an aging time of 12000 hrs was inferior to that of a lamp using scandium iodide.
  • Example 3 addresses a method for improving a flux maintenance index by suppressing the focusing or bending of an arc discharge caused especially by the above-mentioned cerium halide luminescent material, and also for obtaining another essential object of improving the luminous efficiency. It was most effective when a combination of thallium halide (TlX) and indium halide InX was filled to serve as an additional luminescent material.
  • TlX thallium halide
  • InX indium halide
  • a lamp 18 used for measurement of the initial properties and the change in the flux maintenance index in aging was prepared by adding TlI and InI in a composition range from 0 to 10 wt% to the above-described luminescent material (CeI 3 + NaI + ScI 3 ).
  • the flux maintenance factor of the lamp 18 in aging was further improved, and a rated service life was improved, i.e., the flux maintenance factor was at least 60% at a time of 12000 hrs.
  • the reason is as follows. Since the average excitation voltage Ve of thallium and indium is higher than ionization potential Vi (Ve > 0.585 Vi), the arc discharge was spread effectively, so that the local rise in temperature on the tube wall was suppressed. Relatively small amounts of TlI and InI (the total amount was 3.0 wt% or more) served to spread the arc discharge relatively remarkably, and the service life was as long as 12000 hrs.
  • TlI indium iodide
  • InI indium iodide
  • FIG. 4 illustrates a preferred range of compositions of Example 3.
  • a typical luminescent material 17 of the present invention contained 34 wt% (14.1 mol%) of CeI 3 + 55 wt% (79.0 mol%) of NaI + 5 wt% (2.5 mol%) of ScI 3 + 3.5 wt% (2.3 mol%) of TlI + 2.5 wt% (2.1 mol%) of InI.
  • This luminescent material 17 was filled in a 200W type lamp 18.
  • the lamp 18 showed excellent performance in indoor and outdoor use, i.e., for the initial properties, the flux was about 24100 lm and the luminous efficiency was 123.3 lm/W when a white light source color having a color temperature of 4340 K was used (all of the properties were taken as average values of four lamps) .
  • Similar lamps were prepared for examining the service life properties in aging, to which metal iodides other than scandium iodide were added.
  • the metal iodides were gadolinium iodide (GdI 3 ), terbium iodide (TbI 3 ), dysprosium iodide (DyI 3 ), holmium iodide (HoI 3 ), erbium iodide (ErI 3 ), thulium iodide (TmI 3 ), ytterbium iodide (YbI 3 ), lutetium iodide (LuI 3 ), samarium iodide (SmI 3 ) (diatomic Sm), and europium iodide (EuI 3 ) (diatomic Eu), to which TlI and InI were added further.
  • the flux maintenance indices of the lamps were improved further, and the rated service lives were extended
  • a metal halide lamp comprises an alumina ceramic tube filled with cerium iodide as a main luminescent material, and a rare earth metal iodide. It is most preferable that the rare earth metal iodide is scandium iodide in an amount defined in a range from 1.5 molar parts to 100 molar parts (0.5-20 molar % in the entire metal halides) when the cerium iodide was 100 molar parts.
  • thallium iodide and indium iodide are filled in a composition range 1.0 ⁇ TlI wt% ⁇ 7.0 and also 0.6 ⁇ TlI wt% / InI wt% ⁇ 4.0, so that the lamp flux maintenance index can be improved further and the luminous efficiency is also improved.
  • both the rated service life and the luminous efficiency exceed easily the respective desired values of 12000 hrs and 117 lm/W.
  • a thus obtained alumina ceramic tube high-pressure discharge lamp for indoor and outdoor use is a high-wattage type and it has high luminous efficiency and a long service life.

Landscapes

  • Discharge Lamp (AREA)

Claims (7)

  1. Lampe à halogénure métallique comprenant un tube à arc (1) comportant une enceinte (2) de tube à arc comme enveloppe, qui est constituée d'un matériau céramique translucide à base d'oxyde et qui comprend une partie (3) de tube à arc à décharge, le tube à arc étant rempli d'un halogénure de cérium comme matériau luminescent (17) et d'un halogénure de scandium, dans lequel le volume de remplissage en halogénure de scandium est dans la plage de 1,5 parties molaires à 100 parties molaires quand le volume de remplissage en halogénure de cérium est de 100 parties molaires,
    ou au moins d'un autre halogénure d'un élément de terre rare qui est plus réactif avec le matériau céramique que ne l'est l'halogénure de cérium, dans lequel
    le volume total de remplissage en autre(s) halogénure(s) d'au moins au autre élément de terre rare est dans la plage de 1,5 parties molaires à 100 parties molaires quand le volume de remplissage en halogénure de cérium est de 100 parties molaires, et dans lequel
    de l'halogénure de thallium et de l'halogénure d'indium sont remplis dans le tube à arc,
    le volume d'halogénure de thallium étant dans la plage de 1,0 % en poids à 7 % en poids par rapport à la totalité des halogénures métalliques, et le rapport du volume d'halogénure de thallium à l'halogénure d'indium rempli est dans la plage de 0,6 ≤ % de T1X en poids / % d'InX en poids ≤ 4,0, où X désigne l'halogène.
  2. Lampe à halogénure métallique selon la revendication 1, dans laquelle l'au moins un halogénure d'un élément de terre rare est choisi dans le groupe constitué par l'halogénure de scandium, l'halogénure de gadolinium, l'halogénure de terbium, l'halogénure de dysprosium, l'halogénure d'holmium, l'halogénure d'erbium, l'halogénure de thulium, l'halogénure d'ytterbium, l'halogénure de lutécium, l'halogénure de samarium, l'halogénure d'yttrium et l'halogénure d'europium.
  3. Lampe à halogénure métallique selon la revendication 1 ou 2, dans laquelle le matériau céramique translucide à base d'oxyde est au moins une céramique choisie dans le groupe constitué par la céramique d'alumine polycristalline, l'Al2O3 (alumine), l'Y3Al6O3, le BeO, le MgO, l'Y2O3, l'Yb2O3 et le ZrO2.
  4. Lampe à halogénure métallique selon les revendications 1 à 3, dans laquelle l'halogénure de cérium l'halogénure de l'au moins un autre élément de terre rare comprennent l'iode comme halogène.
  5. Lampe à halogénure métallique selon les revendications 1 à 4, dans laquelle une ampoule extérieure en verre dur est formée à l'extérieur du tube à arc et remplie d'un gaz inerte.
  6. Lampe à halogénure métallique selon les revendications 1 à 5, dans laquelle un conducteur d'aide à l'amorçage est fixé le long de la partie de tube à arc à décharge de l'enceinte du tube a arc, et le conducteur d'aide à l'amorçage abaisse la tension d'amorçage de la lampe.
  7. Lampe à halogénure métallique selon les revendications 1 à 6, dans laquelle la lampe à halogénure métallique a une durée de vie nominale d'utilisation d'au mois 12.000 heures et une efficacité lumineuse d'au moins 117 lm/W à l'état initial.
EP02014260A 2001-06-27 2002-06-26 Lampe à halogénure métallique Expired - Fee Related EP1271614B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001195302 2001-06-27
JP2001195302 2001-06-27

Publications (2)

Publication Number Publication Date
EP1271614A1 EP1271614A1 (fr) 2003-01-02
EP1271614B1 true EP1271614B1 (fr) 2005-09-21

Family

ID=19033304

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02014260A Expired - Fee Related EP1271614B1 (fr) 2001-06-27 2002-06-26 Lampe à halogénure métallique

Country Status (4)

Country Link
US (1) US7061182B2 (fr)
EP (1) EP1271614B1 (fr)
CN (1) CN100416746C (fr)
DE (1) DE60206215T2 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60206215T2 (de) 2001-06-27 2006-05-04 Matsushita Electric Industrial Co., Ltd., Kadoma Metall-Halogen-Lampe
JP2003016998A (ja) 2001-06-28 2003-01-17 Matsushita Electric Ind Co Ltd メタルハライドランプ
JP3990582B2 (ja) 2001-06-29 2007-10-17 松下電器産業株式会社 メタルハライドランプ
JP4037142B2 (ja) * 2002-03-27 2008-01-23 東芝ライテック株式会社 メタルハライドランプおよび自動車用前照灯装置
DE10307067B8 (de) * 2003-02-19 2005-01-13 Sli Lichtsysteme Gmbh Metallhalogendampflampe
CN1802725B (zh) * 2003-06-16 2010-07-14 松下电器产业株式会社 金属卤化物灯
US7268495B2 (en) * 2005-01-21 2007-09-11 General Electric Company Ceramic metal halide lamp
US7414368B2 (en) * 2005-01-21 2008-08-19 General Electric Company Ceramic metal halide lamp with cerium-containing fill
DE102005013003A1 (de) * 2005-03-21 2006-09-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Metallhalogenidlampe
CN101248512B (zh) * 2005-03-31 2010-11-24 皇家飞利浦电子股份有限公司 高强度放电灯
US7245075B2 (en) * 2005-04-11 2007-07-17 Osram Sylvania Inc. Dimmable metal halide HID lamp with good color consistency
DE102006034833A1 (de) * 2006-07-27 2008-01-31 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hochdruckentladungslampe
DE102008056173A1 (de) * 2008-11-06 2010-05-12 Osram Gesellschaft mit beschränkter Haftung Hochdruckentladungslampe
CN103400737B (zh) * 2011-08-16 2015-10-14 国家电网公司 一种改良结构的真空间隙管
US20130127336A1 (en) * 2011-11-17 2013-05-23 General Electric Company Influence of indium iodide on ceramic metal halide lamp performance
JP5825130B2 (ja) * 2012-02-08 2015-12-02 岩崎電気株式会社 セラミックメタルハライドランプ
CN104183466A (zh) * 2013-05-28 2014-12-03 海洋王照明科技股份有限公司 陶瓷金卤灯
DE102016115523A1 (de) * 2016-08-22 2018-02-22 Osram Gmbh Gasentladungslampe und Scheinwerfersystem mit Gasentladungslampe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720209A2 (fr) * 1994-12-06 1996-07-03 Flowil International Lighting (Holding) B.V. Lampes à décharge
US6069456A (en) * 1997-07-21 2000-05-30 Osram Sylvania Inc. Mercury-free metal halide lamp
WO2000045419A1 (fr) * 1999-01-28 2000-08-03 Koninklijke Philips Electronics N.V. Lampe a halogenure de metal
US6222320B1 (en) * 1999-01-20 2001-04-24 Patent Truehand-Gesellschaft Fuer Elektrische Gluelampen Mbh Metal halide lamp with a starting aid
WO2001043163A1 (fr) * 1999-12-09 2001-06-14 Koninklijke Philips Electronics N.V. Lampe a halogenure-metal

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786297A (en) * 1972-04-13 1974-01-15 Westinghouse Electric Corp Discharge lamp which incorporates cerium and cesium halides and a high mercury loading
US3798487A (en) * 1972-07-21 1974-03-19 Westinghouse Electric Corp Discharge lamp which incorporates divalent cerium halide and cesium halide and a high mercury loading
US4024425A (en) * 1974-11-11 1977-05-17 Tokyo Shibaura Electric Co., Ltd. Metal halide lamps
JPS51124077A (en) 1975-04-23 1976-10-29 Toshiba Corp Metal halide lamp
US4081846A (en) * 1976-06-07 1978-03-28 Applied Magnetics Corporation Magnetic head-slider assembly
JPS54102070A (en) * 1978-01-30 1979-08-11 Mitsubishi Electric Corp Metal vapor discharge lamp
NL8005456A (nl) * 1980-10-02 1982-05-03 Philips Nv Hogedrukkwikdampontladingslamp.
JPS58112239A (ja) * 1981-12-25 1983-07-04 Toshiba Corp 小形メタルハライドランプ
US4810938A (en) * 1987-10-01 1989-03-07 General Electric Company High efficacy electrodeless high intensity discharge lamp
US4914345A (en) * 1988-03-04 1990-04-03 General Electric Company Corrosion resistant base for electric lamps
JPH0719575B2 (ja) * 1988-03-16 1995-03-06 日本碍子株式会社 高圧金属蒸気放電灯用発光管及びその製造方法
US4978884A (en) * 1988-05-19 1990-12-18 U.S. Phillips Corporation Metal halide discharge lamp having low color temperature and improved color rendition
US5013968A (en) * 1989-03-10 1991-05-07 General Electric Company Reprographic metal halide lamps having long life and maintenance
US4972120A (en) * 1989-05-08 1990-11-20 General Electric Company High efficacy electrodeless high intensity discharge lamp
DE4013039A1 (de) * 1990-04-24 1991-10-31 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Hochdruckentladungslampe
JP2511393B2 (ja) * 1992-09-15 1996-06-26 パテント−トロイハント−ゲゼルシヤフト フユア エレクトリツシエ グリユーランペン ミツト ベシユレンクテル ハフツング メタルハライドランプ
CN1099112A (zh) 1993-08-17 1995-02-22 丹东灯泡厂 高效复合金属卤化物灯
RU2058619C1 (ru) * 1993-11-04 1996-04-20 Акционерное общество "Лисма" - завод специальных источников света и электровакуумного стекла Металлогалогенная лампа
JP3298319B2 (ja) * 1994-07-25 2002-07-02 日本電池株式会社 不飽和蒸気圧形高圧ナトリウムランプ
JP3123408B2 (ja) * 1995-09-06 2001-01-09 ウシオ電機株式会社 メタルハライドランプ
US5973545A (en) * 1996-02-07 1999-10-26 Cypress Semiconductor Corp. Single pump circuit for generating high voltage from two different inputs
US6005346A (en) * 1996-04-08 1999-12-21 Ilc Technology, Inc. Trichrominance metal halide lamp for use with twisted nematic subtractive color light valves
JP3201278B2 (ja) * 1996-08-28 2001-08-20 ウシオ電機株式会社 メタルハライドランプ
DE19640664C1 (de) 1996-10-02 1998-02-05 Bosch Gmbh Robert Vorrichtung zum Abfüllen einer unter Druck stehenden Flüssigkeit
JP3269976B2 (ja) * 1996-10-07 2002-04-02 ウシオ電機株式会社 高圧紫外線水銀ランプ
DE19645960A1 (de) * 1996-11-07 1998-05-14 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Keramisches Entladungsgefäß
JP3249056B2 (ja) 1996-11-11 2002-01-21 株式会社東京精密 ウエハ処理装置システム
TW343348B (en) * 1996-12-04 1998-10-21 Philips Electronics Nv Metal halide lamp
JP3208087B2 (ja) * 1997-04-18 2001-09-10 松下電器産業株式会社 メタルハライドランプ
WO1998048446A2 (fr) * 1997-04-21 1998-10-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lampe a decharge aux halogenures de metal presentant une longue duree de vie
US6118216A (en) * 1997-06-02 2000-09-12 Osram Sylvania Inc. Lead and arsenic free borosilicate glass and lamp containing same
DE19727428A1 (de) 1997-06-27 1999-01-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Metallhalogenidlampe mit keramischem Entladungsgefäß
US6137229A (en) 1997-09-26 2000-10-24 Matsushita Electronics Corporation Metal halide lamp with specific dimension of the discharge tube
US6501220B1 (en) * 2000-10-18 2002-12-31 Matushita Research And Development Laboraties Inc Thallium free—metal halide lamp with magnesium and cerium halide filling for improved dimming properties
DE60206215T2 (de) 2001-06-27 2006-05-04 Matsushita Electric Industrial Co., Ltd., Kadoma Metall-Halogen-Lampe
JP2003016998A (ja) * 2001-06-28 2003-01-17 Matsushita Electric Ind Co Ltd メタルハライドランプ
JP3990582B2 (ja) * 2001-06-29 2007-10-17 松下電器産業株式会社 メタルハライドランプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720209A2 (fr) * 1994-12-06 1996-07-03 Flowil International Lighting (Holding) B.V. Lampes à décharge
US6069456A (en) * 1997-07-21 2000-05-30 Osram Sylvania Inc. Mercury-free metal halide lamp
US6222320B1 (en) * 1999-01-20 2001-04-24 Patent Truehand-Gesellschaft Fuer Elektrische Gluelampen Mbh Metal halide lamp with a starting aid
WO2000045419A1 (fr) * 1999-01-28 2000-08-03 Koninklijke Philips Electronics N.V. Lampe a halogenure de metal
WO2001043163A1 (fr) * 1999-12-09 2001-06-14 Koninklijke Philips Electronics N.V. Lampe a halogenure-metal

Also Published As

Publication number Publication date
US20030020408A1 (en) 2003-01-30
US7061182B2 (en) 2006-06-13
CN1407594A (zh) 2003-04-02
EP1271614A1 (fr) 2003-01-02
DE60206215D1 (de) 2005-10-27
DE60206215T2 (de) 2006-05-04
CN100416746C (zh) 2008-09-03

Similar Documents

Publication Publication Date Title
EP1271614B1 (fr) Lampe à halogénure métallique
US6756721B2 (en) Metal halide lamp
US7331837B2 (en) Coil antenna/protection for ceramic metal halide lamps
US7671537B2 (en) Metal halide lamp
EP0215524B1 (fr) Lampe à décharge à vapeur de mercure à haute pression
US8227991B2 (en) Metal halide lamp comprising an ionisable salt filling
US7423380B2 (en) Metal halide lamp that has desired color characteristic and is prevented from non-lighting due to leakage of arc tube attributable to crack occurring at thin tube, and lighting apparatus adopting the metal halide lamp
US7057350B2 (en) Metal halide lamp with improved lumen value maintenance
WO2000045419A1 (fr) Lampe a halogenure de metal
EP1294011A2 (fr) Lampe à décharge haute pression et système d'illumination avec cette lampe
JP2004528694A (ja) セラミックメタルハライドランプ
JP3981301B2 (ja) メタルハライドランプ
US20110273089A1 (en) Ceramic gas discharge metal halide lamp with high color temperature
JPH11233064A (ja) 放電ランプ
US8339044B2 (en) Mercury-free ceramic metal halide lamp with improved lumen run-up
JP3778920B2 (ja) メタルハライドランプ
EP1056116A2 (fr) Electrode pour une lampe à halogénure métallique
JP2003059451A (ja) 高圧放電ランプ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021113

AKX Designation fees paid

Designated state(s): BE DE

17Q First examination report despatched

Effective date: 20040806

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE

REF Corresponds to:

Ref document number: 60206215

Country of ref document: DE

Date of ref document: 20051027

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150624

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20150612

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60206215

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103