EP1262225A2 - Device and process for making emulsions - Google Patents

Device and process for making emulsions Download PDF

Info

Publication number
EP1262225A2
EP1262225A2 EP02011487A EP02011487A EP1262225A2 EP 1262225 A2 EP1262225 A2 EP 1262225A2 EP 02011487 A EP02011487 A EP 02011487A EP 02011487 A EP02011487 A EP 02011487A EP 1262225 A2 EP1262225 A2 EP 1262225A2
Authority
EP
European Patent Office
Prior art keywords
membrane
shaft
housing
emulsion
continuous phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02011487A
Other languages
German (de)
French (fr)
Other versions
EP1262225A3 (en
EP1262225B1 (en
Inventor
Ursula Dipl.-Ing. Schliessmann
Norbert Dipl.-Ing. Stroh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1262225A2 publication Critical patent/EP1262225A2/en
Publication of EP1262225A3 publication Critical patent/EP1262225A3/en
Application granted granted Critical
Publication of EP1262225B1 publication Critical patent/EP1262225B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/43Mixing liquids with liquids; Emulsifying using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3133Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit characterised by the specific design of the injector
    • B01F25/31331Perforated, multi-opening, with a plurality of holes
    • B01F25/313311Porous injectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3133Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit characterised by the specific design of the injector
    • B01F25/31333Rotatable injectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/051Stirrers characterised by their elements, materials or mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/115Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/19Stirrers with two or more mixing elements mounted in sequence on the same axis
    • B01F27/191Stirrers with two or more mixing elements mounted in sequence on the same axis with similar elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/21Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by their rotating shafts
    • B01F27/2122Hollow shafts

Definitions

  • the present invention relates to a Device and a method for producing Emulsions using one or more membranes, through the one disperse phase of a liquid medium into a continuous phase of another liquid Medium is introduced finely divided. At a Emulsion is the disperse phase in the form of fine Drops distributed in the continuous phase.
  • emulsions are often produced in rotor-stator systems.
  • rotor-stator systems are simple agitators, gear rim dispersing machines and colloid mills.
  • the continuous and the disperse phase are brought together in a container and mixed with one another by the operation of the rotor to form an emulsion.
  • High-pressure homogenizers or the application of ultrasound to a system composed of a disperse and continuous phase are known as further systems for producing emulsions.
  • the energy required to operate these devices is very high.
  • there is also a lot of heat which can heat the emulsion to undesirably high temperatures.
  • the diameter of the emulsion droplets is between 0.1 and 100 ⁇ m, with a generally very wide droplet size distribution.
  • Another method for the production of emulsions uses a membrane technology to produce finely divided droplets of the disperse phase in the continuous phase.
  • the disperse phase is pressed through the pores of a membrane, so that drops form on the surface of the membrane, which tear off after reaching a critical drop diameter and are carried away by the continuous phase flowing over the surface.
  • a tubular membrane is used, through which a continuous phase flows.
  • the disperse phase is pressed from the outside through the porous system of the tubular membrane into the continuous phase flowing inside.
  • the flow of the disperse phase comes about due to an applied transmembrane pressure difference.
  • the actual process of emulsification, ie the formation of drops, takes place on the inner surface of the tubular membrane.
  • the droplets continue to grow on this surface until the droplet-removing forces become greater than the forces that hold the droplet to the respective pore.
  • the drop with the diameter reached is then detached from the continuous phase that flows over the membrane surface and carried away by the flow. This enables very homogeneous emulsions with a relatively narrow droplet size distribution to be produced.
  • a strong pump In order to achieve a sufficiently large overflow of the membrane surface through the continuous phase, a strong pump must also be used in these systems, which leads to high energy consumption and undesirable heating of the emulsion produced.
  • the object of the present invention is therein an apparatus and method for Preparation of emulsions to indicate a homogeneous Droplet size distribution with low energy consumption allows.
  • the device has a housing with one and Outlet opening for a continuous phase of a first liquid medium, one rotating in the housing Drivable shaft, on or in the one Feed channel for a disperse phase of a second liquid medium is formed, and one or several hollow membrane bodies on the Shaft are attached.
  • the feed channel is at the present device on the shaft with the hollow trained membrane bodies connected to the Feed of the disperse phase via the feed channel in to enable the membrane body.
  • the shaft is driven by a motor that is separate from the Device may be present, driven in rotation, so that the attached membrane body in the continuous phase around the longitudinal axis of the shaft rotate.
  • the disperse phase is through the pores the membrane body into the continuous phase pressed, whereby the droplet detachment as in the Membrane technology described above takes place.
  • the present device and the associated method have particular advantages due to their structure and the associated mode of operation. Due to the rotation of the hollow membrane bodies in the continuous phase, it is not necessary to additionally pump this phase around in the housing. The required overflow speed of the continuous phase over the membrane surface is already achieved by rotating the membrane body. A sufficiently large pump with a correspondingly high energy consumption can therefore be dispensed with in the present device and the present method. Even if the continuous phase is additionally pumped around in the housing, a much smaller pump is sufficient for this, since it does not have to be designed to generate the required overflow speeds. Due to the rotation of the membrane body in the continuous phase, centrifugal forces occur which act on the disperse phase in the membrane bodies in addition to the pressure present.
  • the hollow membrane bodies attached to the shaft can take advantage of the above effect different have geometric shapes. You can For example, as a tubular boom around the Shaft axis can be arranged around. A preferred one However, embodiment sets disc-shaped A membrane hollow body, through the center of symmetry Wave runs. The individual discs show preferably the same disc diameter on and are approximately constant distance and parallel arranged to each other on the shaft. This makes one approximately cylindrical rotation space, defined by a cylindrical housing are enclosed can.
  • the Feed channel not as a separate channel on the shaft attached.
  • the shaft is rather a hollow shaft trained so that it forms the supply channel itself.
  • the connection between the supply channel and the interior the hollow membrane body is opened using suitable openings the hollow shaft or the feed channel and the membrane body at the corresponding attachment points of the Membrane body reached on the shaft.
  • the housing preferably has an inner contour based on the outer shape of the membrane body and the Shaft is adjusted without impeding its rotation. Between the inner contour and the surface of the Membrane body and the shaft remain Gap from the continuous phase is filled out. With such a configuration it is ensured that a large proportion of the volume continuous phase present in the housing the surface of the membrane body is in contact.
  • the present device can be used for both batch and continuous production of emulsions.
  • the continuous phase is first introduced into the housing.
  • the membrane bodies are then set in motion via the shaft and the disperse phase is introduced into the membrane bodies under pressure. After a predeterminable time interval, which is sufficient for the production of the desired emulsion, this is drawn off via the outlet opening and the entire process starts again.
  • the continuous phase is continuously supplied via the inlet opening and the emulsion is continuously drawn off via the outlet opening.
  • the pump required for this only has to ensure the transport of the liquid medium from the inlet to the outlet opening.
  • the required overflow speeds over the surface of the membrane body are achieved by the rotation of the membrane body.
  • the number of membrane bodies as well as the dimensions of the membrane body and the Housing as well as the pressure of the disperse phase in the Membrane bodies and the dwell time of the continuous Phase chosen in the housing by a specialist to suit the desired result depending on the used to reach liquid media.
  • the same goes for for the choice of materials of the membrane body as well their separation limits.
  • ceramic materials for the membrane body also polymer materials or other inorganic materials, such as metals, Carbon, glasses, are used.
  • the bringing in the disperse in the continuous phase can by the choice of membrane materials with defined Surface properties can be improved. It can it may be advantageous to make the membrane surface hydrophilic, to be hydrophobic to oleophobic.
  • membrane material This can through the choice of membrane material or through additional coatings also for inorganic Materials can be achieved.
  • the membranes themselves can be used as nanofiltration membranes, ultrafiltration membranes or microfiltration membranes his.
  • a suitable material is used for the housing chosen that with the liquid media used is tolerated.
  • FIG. 1 shows schematically the mode of operation of membrane technology for the production of emulsions, as is known from the prior art.
  • a tubular membrane 12 is used, through which a continuous phase 9 flows.
  • the disperse phase 8 is pressed through the pores 13 of the tubular membrane 12, so that droplets 15 form on the inner membrane surface, which are entrained by the continuous phase 9 after reaching a certain droplet size, so that they emerge at the outlet the tube membrane 12 is an emulsion 10.
  • a sufficiently high overflow speed of the continuous phase 9 must be achieved over the membrane surface 14, which requires a pump with high energy consumption.
  • FIG. 2 shows an embodiment of a Device according to the present invention, the no such high energy consumption to generate the Has emulsion.
  • the device consists of a Housing 1 with an inlet opening 2 for the continuous phase 9 and an outlet 3 for the finished emulsion. On the 2 and the Outlet opening 3 are each provided to 16 the inflow or outflow of the continuous phase 9 or to be able to interrupt the emulsion 10.
  • the housing is a shaft 4 that can be driven in rotation trained on the four in the present example disk-shaped membrane body 6 are attached.
  • the Wave 4 is a hollow shaft, which simultaneously the Feed channel 5 for the disperse phase 8 forms.
  • the Feed channel 5 is attached to the membrane discs 6 with the hollow shaft 4 with the hollow Interiors of the trained as filter elements Membrane discs 6 connected.
  • the hollow shaft 4 runs here by the symmetry center of the individual Membrane disks 6 so that they are about their axis of symmetry are driven in rotation by the hollow shaft 4.
  • the Housing 1 has an inner contour 7, which is based on the Contour of the membrane discs 6 and the hollow shaft 4th adjusts so that only small gaps between the inner contour 7 and the membrane bodies 6 or the hollow shaft 4, as shown in the figure can be seen. These gaps 11 form the Feed or emulsion space through which the continuous Phase 9 on the surfaces of the membrane body 6 is led past.
  • the hollow shaft 4 is over a corresponding bearing 17 within the housing 1 stored.
  • the membrane discs 6 have a diameter of approximately 150 mm, the housing has a diameter and a height of the order of 20 cm.
  • the Membrane disks themselves are made of a ceramic material educated.
  • the disperse phase 8 is introduced under pressure, which is applied, for example, by a pump or a gas cushion generated by compressed air, through the feed channel 5 of the hollow shaft 4 into the membrane disks 6.
  • the continuous phase 9 is conducted via the valve 16 and the inlet opening 2 into the emulsion space 11 of the housing 1.
  • the membrane disks are rotated in the continuous phase 9 by rotary drive of the shaft 4. This rotation causes an overflow of the membrane surfaces with the continuous phase 9, which is necessary for the detachment of the droplets of the disperse phase 8 from the surface of the membrane body 6.
  • the detachment mechanism is carried out in the same way as in the conventional membrane technology of FIG. 1.
  • the present device and the associated processes are both oil / water as well Water / oil emulsions and liposomes can be produced.
  • the Device leads to a slight heating of the Emulsion during the manufacturing process, which is precisely what Use of heat sensitive substances of great Advantage is.
  • the technology can be achieved with the present device also a sterile way of driving without intermediate sterilization to the end product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Colloid Chemistry (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Medicinal Preparation (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

An assembly prepares an emulsion from lipophilic and hydrophilic ingredients. The assembly has a housing (1) with an inlet (2) for a first continual ingredient (9) feed and an outlet (3). The housing has a drive shaft (4) within a supply passage (5) for a second dispersed phase ingredient (8) and one or more hollow membrane units (6) within feed channels (4) and fixed to the rotating shaft. An assembly prepares an emulsion from lipophilic and hydrophilic ingredients. The assembly has a housing (1) with an inlet (2) for a first continual ingredient (9) feed and an outlet (3). The housing has a drive shaft (4) within a supply passage (5) for a second dispersed phase ingredient (8) and one or more hollow membrane units (6) within feed channels (4) and fixed to the rotating shaft. The shaft (4) is hollow and forms the supply passage (5) for the dispersed phase (8). The membrane units (6) are discs arranged symmetrically at intervals on the shaft, each separated from the channel (4) wall by a narrow uniform gap. AN Independent claim is included for a commensurate emulsion manufacturing process in which a charge of the continual phase is first admitted, followed by a commensurate charge of the second ingredient and mixing by membrane rotation. The emulsion mill may be operated either in continual throughput or in batch modes.

Description

Technisches AnwendungsgebietTechnical application area

Die vorliegende Erfindung betrifft eine Vorrichtung sowie ein Verfahren zur Herstellung von Emulsionen unter Einsatz einer oder mehrerer Membranen, durch die eine disperse Phase eines flüssigen Mediums in eine kontinuierliche Phase eines anderen flüssigen Mediums fein verteilt eingebracht wird. Bei einer Emulsion liegt die disperse Phase in Form feiner Tropfen in der kontinuierlichen Phase verteilt vor.The present invention relates to a Device and a method for producing Emulsions using one or more membranes, through the one disperse phase of a liquid medium into a continuous phase of another liquid Medium is introduced finely divided. At a Emulsion is the disperse phase in the form of fine Drops distributed in the continuous phase.

In vielen technischen Bereichen, bspw. bei der Lebensmittelherstellung oder der Produktion pharmazeutischer Produkte, ist es regelmäßig notwendig, lipophile und hydrophile Substanzen zu einem Produkt zu vereinigen. Als Produktform wird hierbei in vielen Fällen die Emulsion aus einer öligen und einer wässrigen Phase gewählt.In many technical areas, for example at Food production or production pharmaceutical products, it is regularly necessary lipophilic and hydrophilic substances to a product too unite. The product form is used in many Cases the emulsion from an oily and a aqueous phase selected.

Stand der TechnikState of the art

Industriell werden Emulsionen häufig in Rotor-Stator-Systemen hergestellt. Beispiele für Rotor-Stator-Systeme sind einfache Rührwerke, Zahnkranzdispergiermaschinen und Kolloidmühlen. Bei derartigen Systemen werden die kontinuierliche und die disperse Phase in einem Behältnis zusammengebracht und durch den Betrieb des Rotors unter Bildung einer Emulsion miteinander vermischt.
   Als weitere Systeme zur Herstellung von Emulsionen sind Hochdruckhomogenisatoren oder die Beaufschlagung eines Systems aus disperser und kontinuierlicher Phase mit Ultraschall bekannt.
   Der Energieaufwand für den Betrieb dieser Geräte ist jedoch sehr hoch. Während des Emulgierprozesses tritt zudem häufig eine starke Wärmeentwicklung ein, die die Emulsion auf unerwünscht hohe Temperaturen aufheizen kann. In Abhängigkeit vom eingesetzten Emulgiergerät liegen die Durchmesser der Emulsionströpfchen zwischen 0,1 und 100 µm, wobei in der Regel eine sehr breite Tröpfchengrößenverteilung vorliegt.
In industry, emulsions are often produced in rotor-stator systems. Examples of rotor-stator systems are simple agitators, gear rim dispersing machines and colloid mills. In systems of this type, the continuous and the disperse phase are brought together in a container and mixed with one another by the operation of the rotor to form an emulsion.
High-pressure homogenizers or the application of ultrasound to a system composed of a disperse and continuous phase are known as further systems for producing emulsions.
However, the energy required to operate these devices is very high. During the emulsification process, there is also a lot of heat which can heat the emulsion to undesirably high temperatures. Depending on the emulsifier used, the diameter of the emulsion droplets is between 0.1 and 100 µm, with a generally very wide droplet size distribution.

Ein weiteres Verfahren zur Herstellung von Emulsionen setzt eine Membrantechnik zur Erzeugung fein verteilter Tröpfchen der dispersen Phase in der kontinuierlichen Phase ein. Die disperse Phase wird hierbei durch die Poren einer Membran gepresst, so dass sich an der Oberfläche der Membran Tropfen ausbilden, die nach Erreichen eines kritischen Tropfendurchmessers abreißen und von der über die Oberfläche strömenden kontinuierlichen Phase mitgerissen werden.
   In einer bekannten Ausführung einer derartigen Vorrichtung wird eine Rohrmembran eingesetzt, die von einer kontinuierlichen Phase durchströmt wird. Die disperse Phase wird von außen durch das poröse System der Rohrmembran in die innen strömende kontinuierliche Phase gepresst. Der Fluss der dispersen Phase kommt aufgrund einer angelegten transmembranen Druckdifferenz zustande. Der eigentliche Vorgang des Emulgierens, d. h. die Tropfenbildung, findet an der inneren Oberfläche der Rohrmembran statt. Die Tropfen wachsen an dieser Oberfläche solange an, bis die tropfenablösenden Kräfte größer werden als die Kräfte, die den Tropfen an der jeweiligen Pore festhalten. Der Tropfen wird dann mit dem erreichten Durchmesser von der kontinuierlichen Phase, die die Membranoberfläche überströmt, abgelöst und von der Strömung mitgerissen. Dadurch können sehr homogene Emulsionen mit relativ enger Tröpfchengrößenverteilung erzeugt werden. Um eine ausreichend große Überströmung der Membranoberfläche durch die kontinuierliche Phase zu erreichen, muss auch bei diesen Systemen eine starke Pumpe eingesetzt werden, die zu einem hohen Energieverbrauch und einer unerwünschten Erwärmung der erzeugten Emulsion führt.
Another method for the production of emulsions uses a membrane technology to produce finely divided droplets of the disperse phase in the continuous phase. The disperse phase is pressed through the pores of a membrane, so that drops form on the surface of the membrane, which tear off after reaching a critical drop diameter and are carried away by the continuous phase flowing over the surface.
In a known embodiment of such a device, a tubular membrane is used, through which a continuous phase flows. The disperse phase is pressed from the outside through the porous system of the tubular membrane into the continuous phase flowing inside. The flow of the disperse phase comes about due to an applied transmembrane pressure difference. The actual process of emulsification, ie the formation of drops, takes place on the inner surface of the tubular membrane. The droplets continue to grow on this surface until the droplet-removing forces become greater than the forces that hold the droplet to the respective pore. The drop with the diameter reached is then detached from the continuous phase that flows over the membrane surface and carried away by the flow. This enables very homogeneous emulsions with a relatively narrow droplet size distribution to be produced. In order to achieve a sufficiently large overflow of the membrane surface through the continuous phase, a strong pump must also be used in these systems, which leads to high energy consumption and undesirable heating of the emulsion produced.

Die Aufgabe der vorliegenden Erfindung besteht darin, eine Vorrichtung und ein Verfahren zur Herstellung von Emulsionen anzugeben, die eine homogene Tröpfchengrößenverteilung bei geringem Energieverbrauch ermöglicht.The object of the present invention is therein an apparatus and method for Preparation of emulsions to indicate a homogeneous Droplet size distribution with low energy consumption allows.

Darstellung der ErfindungPresentation of the invention

Die Aufgabe wird mit der Vorrichtung und dem Verfahren gemäß den Patentansprüchen 1 bzw. 6 gelöst. Vorteilhafte Ausgestaltungen der Vorrichtung und des Verfahrens sind Gegenstand der Unteransprüche.The task is done with the device and the Method according to claims 1 and 6 solved. Advantageous embodiments of the device and Procedures are the subject of the subclaims.

Die Vorrichtung weist ein Gehäuse mit Ein- und Auslassöffnung für eine kontinuierliche Phase eines ersten flüssigen Mediums, eine in dem Gehäuse rotierend antreibbar angeordnete Welle, an oder in der ein Zufuhrkanal für eine disperse Phase eines zweiten flüssigen Mediums ausgebildet ist, und eine oder mehrere hohl ausgebildete Membrankörper auf, die an der Welle befestigt sind. Der Zufuhrkanal ist bei der vorliegenden Vorrichtung über die Welle mit den hohl ausgebildeten Membrankörpern verbunden, um die Zuführung der dispersen Phase über den Zufuhrkanal in die Membrankörper zu ermöglichen. Beim Betrieb dieser Vorrichtung wird die kontinuierliche Phase in das Gehäuse eingebracht und anschließend oder gleichzeitig die disperse Phase über den Zufuhrkanal an der Welle unter Druck in die hohl ausgebildeten Membrankörper eingeleitet. Während der Zuführung der dispersen Phase wird die Welle über einen Motor, der getrennt von der Vorrichtung vorliegen kann, rotierend angetrieben, so dass die daran befestigten Membrankörper in der kontinuierlichen Phase um die Längsachse der Welle rotieren. Die disperse Phase wird dabei durch die Poren der Membrankörper in die kontinuierliche Phase gepresst, wobei die Ablösung der Tröpfchen wie bei der oben beschriebenen Membrantechnik erfolgt.The device has a housing with one and Outlet opening for a continuous phase of a first liquid medium, one rotating in the housing Drivable shaft, on or in the one Feed channel for a disperse phase of a second liquid medium is formed, and one or several hollow membrane bodies on the Shaft are attached. The feed channel is at the present device on the shaft with the hollow trained membrane bodies connected to the Feed of the disperse phase via the feed channel in to enable the membrane body. When operating this The continuous phase into the device Housing introduced and then or simultaneously the disperse phase via the feed channel on the shaft under pressure in the hollow membrane body initiated. During the feeding of the disperse phase the shaft is driven by a motor that is separate from the Device may be present, driven in rotation, so that the attached membrane body in the continuous phase around the longitudinal axis of the shaft rotate. The disperse phase is through the pores the membrane body into the continuous phase pressed, whereby the droplet detachment as in the Membrane technology described above takes place.

Die vorliegende Vorrichtung und das zugehörige Verfahren weisen aufgrund ihres Aufbaus und der damit verbundenen Betriebsweise besondere Vorteile auf. So ist es durch die Rotation der Membranhohlkörper in der kontinuierlichen Phase nicht erforderlich, diese Phase in dem Gehäuse zusätzlich umzupumpen. Die erforderliche Überströmgeschwindigkeit der kontinuierlichen Phase über die Membranoberfläche wird bereits durch die Rotation der Membrankörper erreicht. Auf eine ausreichend groß dimensionierte Pumpe mit entsprechend hohem Energieverbrauch kann bei der vorliegenden Vorrichtung und dem vorliegenden Verfahren daher verzichtet werden. Selbst wenn die kontinuierliche Phase zusätzlich in dem Gehäuse umgepumpt wird, ist dafür eine wesentlich kleiner dimensionierte Pumpe ausreichend, da diese nicht zur Erzeugung der erforderlichen Überströmgeschwindigkeiten ausgebildet sein muss.
   Durch die Rotation der Membrankörper in der kontinuierlichen Phase treten Zentrifugalkräfte auf, die zusätzlich zum anliegenden Druck auf die disperse Phase in den Membrankörpern einwirken. Durch diese zusätzlich wirkenden Zentrifugalkräfte wird ein größerer Teil der dispersen Phase an den von der Welle am weitesten entfernt liegenden Bereichen der Membrankörper in die kontinuierliche Phase austreten, an denen die Überströmgeschwindigkeit der kontinuierlichen Phase vorteilhafterweise am höchsten ist. Dieser Effekt führt zu einer optimalen Ausnutzung der zur Rotation aufgewendeten Energie für den Emulgierprozess.
The present device and the associated method have particular advantages due to their structure and the associated mode of operation. Due to the rotation of the hollow membrane bodies in the continuous phase, it is not necessary to additionally pump this phase around in the housing. The required overflow speed of the continuous phase over the membrane surface is already achieved by rotating the membrane body. A sufficiently large pump with a correspondingly high energy consumption can therefore be dispensed with in the present device and the present method. Even if the continuous phase is additionally pumped around in the housing, a much smaller pump is sufficient for this, since it does not have to be designed to generate the required overflow speeds.
Due to the rotation of the membrane body in the continuous phase, centrifugal forces occur which act on the disperse phase in the membrane bodies in addition to the pressure present. Due to these additional centrifugal forces, a larger part of the disperse phase will emerge into the continuous phase at the areas of the membrane body furthest away from the shaft, where the overflow velocity of the continuous phase is advantageously the highest. This effect leads to an optimal use of the energy used for rotation for the emulsification process.

Die an der Welle befestigten hohlen Membrankörper können zur Ausnutzung des obigen Effektes unterschiedliche geometrische Formen aufweisen. Sie können bspw. als rohrförmige Ausleger sternförmig um die Wellenachse herum angeordnet sein. Eine bevorzugte Ausführungsform setzt jedoch scheibenförmige Membranhohlkörper ein, durch deren Symmetriezentrum die Welle verläuft. Die einzelnen Scheiben weisen dabei vorzugsweise den gleichen Scheibendurchmesser auf und sind in annähernd konstantem Abstand und parallel zueinander an der Welle angeordnet. Dies ergibt einen annähernd zylinderförmigen Rotationsraum, der durch ein zylinderförmig ausgebildetes Gehäuse umschlossen werden kann.The hollow membrane bodies attached to the shaft can take advantage of the above effect different have geometric shapes. You can For example, as a tubular boom around the Shaft axis can be arranged around. A preferred one However, embodiment sets disc-shaped A membrane hollow body, through the center of symmetry Wave runs. The individual discs show preferably the same disc diameter on and are approximately constant distance and parallel arranged to each other on the shaft. This makes one approximately cylindrical rotation space, defined by a cylindrical housing are enclosed can.

In einer vorteilhaften Ausgestaltung ist der Zufuhrkanal nicht als gesonderter Kanal an der Welle befestigt. Die Welle ist vielmehr als Hohlwelle ausgebildet, so dass sie selbst den Zufuhrkanal bildet. Die Verbindung zwischen dem Zufuhrkanal und dem Inneren der hohlen Membrankörper wird über geeignete Öffnungen der Hohlwelle bzw. des Zufuhrkanals und der Membrankörper an den entsprechenden Befestigungsstellen der Membrankörper an der Welle erreicht.In an advantageous embodiment, the Feed channel not as a separate channel on the shaft attached. The shaft is rather a hollow shaft trained so that it forms the supply channel itself. The connection between the supply channel and the interior the hollow membrane body is opened using suitable openings the hollow shaft or the feed channel and the membrane body at the corresponding attachment points of the Membrane body reached on the shaft.

Vorzugsweise weist das Gehäuse eine Innenkontur auf, die an die äußere Form der Membrankörper und der Welle angepasst ist, ohne deren Rotation zu behindern. Zwischen der Innenkontur und der Oberfläche der Membrankörper und der Welle verbleibt dabei ein Zwischenraum, der von der kontinuierlichen Phase ausgefüllt wird. Durch eine derartige Ausgestaltung wird gewährleistet, dass ein großer Volumenanteil der in dem Gehäuse vorliegenden kontinuierlichen Phase mit der Oberfläche der Membrankörper in Kontakt ist.The housing preferably has an inner contour based on the outer shape of the membrane body and the Shaft is adjusted without impeding its rotation. Between the inner contour and the surface of the Membrane body and the shaft remain Gap from the continuous phase is filled out. With such a configuration it is ensured that a large proportion of the volume continuous phase present in the housing the surface of the membrane body is in contact.

Die vorliegende Vorrichtung kann sowohl für eine diskontinuierliche als auch für eine kontinuierliche Herstellung von Emulsionen eingesetzt werden. Bei einer diskontinuierlichen Herstellung wird die kontinuierliche Phase zunächst in das Gehäuse eingeleitet. Anschließend werden die Membrankörper über die Welle in Bewegung versetzt und die disperse Phase unter Druck in die Membrankörper eingeführt. Nach einem vorgebbaren Zeitintervall, das für die Herstellung der gewünschten Emulsion ausreichend ist, wird diese über die Auslassöffnung abgezogen und der gesamte Prozess beginnt von Neuem.
   Bei einer kontinuierlichen Betriebsweise wird die kontinuierliche Phase ständig über die Einlassöffnung zugeführt und die Emulsion ständig über die Auslassöffnung abgezogen. Die hierfür erforderliche Pumpe muss lediglich den Transport des flüssigen Mediums von der Einlass- zur Auslassöffnung gewährleisten. Die erforderlichen Überströmgeschwindigkeiten über die Oberfläche der Membrankörper werden durch die Rotation der Membrankörper erreicht.
The present device can be used for both batch and continuous production of emulsions. In the case of batch production, the continuous phase is first introduced into the housing. The membrane bodies are then set in motion via the shaft and the disperse phase is introduced into the membrane bodies under pressure. After a predeterminable time interval, which is sufficient for the production of the desired emulsion, this is drawn off via the outlet opening and the entire process starts again.
In a continuous mode of operation, the continuous phase is continuously supplied via the inlet opening and the emulsion is continuously drawn off via the outlet opening. The pump required for this only has to ensure the transport of the liquid medium from the inlet to the outlet opening. The required overflow speeds over the surface of the membrane body are achieved by the rotation of the membrane body.

Selbstverständlich werden die Anzahl der Membrankörper sowie die Dimensionen der Membrankörper und des Gehäuses wie auch der Druck der dispersen Phase in den Membrankörpern und die Verweilzeit der kontinuierlichen Phase im Gehäuse vom Fachmann geeignet gewählt, um das gewünschte Ergebnis in Abhängigkeit von den eingesetzten flüssigen Medien zu erreichen. Das Gleiche gilt für die Wahl der Materialien der Membrankörper sowie deren Trenngrenzen. So können neben Keramikmaterialien für die Membrankörper auch Polymermaterialien oder andere anorganische Materialien, wie Metalle, Kohlenstoffe, Gläser, eingesetzt werden. Das Einbringen der dispersen in die kontinuierliche Phase kann durch die Wahl von Membranmaterialien mit definierten Oberflächeneigenschaften verbessert werden. Dabei kann es von Vorteil sein, die Membranoberfläche hydrophil, hydrophob bis hin zu oleophob auszustatten. Dies kann durch die Wahl des Membranmaterials oder durch zusätzliche Beschichtungen auch bei anorganischen Materialien erreicht werden. Die Membranen selbst können als Nanofiltrationsmembranen, Ultrafiltrationsmembranen oder Mikrofiltrationsmembranen ausgebildet sein. Für das Gehäuse wird ein geeignetes Material gewählt, das mit den verwendeten flüssigen Medien verträglich ist. Of course, the number of membrane bodies as well as the dimensions of the membrane body and the Housing as well as the pressure of the disperse phase in the Membrane bodies and the dwell time of the continuous Phase chosen in the housing by a specialist to suit the desired result depending on the used to reach liquid media. The same goes for for the choice of materials of the membrane body as well their separation limits. So in addition to ceramic materials for the membrane body also polymer materials or other inorganic materials, such as metals, Carbon, glasses, are used. The bringing in the disperse in the continuous phase can by the choice of membrane materials with defined Surface properties can be improved. It can it may be advantageous to make the membrane surface hydrophilic, to be hydrophobic to oleophobic. This can through the choice of membrane material or through additional coatings also for inorganic Materials can be achieved. The membranes themselves can be used as nanofiltration membranes, ultrafiltration membranes or microfiltration membranes his. A suitable material is used for the housing chosen that with the liquid media used is tolerated.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Die vorliegende Vorrichtung sowie das vorliegende Verfahren werden nachfolgend anhand eines Ausführungsbeispiels in Verbindung mit den Zeichnungen nochmals kurz erläutert. Hierbei zeigen:

Fig. 1
schematisch ein Beispiel für eine Membrantechnik gemäß dem Stand der Technik; und
Fig. 2
eine Schnittdarstellung einer Vorrichtung gemäß einem Ausführungs-beispiel der vorliegenden Erfindung.
The present device and the present method are briefly explained again below using an exemplary embodiment in conjunction with the drawings. Here show:
Fig. 1
schematically an example of a membrane technology according to the prior art; and
Fig. 2
a sectional view of a device according to an embodiment of the present invention.

Wege zur Ausführung der ErfindungWays of Carrying Out the Invention

Figur 1 zeigt schematisch die Wirkungsweise der Membrantechnik zur Herstellung von Emulsionen, wie sie aus dem Stand der Technik bekannt ist. Hierbei wird eine Rohrmembran 12 eingesetzt, die von einer kontinuierlichen Phase 9 durchströmt wird. Von außerhalb der Rohrmembran 12 wird die disperse Phase 8 durch die Poren 13 der Rohrmembran 12 gepresst, so dass sich an der inneren Membranoberfläche 14 Tröpfchen 15 bilden, die nach Erreichen einer bestimmten Tröpfchengröße von der kontinuierlichen Phase 9 mitgerissen werden, so dass am Austritt aus der Rohrmembran 12 eine Emulsion 10 vorliegt.
   Zum Betrieb einer derartigen Vorrichtung muss jedoch eine ausreichend hohe Überströmgeschwindigkeit der kontinuierlichen Phase 9 über die Membranoberfläche 14 erreicht werden, die eine Pumpe mit hohem Energieverbrauch erfordert.
Figure 1 shows schematically the mode of operation of membrane technology for the production of emulsions, as is known from the prior art. Here, a tubular membrane 12 is used, through which a continuous phase 9 flows. From outside the tubular membrane 12, the disperse phase 8 is pressed through the pores 13 of the tubular membrane 12, so that droplets 15 form on the inner membrane surface, which are entrained by the continuous phase 9 after reaching a certain droplet size, so that they emerge at the outlet the tube membrane 12 is an emulsion 10.
To operate such a device, however, a sufficiently high overflow speed of the continuous phase 9 must be achieved over the membrane surface 14, which requires a pump with high energy consumption.

Figur 2 zeigt ein Ausführungsbeispiel einer Vorrichtung gemäß der vorliegenden Erfindung, die keinen derart hohen Energieverbrauch zur Erzeugung der Emulsion aufweist. Die Vorrichtung besteht aus einem Gehäuse 1 mit einer Einlassöffnung 2 für die kontinuierliche Phase 9 und einer Auslassöffnung 3 für die fertige Emulsion. An der Ein- 2 sowie der Auslassöffnung 3 sind jeweils Ventile 16 vorgesehen, um den Zufluss bzw. Abfluss der kontinuierlichen Phase 9 bzw. der Emulsion 10 unterbrechen zu können. In dem Gehäuse ist eine rotierend antreibbare Welle 4 ausgebildet, an der im vorliegenden Beispiel vier scheibenförmige Membrankörper 6 befestigt sind. Die Welle 4 ist eine Hohlwelle, die gleichzeitig den Zufuhrkanal 5 für die disperse Phase 8 bildet. Der Zufuhrkanal 5 ist an der Befestigung der Membranscheiben 6 mit der Hohlwelle 4 mit den hohlen Innenräumen der als Filterelemente ausgebildeten Membranscheiben 6 verbunden. Die Hohlwelle 4 verläuft hierbei durch das Symmetriezentrum der einzelnen Membranscheiben 6, so dass diese um ihre Symmetrieachse rotierend durch die Hohlwelle 4 angetrieben werden. Das Gehäuse 1 weist eine Innenkontur 7 auf, die sich an die Kontur der Membranscheiben 6 und der Hohlwelle 4 anpasst, so dass lediglich geringe Zwischenräume zwischen der Innenkontur 7 und den Membrankörpern 6 bzw. der Hohlwelle 4 entstehen, wie dies aus der Figur ersichtlich ist. Diese Zwischenräume 11 bilden den Feed- bzw. Emulsionsraum, durch den die kontinuierliche Phase 9 an den Oberflächen der Membrankörper 6 vorbeigeführt wird. Die Hohlwelle 4 ist über ein entsprechendes Lager 17 innerhalb des Gehäuses 1 gelagert. Figure 2 shows an embodiment of a Device according to the present invention, the no such high energy consumption to generate the Has emulsion. The device consists of a Housing 1 with an inlet opening 2 for the continuous phase 9 and an outlet 3 for the finished emulsion. On the 2 and the Outlet opening 3 are each provided to 16 the inflow or outflow of the continuous phase 9 or to be able to interrupt the emulsion 10. By doing The housing is a shaft 4 that can be driven in rotation trained on the four in the present example disk-shaped membrane body 6 are attached. The Wave 4 is a hollow shaft, which simultaneously the Feed channel 5 for the disperse phase 8 forms. The Feed channel 5 is attached to the membrane discs 6 with the hollow shaft 4 with the hollow Interiors of the trained as filter elements Membrane discs 6 connected. The hollow shaft 4 runs here by the symmetry center of the individual Membrane disks 6 so that they are about their axis of symmetry are driven in rotation by the hollow shaft 4. The Housing 1 has an inner contour 7, which is based on the Contour of the membrane discs 6 and the hollow shaft 4th adjusts so that only small gaps between the inner contour 7 and the membrane bodies 6 or the hollow shaft 4, as shown in the figure can be seen. These gaps 11 form the Feed or emulsion space through which the continuous Phase 9 on the surfaces of the membrane body 6 is led past. The hollow shaft 4 is over a corresponding bearing 17 within the housing 1 stored.

In einer beispielhaften Ausbildung dieser Vorrichtung haben die Membranscheiben 6 einen Durchmesser von ca. 150 mm, das Gehäuse einen Durchmesser sowie eine Höhe in der Größenordnung von 20 cm. Die Membranscheiben selbst sind aus einem Keramikmaterial gebildet.In an exemplary training this Device, the membrane discs 6 have a diameter of approximately 150 mm, the housing has a diameter and a height of the order of 20 cm. The Membrane disks themselves are made of a ceramic material educated.

Beim Betrieb dieser Vorrichtung wird die disperse Phase 8 unter Druck, der beispielsweise durch eine Pumpe oder ein durch Druckluft erzeugtes Gaspolster aufgebracht wird, durch den Zufuhrkanal 5 der Hohlwelle 4 in die Membranscheiben 6 eingeleitet. Die kontinuierliche Phase 9 wird über das Ventil 16 und die Einlassöffnung 2 in den Emulsionsraum 11 des Gehäuses 1 geführt. Während der Zufuhr der dispersen Phase 8 werden die Membranscheiben durch rotatorischen Antrieb der Welle 4 in der kontinuierlichen Phase 9 rotiert. Durch diese Rotation wird eine Überströmung der Membranoberflächen mit der kontinuierlichen Phase 9 hervorgerufen, die für die Ablösung der Tröpfchen der dispersen Phase 8 von der Oberfläche der Membrankörper 6 erforderlich ist. Der Ablösemechanismus erfolgt dabei in gleicher Weise wie bei der üblichen Membrantechnik der Figur 1.
   Nach Fertigstellung der Emulsion, d. h. nach dem Erreichen des gewünschten Dispersphasenanteils, kann diese durch Öffnen des Ventils 16 an der Auslassöffnung 3 abgelassen werden.
   Die Rotation der Welle 4 erfolgt in der Regel derart, dass Überströmgeschwindigkeiten von 2 - 5 m/s an den äußersten Bereichen der Membranscheiben 6 erreicht werden. Selbstverständlich kann mit der in diesem Ausführungsbeispiel gezeigten Vorrichtung auch eine kontinuierliche Herstellung der Emulsion erreicht werden, indem die kontinuierliche Phase 9 kontinuierlich über die Einlassöffnung 2 zugeführt und die Emulsion 10 kontinuierlich über die Auslassöffnung 3 abgezogen wird, während die Membranscheiben 6 rotierend angetrieben werden.
During operation of this device, the disperse phase 8 is introduced under pressure, which is applied, for example, by a pump or a gas cushion generated by compressed air, through the feed channel 5 of the hollow shaft 4 into the membrane disks 6. The continuous phase 9 is conducted via the valve 16 and the inlet opening 2 into the emulsion space 11 of the housing 1. During the supply of the disperse phase 8, the membrane disks are rotated in the continuous phase 9 by rotary drive of the shaft 4. This rotation causes an overflow of the membrane surfaces with the continuous phase 9, which is necessary for the detachment of the droplets of the disperse phase 8 from the surface of the membrane body 6. The detachment mechanism is carried out in the same way as in the conventional membrane technology of FIG. 1.
After completion of the emulsion, ie after reaching the desired disperse phase fraction, it can be discharged by opening the valve 16 at the outlet opening 3.
The shaft 4 is generally rotated in such a way that overflow velocities of 2-5 m / s are achieved at the outermost regions of the membrane disks 6. Of course, with the device shown in this exemplary embodiment, continuous production of the emulsion can also be achieved by continuously supplying the continuous phase 9 via the inlet opening 2 and continuously withdrawing the emulsion 10 via the outlet opening 3 while the membrane disks 6 are driven in rotation.

Die folgende Tabelle gibt ein Beispiel für die Herstellung einer Emulsion mit der vorliegenden Vorrichtung an, bei der Membranscheiben 6 mit unterschiedlichem Porendurchmesser eingesetzt wurden. Als kontinuierliche Phase 9 wurde Wasser, als disperse Phase MCT (medium chain triglycerides) eingesetzt. In die kontinuierliche Phase wurden durch die vorliegende Vorrichtung 5 kg/m2h disperse Phase eingetragen. Porendurchmesser Transmembraner Druck Tröpfchendurchmesser 0,2 µm 1*105 Pa (1 bar) < 0,6 µm 0,1 µm 2*105 Pa (2 bar) < 0,5 µm 0,05 µm 4*105 Pa (4 bar) < 0,4 µm The following table gives an example of the preparation of an emulsion with the present device, in which membrane disks 6 with different pore diameters were used. 9 as a continuous phase, water was used as the disperse phase MCT (m edium C hain T riglycerides). 5 kg / m 2 h of disperse phase were introduced into the continuous phase by the present device. Pore diameter Transmembrane pressure Droplet diameter 0.2 µm 1 * 10 5 Pa (1 bar) <0.6 µm 0.1 µm 2 * 10 5 Pa (2 bar) <0.5 µm 0.05 µm 4 * 10 5 Pa (4 bar) <0.4 µm

Mit der vorliegenden Vorrichtung und dem zugehörigen Verfahren sind sowohl Öl/Wasser- als auch Wasser/Öl-Emulsionen und Liposomen herstellbar. Die Vorrichtung führt zu einer geringen Erwärmung der Emulsion während des Herstellprozesses, was gerade bei Einsatz hitzeempfindlicher Substanzen von großem Vorteil ist. Ebenso wie bekannte Systeme des Standes der Technik lässt sich mit der vorliegenden Vorrichtung auch eine sterile Fahrweise ohne Zwischensterilisation bis zum Endprodukt durchführen. With the present device and the associated processes are both oil / water as well Water / oil emulsions and liposomes can be produced. The Device leads to a slight heating of the Emulsion during the manufacturing process, which is precisely what Use of heat sensitive substances of great Advantage is. As well as known systems of the state the technology can be achieved with the present device also a sterile way of driving without intermediate sterilization to the end product.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Gehäusecasing
22
Einlassöffnunginlet port
33
Auslassöffnungoutlet
44
Welle, HohlwelleShaft, hollow shaft
55
Zufuhrkanalsupply channel
66
Membrankörpermembrane body
77
Innenkonturinner contour
88th
disperse Phasedisperse phase
99
kontinuierliche Phasecontinuous phase
1010
Emulsionemulsion
1111
Zwischenraum bzw. EmulsionsraumSpace or emulsion space
1212
Rohrmembrantube membrane
1313
Porenpore
1414
Membranoberflächemembrane surface
1515
Tröpfchendroplet
1616
VentilValve
1717
Lagercamp

Claims (8)

Vorrichtung zur Herstellung von Emulsionen mit einem Gehäuse (1) mit Ein- (2) und Auslassöffnung (3) für eine kontinuierliche Phase (9) eines ersten flüssigen Mediums, einer in dem Gehäuse (1) rotierend antreibbar angeordneten Welle (4), an oder in der ein Zufuhrkanal (5) für eine disperse Phase (8) eines zweiten flüssigen Mediums ausgebildet ist, und einer oder mehreren hohl ausgebildeten Membrankörpern (6), die an der Welle (4) befestigt sind, wobei der Zufuhrkanal (5) über die Welle (4) mit den hohl ausgebildeten Membrankörpern (6) verbunden ist, um die Zuführung der dispersen Phase über den Zuführkanal (4) in die Membrankörper (6) zu ermöglichen. Device for producing emulsions with a housing (1) with inlet (2) and outlet opening (3) for a continuous phase (9) of a first liquid medium, a shaft (4) rotatably drivable in the housing (1), on or in which a feed channel (5) for a disperse phase (8) of a second liquid medium is formed, and one or more hollow membrane bodies (6) which are fastened to the shaft (4), the feed channel (5) being connected via the shaft (4) to the hollow membrane bodies (6) in order to feed the disperse phase to enable the feed channel (4) into the membrane body (6). Vorrichtung nach Anspruch 1,
dadurch gekennzeichnet, dass die Welle (4) als Hohlwelle ausgebildet ist, die den Zufuhrkanal (5) für die disperse Phase (8) bildet.
Device according to claim 1,
characterized in that the shaft (4) is designed as a hollow shaft which forms the feed channel (5) for the disperse phase (8).
Vorrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass die Membrankörper (6) als Membranscheiben ausgebildet sind, durch deren Symmetriezentrum die Welle (4) verläuft.
Device according to claim 1 or 2,
characterized in that the membrane bodies (6) are designed as membrane disks, through the center of symmetry of which the shaft (4) runs.
Vorrichtung nach Anspruch 3,
dadurch gekennzeichnet, dass die Membrankörper (6) an entlang der Welle (4) voneinander beabstandeten Positionen angeordnet sind.
Device according to claim 3,
characterized in that the membrane bodies (6) are arranged at positions spaced apart from one another along the shaft (4).
Vorrichtung nach Anspruch 4,
dadurch gekennzeichnet, dass ein aufgrund der beabstandeten Positionen zwischen den Membrankörpern (6) vorliegender Zwischenraum durch eine angepasste Innenkontur (7) des Gehäuses (1) unter Beibehaltung eines geringen Abstandes zu den Membrankörpern (6) und der Welle (4) ausgefüllt ist.
Device according to claim 4,
characterized in that an intermediate space present due to the spaced positions between the membrane bodies (6) is filled by an adapted inner contour (7) of the housing (1) while maintaining a small distance from the membrane bodies (6) and the shaft (4).
Verfahren zur Herstellung einer Emulsion mit
einer Vorrichtung nach einem der Ansprüche 1 bis 5, bei dem eine kontinuierliche Phase (9) über die Einlassöffnung (2) in das Gehäuse (1) und eine disperse Phase (8) unter Druck durch den Zufuhrkanal (5) der Welle (4) in die Membrankörper (6) geleitet werden, wobei die Membrankörper (6) während der Zuführung der dispersen Phase (8) über die Welle (4) im Gehäuse (1) in Rotation versetzt werden, so dass die disperse Phase (8) aus den Membrankörpern (6) austritt und sich mit der kontinuierlichen Phase (9) unter Bildung einer Emulsion (10) vermischt.
Process for the preparation of an emulsion with
A device according to one of Claims 1 to 5, in which a continuous phase (9) via the inlet opening (2) into the housing (1) and a disperse phase (8) under pressure through the feed channel (5) of the shaft (4) are passed into the membrane body (6), the membrane body (6) being set in rotation during the supply of the disperse phase (8) via the shaft (4) in the housing (1), so that the disperse phase (8) from the Membrane bodies (6) emerges and mixes with the continuous phase (9) to form an emulsion (10).
Verfahren nach Anspruch 6,
dadurch gekennzeichnet, dass nach dem Einleiten der kontinuierlichen Phase (9) die Ein- (2) und die Auslassöffnung (3) des Gehäuses (1) geschlossen werden, anschließend die disperse Phase (8) unter Rotation der Membrankörper (6) zugeführt und nach einem definierten Zeitintervall die Emulsion (10) über die Auslassöffnung (3) abgezogen wird.
Method according to claim 6,
characterized in that after the introduction of the continuous phase (9) the inlet (2) and the outlet opening (3) of the housing (1) are closed, then the disperse phase (8) is fed with rotation of the membrane body (6) and after the emulsion (10) is drawn off via the outlet opening (3) at a defined time interval.
Verfahren nach Anspruch 6,
dadurch gekennzeichnet, dass die kontinuierliche Phase (9) kontinuierlich über die Einlassöffnung (2) in das Gehäuse (1) eingeleitet und die gebildete Emulsion (10) kontinuierlich über die Auslassöffnung (3) abgezogen wird.
Method according to claim 6,
characterized in that the continuous phase (9) is introduced continuously into the housing (1) via the inlet opening (2) and the emulsion (10) formed is continuously drawn off via the outlet opening (3).
EP02011487A 2001-06-02 2002-05-24 Device and process for making emulsions Expired - Lifetime EP1262225B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10127075A DE10127075C2 (en) 2001-06-02 2001-06-02 Device and method for producing emulsions by means of membrane bodies
DE10127075 2001-06-02

Publications (3)

Publication Number Publication Date
EP1262225A2 true EP1262225A2 (en) 2002-12-04
EP1262225A3 EP1262225A3 (en) 2003-05-02
EP1262225B1 EP1262225B1 (en) 2006-10-18

Family

ID=7687130

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02011487A Expired - Lifetime EP1262225B1 (en) 2001-06-02 2002-05-24 Device and process for making emulsions

Country Status (6)

Country Link
EP (1) EP1262225B1 (en)
AT (1) ATE342765T1 (en)
DE (2) DE10127075C2 (en)
DK (1) DK1262225T3 (en)
ES (1) ES2273944T3 (en)
PT (1) PT1262225E (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006021375A1 (en) * 2004-08-23 2006-03-02 Eth-Zürich, Institut Für Lebensmittelwissenschaft, Laboratorium Für Lebensmittelverfahren- Stechnik Method for gentle mechanical generation of finely dispersed micro-/nano-emulsions with narrow particle size distribution and device for carrying out said method
WO2006089939A1 (en) * 2005-02-24 2006-08-31 Basf Aktiengesellschaft Process for preparing an aqueous addition-polymer dispersion
WO2010072237A1 (en) * 2008-12-23 2010-07-01 Kmpt Ag Method and apparatus for treating fluids
WO2010072230A1 (en) * 2008-12-22 2010-07-01 Kmpt Ag Method and apparatus for producing emulsions and/or suspensions
WO2010136602A1 (en) * 2009-05-29 2010-12-02 Novoflow Gmbh Fluid handling system and uses thereof
GB2505160A (en) * 2012-07-06 2014-02-26 Micropore Technologies Ltd Dispersion apparatus with membrane
WO2014133701A1 (en) 2013-02-27 2014-09-04 Rohm And Haas Company Swept membrane emulsification
WO2019219890A1 (en) 2018-05-17 2019-11-21 Csl Behring Ag Method and system of protein extraction

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10306259A1 (en) * 2003-02-14 2004-09-02 Ferrero Ohg Mbh Confectionery based on milk components with defined edible fat agglomerates, as well as method and device for their production
MY149295A (en) 2006-07-17 2013-08-30 Nestec Sa Cylindrical membrane apparatus for forming foam
US8771778B2 (en) 2010-09-09 2014-07-08 Frito-Lay Trading Company, Gmbh Stabilized foam

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2146867A1 (en) * 1971-09-20 1973-04-05 Kalle Ag ROTATING FILTER DEVICE
DE4329077C1 (en) * 1993-08-30 1994-07-14 Chmiel Horst Matter exchange between mixture phase and low viscose fluid phase
DE19823839A1 (en) * 1998-05-29 1999-12-09 Franz Durst Fine gas bubbles released into water through rotating ceramic, plastic or metal
WO2001045830A1 (en) * 1999-12-22 2001-06-28 University Of Leeds Rotating membrane
US6386751B1 (en) * 1997-10-24 2002-05-14 Diffusion Dynamics, Inc. Diffuser/emulsifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201691A (en) * 1978-01-16 1980-05-06 Exxon Research & Engineering Co. Liquid membrane generator
JPS58216726A (en) * 1982-06-10 1983-12-16 Toshio Araki Emulsifier
JPH082416B2 (en) * 1988-09-29 1996-01-17 宮崎県 Method of producing emulsion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2146867A1 (en) * 1971-09-20 1973-04-05 Kalle Ag ROTATING FILTER DEVICE
DE4329077C1 (en) * 1993-08-30 1994-07-14 Chmiel Horst Matter exchange between mixture phase and low viscose fluid phase
US6386751B1 (en) * 1997-10-24 2002-05-14 Diffusion Dynamics, Inc. Diffuser/emulsifier
DE19823839A1 (en) * 1998-05-29 1999-12-09 Franz Durst Fine gas bubbles released into water through rotating ceramic, plastic or metal
WO2001045830A1 (en) * 1999-12-22 2001-06-28 University Of Leeds Rotating membrane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199020 Derwent Publications Ltd., London, GB; AN 1990-151461 XP002233393 & JP 02 095433 A ((MIYA-N)MIYAZAKI KEN), 6. April 1990 (1990-04-06) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006021375A1 (en) * 2004-08-23 2006-03-02 Eth-Zürich, Institut Für Lebensmittelwissenschaft, Laboratorium Für Lebensmittelverfahren- Stechnik Method for gentle mechanical generation of finely dispersed micro-/nano-emulsions with narrow particle size distribution and device for carrying out said method
US8267572B2 (en) 2004-08-23 2012-09-18 ETH-Zurich Institut fur Lebensmittelwissenschaft, Laboratorium fur Lebensmittelverfahren-Stechnik ETH-Zentrum/LFO Method for gentle mechanical generation of finely dispersed micro-/nano-emulsions with narrow particle size distribution and device for carrying out said method
WO2006089939A1 (en) * 2005-02-24 2006-08-31 Basf Aktiengesellschaft Process for preparing an aqueous addition-polymer dispersion
WO2010072230A1 (en) * 2008-12-22 2010-07-01 Kmpt Ag Method and apparatus for producing emulsions and/or suspensions
WO2010072237A1 (en) * 2008-12-23 2010-07-01 Kmpt Ag Method and apparatus for treating fluids
WO2010136602A1 (en) * 2009-05-29 2010-12-02 Novoflow Gmbh Fluid handling system and uses thereof
GB2505160A (en) * 2012-07-06 2014-02-26 Micropore Technologies Ltd Dispersion apparatus with membrane
WO2014133701A1 (en) 2013-02-27 2014-09-04 Rohm And Haas Company Swept membrane emulsification
US9393532B2 (en) 2013-02-27 2016-07-19 Dow Global Technologies Llc Swept membrane emulsification
WO2019219890A1 (en) 2018-05-17 2019-11-21 Csl Behring Ag Method and system of protein extraction

Also Published As

Publication number Publication date
EP1262225A3 (en) 2003-05-02
EP1262225B1 (en) 2006-10-18
ES2273944T3 (en) 2007-05-16
DE10127075C2 (en) 2003-04-10
PT1262225E (en) 2007-02-28
ATE342765T1 (en) 2006-11-15
DE10127075A1 (en) 2002-12-12
DK1262225T3 (en) 2007-02-19
DE50208468D1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
EP1781402B1 (en) Device for gentle mechanical generation of finely dispersed micro-/nano-emulsions with narrow particle size distribution
DE68910969T2 (en) METHOD AND DEVICE FOR THE PRODUCTION OF LIPID BUBBLES.
DE69917433T2 (en) METHOD AND DEVICE FOR PRODUCING LIQUID DISPERSES SYSTEMS IN LIQUIDS
DE69311060T2 (en) Device and method for performing phase separation by filtration and centrifugation
DE3486197T2 (en) Filtration method and device.
DE10127075C2 (en) Device and method for producing emulsions by means of membrane bodies
EP2397219B1 (en) Device for foaming a liquid
EP0644271A1 (en) Method and device for producing a free dispersion system
DE3728946C2 (en)
DE19700810A1 (en) Method and device for homogenizing milk
EP1329254B1 (en) Device and process for mixing of liquid, viscous and/or pourable media
EP3457901B1 (en) Outlet device for a milk foamer
DE2339530A1 (en) MIXING AND EMULSIFYING DEVICE
WO2010072230A1 (en) Method and apparatus for producing emulsions and/or suspensions
DE3204415C2 (en) Device for gassing a liquid or a liquid-solid mixture
EP1530502B1 (en) Process for filtering liquids using a rotary filter device
EP1186347A1 (en) Method and device for spraying liquids
WO2004105924A1 (en) Device for frothing a sludge
EP0589833B1 (en) Method and apparatus for the manufacture of a gasifying membrane
DE1782158C3 (en) Device for generating gas bubbles for a pulp
EP2129454B1 (en) Jet disperser
DE480213C (en) Method and device for separating components of different sizes in a loose mixture of substances
DE441194C (en) Device for atomizing liquids
CH621713A5 (en)
DE19848910A1 (en) Apparatus for production of tubular ultra-filtration membranes has combined functions of cross-flow filtration and centrifugal rotation to produce ceramic or sintered metal tubular structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RIC1 Information provided on ipc code assigned before grant

Ipc: 7B 01F 5/04 B

Ipc: 7B 01F 7/00 B

Ipc: 7B 01F 3/08 A

Ipc: 7B 01D 63/16 B

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

17P Request for examination filed

Effective date: 20031024

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PA ALDO ROEMPLER

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REF Corresponds to:

Ref document number: 50208468

Country of ref document: DE

Date of ref document: 20061130

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061129

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20060404361

Country of ref document: GR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070117

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR

Effective date: 20070117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20070423

Year of fee payment: 6

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070516

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2273944

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20070522

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070523

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070524

Year of fee payment: 6

Ref country code: CH

Payment date: 20070524

Year of fee payment: 6

Ref country code: DK

Payment date: 20070524

Year of fee payment: 6

Ref country code: SE

Payment date: 20070524

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070525

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20070529

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070726

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070523

Year of fee payment: 6

Ref country code: TR

Payment date: 20070510

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070526

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070518

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20070531

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH)

BERE Be: lapsed

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20080531

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20081124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081124

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080524

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080524

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080602

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081202

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081204

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080524

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080524

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080524