EP1260694B1 - Verfahren und Vorrichtung zur Erhöhung des Spannungsniveaus an hochdynamischen induktiven Stellgliedern - Google Patents

Verfahren und Vorrichtung zur Erhöhung des Spannungsniveaus an hochdynamischen induktiven Stellgliedern Download PDF

Info

Publication number
EP1260694B1
EP1260694B1 EP20020010711 EP02010711A EP1260694B1 EP 1260694 B1 EP1260694 B1 EP 1260694B1 EP 20020010711 EP20020010711 EP 20020010711 EP 02010711 A EP02010711 A EP 02010711A EP 1260694 B1 EP1260694 B1 EP 1260694B1
Authority
EP
European Patent Office
Prior art keywords
electromagnetic
switched
voltage
loads
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20020010711
Other languages
English (en)
French (fr)
Other versions
EP1260694A2 (de
EP1260694A3 (de
Inventor
Joachim Schenk
Hubert Schweiggart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1260694A2 publication Critical patent/EP1260694A2/de
Publication of EP1260694A3 publication Critical patent/EP1260694A3/de
Application granted granted Critical
Publication of EP1260694B1 publication Critical patent/EP1260694B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/201Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1816Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator
    • H01F2007/1822Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator using a capacitor to produce a boost voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1877Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings controlling a plurality of loads

Definitions

  • valves For applications on motor vehicles, the use of electromagnetically or electrohydraulically operated valves is in sight. With such valves, for example, the injection valves of an air-compressing internal combustion engine can be controlled. To achieve a high dynamic range, a high voltage is required for opening and partly also for closing. This high voltage has so far been generated by additionally required voltage transformers from smaller but existing voltage networks.
  • DE 37 02 680 A1 relates to a method and a circuit for driving electromagnetic consumers. It is proposed a method for controlling electromagnetic loads with at least one magnetic coil, in particular magnetically actuated injection valves via at least one controllable switch. After switching off an electromagnetic consumer existing inductive energy of the current-carrying magnetic coil of the electromagnetic consumer is used for the switch-on of an electromagnetic consumer.
  • a circuit is provided for carrying out the method, which is characterized in that at least one capacitor connected to an electromagnetic consumer is provided for temporarily storing the inductive energy present in the magnetic coil when the electromagnetic load is switched off.
  • DE OS 44 19 240 refers to a device for controlling an electromagnetic consumer.
  • the energy released during shutdown is stored in a capacitor. This is the transition from a holding current transferred to the current zero energy released in a capacitor. The released during the transition from the starting current to the holding current electrical energy is lost in this device.
  • DE 195 39 071 relate to a device for controlling at least one electromagnetic consumer.
  • the device comprises first switching means arranged between a first terminal of a supply voltage and a first terminal of at least one load, further second switching means arranged between a second terminal of an associated load and the second terminal of the power supply.
  • the released energy is stored in a storage means.
  • US 5,909,353 has a circuit arrangement for the independent switching of several parallel-connected inductive switching units with inductive loads to the object.
  • these inductive loads are the induction coils of powerful DC driven solenoid valves which require rapid shutdown to rapidly convert the energy stored in their magnetic field.
  • Each inductive switching unit comprises an inductive load, a main switch which is connected to the positive pole of the DC voltage source and a blocking diode which is contacted at the connection point of the inductive load and the main switch and is connected in the reverse direction to the negative pole of the DC voltage source.
  • the inductive switching units are connected in parallel to a freewheeling circuit which contains a freewheeling diode.
  • the freewheeling circuit comprises a node, via which the inductive loads are connected by means of a freewheeling switch with the negative pole of the DC voltage source.
  • the freewheeling circuit comprises between the positive pole of the DC voltage source and the junction of a switching group, which blocks the freewheeling circuit when switching off one or more inductive switching units until the voltage between the inductive loads and the switching group exceeds a threshold at the junction.
  • a voltage supply can be represented, with which the turn-on voltage of inductive actuators, for example, for switching on and off of valves for injection of fuel in internal combustion engines, with a mutual increase in voltage for switching the individual inductive actuators can be achieved.
  • the construction of an overvoltage in the inductive actuator which is passed via a diode in a capacitor.
  • the voltage stored in the capacitor increases the operating voltage accordingly, so that a higher voltage is available for the following inductive actuator at the switching of this driving transistor. Due to the higher voltage, the valve shuts through faster.
  • the preferably used as a switch with short switching times transistor can be clocked in the on and off states, as long as it is ensured that the minimum waste stream at the inductive actuator is not exceeded or the strictlyeinschaltstrom remains exceeded. Between these current values, the transistor must be regulated accordingly.
  • the residual energy stored in the capacitor is divided among the remaining series-connected inductive actuators and diodes.
  • a removal of the cut-off energy of inductive actuators into a vehicle electrical system can take place via an analogue switch.
  • the cut-off of the inductive actuator can be fed back instead of a capacitor by activating the analog switch via a driver in the electrical system.
  • the analogue switch is turned off so that the turn-off energy otherwise fed into the vehicle electrical system is passed when switching inductive actuators in capacitors, so that a voltage reserve for inductive actuators is available and activated more quickly, i. can be switched through.
  • FIG. 1 shows a block diagram with inductive actuators to be controlled via a control unit transistor.
  • a control unit 3 is accommodated, which, e.g. a microcontroller 4 comprises.
  • Electromagnetic consumers in the form of a first actuator stage 5 of a second actuator stage 6 and a third actuator stage 7 can be designed, for example, the injection valves on an air-compressing internal combustion engine or as other actuators.
  • the first actuator stage 5, the second actuator stage 6 and the third actuator stage 7 are each connected via input diodes 8 to the vehicle electrical system 1, whose supply voltage is provided by the voltage source 2.
  • Each of the actuator stages 5, 6 and 7 is associated with an electric valve in the form of, for example, a current-carrying solenoid.
  • each of the actuator stages 5, 6 and 7 comprises a switch with short switching times, for example, a transistor (field effect transistor), which is in communication with the control unit 3 before each of a control line 13 and 14 and 15 respectively.
  • a diode 16 is accommodated in each of the actuator stages 5, 6 and 7 of the electromagnetic load, which is continuous only in one direction, consequently blocks in the other direction.
  • a power supply can be provided which significantly increases the turn-on voltage of inductive actuators such as the electric actuators 9 (current-carrying magnetic coils) when switching on and off by mutual high voltage generation.
  • the electric actuator 9 of the first electromagnetic consumer in the form of an actuator stage 5 is supplied via the voltage source 2 in the electrical system 1 and via the input diode 8. About the preferably designed as a transistor fast switching switch the electric actuator 9 is connected to ground.
  • a current flow is generated by the electric actuator 9, for example, a magnetic coil.
  • the inductively acting electric actuator 9 builds up an overvoltage which is conducted via the diode 16 into the memory 18 (for example a capacitor).
  • a voltage greater than the voltage prevailing in the voltage source 2 of the vehicle electrical system 1 is available for the further actuator stage 6, ie the further electromagnetic consumer.
  • the electric actuator 9 can be switched through faster in the second actuator 6 due to the increased turn-on.
  • the acting as a fast-switching switch transistor can be clocked in the on and off states, as long as the minimum waste stream of a current as a current-carrying solenoid electric actuator is not reached or whose disciplineeinschaltstrom is exceeded.
  • the timing can be calculated on the basis of the technical data of the electric actuator 9 and the voltage measured via the control unit 3. Based on these calculated values, the duty cycle can be adjusted and regulated accordingly.
  • FIG. 2 shows a block diagram of another embodiment of a circuit for increasing the turn-on voltage inductive actuators.
  • the electrical system 1 according to FIG. 2 contains analogous to the block diagram according to FIG. 1 a voltage source 2 and a control unit 3, which includes, for example, a microcontroller 4 among other things. From the control unit 3, drive lines 13, 14 and 15 extend to the switching elements 10, 11 and 12 of the individual electromagnetic consumers 5, 6 or 7, which are preferably in the form of transistors. Each of the electromagnetic loads 5, 6 or 7 in the form of actuator stages contains an electric actuator 9, a blocking diode 16 is connected in parallel. With appropriate control by the control unit 3, a current flow through the electric actuator 9 is caused by the transistor 10 in the electromagnetic load 5.
  • the inductively acting electric actuator builds up an overvoltage, which is dissipated via the parallel-connected diode 16 and the electric actuator 10 of the further electromagnetic load 6 and the conducting transistor 11 of the electromagnetic load 6.
  • an increased voltage is available for the electric actuator 9 in the further electromagnetic consumer 6, compared to the voltage generated by the voltage source 2 in the vehicle electrical system 1.
  • the electric actuator 9 in the second electromagnetic load 6 switches faster due to the increased voltage.
  • FIG. 3 is a block diagram removable with a connection of the electromagnetic consumers with each other.
  • the circuit arrangement according to FIG. 3 differs from the circuit arrangement according to FIG. 2 essentially in that each of the electric actuators 9 in the electromagnetic loads 5, 6 or 7, ie the 1.2. or 3 actuator are associated with two blocking diodes 16, which are each connected to different, the electric actuators 9 interconnecting parallel switching branches 24, 25 and 26 respectively.
  • the on-board network 1 comprises a voltage source 2 and a control unit 3, in which a microcontroller 4 is accommodated.
  • Each of the electromagnetic loads 5, 6 and 7 according to the block diagram in FIG. 3 Each of the transistors 10, 11 and 12 is connected via a drive line 13, 14 and 15 with the control unit 3 in connection and is controlled by this clocked.
  • a voltage increase at the electric actuator 9 of the electromagnetic load 5 can be brought about by the fact that seen in the forward direction of the blocking diode 16, the voltage of the electric actuator 9 of the electromagnetic load 7 and the voltage of the electric actuator 9 is connected in the unnumbered electromagnetic consumer.
  • the blocking diodes 16 are connected in parallel to the electric actuator 9 of the electromagnetic load 6 with the parallel switching branches 24 and 27 of the aforementioned electric actuators 9.
  • a switching voltage increase at the electric actuator 9 of the electromagnetic consumer 7, 6, i. the second actuator stage is carried out by applying the voltage to the electric actuator 9 of the electromagnetic load 5 via the parallel switching branch 24 and the forward direction of the diode 16 or by applying the voltage of the electric actuator 9 of the unnumbered electromagnetic consumer.
  • Each of the parallel switching branches 24, 25 and 26 is provided with two voltage tap points, so that each two electric actuators 9 are assigned to increase the voltage.
  • the respective electrical actuators 9 in the switched-off state are discharged via the switching elements 20, 21, 22 or 23 designed as Z-diodes, when the voltage exceeds the increased switch-on voltage the electric actuators 9 increases.
  • the transistors 10, 11 or 12 acting as switches can also be switched off in the meantime, as long as the respective minimum waste current of the electric actuators 9 is not undershot.
  • an electric actuator 9 for generating voltage can be switched on for a short time, as long as the minimum starting current is not exceeded.
  • the representation according to FIG. 4 is a block diagram with a switching element for removing the cut-off energy electrical actuators in the electrical system of a vehicle refer.
  • a voltage source 2 is received, via which two parallel electromagnetic consumers 5 and 6 and a control unit 3 u.a. be supplied with a microcontroller 4 and two drivers 33 and 34 with electrical energy.
  • An electric actuator 9 which in each case an input diode 8 is connected upstream.
  • Each of the electric actuators 9 is a blocking diode 16 connected in parallel.
  • Analogous to the electromagnetic loads 5, 6 and 7 of the block diagrams according to the FIGS. 1, 2 and 3 also include the in FIG. 4 reproduced electromagnetic loads 5 and 6 each have a transistor 10 and 11, which act as fast switching switches and are controlled via the control lines 13 and 14 from the microcontroller 4 of the control unit 3 in a corresponding timing.
  • Exemplary reproduced block diagrams are characterized circuits with which a high dynamic range of inductive actuators can be achieved, for example, injectors of air-compressing internal combustion engines, which represent electromagnetic consumers in the sense of the above, highly dynamic to actuate and thus able to operate.
  • Previously additionally required voltage transformers of smaller, existing on the vehicle, voltage networks can be omitted as well as additional to be used capacitors that are charged by clocked actuators.
  • a voltage supply can be realized which achieves a significant increase in the turn-on voltage of inductive actuators, such as, for example, current-carrying electrical magnet coils which are used as electrical actuators.
  • the switching on and off of electromagnetic consumers can thus take place by means of mutual high-voltage generation, wherein the voltage increase for switching on an electric actuator 9 is previously used by the storage or diversion of the inductive energy during the shutdown of another electric actuator 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Dc-Dc Converters (AREA)
  • Ac-Ac Conversion (AREA)
  • Electronic Switches (AREA)

Description

    Technisches Gebiet
  • Für Anwendungen an Kraftfahrzeugen ist zukünftig der Einsatz von elektromagnetisch bzw. elektrohydraulisch betätigten Ventilen in Sicht. Mit solchen Ventilen lassen sich zum Beispiel die Einspritzventile einer luftverdichtenden Verbrennungskraftmaschine ansteuern. Zur Erzielung einer hohen Stelldynamik wird zum Öffnen und teilweise auch zum Schließen eine hohe Spannung benötigt. Diese hohe Spannung wird bislang von zusätzlich benötigten Spannungswandlern aus kleineren jedoch vorhandenen Spannungsnetzen generiert.
  • Stand der Technik
  • DE 37 02 680 A1 bezieht sich auf ein Verfahren und eine Schaltung zur Ansteuerung von elektromagnetischen Verbrauchern. Es wird ein Verfahren zur Ansteuerung von elektromagnetischen Verbrauchern mit mindestens einer Magnetspule, insbesondere von magnetisch betätigbaren Einspritzventilen über mindestens einen steuerbaren Schalter vorgeschlagen. Nach Abschaltung eines elektromagnetischen Verbrauchers vorhandene induktive Energie der stromdurchflossenen Magnetspule des elektromagnetischen Verbrauchers wird für den Einschaltvorgang eines elektromagnetischen Verbrauchers verwendet. Außerdem wird eine Schaltung zur Ausführung des Verfahrens geschaffen, die sich dadurch auszeichnet, daß mindestens ein mit einem elektromagnetischen Verbraucher verbundener Kondensator zur Zwischenspeicherung der bei Abschaltung des elektromagnetischen Verbrauchers in dessen Magnetspule vorhandenen induktiven Energie vorgesehen ist.
  • DE OS 44 19 240 bezieht sich auf eine Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers. Bei dieser Vorrichtung wird die beim Abschalten freiwerdende Energie in einen Kondensator gespeichert. Dabei wird die beim Übergang von einem Haltestrom auf den Strom Null freiwerdende Energie in einen Kondensator umgeladen. Die beim Übergang vom Anzugsstrom auf den Haltestrom freiwerdende elektrische Energie geht bei dieser Einrichtung verloren.
  • DE 195 39 071 (und US 5,936,827 ) beziehen sich auf eine Vorrichtung zur Ansteuerung wenigstens eines elektromagnetischen Verbrauchers. Die Vorrichtung umfaßt ein erstes Schaltmittel, das zwischen einem ersten Anschluß einer Versorgungsspannung und einem ersten Anschluß wenigstens eines Verbrauchers angeordnet ist, ferner zweite Schaltmittel, die zwischen einem zweiten Anschluß eines zugeordneten Verbrauchers und dem zweiten Anschluß der Spannungsversorgung angeordnet sind. Beim Übergang von einem ersten höheren Stromwert auf einen zweiten niedrigeren Stromwert wird die freiwerdende Energie in einem Speichermittel gespeichert. US 5,909,353 hat eine Schaltungsanordnung zum unabhängigen Schalten mehrerer parallel geschalteter induktiver Schalteinheiten mit induktiven Lasten zum Gegenstand. Insbesondere sind diese induktiven Lasten die Induktionsspulen von leistungsstarken gleichstrombetriebenen Magnetventilen, bei denen es zum schnellen Abschalten erforderlich ist, die in ihrem Magnetfeld gespeicherte Energie rasch umzuwandeln. Jede induktive Schalteinheit umfasst eine induktive Last, einen Hauptschalter, der mit dem Pluspol der Gleichspannungsquelle verbunden ist und eine Sperrdiode, die im Verbindungspunkt der induktiven Last und des Hauptschalters kontaktiert ist und in Sperrrichtung mit dem Minuspol der Gleichspannungsquelle verbunden ist. Die induktiven Schalteinheiten sind einem Freilaufkreis parallel geschaltet, der eine Freilaufdiode enthält. Der Freilaufkreis umfasst einen Knotenpunkt, über den die induktiven Lasten mittels eines Freilaufschalters mit dem Minuspol der Gleichspannungsquelle verbunden sind. Der Freilaufkreis umfasst zwischen dem Pluspol der Gleichspannungsquelle und dem Knotenpunkt einer Schaltgruppe, welche den Freilaufkreis beim Abschalten einer oder mehrer induktiver Schalteinheiten so lange sperrt, bis die Spannung zwischen den induktiven Lasten und der Schaltgruppe einen Schwellenwert am Knotenpunkt überschreitet.
  • Darstellung der Erfindung
  • Mit der erfindungsgemäß vorgeschlagenen Lösung ist eine Spannungsversorgung darstellbar, mit welcher die Einschaltspannung von induktiven Stellgliedern zum Beispiel zur Ein- und Abschaltung von Ventilen zur Einspritzung von Kraftstoff in Brennkraftmaschinen erfolgen kann, wobei eine gegenseitige Spannungserhöhung zum Schalten der einzelnen induktiven Stellglieder erzielbar ist. Bei Abschaltung eines als Schalter mit kurzen Schaltzeiten dienenden Transistors erfolgt der Aufbau einer Überspannung im induktiven Stellglied, die über eine Diode in einen Kondensator geleitet wird. Die im Kondensator gespeicherte Spannung erhöht die Betriebsspannung entsprechend, so daß für das folgende induktive Stellglied bei Einschaltung des dieses ansteuernden Transistors eine höhere Spannung zur Verfügung steht. Aufgrund der höheren Spannung schaltet das Ventil schneller durch.
  • Der als Schalter mit kurzen Schaltzeiten bevorzugt eingesetzte Transistor kann im ein- und ausgeschalteten Zustand getaktet werden, solange gewährleistet ist, daß der Abfallmindeststrom am induktiven Stellglied nicht unterschritten wird bzw. der Mindesteinschaltstrom überschritten bleibt. Zwischen diesen Stromwerten ist der Transistor entsprechend zu regeln.
  • Reicht die durch das Abschalten eines induktiven Stellgliedes im Kondensator erzeugte Überspannung nicht aus, so können durchaus auch mehrere schaltende induktive Stellglieder parallel zur Spannungsanhebung auf einen oder mehrere Kondensatoren geschaltet werden. Bei Abschaltung eines induktiven Stellgliedes ohne daß der Transistor leitend ist und Auftreten einer Spannung oberhalb der erhöhten Einschaltspannung der Stellglieder, kann diese über eine Diode abgeführt werden, ohne daß das induktive Stellglied Schaden nimmt.
  • Fällt die Spannung oberhalb der erzeugten Einschaltspannung wieder auf ein Spannungsniveau ab, auf dem die Diode nicht leitet, teilt sich die im Kondensator gespeicherte Restenergie auf die verbleibenden, in Reihe geschalteten induktiven Stellglieder und Dioden auf.
  • In einer Ausführungsvariante der erfindungsgemäß vorgeschlagenen Lösung kann eine Abführung der Abschaltenergie induktiver Stellglieder in ein Bordnetz zum Beispiel eines Kraftfahrzeuges über einen Analogschalter erfolgen. Bei abgeschaltetem als Schalter mit kurzen Schaltzeiten eingesetzten Transistor und nicht über den Transistor aktiviertem induktiven Stellglied, kann die Abschaltenergie des induktiven Stellgliedes anstatt in einen Kondensator durch Aktivierung des Analogschalters über einen Treiber in das Bordnetz zurückgespeist werden. Sobald der Transistor wieder aktiviert wird, wird der Analogschalter abgeschaltet, so daß die andernfalls ins Bordnetz eingespeiste Abschaltenergie beim Schalten induktiver Stellglieder in Kondensatoren geleitet wird, so daß eine Spannungsreserve für induktive Stellglieder zur Verfügung steht und diese schneller aktiviert, d.h. durchgeschaltet werden können.
  • Beim Schalten induktiver Stellglieder auftretende Spannungserhöhungen können mit der erfindungsgemäß vorgeschlagenen Lösung sowohl im Kondensator gespeichert und zur Durchschaltbeschleunigung genutzt als auch in das Bordnetz eingespeist werden.
  • Zeichnung
  • Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben.
  • Es zeigt:
  • Figur 1
    ein Blockschaltbild von induktiven Stellgliedern mit über ein Steuergerät anzusteuernden Transistoren,
    Figur 2
    ein Blockschaltbild einer weiteren Ausführungsvariante,
    Figur 3
    ein Blockschaltbild mit einer Schaltdiode zur Einspeisung von Spannungsspitzen ins Bordnetz und
    Figur 4
    ein Blockschaltbild mit einem Analogschalter zur Abführung der Abschaltenergie.
    Ausführungsvarianten
  • Figur 1 zeigt ein Blockschaltbild mit induktiven Stellgliedern mit über ein Steuergerät anzusteuerndem Transistor.
  • In einem eine Spannungsquelle 2 aufweisenden Bordnetz 1, zum Beispiel eines Kraftfahrzeuges, ist ein Steuergerät 3 aufgenommen, welches z.B. einen Mikrocontroller 4 umfaßt. Elektromagnetische Verbraucher in Gestalt einer 1. Aktuatorstufe 5 einer 2. Aktuatorstufe 6 sowie einer 3. Aktuatorstufe 7 können zum Beispiel die Einspritzventile an einer luftverdichtenden Verbrennungskraftmaschine oder auch als andere Aktuatoren ausgebildet sein. Die 1. Aktuatorstufe 5, die 2. Aktuatorstufe 6 sowie die 3. Aktuatorstufe 7 stehen jeweils über Eingangsdioden 8 mit dem Bordnetz 1 in Verbindung, dessen Versorgungssspannung durch die Spannungsquelle 2 gestellt wird. Jeder der Aktuatorstufen 5, 6 und 7 ist ein elektrisches Ventil in Gestalt beispielsweise einer stromdurchflossenen Magnetspule zugeordnet. Bei diesen Aktuatoren kann es sich zum Beispiel über schnellschaltende elektromagnetische Ventile, Steller oder auch um Magnetspulen handeln. Ferner umfaßt jede der Aktuatorstufen 5, 6 und 7 einen Schalter mit kurzen Schaltzeiten, zum Beispiel einen Transistor (Feldeffekttransistor), der mit dem Steuergerät 3 vor jeweils einer Ansteuerleitung 13 bzw. 14 bzw. 15 in Verbindung steht. Ferner ist in jedem der Aktuatorstufen 5, 6 und 7 der elektromagnetischen Verbraucher eine Diode 16 aufgenommen, die nur in eine Richtung durchgängig ist, demzufolge in die andere Richtung sperrt.
  • In der Schaltungsvariante gemäß Figur 1 ist jedem elektromagnetischen Verbraucher in Gestalt einer Aktuatorstufe 5, 6 oder 7 ein Speicherelement für induktive Energie wie zum Beispiel ein Kondensator 17, 18 oder 19 zugeordnet.
  • Mit der in Figur 1 wiedergegebenen Schaltungsanordnung kann eine Spannungsversorgung geschaffen werden, welche die Einschaltspannung von induktiven Stellgliedern wie zum Beispiel der elektrischen Aktuatoren 9 (stromdurchflossene Magnetspulen) bei Ein- und Ausschalten durch gegenseitige Hochspannungserzeugung signifikant erhöht.
  • Der elektrische Aktuator 9 des 1. elektromagnetischen Verbrauchers in Gestalt einer Aktuatorstufe 5 wird über die Spannungsquelle 2 im Bordnetz 1 und über die Eingangsdiode 8 versorgt. Über den vorzugsweise als Transistor beschaffenen schnellschaltenden Schalter ist der elektrische Aktuator 9 gegen Masse geschaltet. Bei Ansteuerung des Transistors 10 über die zugehörige Ansteuerleitung 13 vom Steuergerät 3 wird ein Stromfluß durch den elektrischen Aktuator 9 z.B. einer Magnetspule erzeugt. Wird der Transistor 10 vom Steuergerät 3 entsprechend der dort eingestellten Taktung über die Ansteuerleitung 13 abgeschaltet, baut der induktiv wirkende elektrische Aktuator 9 eine Überspannung auf, welche über die Diode 16 in den Speicher 18 (zum Beispiel ein Kondensator) abgeleitet wird. Somit steht für das in der weiteren Aktuatorstufe 6, d.h. dem weiteren elektromagnetischen Verbraucher eine größere Spannung als die in der Spannungsquelle 2 des Bordnetzes 1 herrschende Spannung zur Verfügung. Beim Einschalten des Transistors 11 des weiteren elektromagnetischen Verbrauchers, d.h. der 2. Aktuatorstufe 6 über den dieser zugeordneten Transistor 11 kann der elektrische Aktuator 9 in der 2. Aktuatorstufe 6 aufgrund der erhöhten Einschaltspannung schneller durchgeschaltet werden.
  • Der als schnellschaltender Schalter fungierende Transistor kann im ein- und ausgeschalteten Zustand getaktet werden, solange nicht der Abfallmindeststrom eines als stromdurchflossene Magnetspule beschaffenen elektrischen Aktuators unterschritten bzw. dessen Mindesteinschaltstrom überschritten wird. Die Taktung kann aufgrund der technischen Daten des elektrischen Aktuators 9 und der über das Steuergerät 3 gemessenen Spannung berechnet werden. Aufgrund dieser berechneten Werte kann das Tastverhältnis entsprechend eingestellt und geregelt werden.
  • Figur 2 zeigt ein Blockschaltbild einer weiteren Ausführungsvariante einer Schaltung zur Erhöhung der Einschaltspannung induktiver Stellglieder.
  • Gemäß des Blockschaltbildes in Figur 2 sind anstelle von Eingangsdioden 8 zu jedem der elektromagnetischen Verbraucher 5, 6 oder 7 in Gestalt von Aktuatorstufen Schaltelemente 20, 21, 22 und 23 vorgesehen, welche als Z-Dioden ausgeführt sind, deren Zenerspannung die Spannungsüberhöhung zu der Versorgungsspannung 2 festlegen.
  • Das Bordnetz 1 gemäß Figur 2 enthält analog zum Blockschaltbild gemäß Figur 1 eine Spannungsquelle 2 sowie ein Steuergerät 3, welches zum Beispiel unter anderem einen Mikrocontroller 4 umfaßt. Vom Steuergerät 3 erstrecken sich Ansteuerleitungen 13, 14 und 15 zu den vorzugsweise als Transistoren ausgebildeten Schaltelementen 10, 11 und 12 der einzelnen elektromagnetischen Verbraucher 5, 6 oder 7. Jeder der elektromagnetischen Verbraucher 5, 6 oder 7 in Gestalt von Aktuatorstufen enthält einen elektrischen Aktuator 9, dem eine Sperrdiode 16 parallelgeschaltet ist. Bei entsprechender Ansteuerung durch das Steuergerät 3 wird durch den Transistor 10 im elektromagnetischen Verbraucher 5 ein Stromfluß durch den elektrische Aktuator 9 hervorgerufen. Bei Abschaltung des Transistors 10 des elektrischen Verbrauchers 5 baut der induktiv wirkende elektrische Aktuator eine Überspannung auf, die über die parallelgeschaltete Diode 16 und der elektrische Aktuator 10 des weiteren elektromagnetischen Verbrauchers 6 und den leitenden Transistor 11 des elektromagnetischen Verbrauchers 6 abgebaut wird. Somit steht für den elektrischen Aktuator 9 in dem weiteren elektromagnetischen Verbraucher 6 eine erhöhte Spannung, verglichen mit der von der Spannungsquelle 2 im Bordnetz 1 erzeugten Spannung zur Verfügung. Beim gleichzeitigen oder etwas vorzeitigen Einschalten des als Transistor vorzugsweise ausgebildeten Schalters 11 im weiteren elektromagnetischen Verbraucher 6 vor Abschaltung des Transistors 10 im diesen vorgeordneten elektromagnetischen Verbraucher 5 schaltet der elektrische Aktuator 9 im 2. elektromagnetischen Verbraucher 6 aufgrund der erhöhten Spannung schneller durch.
  • Figur 3 ist ein Blockschaltbild entnehmbar mit einer Verbindung der elektromagnetischen Verbraucher untereinander.
  • Die Schaltungsanordnung gemäß Figur 3 unterscheidet sich von der Schaltungsanordnung gemäß Figur 2 im wesentlichen dadurch, daß jedem der elektrischen Aktuatoren 9 in den elektromagnetischen Verbrauchern 5, 6 oder 7, d.h. der 1.2. oder 3 Aktuatorstufe zwei Sperrdioden 16 zugeordnet sind, die jeweils mit unterschiedlichen, die elektrischen Aktuatoren 9 miteinander verbindenden Parallelschaltzweigen 24, 25 bzw. 26 verbunden sind. Analog zum Blockschaltbild gemäß der Darstellung in Figur 2 umfaßt das Bordnetz 1 eine Spannungsquelle 2 sowie ein Steuergerät 3, in welchem ein Mikrocontroller 4 aufgenommen ist. Jeder der elektromagnetischen Verbraucher 5, 6 bzw. 7 gemäß des Blockschaltbildes in Figur 3 umfaßt einen vorzugsweise als schnellschaltenden Transistor ausgebildeten Schalter 10, 11 bzw. 12. Jeder der Transistoren 10, 11 bzw. 12 steht über eine Ansteuerleitung 13, 14 und 15 mit dem Steuergerät 3 in Verbindung und wird über dieses getaktet angesteuert. Reicht die Abschaltenergie eines abschaltenden elektrischen Aktuators 9 nicht aus, so können auch mehrere elektrische Aktuatoren 9 parallel zur Spannungsanhebung herangezogen werden. So kann eine Spannungserhöhung am elektrischen Aktuator 9 des elektromagnetischen Verbrauchers 5 dadurch herbeigeführt werden, daß diesem in Durchlaßrichtung der Sperrdiode 16 gesehen die Spannung des elektrischen Aktuators 9 des elektromagnetischen Verbrauchers 7 sowie die Spannung des elektrischen Aktuators 9 im nicht numerierten elektromagnetischen Verbraucher aufgeschaltet ist. Dazu sind die Sperrdioden 16 parallel zum elektrischen Aktuator 9 des elektromagnetischen Verbrauchers 6 mit den Parallelschaltzweigen 24 bzw. 27 der erwähnten elektrischen Aktuatoren 9 verbunden.
  • Eine Schaltspannungserhöhung am elektrischen Aktuator 9 des elektromagnetischen Verbrauchers 7, 6, d.h. der 2. Aktuatorstufe erfolgt durch Anlegen der Spannung am elektrischen Aktuator 9 des elektromagnetischen Verbrauchers 5 über den Parallelschaltzweig 24 bzw. Durchlaßrichtung der Diode 16 bzw. durch Anlegen der Spannung des elektrischen Aktuators 9 des nicht numerierten elektromagnetischen Verbrauchers. Jeder der Parallelschaltzweige 24, 25 bzw. 26 ist mit zwei Spannungsabgriffspunkten versehen, so daß einem jeden zwei elektrische Aktuatoren 9 zur Spannungserhöhung zugeordnet sind.
  • Zum Schutz gegen übermäßig hohe Einschaltspannungen werden die jeweiligen elektrischen Aktuatoren 9 im abgeschalteten Zustand, ohne daß der entsprechend zugeordnete Transistor leitend ist, über die als Z-Dioden ausgebildeten Schaltelemente 20, 21, 22 bzw. 23 entladen, wenn die Spannung über der erhöhten Einschaltspannung der elektrischen Aktuatoren 9 ansteigt. Analog zur Darstellung gemäß des Blockschaltbildes in Figur 1 können die als Schalter fungierenden Transistoren 10, 11 oder 12 zwischenzeitlich auch abgeschaltet werden, solange nicht der jeweilige Abfallmindeststrom der elektrischen Aktuatoren 9 unterschritten wird. Ebenso kann ein elektrischer Aktuator 9 zur Spannungserzeugung auch kurzzeitig eingeschaltet werden, solange nicht der Mindesteinschaltstrom überschritten wird.
  • Der Darstellung gemäß Figur 4 ist ein Blockschaltbild mit einem Schaltelement zur Abführung der Abschaltenergie elektrischer Aktuatoren in das Bordnetz eines Fahrzeugs zu entnehmen.
  • Im Bordnetz 1 ist eine Spannungsquelle 2 aufgenommen, über welche zwei parallelgeschaltete elektromagnetische Verbraucher 5 bzw. 6 sowie ein Steuergerät 3 u.a. mit einem Mikrocontroller 4 und zwei Treibern 33 bzw. 34 mit elektrischer Energie versorgt werden.
  • Jedem der elektromagnetischen Verbraucher 5 bzw. 6, im vorliegenden Falle einer 1. Aktuatorstufe 5 und einer 2. Aktuatorstufe 6 ist ein analoger Schalter 30 zugeordnet, der im wesentlichen aus einer Sperrdiode 31 und einem zu dieser parallelgeschalteten Transistor 32 besteht. Jeder der in Figur 4 schematisch dargestellten elektromagnetischen Verbraucher 5 bzw. 6 umfaßt einen elektrischen Aktuator 9, welchem jeweils eine Eingangsdiode 8 vorgeschaltet ist. Jedem der elektrischen Aktuatoren 9 ist eine Sperrdiode 16 parallelgeschaltet. Analog zu den elektromagnetischen Verbrauchern 5, 6 und 7 der Blockschaltbilder gemäß den Figuren 1, 2 und 3 umfassen auch die in Figur 4 wiedergegebenen elektromagnetischen Verbraucher 5 und 6 jeweils einen Transistor 10 bzw. 11, die als schnellschaltende Schalter wirken und über die Ansteuerleitungen 13 bzw. 14 vom Mikrocontroller 4 des Steuergerätes 3 in entsprechender Taktung angesteuert werden.
  • Gemäß des Blockschaltbildes in Figur 4 wird bei abgeschaltetem Transistor 10 des am 1. elektromagnetischen Verbrauchers 5 und nicht aktiviertem elektrischen Aktuator 9 des weiteren elektromagnetischen Verbrauchers 6 die Abschaltenergie des elektrischen Aktuators 9 im elektromagnetischen Verbraucher 5, d.h. der 1. Aktuatorstufe durch Aktivierung des Analogschalters 30 des elektromagnetischen Verbrauchers 5 über Treiber 33 bzw. 34 in das Bordnetz 1 eines Fahrzeugs zurückgespeist. Bei der Aktivierung des Transistors 11 im elektromagnetischen Verbraucher 6, d.h. der 2. Aktuatorstufe wird der Analogschalter 30 abgeschaltet bzw. nicht aktiviert, so daß die Abschaltenergie des elektrischen Aktuators 9 im elektromagnetischen Verbraucher 5 zur Spannungserhöhung am elektrischen Aktuator 9 des elektromagnetischen Verbrauchers 6, d.h. der 2. Aktuatorstufe 6 eingesetzt werden kann. Dies bedeutet, daß der elektrische Aktuator 9 schneller durchgeschaltet werden kann.
  • Mit den in den Figuren 1 bis 4 beispielhaft wiedergegebenen Blockschaltbildern sind Schaltungen charakterisiert, mit denen eine hohe Stelldynamik von induktiven Stellgliedern erzielt werden kann, um zum Beispiel Einspritzventile von luftverdichtenden Verbrennungskraftmaschinen, die elektromagnetische Verbraucher im Sinne der obigen Ausführungen darstellen, hochdynamisch ansteuern und damit betätigen zu können. Bisher zusätzlich benötigte Spannungswandler von kleineren, am Fahrzeug vorhandenen, Spannungsnetzen können entfallen ebenso wie zusätzlich einzusetzende Kondensatoren, die von getakteten Aktuatoren aufgeladen werden. Mit der erfindungsgemäß vorgeschlagenen Lösung kann eine Spannungsversorgung realisiert werden, die eine signifikante Erhöhung der Einschaltspannung von induktiven Stellgliedern wie zum Beispiel stromdurchflossene elektrische Magnetspulen, die als elektrische Aktuatoren Einsatz finden, erzielt werden. Die Ein- und Abschaltung von elektromagnetischen Verbrauchern kann somit auf dem Wege der gegenseitigen Hochspannungserzeugung erfolgen, wobei die Spannungserhöhung zum Einschalten eines elektrischen Aktuators 9 zuvor durch die Speicherung bzw. Umleitung der induktiven Energie beim Abschaltvorgang eines anderen elektrischen Aktuators 9 eingesetzt wird.
  • Bezugszeichenliste
  • 1
    Bordnetz
    2
    Spannungsquelle
    3
    Steuergerät
    4
    Mikrocontroller
    5
    1. Aktuatorstufe (elektromagnetischer Verbraucher)
    6
    2. Aktuatorstufe (elektromagnetischer Verbraucher)
    7
    3. Aktuatorstufe (elektromagnetischer Verbraucher)
    8
    Eingangsdiode
    9
    elektrischer Aktuator
    10
    Transistor
    11
    Transistor
    12
    Transistor
    13
    Ansteuerleitung
    14
    Ansteuerleitung
    15
    Ansteuerleitung
    16
    Sperrdiode
    17
    Kondensator
    18
    Kondensator
    19
    Kondensator
    20
    Z-Diode
    21
    Z-Diode
    22
    Z-Diode
    23
    Z-Diode
    24
    Parallelschaltzweig
    25
    Parallelschaltzweig
    26
    Parallelschaltzweig
    27
    Parallelschaltzweig
    30
    Schaltelement
    31
    Sperrdiode
    32
    Transistor
    33
    1. Treiber
    34
    2. Treiber

Claims (15)

  1. Verfahren zur Ansteuerung elektromagnetischer Verbraucher (5, 6, 7) eines Bordnetzes (1), wobei die elektromagnetischen Verbraucher (5, 6, 7) Ventile mit Aktuatoren (9) zur Einspritzung von Kraftstoff in eine Brennkraftmaschine umfassen, wobei das Bordnetz (1) eine Spannungsquelle (2) und ein Steuergerät (3) enthält, welches die elektromagnetischen Verbraucher (5, 6, 7) über diesen zugeordnete Schalter (10, 11, 12) ansteuert, wobei die beim Abschalten eines oder mehrerer der elektromagnetischen Verbraucher (5, 6, 7) vorhandene induktive Energie zur Spannungsanhebung beim Einschalten der übrigen der elektromagnetischen Verbraucher (5, 6, 7) eingesetzt oder bei Überschreiten einer erhöhten Einschaltspannung der elektrischen Aktuatoren (9) über Schaltelemente (20, 21, 22, 23; 30, 33, 34) in das Bordnetz (1) eingespeist wird, dadurch gekennzeichnet, dass zur Erhöhung der beim Abschalten ein oder mehrerer der elektromagnetischen Verbraucher (5, 6, 7) vorhandenen induktiven Energie mehrere elektrische Aktuatoren (9) parallelgeschaltet sind, wobei die elektrischen Aktuatoren (9) jeweils über Sperrdioden (16) miteinander verbunden sind, derart, dass die beim Abschalten einer der elektromagnetischen Verbraucher (5, 6, 7) entstehende induktive Überspannung über mindestens eine Sperrdiode (16) und mindestens einen der weiteren, eingeschalteten elektromagnetischen Verbraucher (5, 6, 7) abgebaut wird.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die den elektromagnetischen Verbrauchern (5, 6, 7) zugeordneten Schalter (10, 11, 12) über das Steuergerät (3) zwischen ein- und ausgeschaltetem Zustand getaktet werden.
  3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß das Steuergerät (3) die Taktung der Schalter (10, 11, 12) derart steuert, daß am elektrischen Aktuator (9) weder der Abfallmindeststrom unterschritten, noch der Mindesteinschaltstrom überschritten wird.
  4. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß die Schalter (10, 11, 12) über das Steuergerät (3) abgeschaltet werden, solange nicht der Abfallmindeststrom am elektrischen Aktuator (9) unterschritten wird.
  5. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß die Schalter (10, 11, 12) über das Steuergerät (3) eingeschaltet werden, solange nicht der Mindesteinschaltstrom am elektrischen Aktuator (9) überschritten wird.
  6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß bei abgeschalteten elektrischen Aktuatoren (9) und leitenden korrespondierenden Schaltern (10, 11, 12) bei Spannungen oberhalb einer erhöhten Einschaltspannung des elektrischen Aktuators (9) diese über als Z-Dioden ausgebildete Schaltelemente (20, 21, 22, 23) abfließen.
  7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, daß bei Unterschreiten der Öffnungsspannung der Z-Dioden (20, 21, 22, 23) die induktive Restenergie auf die elektrischen Aktuatoren (9) der elektromagnetischen Verbraucher (5, 6, 7) aufgeteilt wird.
  8. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß bei Abschaltung eines Schalters (10) eines 1. elektromagnetischen Verbrauchers (5) und nicht aktiviertem elektrischen Aktuator (9) eines weiteren elektromagnetischen Verbrauchers (6) die Abschaltenergie des elektrischen Aktuators (9) des 1. elektromagnetischen Verbrauchers (5) durch Ansteuerung eines Schaltelementes (30) durch das Steuergerät (3) in das Bordnetz (1) zurückgespeist wird.
  9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, daß mit der Aktivierung eines Schalters (11) der weiteren Aktuatorstufe (6) das Schaltelement (30) abgeschaltet wird, so daß die induktive Energie des elektrischen Aktuators (9) des elektromagnetischen Verbrauchers (5) zur Spannungserhöhung am elektrischen Aktuator (9) des weiteren elektromagnetischen Verbrauchers (6) eingesetzt wird.
  10. Schaltung zur Durchführung des Verfahrens gemäß einem oder mehrerer der Ansprüche 1 bis 9, zur Ansteuerung elektromagnetischer Verbraucher (5, 6, 7) eines Bordnetzes (1), wobei die elektromagnetischen Verbraucher (5, 6, 7) Ventile mit Aktuatoren (9) zur Einspritzung von Kraftstoff in eine Brennkraftmaschine umfassen, wobei das Bordnetz (1) eine Spannungsquelle (2) und ein Steuergerät (3) enthält, mittels dessen die e-lektromagnetischen Verbraucher (5, 6, 7) über diesen zugeordnete Schalter (10, 11, 12) ansteuerbar sind, wobei die beim Abschalten eines oder mehrerer der elektromagnetischen Verbraucher (5, 6, 7) vorhandene induktive Energie zur Spannungsanhebung beim Einschalten der übrigen der elektromagnetischen Verbraucher (5, 6, 7) einsetzbar ist oder bei Überschreiten einer erhöhten Einschaltspannung der elektrischen Aktuatoren (9) über Schaltelemente (20, 21, 22, 23; 30, 33, 34) in das Bordnetz (1) einspeisbar ist, dadurch gekennzeichnet, dass zur Erhöhung der beim Abschalten ein oder mehrerer der elektromagnetischen Verbraucher (5, 6, 7) vorhandenen induktiven Energie mehrere elektrische Aktuatoren (9) parallelgeschaltet sind, wobei die elektrischen Aktuatoren (9) jeweils über Sperrdioden (16) miteinander verbunden sind, derart, dass die beim Abschalten einer der elektromagnetischen Verbraucher (5, 6, 7) entstehende induktive Überspannung über mindestens eine Sperrdiode (16) und mindestens einen der weiteren, eingeschalteten elektromagnetischen Verbraucher (5, 6, 7) abbaubar ist.
  11. Schaltung gemäß Anspruch 10, dadurch gekennzeichnet, daß jedem elektromagnetischen Verbraucher (5, 6, 7) ein vom Steuergerät (3) ansteuerbarer Schalter (10, 11, 12) und ein Speicher für elektrische Energie (17, 18, 19) zugeordnet sind.
  12. Schaltung gemäß Anspruch 10, dadurch gekennzeichnet, daß jedem elektromagnetischen Verbraucher (5, 6, 7) jeweils eine als Zener-Diode als Schaltelement (20, 21, 22, 23) zugeordnet ist , deren Zenerspannung die Spannungsüberhöhung zu der Spannungsversorgung (2) festlegen.
  13. Schaltung gemäß Anspruch 10, dadurch gekennzeichnet, daß jedem elektromagnetischen Verbraucher (5, 6) ein diesem mit dem Bordnetz (1) verbindendes Schaltelement (30) zugeordnet ist, über welches die Abschaltenergie eines elektrischen Aktuators (9) in das Bordnetz (1) zurückleitbar ist.
  14. Schaltung gemäß Anspruch 13, dadurch gekennzeichnet, daß bei Abschaltung des Schaltelementes (30) die Abschaltenergie eines elektrischen Aktuators (9) zur Spannungserhöhung an einem weiteren elektrischen Aktuators (9) eines elektromagnetischen Verbrauchers (5, 6) eingesetzt wird.
  15. Schaltung gemäß einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, daß ein elektromagnetischer Verbraucher zum Erzeugen einer Überspannung eingerichtet ist und diese Überspannung über die Leitungen (24, 25, 26, 27) anderen elektromagnetischen Verbrauchern für eine hochdynamische Ansteuerung zeitgerecht bereitgestellt wird.
EP20020010711 2001-05-15 2002-05-14 Verfahren und Vorrichtung zur Erhöhung des Spannungsniveaus an hochdynamischen induktiven Stellgliedern Expired - Lifetime EP1260694B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10123519 2001-05-15
DE2001123519 DE10123519A1 (de) 2001-05-15 2001-05-15 Verfahren und Vorrichtung zur Erhöhung des Spannungsniveaus an hochdynamischen induktiven Stellgliedern

Publications (3)

Publication Number Publication Date
EP1260694A2 EP1260694A2 (de) 2002-11-27
EP1260694A3 EP1260694A3 (de) 2005-05-18
EP1260694B1 true EP1260694B1 (de) 2009-09-16

Family

ID=7684802

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020010711 Expired - Lifetime EP1260694B1 (de) 2001-05-15 2002-05-14 Verfahren und Vorrichtung zur Erhöhung des Spannungsniveaus an hochdynamischen induktiven Stellgliedern

Country Status (3)

Country Link
EP (1) EP1260694B1 (de)
DE (2) DE10123519A1 (de)
ES (1) ES2330724T3 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2866165B1 (fr) * 2004-02-05 2006-04-07 Siemens Vdo Automotive Dispositif electronique de commande d'actionneurs
DE102009006179B4 (de) 2009-01-26 2010-12-30 Continental Automotive Gmbh Schaltungsanordnung zur Ansteuerung eines Einspritzventils
DE102009027340A1 (de) * 2009-06-30 2011-01-05 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Ansteuerschaltung für mehrere induktive Lasten
EP3661654B1 (de) 2017-08-03 2022-10-05 Capstan AG Systems, Inc. System und verfahren zum betrieb eines magnetventils
US10953423B2 (en) 2018-04-23 2021-03-23 Capstan Ag Systems, Inc. Fluid dispensing apparatus including phased valves and methods of dispensing fluid using same
CA3177963A1 (en) * 2020-06-03 2021-12-09 Kale Schrader System and methods for operating a solenoid valve

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3702680A1 (de) * 1986-02-18 1987-10-29 Bosch Gmbh Robert Verfahren und schaltung zur ansteuerung von elektromagnetischen verbrauchern
JP2915187B2 (ja) * 1991-10-24 1999-07-05 株式会社日立製作所 2電源発電装置
DE9308495U1 (de) 1993-06-07 1994-10-20 Weber AG, Emmenbrücke Ein- oder mehrpolige NH-Sicherung
DE4413240A1 (de) * 1994-04-16 1995-10-19 Bosch Gmbh Robert Vorrichtung und ein Verfahren zur Ansteuerung eines elektromagnetischen Verbrauchers
DE19539071A1 (de) * 1995-03-02 1996-09-05 Bosch Gmbh Robert Vorrichtung zur Ansteuerung wenigstens eines elektromagnetischen Verbrauchers
WO1996027198A1 (de) * 1995-03-02 1996-09-06 Robert Bosch Gmbh Vorrichtung zur ansteuerung wenigstens eines elektromagnetischen verbrauchers
DE19632365C1 (de) * 1996-08-10 1997-09-04 Telefunken Microelectron Schaltungsanordnung zum voneinander unabhängigen Schalten mehrerer, paralleler induktiver Schalteinheiten
DE19823850C2 (de) * 1998-05-28 2001-04-12 Bosch Gmbh Robert Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DE19827053A1 (de) * 1998-06-18 1999-12-23 Bosch Gmbh Robert Verfahren und Vorrichtung zum Entladen eines piezoelektrischen Elements
DE19905492C1 (de) * 1999-02-10 2000-05-04 Daimler Chrysler Ag Verfahren zur elektromagnetischen Steuerung der Gaswechselventile von Brennkraftmaschinen
DE19931010A1 (de) * 1999-07-06 2000-11-23 Daimler Chrysler Ag Verfahren und Schaltungsanordnung zur Leistungsumschaltung einer Drehstrom- Lichtmaschine

Also Published As

Publication number Publication date
EP1260694A2 (de) 2002-11-27
DE10123519A1 (de) 2002-12-05
ES2330724T3 (es) 2009-12-15
DE50213843D1 (de) 2009-10-29
EP1260694A3 (de) 2005-05-18

Similar Documents

Publication Publication Date Title
EP0812461B1 (de) Vorrichtung zur ansteuerung wenigstens eines elektromagnetischen verbrauchers
WO1998007199A1 (de) Vorrichtung und verfahren zum ansteuern eines kapazitiven stellgliedes
DE19734895C2 (de) Vorrichtung und Verfahren zum Ansteuern wenigstens eines kapazitiven Stellgliedes
EP1099260B1 (de) Verfahren und vorrichtung zum ansteuern wenigstens eines kapazitiven stellgliedes
DE102008040860A1 (de) Schaltungsanordnung zum Betreiben einer Anzahl Einspritzventile
DE19838296A1 (de) Elektrisches Spannungsversorgungssystem
EP1724158A2 (de) Bordnetz mit Hochlastverbraucher
DE102007001414B3 (de) Schaltungsanordnung sowie Verfahren zum Betrieb einer induktiven Last
EP1260694B1 (de) Verfahren und Vorrichtung zur Erhöhung des Spannungsniveaus an hochdynamischen induktiven Stellgliedern
DE19808780A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines Verbrauchers
DE10341582B4 (de) Schaltungsanordnung zum schnellen Schalten induktiver Lasten
EP2449239B1 (de) Ansteuerschaltung für mehrere induktive lasten und verfahren für eine ansteuerung von induktiven lasten
DE19747033A1 (de) Elektronische Schalteinrichtung für Magneten
DE102020007840A1 (de) Aufwärtswandler zum Laden eines elektrischen Energiespeichers eines elektrisch angetriebenen Fahrzeugs, sowie Fahrzeug und Verfahren
DE69729717T2 (de) Bremssteuerungssystem für landwirtschaftliche Traktoren
DE69918932T2 (de) Spannungsregelschaltung für elektromagnetische Hubventilbetätigung in einer Brennkraftmaschine
DE19912966A1 (de) Vorrichtung zur Steuerung eines Mengensteuerventils
DE19731836A1 (de) Verfahren und Vorrichtung zum Ansteuern eines Abschaltthyristors
DE102009006618A1 (de) Schaltungsanordnung zum Betreiben eines elektrischen Verbrauchers und Verfahren zum Schalten eines Halbleiterschalters, insbesondere eines MOSFETs
DE3904605A1 (de) Schaltungsanordnung und verfahren fuer das beschleunigte schalten von elektromagnetischen verbrauchern
EP0854281B1 (de) Verfahren und Vorrichtung zur Ansteuerung wenigstens eines elektromagnetischen Verbrauchers
DE10314566A1 (de) Ansteuerschaltung für piezoelektrische Bauteile
DE10202279A1 (de) Steuerschaltung für einen Aktor
EP2689970A1 (de) Schaltungsanordnung zum Steuern einer induktiven Last mit Freilaufkreis
DE102005050551A1 (de) Energieversorgungseinheit für ein Kraftfahrzeug und Verfahren zum Betreiben einer Energieversorgungseinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20051118

AKX Designation fees paid

Designated state(s): DE ES FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REF Corresponds to:

Ref document number: 50213843

Country of ref document: DE

Date of ref document: 20091029

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2330724

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110524

Year of fee payment: 10

Ref country code: FR

Payment date: 20110603

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110530

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110726

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120514

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50213843

Country of ref document: DE

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120515