EP1252643B1 - Use of glass capable of recrystallization as mineral binder of an electrode paste for a plasma panel - Google Patents

Use of glass capable of recrystallization as mineral binder of an electrode paste for a plasma panel Download PDF

Info

Publication number
EP1252643B1
EP1252643B1 EP01903849A EP01903849A EP1252643B1 EP 1252643 B1 EP1252643 B1 EP 1252643B1 EP 01903849 A EP01903849 A EP 01903849A EP 01903849 A EP01903849 A EP 01903849A EP 1252643 B1 EP1252643 B1 EP 1252643B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
process according
glass
deposited
mineral binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01903849A
Other languages
German (de)
French (fr)
Other versions
EP1252643A1 (en
Inventor
Guy Baret
Armand Bettinelli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Plasma SAS
Original Assignee
Thomson Plasma SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Plasma SAS filed Critical Thomson Plasma SAS
Publication of EP1252643A1 publication Critical patent/EP1252643A1/en
Application granted granted Critical
Publication of EP1252643B1 publication Critical patent/EP1252643B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/225Material of electrodes

Definitions

  • the present invention relates to a method for manufacturing a plasma panel slab.
  • the invention relates, more particularly, to the production of electrodes on glass substrates, in particular of the soda-lime type, such as those used for plasma panels.
  • PAP plasma panels
  • PAPs are flat type display screens which operate on the principle of an electric discharge in a gas accompanied by an emission of light.
  • PAPs are made up of two insulating glass tiles, conventionally of the soda-lime type, each supporting at least one network of conductive electrodes and delimiting between them a gas space. The slabs are joined together so that the electrode arrays are orthogonal. Each intersection of electrodes defines an elementary light cell filled with discharge gas.
  • the electrodes of a plasma panel must have a certain number of characteristics, in particular when they are used on the front panel. Thus, they must be of fine section, namely of the order of a few hundred ⁇ m 2 , so as not to interfere with the display. They must be made of a good conductive material giving electrodes having a resistance of less than 100 ohms. In addition, the material used must be capable of being mass produced at a lower cost.
  • the first technique consists of a metallic deposit in thin layers which can be produced by sputtering or vacuum evaporation.
  • the material used is aluminum or copper. It can also consist of a layer of copper or aluminum placed between two layers of chromium. This metallic deposit is etched locally to define the electrodes. The cost of this technique is relatively high due to the vacuum deposition and the treatment of the etching effluents.
  • the second technique consists in depositing a paste or ink based on silver.
  • a paste contains a silver powder or a mixture of metallic powder with at least 70% silver. It also contains a mineral binder. It also contains organic compounds, in particular resins, solvents and possibly additives.
  • the deposit is either localized by direct screen printing, or full surface if a photosensitive paste is used.
  • the layer deposited on the slab is then exposed using a mask.
  • the development of the insolated dough takes place in an alkaline aqueous medium and then the whole is cooked at a temperature generally between 500 ° and 600 ° C. This technique is particularly economical because it does not require installation of vacuum deposition.
  • the mineral binder used with the silver powder is a glass frit adapted to obtain the sintering in a liquid medium of the silver grains of the dough during baking and to achieve the adhesion of the electrodes on the substrate.
  • glass a glass frit adapted to obtain the sintering in a liquid medium of the silver grains of the dough during baking and to achieve the adhesion of the electrodes on the substrate.
  • Documents SU 1,220,497, US 5,851,732, US 5,972,564 describe compositions of mineral binders which can be used for this purpose, and in particular compositions which make it possible to increase the adhesion to the substrate.
  • this mineral binder must be able to resist the cooking of the dielectric layer deposited on the glass substrate provided with electrodes, cooking generally carried out at a temperature higher than the cooking temperature of the electrode paste; the baking conditions of the dielectric layer are adapted to obtain smooth and compact surfaces on the surface of the cells, where electrical discharges will take place; the maximum temperature reached during the baking of the dielectric layer generally exceeds 500 ° C; this cooking can be carried out simultaneously with that of the electrode paste as described in the document JP11-329236.
  • the present invention therefore aims to provide a method of manufacturing plasma panel tiles to avoid these drawbacks very economically.
  • the substrate is based on soda-lime glass; in this case, preferably, the firing temperature of the deposit of electrodes does not exceed 470 ° C. so as to avoid any deformation of this substrate; as a mineral binder allowing such low baking temperatures, a recrystallisable glass is then preferably chosen comprising at least one oxide chosen from the group comprising lead oxide (PbO), boron oxide (B 2 O 3 ), silicon oxide (SiO 2 ), bismuth oxide (Bi 2 O 3 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO) and vanadium oxide ( V 2 O 5 ).
  • PbO lead oxide
  • B 2 O 3 boron oxide
  • SiO 2 silicon oxide
  • bismuth oxide Bi 2 O 3
  • Al 2 O 3 aluminum oxide
  • ZnO zinc oxide
  • vanadium oxide V 2 O 5
  • the deposition of the dielectric layer is carried out either after baking of the deposit of electrodes, or before baking of the deposit of electrodes.
  • the process steps are linked as follows: depositing of electrodes, baking of depositing of electrodes, depositing a dielectric layer, baking of the assembly.
  • the process steps are linked as follows: deposition of electrodes, deposition of a dielectric layer, “firing of electrodes” then “firing of the assembly”; in this case, both cooking is generally linked in a heat treatment comprising a first temperature level adapted to obtain the sintering of the powder of the electrode paste and the crystallization of the mineral binder without softening the dielectric layer, then a second level at a higher temperature suitable for obtaining the densification of the dielectric layer.
  • the temperature reached during cooking of the whole or the temperature of the second level exceeds 500 ° C.
  • the electrode paste comprises from 3 to 25% of mineral binder, typically 10%.
  • the mineral binder is a recrystallisable glass; preferably, in order to promote recrystallization, in particular at a temperature less than or equal to 470 ° C., this glass comprises at least one element chosen from the group comprising chromium, chromium oxide, zirconium, zirconium oxide , titanium and titanium oxide; to be sufficiently effective in terms of crystallization, the weight content of this element is preferably at least equal to 1% in the glass.
  • the metal powder of the electrode paste is made of metal chosen from the group comprising silver, copper, aluminum and their alloys; preferably, this powder has an average diameter between 0.4 and 4 ⁇ m, preferably between 0.4 and 1 ⁇ m.
  • this paste comprises organic compounds of known type such as materials of solvent type, photosensitive resin or not, additives.
  • the metallic powder or powder of conductive material is a silver or copper powder, or a powder comprising at least 70% of silver or copper.
  • other types of metal powder could be used depending on their ability to conduct electric current and their cost, in particular powders based on aluminum or aluminum alloy.
  • the recrystallisable glass comprises at least one oxide chosen from the group comprising lead oxide (PbO), boron oxide (B 2 O 3 ), silicon oxide (SiO 2 ), oxide bismuth (Bi 2 O 3 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO) and vanadium oxide (V 2 O 5 ).
  • PbO lead oxide
  • B 2 O 3 boron oxide
  • SiO 2 silicon oxide
  • SiO 2 oxide bismuth
  • Al 2 O 3 aluminum oxide
  • ZnO zinc oxide
  • V 2 O 5 vanadium oxide
  • the composition of this glass is chosen so as to be able to carry out the cooking, in particular to obtain the sintering effect of the conductive powder and then the crystallization of the mineral binder, at a cooking temperature less than or equal to 470 ° C .; thus, a mineral binder is preferably chosen whose softening temperature is less than 450 ° C; as it is generally necessary to heat up to 350 ° C. in order to obtain the complete elimination of the organic compounds from the electrode paste, a mineral binder is preferably chosen whose softening temperature exceeds 350 ° C .;
  • the mineral binder of the paste preferably contains at least one element chosen from the group comprising chromium, zirconium, or titanium in metallic or oxidized form.
  • the pattern of the electrodes containing the crystallized glass is stable and the deposit remains adherent to the substrate.
  • the possibility of cooking at low temperature advantageously avoids any risk of deformation of the substrate in soda-lime glass, since the cooking is carried out at a temperature lower than or equal to 470 ° C.
  • cooking at 450 ° C costs less energy than cooking at 580-590 ° C.
  • the oven necessary for the cooking operation can be of average uniformity, namely ⁇ 5 ° C or even ⁇ 10 ° C, and it is therefore much less expensive.
  • the composition of the paste or metallic ink used to make the electrodes of a plasma panel comprises conventional organic compounds, in particular resins, solvents or additives. These organic compounds will be different depending on whether it is a photosensitive or photoimageable paste or ink or a paste or ink used with conventional screen printing technologies.
  • a photosensitive resin which can be of positive or negative type.
  • the sensitizing compound can be, for example, potassium, sodium or ammonium dichromate or a diazotized compound or any other element making the resin used sensitive to light (visible or UV).
  • the sensitizing compound is mixed with the resin which can be of the polyvinyl type in proportions of 0.1 to 1%.
  • additives can be added which fix the rheology or improve the quality of the dough. These additives can be of the plasticizer, thixotropic agent or surfactant adhesion type. In this case, they modify the resin solution. If the additives are of the dispersant type, they are used to stabilize the suspension of the mineral powders.
  • a photosensitive paste or ink comprises a photosensitive resin as mentioned above, additives as mentioned above, a filler of metallic material or of material comprising more than 70% of metallic material, preferably silver. or copper, consisting of a powder whose average diameter is between 0.4 and 4 ⁇ m, preferably between 0.4 and 1 ⁇ m, and a mineral binder carrying out the adhesion to the substrate and the sintering of the metallic grains composed of a recrystallisable mineral glass as mentioned above, which, preferably, does not induce spontaneous polymerization resin.
  • the example is based on a polyvinyl resin, however the invention is applicable to various commercial compositions based on different resin systems.
  • the paste therefore comprises one or more organic resins added for example with a solvent (s) and a binder ( s) organic.
  • the heavy and low volatile solvents usually used are chosen from terpineol, butylcarbitol, dodecanol. In these solvents is dissolved the actual resin constituted, for example, by ethylcelluloses or methylmethacrylates.
  • additives are added on the one hand to modify the solution of the resin, these additives are then of the plasticizer type, thixotropic agent, adhesion agent, surfactants and to stabilize the suspension of the mineral powders. In this case, the additives are dispersants.
  • the paste also comprises a mineral part constituted by a metallic filler, such as silver, copper or aluminum, or a material rich in silver, copper, or aluminum or an aluminum-based alloy (for example Al-Cu) in the form of a powder whose average diameter is between 0.4 and 4 ⁇ m, preferably between 0.4 and 1 ⁇ m, and with an inorganic binder such as a recrystallizable glass as described above above, whose role is to ensure adhesion to the substrate and sintering of the metal grains.
  • a metallic filler such as silver, copper or aluminum, or a material rich in silver, copper, or aluminum or an aluminum-based alloy (for example Al-Cu) in the form of a powder whose average diameter is between 0.4 and 4 ⁇ m, preferably between 0.4 and 1 ⁇ m
  • an inorganic binder such as a recrystallizable glass as described above above, whose role is to ensure adhesion to the substrate and sintering of the metal grains.
  • FIGS. 1a and 1b a first embodiment of an array of electrodes on a glass slab, in particular a soda-lime type glass, for producing a matrix PAP.
  • this paste is deposited by screen printing through a mask formed on a "325 mesh" canvas and representing the pattern of the network to be produced, typically electrodes 11 having a width of 150 ⁇ m and a thickness of 4 ⁇ m. Then dried at 120 ° C for 10 minutes and baked at 460 ° C for 20 minutes, so as to obtain said electrodes 11 with a mineral binder in the recrystallized state.
  • a dielectric layer is deposited such as a layer of glass made of lead borosilicate.
  • This layer 12 is deposited by screen printing then dried at 120 ° C and baked at 580 ° C for 30 minutes.
  • the process for producing a rear panel of a matrix plasma panel can be completed by depositing barriers and phosphors in a conventional manner.
  • this paste is deposited by screen printing through a mask formed on a "325 mesh" canvas, so as to form a layer 21 covering the entire surface of the slab 20.
  • This layer 21 to 80 is dried ° C for 5 minutes.
  • the layer 21 is exposed to UV rays through a mask 22. If the resin is negative, the pattern to be transferred is clear on the mask. In the embodiment shown, these are electrodes 23 having a width of 70 ⁇ m and a thickness of 4 ⁇ m. The layer exposed to water is developed so as to eliminate the parts 24. Then, it is dried which reveals the final pattern 23.
  • a paste containing a glass frit such as lead borosilicate is then conventionally deposited by screen printing, this paste producing the dielectric layer 25.
  • the thermal cycle comprises a first step consisting of a heating ramp at 10 ° C. / min to a first temperature of 420 ° C followed by a 20 minute plateau in the embodiment represented.
  • This first temperature can be between 380 ° C and 470 ° C, depending on the properties of the recrystallizable glass used.
  • This first stage of the thermal cycle is suitable for obtaining, in addition to sintering, the recrystallization of the mineral binder from the network of electrodes.
  • This first step is followed by a second step comprising a heating ramp up to a temperature of 580 ° C., followed by a plateau at 580 ° C. for 30 minutes in the embodiment shown.
  • the second temperature is between 530 ° C and 600 ° C depending on the properties of the dielectric layer used.
  • This embodiment can be used for the manufacture of the rear panel of a matrix PAP. It can also be used for making the maintenance electrodes for the front slab of a coplanar PAP. In this case, transparent addressing electrodes made of ITO (indium tin oxide) or tin oxide can be produced beforehand on the slab.
  • ITO indium tin oxide
  • the paste or ink used to make the electrodes of a plasma panel was obtained in the following manner: Preparation of a resin solution: Solution R1. Solvent terpineol 73.5g Resin Ethylcellulose Grade N7 7.0 g plasticizer Santicizer S 160 6.5g dispersed Lecithin 4.0g
  • Binder solution B1 20.0 g Silver powder Ag DC100 72.0 g Crystallizable mineral glass 8.0 g (18.5% SiO 2 , 4.5% B 2 O 3 , 72% PbO, 5% Cr 2 O 3 )

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Glass Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

The present invention relates to a process for manufacturing a plasma panel tile, comprising the deposition of electrodes, using a paste comprising a metal powder and a mineral binder, and the baking of the deposited electrodes. According to the invention, the composition of the mineral binder and the baking conditions are tailored so that, after the deposited electrodes have been baked, the binder is in the recrystallized state. Owing to the recrystallized state of the binder, the yellowing problems which occur during subsequent heat treatments are eliminated.

Description

La présente invention concerne un procédé de fabrication d'une dalle de panneau à plasma. L'invention concerne, plus particulièrement, la réalisation d'électrodes sur des substrats en verre, notamment du type sodocalcique, tels que ceux utilisés pour les panneaux à plasma.The present invention relates to a method for manufacturing a plasma panel slab. The invention relates, more particularly, to the production of electrodes on glass substrates, in particular of the soda-lime type, such as those used for plasma panels.

Comme connu par l'état de la technique, les panneaux à plasma généralement appelés PAP sont des écrans de visualisation du type plat qui fonctionnent sur le principe d'une décharge électrique dans un gaz accompagnée d'une émission de lumière. Généralement, les PAP sont constitués de deux dalles isolantes en verre, classiquement de type sodocalcique, supportant chacune au moins un réseau d'électrodes conductrices et délimitant entre elles un espace gazeux. Les dalles sont assemblées l'une à l'autre de manière à ce que les réseaux d'électrodes soient orthogonaux. Chaque intersection d'électrodes définit une cellule lumineuse élémentaire remplie de gaz de décharge.As known from the state of the art, plasma panels generally called PAP are flat type display screens which operate on the principle of an electric discharge in a gas accompanied by an emission of light. Generally, PAPs are made up of two insulating glass tiles, conventionally of the soda-lime type, each supporting at least one network of conductive electrodes and delimiting between them a gas space. The slabs are joined together so that the electrode arrays are orthogonal. Each intersection of electrodes defines an elementary light cell filled with discharge gas.

Les électrodes d'un panneau à plasma doivent présenter un certain nombre de caractéristiques, notamment lorsqu'elles sont utilisées sur la dalle avant. Ainsi, elles doivent être de section fine, à savoir de l'ordre de quelques centaines de µm2, pour ne pas gêner la visualisation. Elles doivent être réalisées en un matériau bon conducteur donnant des électrodes présentant une résistance inférieure à 100 ohms. De plus, le matériau utilisé doit pouvoir faire l'objet d'une fabrication en série à moindre coût.The electrodes of a plasma panel must have a certain number of characteristics, in particular when they are used on the front panel. Thus, they must be of fine section, namely of the order of a few hundred μm 2 , so as not to interfere with the display. They must be made of a good conductive material giving electrodes having a resistance of less than 100 ohms. In addition, the material used must be capable of being mass produced at a lower cost.

Deux techniques sont actuellement utilisées pour réaliser les électrodes d'un panneau à plasma.Two techniques are currently used to produce the electrodes of a plasma panel.

La première technique consiste en un dépôt métallique en couches minces qui peut être réalisé par pulvérisation cathodique ou évaporation sous-vide. Dans ce cas, le matériau utilisé est de l'aluminium ou du cuivre. Il peut être aussi constitué par une couche de cuivre ou d'aluminium placée entre deux couches de chrome. Ce dépôt métallique est gravé localement pour définir les électrodes. Le coût de cette technique est relativement élevé du fait du dépôt sous-vide et du traitement des effluents de la gravure.The first technique consists of a metallic deposit in thin layers which can be produced by sputtering or vacuum evaporation. In this case, the material used is aluminum or copper. It can also consist of a layer of copper or aluminum placed between two layers of chromium. This metallic deposit is etched locally to define the electrodes. The cost of this technique is relatively high due to the vacuum deposition and the treatment of the etching effluents.

La deuxième technique consiste à déposer une pâte ou encre à base d'argent. Une telle pâte contient une poudre d'argent ou un mélange de poudre métallique à 70 % d'argent au moins. Elle contient également un liant minéral. Elle contient aussi des composés organiques, notamment des résines, des solvants et éventuellement des additifs. Le dépôt est soit localisé par sérigraphie directe, soit pleine surface si une pâte photosensible est utilisée. La couche déposée sur la dalle est alors insolée à l'aide d'un masque. Le développement de la pâte insolée se fait en milieux aqueux alcalin puis l'ensemble est cuit à une température généralement comprise entre 500° et 600° C. Cette technique est particulièrement économique car elle ne nécessite pas d'installation de dépôt sous-vide.The second technique consists in depositing a paste or ink based on silver. Such a paste contains a silver powder or a mixture of metallic powder with at least 70% silver. It also contains a mineral binder. It also contains organic compounds, in particular resins, solvents and possibly additives. The deposit is either localized by direct screen printing, or full surface if a photosensitive paste is used. The layer deposited on the slab is then exposed using a mask. The development of the insolated dough takes place in an alkaline aqueous medium and then the whole is cooked at a temperature generally between 500 ° and 600 ° C. This technique is particularly economical because it does not require installation of vacuum deposition.

Dans cette technique, le liant minéral utilisé avec la poudre d'argent est une fritte de verre adaptée pour obtenir le frittage en milieu liquide des grains d'argent de la pâte pendant la cuisson et à réaliser l'adhérence des électrodes sur le substrat en verre. Les documents SU 1 220 497, US 5 851 732, US 5 972 564 décrivent des compositions de liants minéraux utilisables à cette fin, et notamment des compositions qui permettent d'augmenter l'adhérence au substrat.In this technique, the mineral binder used with the silver powder is a glass frit adapted to obtain the sintering in a liquid medium of the silver grains of the dough during baking and to achieve the adhesion of the electrodes on the substrate. glass. Documents SU 1,220,497, US 5,851,732, US 5,972,564 describe compositions of mineral binders which can be used for this purpose, and in particular compositions which make it possible to increase the adhesion to the substrate.

Le document US 5 851 732 enseigne que la température de ramollissement de ce liant minéral a une influence importante sur la température à laquelle il convient d'effectuer la cuisson; ce document divulgue des compositions dont la température de ramollissement est largement inférieure à 500°C.Document US Pat. No. 5,851,732 teaches that the softening temperature of this mineral binder has a significant influence on the temperature at which the firing should be carried out; this document discloses compositions whose softening temperature is much less than 500 ° C.

Enfin, ce liant minéral doit pouvoir résister à la cuisson de la couche diélectrique déposée sur le substrat en verre muni d'électrodes, cuisson généralement effectuée à une température supérieure à la température de cuisson de la pâte d'électrodes ; les conditions de cuisson de la couche diélectrique sont adaptées pour obtenir des surfaces lisses et compactes à la surface des cellules, où auront lieu des décharges électriques ; la température maximum atteinte pendant la cuisson de la couche diélectrique dépasse généralement 500°C ; cette cuisson peut être effectuée simultanément avec celle de la pâte d'électrode comme décrit dans le document JP11-329236.Finally, this mineral binder must be able to resist the cooking of the dielectric layer deposited on the glass substrate provided with electrodes, cooking generally carried out at a temperature higher than the cooking temperature of the electrode paste; the baking conditions of the dielectric layer are adapted to obtain smooth and compact surfaces on the surface of the cells, where electrical discharges will take place; the maximum temperature reached during the baking of the dielectric layer generally exceeds 500 ° C; this cooking can be carried out simultaneously with that of the electrode paste as described in the document JP11-329236.

Mais la cuisson de la couche diélectrique, notamment à une température supérieure à 500°C, peut entraîner les inconvénients suivants :

  • formation de bulles et/ou migration de l'argent dans la couche diélectrique, qui entraînent une coloration jaunâtre particulièrement gênante,
  • rupture de motifs d'électrodes et perte d'adhérence au substrat.
However, baking the dielectric layer, in particular at a temperature above 500 ° C., can lead to the following drawbacks:
  • bubble formation and / or silver migration in the dielectric layer, which cause a particularly annoying yellowish coloration,
  • rupture of electrode patterns and loss of adhesion to the substrate.

La présente invention a donc pour but de proposer un procédé de fabrication des dalles de panneau à plasma permettant d'éviter ces inconvénients de manière très économique.The present invention therefore aims to provide a method of manufacturing plasma panel tiles to avoid these drawbacks very economically.

Ainsi, la présente invention a pour objet un procédé de fabrication d'une dalle de panneau à plasma, comprenant les étapes suivantes :

  • dépôt d'électrodes sur un substrat, selon un motif déterminé, à partir d'une pâte comprenant une poudre métallique, un liant minéral et des composés organiques,
  • cuisson dudit dépôt dans des conditions aptes à éliminer lesdits composés organiques et à obtenir le frittage de ladite poudre,
caractérisé en ce que la composition dudit liant minéral et les conditions de la cuisson sont adaptées de manière à ce que ledit liant minéral soit, après la cuisson, à l'état recristallisé.Thus, the subject of the present invention is a method for manufacturing a plasma panel slab, comprising the following steps:
  • deposition of electrodes on a substrate, according to a determined pattern, from a paste comprising a metal powder, a mineral binder and organic compounds,
  • baking said deposit under conditions capable of eliminating said organic compounds and obtaining sintering of said powder,
characterized in that the composition of said mineral binder and the baking conditions are adapted so that said mineral binder is, after baking, in the recrystallized state.

Grâce à l'état recristallisé du liant minéral des électrodes, on évite ou, du moins on limite considérablement, la diffusion de métal, notamment d'argent, lors de traitements thermiques postérieurs, notamment lors de la cuisson de la couche diélectrique à une température supérieure à celle du dépôt d'électrodes, même si cette température est supérieure à 500°C.Thanks to the recrystallized state of the mineral binder of the electrodes, the diffusion or at least considerably limitation of the diffusion of metal, in particular of silver, during subsequent heat treatments, in particular during the firing of the dielectric layer at a temperature higher than that of the deposit of electrodes, even if this temperature is higher than 500 ° C.

De préférence, le substrat est à base de verre sodocalcique ; dans ce cas, de préférence, la température de cuisson du dépôt d'électrodes ne dépasse pas 470°C de manière à éviter toute déformation de ce substrat ; comme liant minéral permettant des températures de cuisson aussi basses, on choisit alors de préférence un verre recristallisable comprenant au moins un oxyde choisi dans le groupe comprenant l'oxyde de plomb (PbO), l'oxyde de bore (B2O3), l'oxyde de silicium (SiO2), l'oxyde de bismuth (Bi2O3), l'oxyde d'aluminium (Al2O3), l'oxyde de zinc (ZnO) et l'oxyde de vanadium (V2O5).Preferably, the substrate is based on soda-lime glass; in this case, preferably, the firing temperature of the deposit of electrodes does not exceed 470 ° C. so as to avoid any deformation of this substrate; as a mineral binder allowing such low baking temperatures, a recrystallisable glass is then preferably chosen comprising at least one oxide chosen from the group comprising lead oxide (PbO), boron oxide (B 2 O 3 ), silicon oxide (SiO 2 ), bismuth oxide (Bi 2 O 3 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO) and vanadium oxide ( V 2 O 5 ).

Selon une variante, le procédé comprend en outre les étapes suivantes :

  • après le dépôt d'électrodes, dépôt d'une couche diélectrique,
  • après la cuisson du dépôt d'électrodes, cuisson de l'ensemble à une température supérieure à la température maximum atteinte pendant la cuisson du dépôt d'électrodes.
According to a variant, the method further comprises the following steps:
  • after the deposition of electrodes, deposition of a dielectric layer,
  • after cooking the electrode deposit, cooking the assembly at a temperature higher than the maximum temperature reached during cooking of the electrode deposit.

Le dépôt de la couche diélectrique est réalisé soit après cuisson du dépôt d'électrodes, soit avant cuisson du dépôt d'électrodes.The deposition of the dielectric layer is carried out either after baking of the deposit of electrodes, or before baking of the deposit of electrodes.

Dans le premier cas, les étapes du procédé s'enchaînent comme suit : dépôt d'électrodes, cuisson du dépôt d'électrodes, dépôt d'une couche diélectrique, cuisson de l'ensemble.In the first case, the process steps are linked as follows: depositing of electrodes, baking of depositing of electrodes, depositing a dielectric layer, baking of the assembly.

Dans le second cas, les étapes du procédé s'enchaînent comme suit: dépôt d'électrodes, dépôt d'une couche diélectrique, « cuisson d'électrodes » puis « cuisson de l'ensemble » ; dans ce cas, les deux cuissons s'enchaînent généralement en un traitement thermique comprenant un premier palier de température adapté pour obtenir le frittage de la poudre de la pâte d'électrodes et la cristallisation du liant minéral sans ramollir la couche diélectrique, puis un second palier à une température plus élevée adaptée pour obtenir la densification de la couche diélectrique.In the second case, the process steps are linked as follows: deposition of electrodes, deposition of a dielectric layer, “firing of electrodes” then “firing of the assembly”; in this case, both cooking is generally linked in a heat treatment comprising a first temperature level adapted to obtain the sintering of the powder of the electrode paste and the crystallization of the mineral binder without softening the dielectric layer, then a second level at a higher temperature suitable for obtaining the densification of the dielectric layer.

Généralement, la température atteinte pendant la cuisson de l'ensemble ou la température du second palier dépasse 500°C.Generally, the temperature reached during cooking of the whole or the temperature of the second level exceeds 500 ° C.

De préférence, la pâte d'électrodes comporte de 3 à 25% de liant minéral, typiquement 10%. De préférence, le liant minéral est un verre recristallisable; de préférence, afin de favoriser la recristallisation, notamment à une température inférieure ou égale à 470°C, ce verre comprend au moins un élément choisi dans le groupe comprenant le chrome, l'oxyde de chrome, le zirconium, l'oxyde de zirconium, le titane et l'oxyde de titane; pour être suffisamment efficace en termes de cristallisation, la teneur pondérale en cet élément est de préférence au moins égale à 1% dans le verre. De préférence, la poudre métallique de la pâte d'électrode est en métal choisi dans le groupe comprenant l'argent, le cuivre, l'aluminium et leurs alliages; de préférence, cette poudre se présente un diamètre moyen compris entre 0,4 et 4 µm, de préférence compris 0,4 à 1 µm. D'autre part, cette pâte comporte des composés organiques de type connu tels que des matériaux de type solvant, résine photosensible ou non, additifs.Preferably, the electrode paste comprises from 3 to 25% of mineral binder, typically 10%. Preferably, the mineral binder is a recrystallisable glass; preferably, in order to promote recrystallization, in particular at a temperature less than or equal to 470 ° C., this glass comprises at least one element chosen from the group comprising chromium, chromium oxide, zirconium, zirconium oxide , titanium and titanium oxide; to be sufficiently effective in terms of crystallization, the weight content of this element is preferably at least equal to 1% in the glass. Preferably, the metal powder of the electrode paste is made of metal chosen from the group comprising silver, copper, aluminum and their alloys; preferably, this powder has an average diameter between 0.4 and 4 μm, preferably between 0.4 and 1 μm. On the other hand, this paste comprises organic compounds of known type such as materials of solvent type, photosensitive resin or not, additives.

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description faite ci-après, cette description étant faite avec référence aux dessins ci-annexés dans lesquels :

  • les figures 1a et 1b illustrent un premier procédé de réalisation d'électrodes sur un substrat en verre, selon l'invention,
  • les figures 2a à 2d illustrent un second procédé de réalisation d'électrodes sur un substrat en verre selon l'invention, et
  • la figure 3 représente une courbe donnant un exemple de cycle de cuisson utilisé dans l'exemple avec le procédé des figures 2, mais pouvant l'être aussi avec le procédé illustré en figure 1.
Other characteristics and advantages of the present invention will appear on reading the description given below, this description being made with reference to the attached drawings in which:
  • FIGS. 1a and 1b illustrate a first method of producing electrodes on a glass substrate, according to the invention,
  • FIGS. 2a to 2d illustrate a second method for producing electrodes on a glass substrate according to the invention, and
  • FIG. 3 represents a curve giving an example of a cooking cycle used in the example with the method of FIGS. 2, but which can also be used with the method illustrated in FIG. 1.

On part d'un substrat en verre sodo-calcique classique ; on sait que la géométrie de ce type de susbtrat est inévitablement modifiée s'il doit subir des traitements à de températures supérieures ou égales à 580°C ; d'autres susbtrats peuvent être également envisagés.We start from a classic soda-lime glass substrate; we know that the geometry of this type of substrate is inevitably modified if it must undergo treatments at temperatures greater than or equal to 580 ° C; other substrates can also be considered.

Pour réaliser des électrodes métalliques sur ce substrat en verre transparent, on utilise une composition d'une pâte contenant une poudre d'un métal ou d'un alliage conducteur, un liant minéral constitué, selon l'invention, par un verre recristallisable et des composés organiques tels qu'utilisés habituellement dans les pâtes de ce type.To produce metal electrodes on this transparent glass substrate, a composition of a paste containing a powder of a metal or of a conductive alloy, an inorganic binder constituted, according to the invention, by recrystallisable glass and organic compounds as commonly used in pasta of this type.

De préférence, la poudre métallique ou poudre en matériau conducteur est une poudre d'argent ou de cuivre, ou une poudre comportant au moins 70 % d'argent ou de cuivre. Toutefois, d'autres types de poudre métallique pourraient être utilisés en fonction de leur aptitude à conduire le courant électrique et de leur coût, notamment des poudres à base d'aluminium ou d'alliage d'aluminium.Preferably, the metallic powder or powder of conductive material is a silver or copper powder, or a powder comprising at least 70% of silver or copper. However, other types of metal powder could be used depending on their ability to conduct electric current and their cost, in particular powders based on aluminum or aluminum alloy.

De préférence, le verre recristallisable comprend au moins un oxyde choisi dans le groupe comprenant l'oxyde de plomb (PbO), l'oxyde de bore (B2O3), l'oxyde de silicium (SiO2), l'oxyde de bismuth (Bi2O3), l'oxyde d'aluminium (Al2O3), l'oxyde de zinc (ZnO) et l'oxyde de vanadium (V2O5).Preferably, the recrystallisable glass comprises at least one oxide chosen from the group comprising lead oxide (PbO), boron oxide (B 2 O 3 ), silicon oxide (SiO 2 ), oxide bismuth (Bi 2 O 3 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO) and vanadium oxide (V 2 O 5 ).

De préférence, la composition de ce verre est choisie de manière à pouvoir effectuer la cuisson, notamment à obtenir l'effet de frittage de la poudre conductrice puis la cristallisation du liant minéral, à une température de cuisson inférieure ou égale à 470°C ; ainsi, on choisit de préférence un liant minéral dont la température de ramollissement est inférieure à 450°C ; comme il est généralement nécessaire de chauffer jusqu'à 350°C pour obtenir l'élimination complète des composés organiques de la pâte d'électrode, on choisit de préférence un liant minéral dont la température de ramollissement dépasse 350°C ;Preferably, the composition of this glass is chosen so as to be able to carry out the cooking, in particular to obtain the sintering effect of the conductive powder and then the crystallization of the mineral binder, at a cooking temperature less than or equal to 470 ° C .; thus, a mineral binder is preferably chosen whose softening temperature is less than 450 ° C; as it is generally necessary to heat up to 350 ° C. in order to obtain the complete elimination of the organic compounds from the electrode paste, a mineral binder is preferably chosen whose softening temperature exceeds 350 ° C .;

Pour que ce verre puisse être facilement recristallisable dans les conditions de la cuisson, c'est-à-dire qu'une cristallisation importante puisse se développer pendant la cuisson, le liant minéral de la pâte contient de préférence au moins un élément choisi dans le groupe comprenant le chrome, le zirconium, ou le titane sous forme métallique ou oxydée. Avec une telle composition, il est alors particulièrement facile de déterminer des conditions de cuisson qui permettent d'obtenir à la fois un ramollissement suffisant de ce liant et sa recristallisation; le ramollissement est classiquement destiné à faciliter le frittage des particules d'argent et à assurer la liaison et l'adhérence avec le substrat ; la recristallisation permet, selon l'invention, d'obtenir un liant dans lequel le métal de la poudre, notamment l'argent, diffusera beaucoup plus difficilement que dans l'art antérieur, de manière à limiter sinon à éviter d'une manière très économique les problèmes de jaunissement.So that this glass can be easily recrystallisable under the conditions of cooking, that is to say that a significant crystallization can develop during cooking, the mineral binder of the paste preferably contains at least one element chosen from the group comprising chromium, zirconium, or titanium in metallic or oxidized form. With such a composition, it is then particularly easy to determine cooking conditions which make it possible to obtain both sufficient softening of this binder and its recrystallization; softening is conventionally intended to facilitate the sintering of silver particles and to ensure bonding and adhesion with the substrate; recrystallization makes it possible, according to the invention, to obtain a binder in which the metal of the powder, in particular silver, will diffuse much more difficultly than in the prior art, so as to limit if not to be avoided in a very economic yellowing problems.

La présence des éléments cités ci-dessus favorise la cristallisation qui débute dès que le verre est chauffé à sa température de ramollissement. Par exemple, si l'on utilise un verre dont la température de ramollissement est de 380°C tel qu'un silicate de plomb à 15 % de silice (SiO2) en masse et qu'on y ajoute 5 % de chrome, alors une cristallisation rapide est obtenue vers 450°C. En conséquence, un simple chauffage à 450°C pendant 15 minutes suffit à transformer une part importante de la phase vitreuse en une phase cristalline et le matériau devient alors presque inerte en température. De ce fait, lors d'une seconde cuisson à plus haute température, notamment celle de la couche diélectrique, et même en présence d'un verre fondu tel qu'un borosilicate de plomb utilisé notamment pour les couches diélectriques, aucun jaunissement n'apparaît, le motif des électrodes contenant le verre cristallisé est stable et le dépôt reste adhérent au substrat.The presence of the elements mentioned above promotes crystallization which begins as soon as the glass is heated to its softening temperature. For example, if a glass whose softening temperature is 380 ° C. is used such as lead silicate with 15% silica (SiO 2 ) by mass and 5% chromium is added thereto, then rapid crystallization is obtained around 450 ° C. Consequently, a simple heating at 450 ° C. for 15 minutes is sufficient to transform a large part of the glassy phase into a crystalline phase and the material then becomes almost inert in temperature. Therefore, during a second firing at a higher temperature, in particular that of the dielectric layer, and even in the presence of a molten glass such as a lead borosilicate used in particular for the dielectric layers, no yellowing appears. , the pattern of the electrodes containing the crystallized glass is stable and the deposit remains adherent to the substrate.

Ainsi, en utilisant un verre à basse température de ramollissement telle que décrit ci-dessus, on peut cuire le réseau d'électrodes à basse température tout en obtenant la recristallisation de ce verre ; la possibilité de cuire à basse température permet avantageusement d'éviter tout risque de déformation du susbtrat en verre sodo-calcique, puisque la cuisson est effectuée à une température inférieure ou égale à 470°C. On obtient en outre un gain économique important, car une cuisson à 450°C coûte moins d'énergie qu'une cuisson à 580-590°C. De plus, le four nécessaire à l'opération de cuisson peut être d'une uniformité moyenne, à savoir ± 5°C voire ± 10°C, et il est donc bien moins coûteux.Thus, by using a glass with a low softening temperature as described above, it is possible to bake the array of electrodes at low temperature while obtaining recrystallization of this glass; the possibility of cooking at low temperature advantageously avoids any risk of deformation of the substrate in soda-lime glass, since the cooking is carried out at a temperature lower than or equal to 470 ° C. There is also a significant economic gain, since cooking at 450 ° C costs less energy than cooking at 580-590 ° C. In addition, the oven necessary for the cooking operation can be of average uniformity, namely ± 5 ° C or even ± 10 ° C, and it is therefore much less expensive.

Comme mentionné ci-dessus, la composition de la pâte ou encre métallique utilisée pour réaliser les électrodes d'un panneau à plasma comporte des composés organiques classiques, notamment des résines, des solvants ou des additifs. Ces composés organiques seront différents suivant qu'il s'agit d'une pâte ou encre photosensible ou photo-imageable ou d'une pâte ou encre utilisée avec des technologies de sérigraphie classique.As mentioned above, the composition of the paste or metallic ink used to make the electrodes of a plasma panel comprises conventional organic compounds, in particular resins, solvents or additives. These organic compounds will be different depending on whether it is a photosensitive or photoimageable paste or ink or a paste or ink used with conventional screen printing technologies.

Ainsi, pour les encres photoimageables, on utilise une résine photosensible qui peut être de type positif ou négatif. Dans ce cas, le composé sensibilisateur peut être, par exempte, du bichromate de potassium, de sodium ou d'ammonium ou un composé diazoté ou tout autre élément rendant la résine utilisée sensible à la lumière (visible ou UV). Le composé sensibilisateur est mélangé à la résine qui peut être de type polyvinylique dans des proportions de 0,1 à 1 %. A cette résine photosensible, on peut ajouter des additifs qui fixent la rhéologie ou améliorent la qualité de la pâte. Ces additifs peuvent être du type plastifiant, agent thixotropique, agent d'adhésion tensioactifs. Dans ce cas, ils modifient la solution de résine. Si les additifs sont du type dispersant, ils sont utilisés pour stabiliser la suspension des poudres minérales. Ainsi, une pâte ou encre photosensible comporte une résine photosensible telle que mentionnée ci-dessus, des additifs tels que mentionnés ci-dessus, une charge en matériau métallique ou en matériau comportant plus de 70 % de matériau métallique, de préférence de l'argent ou du cuivre, constituée d'une poudre dont le diamètre moyen est compris entre 0,4 et 4 µm, de préférence entre 0,4 et 1 µm, et un liant minéral réalisant l'adhérence au substrat et le frittage des grains métalliques composés d'un verre minéral recristallisable tel que mentionné ci-dessus, qui, de préférence, n'induit pas la polymérisation spontanée de la résine. L'exemple est basé sur une résine polyvinylique, cependant l'invention est applicable aux diverses compositions commerciales basées sur des systèmes de résines différents.Thus, for photoimageable inks, a photosensitive resin is used which can be of positive or negative type. In this case, the sensitizing compound can be, for example, potassium, sodium or ammonium dichromate or a diazotized compound or any other element making the resin used sensitive to light (visible or UV). The sensitizing compound is mixed with the resin which can be of the polyvinyl type in proportions of 0.1 to 1%. To this photosensitive resin, additives can be added which fix the rheology or improve the quality of the dough. These additives can be of the plasticizer, thixotropic agent or surfactant adhesion type. In this case, they modify the resin solution. If the additives are of the dispersant type, they are used to stabilize the suspension of the mineral powders. Thus, a photosensitive paste or ink comprises a photosensitive resin as mentioned above, additives as mentioned above, a filler of metallic material or of material comprising more than 70% of metallic material, preferably silver. or copper, consisting of a powder whose average diameter is between 0.4 and 4 µm, preferably between 0.4 and 1 μm, and a mineral binder carrying out the adhesion to the substrate and the sintering of the metallic grains composed of a recrystallisable mineral glass as mentioned above, which, preferably, does not induce spontaneous polymerization resin. The example is based on a polyvinyl resin, however the invention is applicable to various commercial compositions based on different resin systems.

Pour les encres ou pâtes utilisées en sérigraphie classique, c'est-à-dire non-photosensibles, la pâte comporte donc une ou des résines organiques additionnées par exemple d'un ou de solvant(s) et d'un ou de liant(s) organique(s). Les solvants lourds et peu volatiles habituellement utilisés sont choisis parmi le terpinéol, le butylcarbitol, le dodécanol. Dans ces solvants est dissoute la résine proprement dite constituée, par exemple, par des éthylcelluloses ou des méthylméthacrylates. De manière connue, des additifs sont ajoutés d'une part pour modifier la solution de la résine, ces additifs sont alors du type plastifiant, agent thixotropique, agent d'adhésion, tensioactifs et pour stabiliser la suspension des poudres minérales. Dans ce cas, les additifs sont des dispersants. La pâte comporte de plus une partie minérale constituée par une charge métallique, telle que l'argent, le cuivre ou l'aluminium, ou un matériau riche en argent , en cuivre, ou en aluminium ou un alliage à base d'aluminium (par exemple Al-Cu) sous forme d'une poudre dont le diamètre moyen est compris entre 0,4 et 4 µm, de préférence entre 0,4 et 1 µm, et par un liant minéral tel qu'un verre recristallisable comme décrit ci-dessus, dont le rôle est d'assurer l'adhérence au substrat et le frittage des grains métalliques.For the inks or pastes used in conventional screen printing, that is to say non-photosensitive, the paste therefore comprises one or more organic resins added for example with a solvent (s) and a binder ( s) organic. The heavy and low volatile solvents usually used are chosen from terpineol, butylcarbitol, dodecanol. In these solvents is dissolved the actual resin constituted, for example, by ethylcelluloses or methylmethacrylates. In known manner, additives are added on the one hand to modify the solution of the resin, these additives are then of the plasticizer type, thixotropic agent, adhesion agent, surfactants and to stabilize the suspension of the mineral powders. In this case, the additives are dispersants. The paste also comprises a mineral part constituted by a metallic filler, such as silver, copper or aluminum, or a material rich in silver, copper, or aluminum or an aluminum-based alloy (for example Al-Cu) in the form of a powder whose average diameter is between 0.4 and 4 μm, preferably between 0.4 and 1 μm, and with an inorganic binder such as a recrystallizable glass as described above above, whose role is to ensure adhesion to the substrate and sintering of the metal grains.

On décrira maintenant, en se référant aux figures 1a et 1b, un premier mode de réalisation d'un réseau d'électrodes sur une dalle en verre, notamment un verre de type sodocalcique, pour réaliser un PAP matriciel.We will now describe, with reference to FIGS. 1a and 1b, a first embodiment of an array of electrodes on a glass slab, in particular a soda-lime type glass, for producing a matrix PAP.

Conformément à la présente invention, on dispose d'une dalle 10 de verre nu, en général un verre de type sodocalcique. On prépare une pâte contenant :

  • 100 g d'une résine obtenue par dissolution de 5 g d'éthylcellulose dans 95 g de terpinéol.
  • 150 g d'une poudre d'argent de diamètre moyen de 0,8 µm.
  • 20 g d'un verre minéral recristallisable obtenu par addition de 5 % de titane à un silicate de zinc et de bismuth.
  • 0,5 g d'un surfactant tel que celui vendu sous la marque « OROTAN » 850 E par la société Brenntag Spécialités.
According to the present invention, there is a slab 10 of bare glass, generally a soda-lime type glass. A paste is prepared containing:
  • 100 g of a resin obtained by dissolving 5 g of ethylcellulose in 95 g of terpineol.
  • 150 g of a silver powder with an average diameter of 0.8 µm.
  • 20 g of a recrystallizable mineral glass obtained by adding 5% of titanium to a zinc and bismuth silicate.
  • 0.5 g of a surfactant such as that sold under the brand name “OROTAN” 850 E by the company Brenntag Spécialités.

De manière connue, on dépose cette pâte par sérigraphie à travers un masque formé sur une toile de « 325 mesh » et représentant le motif du réseau à réaliser, typiquement des électrodes 11 présentant une largeur de 150 µm et une épaisseur de 4 µm. On sèche ensuite à 120°C pendant 10 minutes et on procède à une cuisson à 460°C pendant 20 minutes, de manière à obtenir lesdites électrodes 11 avec un liant minéral à l'état recristallisé.In known manner, this paste is deposited by screen printing through a mask formed on a "325 mesh" canvas and representing the pattern of the network to be produced, typically electrodes 11 having a width of 150 μm and a thickness of 4 μm. Then dried at 120 ° C for 10 minutes and baked at 460 ° C for 20 minutes, so as to obtain said electrodes 11 with a mineral binder in the recrystallized state.

Ensuite, comme représenté sur la figure 1b, on dépose une couche diélectrique telle qu'une couche de verre en borosilicate de plomb. Cette couche 12 est déposée par sérigraphie puis séchée à 120°C et cuite à 580°C pendant 30 minutes. On peut terminer le procédé de réalisation d'une dalle arrière de panneau à plasma matriciel en déposant des barrières et des luminophores de manière classique.Then, as shown in FIG. 1b, a dielectric layer is deposited such as a layer of glass made of lead borosilicate. This layer 12 is deposited by screen printing then dried at 120 ° C and baked at 580 ° C for 30 minutes. The process for producing a rear panel of a matrix plasma panel can be completed by depositing barriers and phosphors in a conventional manner.

Malgré ces températures élevées de traitement, on n'observe plus aucun jaunissement de la couche diélectrique qui reste très transparente, grâce à l'état recristallisé du liant minéral du réseau d'électrodes dans lequel l'argent diffuse beaucoup moins facilement que dans l'art antérieur.Despite these high processing temperatures, there is no longer any yellowing of the dielectric layer which remains very transparent, thanks to the recrystallized state of the mineral binder of the electrode network in which the silver diffuses much less easily than in the prior art.

On décrira maintenant, avec référence aux figures 2a à 2d, un procédé de réalisation d'une dalle d'un panneau à plasma en utilisant une pâte photosensible. Dans ce cas, on dispose d'une dalle 20 de verre tel qu'un verre sodocalcique, sur laquelle on étend, par sérigraphie sur toute la surface de la dalle, une pâte ou encre 21. Cette pâte photosensible comporte :

  • 100 g d'une résine photosensible, constituée par exemple de 10 g d'alcool polyvinylique de grade 14/135 dissout dans 100 g d'eau.
  • 2 g de bichromate de sodium utilisé comme photosensibilisateur de la résine.
  • 100 g d'une poudre d'argent de diamètre moyen 0,8 µm.
  • 15 g d'un verre minéral recristallisable ne réagissant pas avec la résine photosensible constitué par exemple d'oxyde de vanadium et d'oxyde d'argent (température de ramollissement : 340°C) additionné de 5% d'oxyde de zinc.
  • 1 g d'un surfactant tel que celui vendu sous la marque « OROTAN » 850 E par la société Brenntag Spécialités.
We will now describe, with reference to FIGS. 2a to 2d, a process for producing a panel of a plasma panel using a photosensitive paste. In this case, a glass slab 20 such as a soda-lime glass is available, on which a paste or ink 21 is screen printed over the entire surface of the slab. This photosensitive paste comprises:
  • 100 g of a photosensitive resin, consisting for example of 10 g of polyvinyl alcohol of grade 14/135 dissolved in 100 g of water.
  • 2 g of sodium dichromate used as photosensitizer of the resin.
  • 100 g of a silver powder with an average diameter of 0.8 µm.
  • 15 g of a recrystallizable mineral glass which does not react with the photosensitive resin consisting for example of vanadium oxide and silver oxide (softening temperature: 340 ° C.) added with 5% zinc oxide.
  • 1 g of a surfactant such as that sold under the brand name “OROTAN” 850 E by the company Brenntag Spécialités.

Comme représenté sur la figure 2a, cette pâte est déposée par sérigraphie à travers un masque formé sur une toile de « 325 mesh », de manière à former une couche 21 couvrant toute la surface de la dalle 20. On sèche cette couche 21 à 80°C pendant 5 minutes.As shown in FIG. 2a, this paste is deposited by screen printing through a mask formed on a "325 mesh" canvas, so as to form a layer 21 covering the entire surface of the slab 20. This layer 21 to 80 is dried ° C for 5 minutes.

Comme représenté sur la figure 2b, on expose la couche 21 aux rayons UV à travers un masque 22. Si la résine est négative, le motif à transférer est en clair sur le masque. Dans le mode de réalisation représenté, il s'agit d'électrodes 23 présentant une largeur de 70 µm et une épaisseur de 4 µm. On développe la couche insolée à l'eau de manière à éliminer les parties 24. Ensuite, on sèche ce qui révèle le motif final 23.As shown in FIG. 2b, the layer 21 is exposed to UV rays through a mask 22. If the resin is negative, the pattern to be transferred is clear on the mask. In the embodiment shown, these are electrodes 23 having a width of 70 μm and a thickness of 4 μm. The layer exposed to water is developed so as to eliminate the parts 24. Then, it is dried which reveals the final pattern 23.

Comme représenté sur la figure 2d, on procède alors de manière classique au dépôt par sérigraphie d'une pâte contenant une fritte de verre telle que du borosilicate de plomb, cette pâte réalisant la couche diélectrique 25.As shown in FIG. 2d, a paste containing a glass frit such as lead borosilicate is then conventionally deposited by screen printing, this paste producing the dielectric layer 25.

On cuit enfin l'ensemble constitué du réseau d'électrodes 23 et de la couche diélectrique 25 dans un même cycle thermique tel que représenté sur la figure 3. Le cycle thermique comporte une première étape constituée d'une rampe de chauffe à 10°C/mn jusqu'à une première température de 420°C suivie d'un palier de 20 minutes dans le mode de réalisation représenté. Cette première température peut être comprise entre 380°C et 470°C, selon les propriétés du verre recristallisable utilisé. Cette première étape du cycle thermique est adaptée pour obtenir, outre le frittage, la recristallisation du liant minéral du réseau d'électrodes.Finally, the assembly consisting of the network of electrodes 23 and the dielectric layer 25 is cooked in the same thermal cycle as shown in FIG. 3. The thermal cycle comprises a first step consisting of a heating ramp at 10 ° C. / min to a first temperature of 420 ° C followed by a 20 minute plateau in the embodiment represented. This first temperature can be between 380 ° C and 470 ° C, depending on the properties of the recrystallizable glass used. This first stage of the thermal cycle is suitable for obtaining, in addition to sintering, the recrystallization of the mineral binder from the network of electrodes.

Cette première étape est suivie d'une seconde étape comportant une rampe de chauffe jusqu'à une température de 580°C, suivie d'un palier à 580°C pendant 30 minutes dans le mode de réalisation représenté. La seconde température est comprise entre 530°C et 600°C en fonction des propriétés de la couche diélectrique utilisée.This first step is followed by a second step comprising a heating ramp up to a temperature of 580 ° C., followed by a plateau at 580 ° C. for 30 minutes in the embodiment shown. The second temperature is between 530 ° C and 600 ° C depending on the properties of the dielectric layer used.

Malgré ces températures élevées de traitement, on n'observe plus aucun jaunissement de la couche diélectrique qui reste très transparente, grâce à l'état recristallisé du liant minéral du réseau d'électrodes dans lequel l'argent diffuse beaucoup moins facilement que dans l'art antérieur.Despite these high processing temperatures, there is no longer any yellowing of the dielectric layer which remains very transparent, thanks to the recrystallized state of the mineral binder of the electrode network in which the silver diffuses much less easily than in the prior art.

Ce mode de réalisation peut être utilisé pour la fabrication de la dalle arrière d'un PAP matriciel. Il peut être aussi utilisé pour la réalisation des électrodes d'entretien de la dalle avant d'un PAP coplanaire. Dans ce cas, des électrodes d'adressage transparentes en ITO (oxyde d'indium et d'étain) ou en oxyde d'étain peuvent être réalisées au préalable sur la dalle.This embodiment can be used for the manufacture of the rear panel of a matrix PAP. It can also be used for making the maintenance electrodes for the front slab of a coplanar PAP. In this case, transparent addressing electrodes made of ITO (indium tin oxide) or tin oxide can be produced beforehand on the slab.

Selon un autre mode de réalisation, la pâte ou encre utilisée pour réaliser les électrodes d'un panneau à plasma a été obtenue de la manière suivante : Préparation d'une solution de résine : Solution R1. Solvant Terpinéol 73,5 g Résine Ethylcellulose Grade N7 7,0 g Plastifiant Santicizer S 160 6,5 g Dispersant Lécithine 4,0 g According to another embodiment, the paste or ink used to make the electrodes of a plasma panel was obtained in the following manner: Preparation of a resin solution: Solution R1. Solvent terpineol 73.5g Resin Ethylcellulose Grade N7 7.0 g plasticizer Santicizer S 160 6.5g dispersed Lecithin 4.0g

Ajout d'un additif dans R1 afin d'obtenir un liant thixotrope : Solution B1. Solution Résine R1 91,0 g Agent thixotrope Thixatrol 9,0 g Addition of an additive in R1 in order to obtain a thixotropic binder: Solution B1. Resin Solution R1 91.0 g Thixotropic agent Thixatrol 9.0 g

Préparation de l'encre d'argent par malaxage des composées suivants : Solution liant B1 20,0 g Poudre d'argent Ag DC100 72,0 g Verre minéral cristallisable 8,0 g (18,5% SiO2, 4,5% B2O3, 72% PbO, 5% Cr2O3) Preparation of silver ink by mixing the following compounds: Binder solution B1 20.0 g Silver powder Ag DC100 72.0 g Crystallizable mineral glass 8.0 g (18.5% SiO 2 , 4.5% B 2 O 3 , 72% PbO, 5% Cr 2 O 3 )

Il est évident pour l'homme de l'art que les exemples données ci-dessus peuvent être différents, notamment en ce qui concerne la composition du verre recristallisable, les résines, les solvants, etc... sans sortir du cadre des revendications.It is obvious to a person skilled in the art that the examples given above may be different, in particular as regards the composition of the recrystallizable glass, the resins, the solvents, etc., without going beyond the scope of the claims.

Claims (11)

  1. Process for manufacturing a plasma panel tile, comprising the following steps:
    - deposition of electrodes on a substrate, in a defined pattern, using a paste comprising a metal powder, a mineral binder and organic compounds;
    - firing of the said deposited electrodes under conditions suitable for removing the said organic compounds and for sintering the said powder;
    characterized in that the composition of the said mineral binder and the firing conditions are tailored so that, after the firing, the said mineral binder is in the recrystallized state.
  2. Process according to Claim 1, characterized in that the said substrate is based on a soda-lime glass.
  3. Process according to Claim 2, characterized in that the temperature at which the deposited electrodes are fired does not exceed 470°C.
  4. Process according to any one of the preceding claims, characterized in that it furthermore comprises the following steps:
    - after the electrodes have been deposited, the deposition of a dielectric layer;
    - after the deposited electrodes have been fired, the firing of the whole assembly at a temperature above the maximum temperature reached during the firing of the deposited electrodes.
  5. Process according to Claim 4, characterized in that the maximum temperature reached during the said firing of the whole assembly is greater than 500°C.
  6. Process according to either of Claims 4 and 5, characterized in that the dielectric layer is deposited after the deposited electrodes have been fired.
  7. Process according to either of Claims 4 and 5, characterized in that the dielectric layer is deposited before the deposited electrodes have been fired.
  8. Process according to any one of the preceding claims, characterized in that the mineral binder consists of a recrystallizable glass.
  9. Process according to Claim 8, characterized in that the said glass comprises at least one recrystallizing component chosen from the group comprising chromium, chromium oxide, zirconium, zirconium oxide, titanium and titanium oxide.
  10. Process according to Claim 9, characterized in that the weight content of this recrystallizing component in the said glass is greater than 1%.
  11. Process according to any one of the preceding claims, characterized in that the metal powder is of a metal chosen from the group comprising silver, copper, aluminium and alloys thereof.
EP01903849A 2000-01-17 2001-01-02 Use of glass capable of recrystallization as mineral binder of an electrode paste for a plasma panel Expired - Lifetime EP1252643B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0000510 2000-01-17
FR0000510A FR2803945A1 (en) 2000-01-17 2000-01-17 Paste for production of electrodes on a glass substrate enabling lower firing temperatures and a method for the fabrication of a plasma paneled slab or flat visual screens
PCT/FR2001/000004 WO2001054159A1 (en) 2000-01-17 2001-01-02 Use of glass capable of recrystallization as mineral binder of an electrode paste for a plasma panel

Publications (2)

Publication Number Publication Date
EP1252643A1 EP1252643A1 (en) 2002-10-30
EP1252643B1 true EP1252643B1 (en) 2003-09-10

Family

ID=8845957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01903849A Expired - Lifetime EP1252643B1 (en) 2000-01-17 2001-01-02 Use of glass capable of recrystallization as mineral binder of an electrode paste for a plasma panel

Country Status (10)

Country Link
US (2) US20030108820A1 (en)
EP (1) EP1252643B1 (en)
JP (1) JP2003521092A (en)
KR (1) KR100771186B1 (en)
CN (1) CN1218354C (en)
AT (1) ATE249682T1 (en)
DE (1) DE60100739T2 (en)
FR (1) FR2803945A1 (en)
TW (1) TW480538B (en)
WO (1) WO2001054159A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373592A (en) * 2001-06-14 2002-12-26 Matsushita Electric Ind Co Ltd Electrode for plasma display panel and its manufacturing method
JP3918992B2 (en) * 2002-01-30 2007-05-23 株式会社日立プラズマパテントライセンシング Method for manufacturing rear substrate for plasma display panel
JP2004146211A (en) 2002-10-24 2004-05-20 Noritake Co Ltd Tabular display device and its sealing method
US7431627B2 (en) * 2003-12-12 2008-10-07 Pioneer Corporation Method of manufacturing plasma display panel and method of manufacturing plasma display apparatus
US7553683B2 (en) * 2004-06-09 2009-06-30 Philips Lumiled Lighting Co., Llc Method of forming pre-fabricated wavelength converting elements for semiconductor light emitting devices
US7384577B2 (en) 2005-03-09 2008-06-10 E.I. Du Pont De Nemours And Company Black conductive thick film compositions, black electrodes, and methods of forming thereof
US20060235107A1 (en) * 2005-04-15 2006-10-19 3M Innovative Properties Company Method of reusing flexible mold and microstructure precursor composition
WO2008027658A1 (en) * 2006-09-01 2008-03-06 3M Innovative Properties Company Method of making display component with curable paste composition
CN104407735B (en) * 2014-11-11 2018-05-22 长沙市宇顺显示技术有限公司 Lead of touch screen conducting wire and preparation method thereof and touch-screen mobile phone
CN115820043A (en) * 2022-11-25 2023-03-21 浙江恒成硬质合金有限公司 Coating for sintering hard alloy blade and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1220497A1 (en) * 1983-07-29 1992-09-07 Предприятие П/Я В-8769 Current contacting paste
WO1992003030A1 (en) * 1990-07-31 1992-02-20 Nfe Co., Ltd. Method of forming electrodes
US5851732A (en) * 1997-03-06 1998-12-22 E. I. Du Pont De Nemours And Company Plasma display panel device fabrication utilizing black electrode between substrate and conductor electrode
JP3510761B2 (en) * 1997-03-26 2004-03-29 太陽インキ製造株式会社 Alkali-developing photocurable conductive paste composition and plasma display panel formed with electrodes using the same
JP3512616B2 (en) * 1997-12-19 2004-03-31 京セラ株式会社 Plasma display panel
JPH11329236A (en) * 1998-05-06 1999-11-30 Toray Ind Inc Manufacture of substrate for plasma display
US6333116B1 (en) * 1998-05-27 2001-12-25 Corning Incorporated Crystallizing glass frit composition for forming glass rib structures
JPH11349347A (en) * 1998-06-08 1999-12-21 Asahi Glass Co Ltd Crystalline low melting point glass composition
JP2000011898A (en) * 1998-06-24 2000-01-14 Toppan Printing Co Ltd Plasma display panel
KR100512243B1 (en) * 2003-06-24 2005-09-02 엘지전자 주식회사 Structure of cover for home bar

Also Published As

Publication number Publication date
DE60100739D1 (en) 2003-10-16
KR20020080374A (en) 2002-10-23
KR100771186B1 (en) 2007-10-30
CN1218354C (en) 2005-09-07
DE60100739T2 (en) 2004-07-08
ATE249682T1 (en) 2003-09-15
US20030108820A1 (en) 2003-06-12
WO2001054159A1 (en) 2001-07-26
JP2003521092A (en) 2003-07-08
TW480538B (en) 2002-03-21
CN1395739A (en) 2003-02-05
US20060172650A1 (en) 2006-08-03
EP1252643A1 (en) 2002-10-30
FR2803945A1 (en) 2001-07-20

Similar Documents

Publication Publication Date Title
US20060172650A1 (en) Use of a recrystallizable glass as mineral binder of an electrode paste for a plasma panel
EP1701372A2 (en) Black electrodes and methods of forming them
KR101093045B1 (en) Cu-BASED MATERIAL FOR WIRING AND ELECTRONIC COMPONENT USING THE SAME
EP1065179A1 (en) Process for the deposition of a tungsten and/or molybdenum based layer on a glass, ceramic or glass ceramic substrate and coated substrate according to the process
KR20010095198A (en) Display panel and manufacturing method of the same
EP0074312B1 (en) Method of producing a thick-film varistor on a hybrid circuit substrate, and varistor obtained in this way
FR2574570A1 (en) METHOD FOR PHOTOLITHOGRAPHY OF A THICK LAYER OF PULP DEPOSITED ON A SUBSTRATE
FR2793949A1 (en) MIXTURE FOR PRODUCING ELECTRODES AND METHOD FOR FORMING ELECTRODES
EP1301937B1 (en) Faceplate provided with electrodes made of conductive material
WO2001020637A1 (en) Mixture for producing electrodes and method for forming electrodes on a transparent substrate
JP4803726B2 (en) Electronic circuit and manufacturing method thereof
JP4855595B2 (en) Method for manufacturing glass substrate for plasma display panel
JPH06150828A (en) Barrier structure for plasma display panel
EP1017645B1 (en) Method for producing a display panel comprising a faceplate with enhanced dimensional stability
FR2803689A1 (en) Forming electrode network and dielectric layer, for photovoltaic panel, plasma display panel, etc., in single etching stage uses resin mask including dielectric precursor
JPH10144211A (en) Thick film pattern forming method
JP2011171312A (en) Electron emission source forming composition, and method of forming film for electron emission source
JPH10104419A (en) Color filter and its manufacture
FR2819628A1 (en) Back tile structure for a plasma visual display screen incorporating a dielectric layer of a porous oxide material to reduce the number of firing operations during fabrication
JPH055592A (en) High temperature heat treating jig
JP2009295360A (en) Plasma display panel and method for manufacturing the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020711

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60100739

Country of ref document: DE

Date of ref document: 20031016

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040128

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: *THOMSON PLASMA

Effective date: 20040131

26N No opposition filed

Effective date: 20040614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071224

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080125

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080124

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090202