EP1237447B1 - Beverage infusion packages and materials therefor - Google Patents

Beverage infusion packages and materials therefor Download PDF

Info

Publication number
EP1237447B1
EP1237447B1 EP00985547A EP00985547A EP1237447B1 EP 1237447 B1 EP1237447 B1 EP 1237447B1 EP 00985547 A EP00985547 A EP 00985547A EP 00985547 A EP00985547 A EP 00985547A EP 1237447 B1 EP1237447 B1 EP 1237447B1
Authority
EP
European Patent Office
Prior art keywords
package
thermoplastic
fibrous material
porous
thermoplastic fibres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00985547A
Other languages
German (de)
French (fr)
Other versions
EP1237447A2 (en
Inventor
John Edward Rose
Andrew Kevin Jordan
Glyn A. Wardle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J R Crompton Ltd
Original Assignee
J R Crompton Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9929349.0A external-priority patent/GB9929349D0/en
Priority claimed from GBGB9929452.2A external-priority patent/GB9929452D0/en
Application filed by J R Crompton Ltd filed Critical J R Crompton Ltd
Publication of EP1237447A2 publication Critical patent/EP1237447A2/en
Application granted granted Critical
Publication of EP1237447B1 publication Critical patent/EP1237447B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/804Disposable containers or packages with contents which are mixed, infused or dissolved in situ, i.e. without having been previously removed from the package
    • B65D85/808Disposable containers or packages with contents which are mixed, infused or dissolved in situ, i.e. without having been previously removed from the package for immersion in the liquid to release part or all of their contents, e.g. tea bags
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/08Filter paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/12Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/14Polyalkenes, e.g. polystyrene polyethylene
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/10Packing paper

Definitions

  • the present invention relates to a beverage infusion packages (e.g. tea bags, coffee bags and the like) as well as to porous, fibrous web materials for use in producing such packages.
  • a beverage infusion packages e.g. tea bags, coffee bags and the like
  • porous, fibrous web materials for use in producing such packages.
  • Beverage infusion packages such as tea bags comprise a particulate beverage precursor material, e.g. tea leaves or coffee granules, in a bag, sachet, pouch or the like (all conveniently referred to herein as a bag) of a porous, fibrous cellulosic material.
  • This material typically has a basis weight of 10 to 30 g m -2 and is often referred to as "tissue” or "tissue paper".
  • tissue may be of the "heat seal” or “non-heat seal” type and the invention is primarily concerned with the production of beverage infusion packages by techniques which do not involve heat sealing although a description of "heat seal” tissue is given below for the sake of completeness.
  • Heat seal tissue comprises two or more layers wet-laid in succession one on top of the other.
  • One layer contains only cellulosic fibres and the other incorporates thermoplastic fibres.
  • a beverage infusion package is produced from such tissue by forming the bag such that layers of the tissue incorporating thermoplastic fibres are juxtaposed and then heat sealed.
  • Non-heat seal tissue generally (but not necessarily) comprises a single wet-laid layer of cellulosic fibres produced from mixtures of well known paper-making fibres which may include both woody and non-woody materials, e.g. Manila hemp, sisal, jute, bleached and unbleached soft wood and hard wood species and in some instances approved synthetic fibres such as viscose rayon.
  • the material is typically manufactured by the wet laid process on an inclined wire paper-making machine. The material is generally treated with classic wet and dry strength chemical enhancing products, such as CMC (carboxymethyl cellulose) and Kymene (epichlorohydrin).
  • Beverage infusion packages e.g. tea bags
  • non-heat seal material incorporate a seam formed by a mechanical compression action (e.g. involving crimping).
  • Examples of such packages are those of the "double-chamber” type having attached string and tag as produced by both Constanta and Perfecta machines the world over.
  • such double chamber packages are produced by longitudinally folding a strip of the non-heat seal tissue so that the free longitudinal edges are adjacent to each other. These two edges are then folded over together several times and the fold then reinforced by means of a pressure controlled toothed wheel known to those skilled in the art as a Crimp Wheel.
  • the thus formed tube is then formed into the final double-chamber beverage infusion package (incorporating beverage precursor material).
  • Such a package comprises, in effect, a short length of the tube folded transversely so that the widthwise ends are adjacent to each other and with the crimped seal extending lengthwise along the inner sides of the package which is closed at its transverse ends by a staple to which may be attached a string and tag.
  • the package is infused with hot water. This may be done, for example, by immersing the package in hot water, pouring hot water onto the package, or heating water and the bag in a microwave oven. This action, of infusing the package with hot water, causes the bag to inflate and float due to water bridging the pore structure of the tissue and creating a gas barrier film entrapping the atmosphere and volatiles generated during the brewing process.
  • the inflation of the package increases stress on the mechanically formed seam to a degree dependent, at least in part, on the type and dosage of the beverage precursor material in the package, e.g. black tea or herbal tea.
  • the stress on the mechanical seam may be such as to result in failure thereof causing tea leaves, coffee grounds or the like to be released into the beverage and this is obviously undesirable.
  • the problem of seam failure occurs when the wet crimp strength of the seam is not sufficiently high and is exaserpated in the microwave method of infusing the beverage where the extended period of energy input (e.g. for two minutes) increases the stress placed on the mechanical seam both in a cold and hot environment and has a detrimental effect on most classical wet and dry chemical systems employed.
  • DE-A-1 800 032 discloses a beverage infusion (e.g. a tea bag) formed of porous fibrous cellulosic material and having a closure seam produced by a mechanical compression action without heat sealing.
  • the fibrous cellulosic material may incorporate 20% of viscose synthetic fibre.
  • a beverage infusion package formed of porous, fibrous cellulsoic material and having a closure seam produced by a mechanical compression action without heat sealing, porous material containsing thermoplastic fibres which are amorphous or only partially crystalline characterised in that the thermoplastic fibres are present as a fused or thermally bonded network.
  • the beverage infusion package is formed from a material incorporating fibres of a thermoplastic which is amorphous or (more preferably) partially crystalline-, the thermoplastic fibres being present as a fused or thermally bonded network.
  • a thermoplastic which is amorphous or (more preferably) partially crystalline-
  • the thermoplastic fibres being present as a fused or thermally bonded network.
  • the dry strength of the seam is sufficient to prevent the package bursting open and spilling the beverage precursor material during manufacture, packaging, delivery and or consumer use.
  • the wet crimp strength is such that there is no significant seam failure when infusion packages in accordance with the invention either when boiling water is poured onto the package to brew the beverage or when the infusion package is heated with water in a microwave oven.
  • thermoplastic fibres in the paper at the opposite sides of the seam are bent and form an inter-locked synthetic matrix which is impervious to boiling water and microwave energy.
  • thermoplastic fibres are amorphous or only partially crystalline ensures that fibre recovery is limited which enables the crimped seam to be maintained under high stress in a hot aqueous environment.
  • the invention is particularly effective in the case where the mechanically formed seam is formed by folding over together adjacent edges of the porous material and applying a mechanical compressive force to the folded over edges.
  • the compressive force may be applied by crimping, e.g. using a pressure controlled toothed wheel (a so-called Crimp Wheel).
  • Crimp Wheel a pressure controlled toothed wheel
  • the fibres are crimped together providing an additional degree of interlocking and therefore enhancement of seam integrity.
  • the beverage infusion package of the invention may for example be a tea bag, e.g. of the double-chamber type, but is also applicable to other beverages, e.g. coffee.
  • the porous fibrous material will generally have a basic weight of 10 to 30gm -2 , more typically 10 to 20 gm 2, e.g. 10-13 gm 2 .
  • the material will comprise 5 to 30%, more preferably 10% to 30%, and ideally 15% to 25% by weight of the thermoplastic fibres.
  • the material may be formed by conventional paper-making techniques by laying a suspension comprised of cellulosic and thermoplastic fibres onto a paper-forming fabric of a paper-making machine (e.g. an inclined wire paper-making machine) and withdrawing water from the laid suspension through the fabric.
  • a paper-making machine e.g. an inclined wire paper-making machine
  • Cellulsoic fibres forming the suspension may be those conventionally used for producing non-heat paper for beverage infusion bags and may include both ''woody'' and "non-woody” materials such as manila hemp, sisal, jute, and bleached and unbleached soft wood and hard wood species.
  • non-woody material to woody material will be 40 to 80 parts of non-woody material to 20 to 60 parts woody material.
  • the material may be produced by laying successive layers of suspension (possibly of differing composition) one on top of the other, e.g. as described in WO-A- 704956. It is however more preferred that the material comprises only a single layer of the cellulosic and thermoplastic fibres.
  • a porous fibrous web material having a basis weight of 10 to 30 gm -2 and being comprised of a single, wet-laid layer of an admixture of cellulosic and thermoplastic fibres which are amorphous or are only partially crystalline, characterised in that the thermoplastic fibres are present as a fused or thermally bonded network.
  • Material in accordance with the second aspect of the invention is suitable, and primarily intended for, producing beverage infusion packages in accordance with the first aspect of the invention.
  • the material is also suitable for any use where a porous, high wet strength, mechanically crimped seam is required.
  • the crystallinity of the thermoplastic fibres is less than 40% to reduce fibre recovery to 10% which enables the mechanical seam to be retained under high stress in a hot aqueous environment. More preferably the crystallinity is 10-20%.
  • thermoplastics which may be used are polypropylene, polyester, polyamide 6, 66, 11, 12 and high density polyethylene. Blocked or random copolymers or terpolymers of propylene and ethylene may also be used.
  • thermoplastic fibres will preferably have a thickness of 0.55 to 6.7 decitex (0.5 to 6.0 denier) although best results will generally be achieved with fibres in the 2.2 to 4.4 decitex (2 to 4 denier) range.
  • the length of the thermoplastic fibres may be 0.5mm to 12mm, preferably 3mm to 6mm and more typically 5mm.
  • thermoplastic fibres in the web have been "fused” or thermally bonded together, at a temperature greater than the crystalline melt temperature of the thermoplastic fibres.
  • the crystallinity of the thermoplastic fibres from which the web is manufactured may be reduced to a desired value.
  • the fibres may initially have significant crystallinity (e.g. greater then 50% and possibly greater than 80%) and this crystallinity may be reduced by the heat treatment to the preferred value of, say, 10-20%.
  • the fibres become fused together at their junctions (or points of contact) to provide a cohesive reinforced crystalline matrix.
  • the affect of fusing the thermoplastic web further improves the dry and wet crimp functionality by increasing web elasticity specifically in the cross machine direction orientation.
  • thermoplastic fibres from which the web is produced may be of isotatic polypropylene drawn into fibres having a degree of crystallinity of at least 75%, the crystallinity subsequently being reduced during the above described "fusing" step.
  • the crystallinity of the fibres may be assessed colorimetrically.
  • polypropylene a preferred thermoplastic for use in the invention
  • the arrays of crystallites known as spherilites
  • the fibres when viewed under polarised light show a distinctive bright yellow colouration demonstrating a degree of crystallinity.
  • the material of the second aspect of the invention or any other material from which a beverage infusion package in accordance with the first aspect of the invention is to be produced may be treated (by either addition to the wet pulp stock suspension or at a size press unit) with agents known per se for imparting wet and dry strength, e.g. carboxymethyl cellulose (CMC) and epichlorohydrin (e.g. available under the name KYMENE (Trade Mark). These agents may be used such as to provide at least 1% by weight thereof on the material.
  • CMC carboxymethyl cellulose
  • KYMENE Trade Mark
  • the web is treated with epichlorohydrin
  • the poly(vinyl alcohol) is preferably one having a degree of hydrolysis of at least 60%, more preferably at least 80%, and most preferably 95% to 99.9%.
  • the poly(vinyl alcohol) may for example of the type known as the "super-hydrolysed” variety, e.g. as available under the AIRVOL (Trade Mark) as available from Air Products.
  • Levels at which the poly(vinyl alcohol) will be applied to the web will generally be in the range 0.5 to 4% by weight typically 1.0 to 2% by weight.
  • the porous fibrous material (from which the infusion package is produced) to be relatively hydrophilic such that, during brewing of the beverage, the bag rapidly wets out and sinks in the brew liquor providing a satisfactory infusion rate.
  • the hydrophilicity of the porous fibrous material may be measured by a water climb test in which the lower end of a vertically disposed strip (1"x 5" (2.54 x 12.70cm)) of the material is dipped into water and then time taken for the water to rise 1" (2.54cm) up the material is measured.
  • the porous, fibrous material has a water climb value of less than 70 seconds, e.g. 20 to 40 seconds, ideally about 30 seconds.
  • a further means of measuring, hydrophilicity is by the Water Drop Test in which a micro syringe is used to drop a small bead of water at ambient temperature on to a single layer of the infuser web, which is supported around its perimeter by a small diameter ring, typically 2" (5.08cms).
  • the time taken for the droplet of water to spread out and collapse into the infuser web, i.e. zero contact angle, is timed by means of a stopwatch.
  • the porous, fibrous material has a value in the Water Drop Test of less than 10 seconds, more preferably less than 5 seconds, and even more preferably less than 1 second.
  • the hydrophilicity of the web may be achieved by treatment with epichlorohydrin and poly(vinyl alcohol).
  • a standard NHSTB 12.3-13.0 gsm infuser web was produced on an inclined pilot paper machine from 70% Manila and 30% soft wood and bonded with 1% Kymene and 2% CMC. This material was then slit to 94.3 mm coils and conditioned in a humidified laboratory to the typical industry standard of 7-8% moisture content, as low moisture is known to significantly affect conversion parameters adversely.
  • a USA style latex NHSTB prototype at 12.3-13.0 gsm infuser web was produced in the inclined pilot paper machine from 70% Manila and 30% softwood and bonded with 1% Kymene and 13.5% of a co-polymer of Ethyl and Butyl acrylate latex. This material was then slit to 94.3mm coils and conditioned in a humidified laboratory to the typical industry standard of 7-8% moisture content.
  • a European style latex NHSTB prototype at 12.3-13.0 gsm infuser web was produced on the inclined pilot paper machine from 60% Manila, 30% softwood, 10% hardwood and bonded with 1% Kymene and 13.5% of a co-polymer of methacrylate Styrene Butadiene latex. This material was then slit to 94.3 mm coils and conditioned in a humidified laboratory to the typical industry standard of 7-8% moisture content.
  • a standard NHSTB 12.3-13.0 gsm infuser web was produced on the inclined pilot paper machine from 55% Manila and 30% softwood, 15% Polypropylene (3 denier, 5mm) and bonded with 1% Kymene. During the production of this material the polypropylene was "fused”/"thermally bonded” to an amorphous state by taking the polymer past its crystalline melt temperature. This material was then slit to 94.3mm coils and conditioned in a humidified laboratory to the typical industry standard of 7-8% moisture content.
  • a standard NHSTB 12.3-13.0 gsm infuser web was produced on the inclined pilot paper machine from 55% Manila and 30% softwood, 15% polypropylene (3 denier, 5mm) and bonded with 1% Kymene and 2% PVOH (Airvol 165). During the production of this material the polypropylene was "fused”/"thermally bonded” to an amorphous state by taking the polymer past its crystalline melt temperature. This material was then slit to 94.3mm coils and conditioned in a humidified laboratory to the typical industry standard of 7-8% moisture content.
  • the energy out put of microwaves has increased dramatically over the recent couple of years and is now typically 850-1200 watts for domestic appliances. It has also been observed that the energy inputted to the fusion packet during the typical brew cycle can also vary for a given microwave wattage depending on make, model and whether the microwave is "cold” i.e. the first use or is "hot” i.e. the second and subsequent uses during a sustained period.
  • test regime that has been adopted to evaluate the above observation and to provide a broad indication of infusion material acceptability over a range of conditions is outlined as follows:
  • the amount of tea that is allowed to pass through the infuser web is of critical importance as it limits how the tea bag producer can blend/mill the tea used. This impacts on both the final infusion rate of the tea bag and how much tea is lost into the package during transport (Tea sift).
  • the infusion rate is evaluated by measuring the colour change of the brew liquor of a period of time, typically 5-6 minutes, by colourimetry.
  • the following test regime has been adopted and is outlined as follows:
  • the dry strength of the crimp fin seal is of critical importance to both dry functionality in manufacture, packaging and end use, while the wet integrity of the crimped fin seal is obviously the key factor in brewing functionality.
  • Herbal teas are of high bulk for a given grammage.
  • the amount of tea dosed to herbal tea is still typically 1.5g-2.0g however the tea expands significantly during brewing and contains significant volumes of both ambient atmosphere and gases produced during the brewing process. The effect of this is to put an increased strain on the crimped fin seal, which with standard paper grades causing a rupturing of this seam.
  • Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Pour on Typical Latex Latex Microwave Microwave Test NHSTB Product US Product EU HSTB HSTB Ballooning 100% 20% 30% 100% 100% Open on Inspection 0% 20% 20% 5% 5% Burst 90% 10% 15% 5% 0%

Abstract

A beverage infusion package (e.g. a tea bag) is formed of porous, fibrous cellulosic material and has a closure seam produced by a mechanical compression action without heat sealing. The porous material contains thermoplastic fibres which are amorphous or are only partially crystalline and which make the package eminently suitable for infusion in a microwave oven. The porous, fibrous material may have a basis weight of 10 to 30 g m<-2> and be comprises of a single wet-laid layer of an admixture of cellulosic fibres and the thermoplastic fibres.

Description

  • The present invention relates to a beverage infusion packages (e.g. tea bags, coffee bags and the like) as well as to porous, fibrous web materials for use in producing such packages.
  • Beverage infusion packages such as tea bags comprise a particulate beverage precursor material, e.g. tea leaves or coffee granules, in a bag, sachet, pouch or the like (all conveniently referred to herein as a bag) of a porous, fibrous cellulosic material. This material typically has a basis weight of 10 to 30 g m-2 and is often referred to as "tissue" or "tissue paper". The tissue may be of the "heat seal" or "non-heat seal" type and the invention is primarily concerned with the production of beverage infusion packages by techniques which do not involve heat sealing although a description of "heat seal" tissue is given below for the sake of completeness.
  • "Heat seal" tissue comprises two or more layers wet-laid in succession one on top of the other. One layer contains only cellulosic fibres and the other incorporates thermoplastic fibres. A beverage infusion package is produced from such tissue by forming the bag such that layers of the tissue incorporating thermoplastic fibres are juxtaposed and then heat sealed.
  • "Non-heat seal" tissue generally (but not necessarily) comprises a single wet-laid layer of cellulosic fibres produced from mixtures of well known paper-making fibres which may include both woody and non-woody materials, e.g. Manila hemp, sisal, jute, bleached and unbleached soft wood and hard wood species and in some instances approved synthetic fibres such as viscose rayon. The material is typically manufactured by the wet laid process on an inclined wire paper-making machine. The material is generally treated with classic wet and dry strength chemical enhancing products, such as CMC (carboxymethyl cellulose) and Kymene (epichlorohydrin).
  • Beverage infusion packages (e.g. tea bags) produced from such "non-heat seal" material incorporate a seam formed by a mechanical compression action (e.g. involving crimping). Examples of such packages are those of the "double-chamber" type having attached string and tag as produced by both Constanta and Perfecta machines the world over.
  • Briefly, such double chamber packages are produced by longitudinally folding a strip of the non-heat seal tissue so that the free longitudinal edges are adjacent to each other. These two edges are then folded over together several times and the fold then reinforced by means of a pressure controlled toothed wheel known to those skilled in the art as a Crimp Wheel. The thus formed tube is then formed into the final double-chamber beverage infusion package (incorporating beverage precursor material). Such a package comprises, in effect, a short length of the tube folded transversely so that the widthwise ends are adjacent to each other and with the crimped seal extending lengthwise along the inner sides of the package which is closed at its transverse ends by a staple to which may be attached a string and tag.
  • To produce a beverage, the package is infused with hot water. This may be done, for example, by immersing the package in hot water, pouring hot water onto the package, or heating water and the bag in a microwave oven. This action, of infusing the package with hot water, causes the bag to inflate and float due to water bridging the pore structure of the tissue and creating a gas barrier film entrapping the atmosphere and volatiles generated during the brewing process. The inflation of the package increases stress on the mechanically formed seam to a degree dependent, at least in part, on the type and dosage of the beverage precursor material in the package, e.g. black tea or herbal tea. The stress on the mechanical seam may be such as to result in failure thereof causing tea leaves, coffee grounds or the like to be released into the beverage and this is obviously undesirable. The problem of seam failure occurs when the wet crimp strength of the seam is not sufficiently high and is exaserpated in the microwave method of infusing the beverage where the extended period of energy input (e.g. for two minutes) increases the stress placed on the mechanical seam both in a cold and hot environment and has a detrimental effect on most classical wet and dry chemical systems employed.
  • DE-A-1 800 032 discloses a beverage infusion (e.g. a tea bag) formed of porous fibrous cellulosic material and having a closure seam produced by a mechanical compression action without heat sealing. The fibrous cellulosic material may incorporate 20% of viscose synthetic fibre.
  • It is an object of the present invention to obviate or mitigate the above mentioned disadvantages.
  • According to a first aspect of the present invention there is provided a beverage infusion package formed of porous, fibrous cellulsoic material and having a closure seam produced by a mechanical compression action without heat sealing, porous material containsing thermoplastic fibres which are amorphous or only partially crystalline characterised in that the thermoplastic fibres are present as a fused or thermally bonded network.
  • Thus in accordance with the first aspect of the invention the beverage infusion package is formed from a material incorporating fibres of a thermoplastic which is amorphous or (more preferably) partially crystalline-, the thermoplastic fibres being present as a fused or thermally bonded network. ―We have found that such fibres produce a significant enhancement of mechanical seam integrity. The dry strength of the seam is sufficient to prevent the package bursting open and spilling the beverage precursor material during manufacture, packaging, delivery and or consumer use. Moreover, the wet crimp strength is such that there is no significant seam failure when infusion packages in accordance with the invention either when boiling water is poured onto the package to brew the beverage or when the infusion package is heated with water in a microwave oven.
  • We do not wish to be bound by theory but we believe that the success of the present invention is attributable to several reasons. Firstly, the thermoplastic fibres in the paper at the opposite sides of the seam are bent and form an inter-locked synthetic matrix which is impervious to boiling water and microwave energy. Secondly, the fact that the thermoplastic fibres are amorphous or only partially crystalline ensures that fibre recovery is limited which enables the crimped seam to be maintained under high stress in a hot aqueous environment.
  • The invention is particularly effective in the case where the mechanically formed seam is formed by folding over together adjacent edges of the porous material and applying a mechanical compressive force to the folded over edges. The compressive force may be applied by crimping, e.g. using a pressure controlled toothed wheel (a so-called Crimp Wheel). In such a case the fibres are crimped together providing an additional degree of interlocking and therefore enhancement of seam integrity.
  • The beverage infusion package of the invention may for example be a tea bag, e.g. of the double-chamber type, but is also applicable to other beverages, e.g. coffee.
  • The porous fibrous material will generally have a basic weight of 10 to 30gm-2, more typically 10 to 20 gm2, e.g. 10-13 gm2. For preference, the material will comprise 5 to 30%, more preferably 10% to 30%, and ideally 15% to 25% by weight of the thermoplastic fibres.
  • The material may be formed by conventional paper-making techniques by laying a suspension comprised of cellulosic and thermoplastic fibres onto a paper-forming fabric of a paper-making machine (e.g. an inclined wire paper-making machine) and withdrawing water from the laid suspension through the fabric.
  • Cellulsoic fibres forming the suspension may be those conventionally used for producing non-heat paper for beverage infusion bags and may include both ''woody'' and "non-woody" materials such as manila hemp, sisal, jute, and bleached and unbleached soft wood and hard wood species.
  • Generally the relative amounts of non-woody material to woody material will be 40 to 80 parts of non-woody material to 20 to 60 parts woody material.
  • The material may be produced by laying successive layers of suspension (possibly of differing composition) one on top of the other, e.g. as described in WO-A- 704956. It is however more preferred that the material comprises only a single layer of the cellulosic and thermoplastic fibres. This is an important aspect of the invention in its own right and therefore according to the second aspect of invention there is provided a porous fibrous web material having a basis weight of 10 to 30 gm-2 and being comprised of a single, wet-laid layer of an admixture of cellulosic and thermoplastic fibres which are amorphous or are only partially crystalline, characterised in that the thermoplastic fibres are present as a fused or thermally bonded network.
  • Material in accordance with the second aspect of the invention is suitable, and primarily intended for, producing beverage infusion packages in accordance with the first aspect of the invention. However, the material is also suitable for any use where a porous, high wet strength, mechanically crimped seam is required.
  • Preferably the crystallinity of the thermoplastic fibres is less than 40% to reduce fibre recovery to 10% which enables the mechanical seam to be retained under high stress in a hot aqueous environment. More preferably the crystallinity is 10-20%.
  • Examples of thermoplastics which may be used are polypropylene, polyester, polyamide 6, 66, 11, 12 and high density polyethylene. Blocked or random copolymers or terpolymers of propylene and ethylene may also be used.
  • The thermoplastic fibres will preferably have a thickness of 0.55 to 6.7 decitex (0.5 to 6.0 denier) although best results will generally be achieved with fibres in the 2.2 to 4.4 decitex (2 to 4 denier) range.
  • The length of the thermoplastic fibres may be 0.5mm to 12mm, preferably 3mm to 6mm and more typically 5mm.
  • The thermoplastic fibres in the web have been "fused" or thermally bonded together, at a temperature greater than the crystalline melt temperature of the thermoplastic fibres.
  • Such "fusing" can provide two effects. Firstly, the crystallinity of the thermoplastic fibres from which the web is manufactured may be reduced to a desired value. Thus for example the fibres may initially have significant crystallinity (e.g. greater then 50% and possibly greater than 80%) and this crystallinity may be reduced by the heat treatment to the preferred value of, say, 10-20%. Secondly the fibres become fused together at their junctions (or points of contact) to provide a cohesive reinforced crystalline matrix. The affect of fusing the thermoplastic web further improves the dry and wet crimp functionality by increasing web elasticity specifically in the cross machine direction orientation.
  • The thermoplastic fibres from which the web is produced may be of isotatic polypropylene drawn into fibres having a degree of crystallinity of at least 75%, the crystallinity subsequently being reduced during the above described "fusing" step.
  • The crystallinity of the fibres may be assessed colorimetrically. Thus, when polypropylene (a preferred thermoplastic for use in the invention) is crystallised from the melt and drawn under stress the arrays of crystallites, known as spherilites, become highly orientated in the longitudinal direction of the filament. Due to the highly orientated spherilites the fibres when viewed under polarised light show a distinctive bright yellow colouration demonstrating a degree of crystallinity.
  • When polypropylene is used in the current invention and is thermally bonded at a temperature greater than the crystalline melt temperature of the polypropylene the spherilites become more randomly orientated and under polarised light show only slight evidence of yellow colouration.
  • It is recognised for current beverage infusion bags formed having a seal produced by mechanical compression that if the initially formed dry seal is below a predefined value then the strength of the crimp in the wet state (wet crimp) will be insufficient. However the current invention can produce a more than adequate wet crimp seal for microwave use for only a small increase in wet crimp strength.
  • The material of the second aspect of the invention or any other material from which a beverage infusion package in accordance with the first aspect of the invention is to be produced may be treated (by either addition to the wet pulp stock suspension or at a size press unit) with agents known per se for imparting wet and dry strength, e.g. carboxymethyl cellulose (CMC) and epichlorohydrin (e.g. available under the name KYMENE (Trade Mark). These agents may be used such as to provide at least 1% by weight thereof on the material.
  • Particularly in the case where the web is treated with epichlorohydrin, it is preferred that it is also treated with poly(vinyl alcohol) which acts to increase dry strength and (in conjunction with epichlorohydrin) improves wet crimp strength. The poly(vinyl alcohol) is preferably one having a degree of hydrolysis of at least 60%, more preferably at least 80%, and most preferably 95% to 99.9%.
  • The poly(vinyl alcohol) may for example of the type known as the "super-hydrolysed" variety, e.g. as available under the AIRVOL (Trade Mark) as available from Air Products.
  • Levels at which the poly(vinyl alcohol) will be applied to the web will generally be in the range 0.5 to 4% by weight typically 1.0 to 2% by weight.
  • It is possible for the porous fibrous material (from which the infusion package is produced) to be relatively hydrophilic such that, during brewing of the beverage, the bag rapidly wets out and sinks in the brew liquor providing a satisfactory infusion rate. The hydrophilicity of the porous fibrous material may be measured by a water climb test in which the lower end of a vertically disposed strip (1"x 5" (2.54 x 12.70cm)) of the material is dipped into water and then time taken for the water to rise 1" (2.54cm) up the material is measured. In accordance with the invention it is preferred that the porous, fibrous material has a water climb value of less than 70 seconds, e.g. 20 to 40 seconds, ideally about 30 seconds.
  • A further means of measuring, hydrophilicity is by the Water Drop Test in which a micro syringe is used to drop a small bead of water at ambient temperature on to a single layer of the infuser web, which is supported around its perimeter by a small diameter ring, typically 2" (5.08cms). The time taken for the droplet of water to spread out and collapse into the infuser web, i.e. zero contact angle, is timed by means of a stopwatch. It is preferred that the porous, fibrous material has a value in the Water Drop Test of less than 10 seconds, more preferably less than 5 seconds, and even more preferably less than 1 second.
  • The hydrophilicity of the web may be achieved by treatment with epichlorohydrin and poly(vinyl alcohol).
  • The invention will be illustrated by the following non-limiting Examples in which porous fibrous material (in accordance with the second aspect of the invention) were produced as illustrated in Examples 4 and 5. Examples 1-3 represent comparative materials.
  • Example 1 - (Comparative)
  • A standard NHSTB 12.3-13.0 gsm infuser web was produced on an inclined pilot paper machine from 70% Manila and 30% soft wood and bonded with 1% Kymene and 2% CMC. This material was then slit to 94.3 mm coils and conditioned in a humidified laboratory to the typical industry standard of 7-8% moisture content, as low moisture is known to significantly affect conversion parameters adversely.
  • Example 2 - (Comparative)
  • A USA style latex NHSTB prototype at 12.3-13.0 gsm infuser web was produced in the inclined pilot paper machine from 70% Manila and 30% softwood and bonded with 1% Kymene and 13.5% of a co-polymer of Ethyl and Butyl acrylate latex. This material was then slit to 94.3mm coils and conditioned in a humidified laboratory to the typical industry standard of 7-8% moisture content.
  • Example 3 - (Comparative)
  • A European style latex NHSTB prototype at 12.3-13.0 gsm infuser web was produced on the inclined pilot paper machine from 60% Manila, 30% softwood, 10% hardwood and bonded with 1% Kymene and 13.5% of a co-polymer of methacrylate Styrene Butadiene latex. This material was then slit to 94.3 mm coils and conditioned in a humidified laboratory to the typical industry standard of 7-8% moisture content.
  • Example 4 - (Invention)
  • A standard NHSTB 12.3-13.0 gsm infuser web was produced on the inclined pilot paper machine from 55% Manila and 30% softwood, 15% Polypropylene (3 denier, 5mm) and bonded with 1% Kymene. During the production of this material the polypropylene was "fused"/"thermally bonded" to an amorphous state by taking the polymer past its crystalline melt temperature. This material was then slit to 94.3mm coils and conditioned in a humidified laboratory to the typical industry standard of 7-8% moisture content.
  • Example 5 - (Invention)
  • A standard NHSTB 12.3-13.0 gsm infuser web was produced on the inclined pilot paper machine from 55% Manila and 30% softwood, 15% polypropylene (3 denier, 5mm) and bonded with 1% Kymene and 2% PVOH (Airvol 165). During the production of this material the polypropylene was "fused"/"thermally bonded" to an amorphous state by taking the polymer past its crystalline melt temperature. This material was then slit to 94.3mm coils and conditioned in a humidified laboratory to the typical industry standard of 7-8% moisture content.
  • The materials produced in Examples 1 to 5 were subjected to a number of Tests as detailed below. Unless otherwise stated, tea bags for use in the Tests were produced on a Constanta NHSTB Machine at a speed of 140 bags/min. The bags were dosed with 1.8 grams of black tea equally between the two chambers and the enclosure made as standard using a steel staple.
  • Test 1 - Microwave Crimp Failure
  • The energy out put of microwaves has increased dramatically over the recent couple of years and is now typically 850-1200 watts for domestic appliances. It has also been observed that the energy inputted to the fusion packet during the typical brew cycle can also vary for a given microwave wattage depending on make, model and whether the microwave is "cold" i.e. the first use or is "hot" i.e. the second and subsequent uses during a sustained period.
  • The test regime that has been adopted to evaluate the above observation and to provide a broad indication of infusion material acceptability over a range of conditions is outlined as follows:
    • Microwave used in a 1200 watt variable power domestic unit made by Philips Industries.
    • Water used is drawn from a domestic cold water supply common to the region.
    • 5 replicates are performed with out any cool down times between tests.
    • The bags are placed into 175ml of water at ambient temperature, contained by a grade B 250 ml laboratory beaker.
    • The beaker is observed, through the glass door, during both microwaving and then in removal from the microwave and following recorded:
      • Does the crimp fin seal fail during the brewing process as indicated by tea leaf present in the beaker.
      • When the tea bag is removed and the top stapled seal opened does the crimped fin seal show signs of deforming such that the bag is on the verge of opening.
    • The test is then repeated immediately for the next replicate until the 5 samples have been tested.
    • The microwave is then allowed to cool down to ambient temperature and the test is then repeated at the next power setting (90%) until the full range of setting (60-100%) have been evaluated for a given sample type.
  • The results are shown in Table 1.
  • Microwave Crimp Failure Vs Energy Input Table 1
  • Ex 1 Ex 2 Ex 3 Ex 4 Ex 5
    % Energy Input JRC NHSTB Latex Product USA Latex Product EU Microwave NHSTB Microwave NHSTB
    100 Total failure Total failure Total failure No failure No failure
    90 Total failure Total failure Total failure No failure No failure
    80 Total failure Total failure Total failure No failure No failure
    70 Total failure Open on inspection No failure No failure No failure
    60 Open on inspection No failure No failure No Failure No failure
  • Test 2 - Tea Sift
  • The amount of tea that is allowed to pass through the infuser web is of critical importance as it limits how the tea bag producer can blend/mill the tea used. This impacts on both the final infusion rate of the tea bag and how much tea is lost into the package during transport (Tea sift).
  • To assess comparatively the differences between infuser tissues the following test regime has been adopted and is outlined as follows:
    • 3 discrete size ranges of sand are used (75-106, 106-150, 150-221 microns)
    • The sand used is of the type produced by shot blasting and is fractionated in-house using graduated sieves.
    • The test is performed by weighing out 10.0g ±0.05g of the sand and placing it in a catchpot for each of the sand fraction.
    • The catchpot is then covered by a square of the test tissue across the opening
    • The catchpots are then stacked one on top of each other to form a column.
    • The stack is then carefully inverted.
    • The stack is then placed in an Endecote vertical shaker and vibrated for 10 minutes.
    • When the time is finished the catchpot stack is removed and carefully inverted so the tissue sample are again on top of each catchpot.
    • The residual sand in each catchpot is measured and the percentage "sift" of the paper determined by the product of the original and final sand weights.
    • The results are recorded under the appropriate sand range and the average "sift" ranking is established by taking the mean value of the 3 sand range results.
  • The results are shown in Table 2.
  • % Tea Sift Data Table 2
  • EX 1 Ex 2 Ex 3 Ex 4 Ex 5
    Particle JRC Latex Latex Microwave Microwave
    Size NHSTB Product Product NHSTB NHSTB
    Microns USA EU
    75-106 93.4 64.8 67.2 829 29.2
    106-150 21.9 31.7 30.1 60.5 37.5
    150-212 4.6 8.3 6.2 17.2 10.9
    AVET 40.0 34.9 34.5 56.9 42.53
  • Test 3 - Tea Infusion
  • The speed at which a specific tea blend infuses (Brews) is reliant on the impact of infusion packets and is obviously of key importance to the consumer.
  • To assess comparatively the impact in infusion rate of different infuser tissues the infusion rate is evaluated by measuring the colour change of the brew liquor of a period of time, typically 5-6 minutes, by colourimetry. The following test regime has been adopted and is outlined as follows:
    • The tea bag is contained in a holding cage, to maintain submergence in the water, is placed into a 1000 ml beaker containing a photometer probe and a magnetic stirrer. 700 ml of boiling de-ionised water is poured into the beaker at which point the test begins.
    • The initial (Time=zero seconds) photometer reading is taken and then at intervals until the end of the test at 270 seconds.
    • The brew liquor in the beaker is maintained at 85°C during the test by means of a heating plate.
  • The results are shown in Table 3.
  • Infusion Data Table No. 3
  • Light Transmission
    Ex1 Ex 2 Ex 3 Ex 4 Ex 5
    Infusion NHSTB Latex Latex Microwave Microwave
    Time Product Product NHSTB NHSTB
    Sec
    30 0.129 0.015 0.13 0.125 0.132
    90 0.523 0.321 0.299 0.481 0.300
    120 0.639 0.541 0.442 0.588 0.642
    150 0.721 0.690 0.569 0.669 0.729
    240 0.895 0.807 0.797 0.835 0.918
    270 0.935 0.859 0.853 0.968 0.958
  • Test 4 - Hydrophilicity
  • Water Climb and Water Drop Tests were conducted as described above.
  • The results are shown in Table 4.
  • Water Climb & Water Drop Test Data Table 4
  • Ex 1 Ex 2 Ex 3 Ex 4 Ex 5
    Water Water JRC Latex Latex Microwave Microwave
    Climb to Drop Test NHSTB Product Product HSTB HSTB
    1" (Secs) (Secs) USA EU
    30 <1 3 3
    50 <60 3
    300 >250 3
    400+ >450 3
  • Test 5 ― Wet Crimp
  • The dry strength of the crimp fin seal is of critical importance to both dry functionality in manufacture, packaging and end use, while the wet integrity of the crimped fin seal is obviously the key factor in brewing functionality.
  • To assess comparatively the differences between dry and wet crimp strengths of different infuser tissues, the following test regime has been adopted:
    • Tea bags are manufactured without tea being dosed to the individual bags.
    • The top seal is cut off 5 bags which are opened flat.
    • A 50mm section is cut from ostensibly each chamber side of the bag. Each section is then cut to give the side of the chamber section containing the crimped fin seal alone.
    • The sample is then loaded into the jaws of a tensile testing machine, such that the crimped fin seal is situated between the jaws.
    • A standard tensile assessment of the seal is then under taken and the results reported as grams/50mm.
    • The wet crimp test is identical to the above except that once loaded into the jaws of the tensile tester the sample is sprayed lightly with a mist of water at ambient temperature.
  • The results are shown in Table 5.
  • Wet Crimp Data Table No. 5
  • Typical Crimp Tensile Range (g/50mm)
    Ex 1 Ex 2 Ex 3 Ex 4
    Crimp Type NHSTB Latex Product Latex Product Microwave
    Dry 125-200 160-242 110-165 123-300
    Wet 9-13 20-36 16-21 17-25
  • Test 6 - Hot Water On Cup Brew
  • Herbal teas are of high bulk for a given grammage. The amount of tea dosed to herbal tea is still typically 1.5g-2.0g however the tea expands significantly during brewing and contains significant volumes of both ambient atmosphere and gases produced during the brewing process. The effect of this is to put an increased strain on the crimped fin seal, which with standard paper grades causing a rupturing of this seam.
  • To assess comparatively the differences between infuser tissues the following test regime has been adopted and is outlined as follows:
    • Tea bags are manufactured without tea being dosed to the individual bags.
    • 2 grams of peppermint tea is dosed between the two chambers and the top enclosed as standard with a steel staple.
    • The bags are placed in a 500ml b grade laboratory beaker
    • 200 ml of boiling domestic fresh water is poured on to the bag to determine if the bag:
      • Inflates (Balloons)
      • The crimped fin seal ruptures, as defined by tea leaves in the brew liquor.
    • The test is normally the result of 5 replicates and is reported as a percentage of the total tested.
  • The results are shown in Table 6
  • Hot Water On Cup Brew Test Table 6
  • Ex 1 Ex 2 Ex 3 Ex 4 Ex 5
    Pour on Typical Latex Latex Microwave Microwave
    Test NHSTB Product US Product EU HSTB HSTB
    Ballooning 100% 20% 30% 100% 100%
    Open on Inspection 0% 20% 20% 5% 5%
    Burst 90% 10% 15% 5% 0%

Claims (35)

  1. A beverage infusion package formed of porous, fibrous cellulsoic material and having a closure seam produced by a mechanical compression action without heat sealing, said porous material containsing thermoplastic fibres which are amorphous or are only partially crystalline characterised in that the thermoplastic fibres are present as a fused or thermally bonded network.
  2. A package as claimed in claim 1 wherein the thermoplastic has a crystallinity of less then 40%, preferably 10% to 20%.
  3. A package as claimed in claim 1 or 2 wherein the thermoplastic is selected from polypropylene, polyester, polyamide and high density polyethylene.
  4. A package as claimed in claim 3 wherein the thermoplastic is polypropylene.
  5. A package as claimed any one of claims 1 to 4 wherein the fibrous material comprises 5 to 30% by weight of the thermoplastic fibres.
  6. A package as claimed in claim 5 wherein the porous fibrous material comprises 10 to 30% by weight of thermoplastic fibres.
  7. A package as claimed in claim 6 wherein the porous fibrous material comprises 15% to 25% by weight of the thermoplastic fibres.
  8. A package as claimed in any one of claims 1 to 7 wherein the thermoplastic fibres have a thickness in the range 0.55 to 6.7 decitex (0.5 to 6.0 denier).
  9. A package as claimed in claim 8 wherein the thermoplastic fibres have a thickness in the range 2.2 to 4.4 decitex (2 to 4 denier).
  10. A package as claimed in any one of claims 1 to 8 wherein the porous fibrous material is hydrophilic.
  11. A package as claimed in claim 9 wherein the porous fibrous material has a water climb value of less than 70 seconds as measured by the time taken for water to rise 2.54 cm (1 inch) up that material.
  12. A package as claimed in claim 11 wherein the porous fibrous material has a water climb value of 20 to 40 seconds.
  13. A package as claimed in any one of claims 1 to 12 wherein the porous fibrous material has been treated with poly(vinyl alcohol) having a degree of hydrolysis of at least 60%.
  14. A package as claimed in claim 13 wherein the poly(vinyl alcohol) has a degree of hydrolysis of at least 80%.
  15. A package as claimed in claim 14 wherein the poly(vinyl alcohol) has a degree of hydrolysis of 95% to 99%.
  16. A package as claimed in any one of claims 1 to 15 wherein the porous fibrous material has a basis weight of 10 to 30 g m-2.
  17. A package as claimed in any one of claims 1 to 16 wherein the mechanically formed seam has been formed by folding over together adjacent edges of the porous material and applying a mechanical compressive force to the folded over edges.
  18. A package as claimed in any one of claims 1 to 17 wherein the seam is a crimped seam.
  19. A package as claimed in any one of claims 1 to 18 which is of the double-chamber type.
  20. A package as claimed in any one of claims 1 to 19 which is a tea bag.
  21. A porous fibrous material having a basis weight of 10 to 30 g m-2 and being comprised of a single, wet-laid layer of an admixture of cellulosic and thermoplastic fibres which are amorphous or only partially crystalline in that the thermoplastic fibres are present as a fused or thermally bonded network.
  22. A material as claimed in claim 21 wherein the thermoplastic has a crystallinity of less then 40%.
  23. A material as claimed in claim 21 or 22 wherein the thermoplastic is selected from polypropylene, polyester, polyamide and high density polyethylene.
  24. A material as claimed in claim 23 wherein the thermoplastic is polypropylene.
  25. A material as claimed any one of claims 21 to 24 wherein the fibrous material comprises 5 to 30% by weight of the thermoplastic fibres.
  26. A material as claimed in claim 25 wherein the porous fibrous material comprises 10 to 30% by weight of thermoplastic fibres.
  27. A material as claimed in claim 26 wherein the porous fibrous material comprises 15% to 25% by weight of the thermoplastic fibres.
  28. A material as claimed in any one of claims 21 to 27 wherein the thermoplastic fibres have a thickness in the range 0.55 to 6.7 decitex (0.5 to 6.0 denier).
  29. A material as claimed in claim 28 wherein the thermoplastic fibres have a thickness in the range 2.2 to 4.4 decitex (2 to 4 denier).
  30. A material as claimed in any one of claims 21 to 29 wherein the porous fibrous material is hydrophilic.
  31. A material as claimed in claim 30 wherein the porous fibrous material has a water climb value of less than 70 seconds as measured by the time taken for water to rise 2.54 cm (1 inch) up that material.
  32. A material as claimed in claim 31 wherein the porous fibrous material has a water climb value of 20 to 40 seconds.
  33. A material as claimed in any one of claims 21 to 32 wherein the porous fibrous material has been treated with poly(vinyl alcohol) having a degree of hydrolysis of at least 60%.
  34. A material as claimed in claim 33 wherein the poly(vinyl alcohol) has a degree of hydrolysis of at least 80%.
  35. A material as claimed in claim 34 wherein the poly(vinyl alcohol) has a degree of hydrolysis of 95% to 99%.
EP00985547A 1999-12-13 2000-12-13 Beverage infusion packages and materials therefor Expired - Lifetime EP1237447B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB9929349 1999-12-13
GBGB9929349.0A GB9929349D0 (en) 1999-12-13 1999-12-13 Beverage infusion packages and materials therefor
GB9929452 1999-12-14
GBGB9929452.2A GB9929452D0 (en) 1999-12-14 1999-12-14 Beverage infusion packages and materials therefor
PCT/GB2000/004759 WO2001041610A2 (en) 1999-12-13 2000-12-13 Beverage infusion packages and materials therefor

Publications (2)

Publication Number Publication Date
EP1237447A2 EP1237447A2 (en) 2002-09-11
EP1237447B1 true EP1237447B1 (en) 2006-02-22

Family

ID=26316117

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00985547A Expired - Lifetime EP1237447B1 (en) 1999-12-13 2000-12-13 Beverage infusion packages and materials therefor

Country Status (5)

Country Link
EP (1) EP1237447B1 (en)
AT (1) ATE318095T1 (en)
AU (1) AU2195901A (en)
DE (1) DE60026170T2 (en)
WO (1) WO2001041610A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0219600D0 (en) 2002-08-22 2002-10-02 J R Crompton Ltd Beverage package
GB0313708D0 (en) * 2003-06-13 2003-07-16 J R Crompton Ltd Beverage package
GB0503714D0 (en) * 2005-02-23 2005-03-30 J R Crompton Ltd Beverage package
DE102018107944B3 (en) * 2018-04-04 2019-06-19 Delfortgroup Ag IMPROVED FILTER PAPER, MANUFACTURING METHOD AND BAG OBTAINED THEREFROM

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2925171A (en) * 1958-10-13 1960-02-16 Pneumatic Scale Corp Infusion bag and method of making the same
DE1800032A1 (en) * 1968-04-08 1969-10-23 Adolf Rambold Infusion bags, especially for tea
US6303769B1 (en) 1994-07-08 2001-10-16 Immunex Corporation Lerk-5 dna

Also Published As

Publication number Publication date
AU2195901A (en) 2001-06-18
WO2001041610A2 (en) 2001-06-14
WO2001041610A3 (en) 2002-01-17
EP1237447A2 (en) 2002-09-11
ATE318095T1 (en) 2006-03-15
DE60026170T2 (en) 2006-11-23
DE60026170D1 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
US20030113411A1 (en) Beverage infusion packages and materials therefor
US4769175A (en) Sheet-like, oxygen-scavenging agent
US5601716A (en) Filter material
AU2004210563B2 (en) Filter material
CN115339193A (en) Coffee capsule closed with a compostable lid comprising an oxygen barrier
EP2712959A9 (en) Transparent filter material
CN110462134A (en) Manufacture method, ontology sheet material and the laminate wrapping material comprising cellulosic fibre material of the cellulosic fibre material of formation of foam
CN111936700B (en) Improved filter paper
EP1237447B1 (en) Beverage infusion packages and materials therefor
JP6619964B2 (en) Heat seal paper and method for producing the same
JP4263948B2 (en) Tea bag for cold water extraction
JPH1086970A (en) Base paper for filter pack provided with heat-seal property
ES2329740T3 (en) THERMOSELABLE BAND MATERIAL FOR INFUSIONS AND MANUFACTURING PROCEDURE.
EP0632163B1 (en) Process of producing porous web materials used for making infusion packages for brewing beverages and the web materials thus produced
JP6949588B2 (en) Manufacturing method of non-woven fabric for extraction filter and non-woven fabric for extraction filter
WO2004018770A1 (en) Beverage package
JPH11107153A (en) Packaging material comprising conjugate filament nonwoven fabric
EP1325979A1 (en) Non-heat seal infusion package material
JPH10165732A (en) Sheet for filter bag
JP2003213591A (en) Improvement of dry flexural strength of cold injection packaging material
JPH06248595A (en) Heat-sealable casing and paper for casing
KR0153412B1 (en) Cellulose pulp and synthetic pulp blended paper for wrapping foods and manufacturing method thereof
WO2004110873A2 (en) Beverage package
JPH10128895A (en) Sheet for filter bag
RU2773445C2 (en) Improved filter paper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020605

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20021218

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060222

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060222

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060222

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060222

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060222

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060222

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60026170

Country of ref document: DE

Date of ref document: 20060427

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060522

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060602

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061207

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061208

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20061213

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

26N No opposition filed

Effective date: 20061123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060222

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061213

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060222