EP1216098B1 - Device for carrying out chemical or biological reactions - Google Patents

Device for carrying out chemical or biological reactions Download PDF

Info

Publication number
EP1216098B1
EP1216098B1 EP00966090A EP00966090A EP1216098B1 EP 1216098 B1 EP1216098 B1 EP 1216098B1 EP 00966090 A EP00966090 A EP 00966090A EP 00966090 A EP00966090 A EP 00966090A EP 1216098 B1 EP1216098 B1 EP 1216098B1
Authority
EP
European Patent Office
Prior art keywords
segments
reaction vessel
receiving element
segment
vessel receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00966090A
Other languages
German (de)
French (fr)
Other versions
EP1216098A1 (en
Inventor
Wolfgang Heimberg
Markus Schürf
Thomas Herrmann
Matthias KNÜLLE
Tilmann Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MWG Biotech AG
Original Assignee
MWG Biotech AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MWG Biotech AG filed Critical MWG Biotech AG
Publication of EP1216098A1 publication Critical patent/EP1216098A1/en
Application granted granted Critical
Publication of EP1216098B1 publication Critical patent/EP1216098B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/54Heating or cooling apparatus; Heat insulating devices using spatial temperature gradients

Definitions

  • the present invention relates to a device for carrying out chemical or biological reactions, with a reaction vessel receiving body for receiving reaction vessels, the reaction vessel receiving body having a plurality of arranged in a regular grid recesses for receiving reaction vessels, a heater for heating the reaction vessel receiving body, and a cooling device for cooling the reaction vessel receiving body.
  • thermal cyclers or thermal cycler devices and are used to generate certain temperature cycles, i. e. that set in the reaction vessels predetermined temperatures and predetermined Time intervals are kept.
  • Such a device is known from US 5,525,300.
  • This device has four reaction vessel receiving bodies, each with in a regular Grid arranged recesses are formed.
  • the grid of the recesses corresponds to one known from standardized microtiter plates Raster of reaction vessels, leaving microtiter plates with their reaction vessels can be used in the recesses.
  • the heating and cooling means of one of the reaction vessel receiving body are formed such that a over the reaction vessel receiving body extending temperature gradient can be generated. This means that while a temperature cycle in the individual reaction vessels different Temperatures can be achieved. This makes it possible to specific Perform experiments simultaneously with different temperatures.
  • This temperature gradient is used to determine the optimal denaturation temperature, the optimal annealing temperature and the optimal elongation temperature used a PCR reaction. This is done in the individual reaction vessels introduced the same reaction mixture and then to carry out the PCR reaction necessary temperature cycles executed.
  • Such a temperature cycle involves heating the reaction mixtures to the denaturation temperature, which is usually in the range of 90 ° -95 ° C, the cooling on the Annealing temperature, which is usually in the range of 40 ° -60 ° C, and the Heating to the elongation temperature, usually in the range of 70 ° -75 ° C. lies. Such a cycle is repeated several times, whereby a predetermined DNA sequence is amplified.
  • the annealing temperature at which the primers are annealed has a strong Influence on the result. But the elongation temperature can also be or adversely affect the result. At a higher elongation temperature the accumulation of the bases is accelerated, whereby the probability of higher temperature errors. In addition, at a higher elongation temperature the life of the polymerase shorter.
  • a thermal cycler device that adjusts a temperature gradient can, provides a significant facilitation in identifying the desired Temperatures, as a reaction mixture in a single Thermocyclervoriques simultaneously undergo cycles with different temperatures can.
  • Another important parameter for the success of a PCR reaction is the Dwell time at the individual temperatures for denaturation, annealing and the elongation and the rate of change of the temperature. These parameters can not in the known device in a series of experiments on a single Reaction vessel holder can be varied. Do you want different lengths of stay and rate of change, this can be done in several series of experiments either in a thermal cycler device sequentially or in multiple thermal cycler devices run at the same time.
  • US 5,819,842 is a device for individual, controlled heating several samples.
  • This device has a plurality of flat Heating elements, which are arranged like a grid on a work surface. Below the heating elements, a cooling device is formed which extends over all Heating elements extends.
  • a specially designed sample plate placed on the work surface.
  • This sample plate has a grid plate on, which is covered at the bottom with a foil. In the recesses the grid plate, the samples are introduced. The samples are at this Device only separated by the film on the individual heating elements on. As a result, an immediate heat transfer is achieved.
  • WO 98/20975 describes a thermal cycler which is divided into four segments is, which are separately controllable. Will the individual fields be different? controlled, so are temperature gradients over a wide range of the thermal cycler.
  • US 5,716,842 relates to a miniaturized thermal cycler device with a meandering trained reaction chamber. Individual sections the reaction chamber are adjusted to different temperatures, so that when flowing through the reaction liquid through the reaction chamber the reaction liquid depending on the location of different temperatures is suspended and a predetermined temperature profile decreases. This Temperature profile is adjusted so that the reaction liquid is a PCR reaction performs.
  • thermocycling apparatus comprising a tempering block 12, are integrated in the heat pipes, as uniform as possible Temperature distribution - here in the vertical direction - to ensure.
  • These heat pipes correspond to those described in the present patent application on page Heat pipes, which serve as a temperature compensation element.
  • heating elements and a cooling chamber are provided on the bottom this tempering block, with which the tempering be heated or cooled accordingly can.
  • EP 0 488 769 A2 shows a thermocycling device in which the temperature-controllable Area is divided into a central area and border areas, where the edge areas can be controlled independently of the central area.
  • the Edge areas are usually with greater heat output than the central area controlled, so that the greater heat dissipation in the area of the edge areas compensate. This is for uniform temperature adjustment via the entire temperature range.
  • the invention is based on the object, the device mentioned in the introduction to develop that the disadvantages described above are avoided and the parameters of the PCR process can be optimized very flexibly.
  • the invention is characterized in that the reaction vessel receiving body is divided into several segments, and the individual segments thermally are decoupled and each segment is assigned a heating device that is independent can be controlled from each other.
  • the individual segments of the device can be independent of each other be set to different temperatures. This allows in not only different temperature levels are set to the segments can, but also held for different lengths or with different Change rates can be changed.
  • the device according to the invention thus allows optimization of all critical for a PCR process physical Parameter, wherein the optimization process on a single reaction vessel receiving body can be performed in which a microtiter plate can be used.
  • the thermal cycler device according to the invention is in particular for optimization the multiplex PCR method, in which several different Primers are used.
  • Fig. 1 is a first embodiment of the device 1 according to the invention for carrying out chemical and / or biological reactions schematically in Section shown.
  • the device has a housing 2 with a bottom wall 3 and side walls 4 on. A piece above the bottom wall 3 is parallel to the bottom wall 3, an intermediate wall 5 is arranged, on which a plurality of base 5a are formed.
  • a housing 2 with a bottom wall 3 and side walls 4 on.
  • a piece above the bottom wall 3 is parallel to the bottom wall 3, an intermediate wall 5 is arranged, on which a plurality of base 5a are formed.
  • Fig. 1 are total six sockets 5a provided, which are arranged in two rows á three sockets 5a.
  • a respective heat exchanger 6 On the bases 5a is a respective heat exchanger 6, a Peltier element 7 and a Segment 8 of a reaction vessel receiving body 9 is arranged.
  • the heat exchanger 6 is part of a cooling device and the Peltier element 7 is part a combined heating and cooling device.
  • the on the sockets 5a arranged elements heat exchanger, Peltier element, segment
  • the on the sockets 5a arranged elements are with a glued good heat-conductive adhesive resin, creating between these elements a good heat transfer is realized, and the elements also become one Segment part 10 are connected.
  • the device has a total of six such Segment parts 10 on.
  • adhesive resin may also be a heat conducting or a plantepaste be provided.
  • the segments 8 of the reaction vessel receiving body 9 each have a base plate 11 integrally formed thereon tubular, thin-walled reaction vessel holders 12 on.
  • a base plate 11 integrally formed thereon tubular, thin-walled reaction vessel holders 12 on.
  • 4 x 4 reaction vessel holder 12 are arranged on a base plate 11.
  • the distance d between adjacent segments 8 is dimensioned such that the reaction vessel holder 12 of all segments 8 in a regular grid with constant grid spacing D are arranged.
  • the grid spacing D is chosen that a standardized microtiter plate with their reaction vessels in the Reaction vessel holder 12 can be used.
  • the reaction vessel holders 12 of the device shown in Fig. 1 form a grid with a total of 96 reaction vessel holders in eight rows á twelve reaction vessel holder 12 are arranged.
  • the Peltier elements 7 are each electrically connected to a first control device 13 connected.
  • the heat exchangers 6 are each via a separate cooling circuit 14 connected to a second control device 15.
  • a cooling medium For example, water used in the cooling temperature control device is used is before it is transported to one of the heat exchanger 6.
  • the first control device 13 and the second control device 15 are connected to a central control device 16 connected to the to be executed in the device Temperature cycles controls.
  • a switching valve 19th introduced by the central control unit 16 for opening or closing the respective cooling circuit 14 is controlled.
  • a lid 17 is pivotally mounted, in which further heating elements 18 in the form of Peltier elements, heating foils or semiconductor heating elements can be arranged.
  • the heating elements 18 form Deckelloomamine, the each associated with a segment 8 and individually with the first control device 13 are connected so that each heating element 18 are controlled individually can.
  • the segments are at different temperatures controlled, the temperatures being controlled so that the temperature difference ⁇ T of adjacent segments 8 less than a predetermined value K is, for example, 5 ° -15 ° C.
  • K is, for example, 5 ° -15 ° C.
  • the value to be chosen for K depends on the quality of the thermal decoupling. For K, a higher value can be chosen the better the thermal decoupling.
  • the user entered temperature cycles can be from the central Control device 16 are automatically distributed to the segments 8, so that the Temperature differences between adjacent segments as small as possible being held.
  • This second operating mode can be provided with a function with which the User enters only a single temperature cycle or PCR cycle, and the central controller 16 then automatically varies this cycle.
  • the too varying parameters such as temperature, residence time or temperature change rate, can be selected by the user individually or in combination. The variation of the parameters takes place either after a linear or sigmoidal Distribution.
  • the Segments 8 In the third operating mode, only a part of the segments are activated.
  • the Segments 8 have side edges 20 in plan view (FIGS. 3, 4, 6 to 9). In this mode of operation, they become a driven segment 8 whose side edges adjacent segments 8 are not driven. Educate the Segments 8 themselves a regular grid (Fig. 3, Fig. 4, Fig. 6, Fig. 7 and Fig. 8), the driven segments are distributed as in a checkerboard pattern. In the embodiments shown in FIGS. 1 to 4, three of the six Segments 8 are driven, namely the two outer segments of a row and the middle segment of the other row.
  • the driven segments are not affected by the affected other segments, whereby their temperature completely independent can be adjusted by the other driven segments. hereby It is possible to different temperature cycles on the individual To descend segments, wherein one of the segments, for example, to the denaturation temperature heated and kept another at the annealing temperature becomes. So it is possible to keep the dwell times, i.e., the time intervals during the the denaturation temperature, annealing temperature and elongation temperature is held, as well as the temperature change rates set arbitrarily and at the same time leave at the individual segments. This makes it possible not only the temperatures, but also the dwell times and the rates of temperature change to optimize.
  • the non-driven Segments 8 may be appropriate, so that their temperature is approximately in the range of lowest temperature of the adjacent adjacent driven segments. This avoids that the non-driven segments a heat sink form for the driven segment and their temperature profile disadvantageous influence.
  • FIG. 2 and 3 A second embodiment of the device according to the invention is shown in FIG. 2 and 3.
  • the basic structure corresponds to that of FIG. 1, why the same Parts are provided with the same reference numerals.
  • the second embodiment differs from the first embodiment in that the adjacent to the side walls 4 of the housing 2 Side edges 20 of the segments 8 in one on the inner surface of the side walls Engage 4 circumferential groove 21 and therein, for example, are fixed by gluing. hereby the individual segment parts 10 are spatially fixed, thereby ensuring is that despite the formation of the gap between the segment parts 10 all reaction vessel holder 12 arranged in the grid of the reaction vessels of a microtiter plate are.
  • the side walls 4 of the housing 2 are made of a non-heat-conducting Material formed. This embodiment may also be so be modified so that the groove 21 in a separate from the housing 2 trained frame is introduced. The frame and its inserted Segments form a separately manageable part in the production, which on the Heating and cooling devices is glued.
  • FIGS. 4 and 5 A third embodiment is shown schematically in FIGS. 4 and 5.
  • Struts 22 of a non-thermally conductive material just below the base plates 11 of the segments 8 arranged.
  • At the side edges 20 of the segments eighth or the base plates 11 are formed downwardly angled hook elements 23.
  • These hook elements 23 engage in corresponding recesses of the Struts 22 a (Fig. 5), whereby the segments 8 are fixed in position.
  • the hook elements 23 adjacent segments 8 are arranged offset to one another.
  • the struts 22 thus form a grid, in whose openings in each case a segment. 8 can be used.
  • This type of positional fixation is very advantageous because the interfaces between the Segments 8 and the struts 22 are very small, causing heat transfer is correspondingly low over the struts 22.
  • this arrangement can also in the confined spaces between adjacent segment parts easy will be realized.
  • reaction vessel receiving body 9 are schematically in plan view reaction vessel receiving body 9, the further modifications of the device according to the invention represent.
  • reaction vessel receiving bodies 9 are the individual Segments 8 by means of webs 24 of a heat-insulating material to a Unit connected.
  • the struts 22 are between the side edges 20 of the base plates 11 arranged and fixed to this example. By gluing.
  • the segmentation of the reaction vessel receiving body of Fig. 6 corresponds those of the first and second embodiments (Figs. 1-3), wherein on each Segment 8 4 x 4 reaction vessel holder are arranged.
  • the reaction vessel receiving body 9 shown in FIG. 7 is composed of 24 segments 8 each with 4 x 4 Reaction vessel holder 12 composed, wherein the segments 8 are in turn connected by means of thermally insulating webs 24.
  • each segment has 8 only a single reaction vessel holder 12.
  • the thermal cycler temperature sensors which scan the temperatures of the individual segments, so that after the Temperature values determined by the temperature sensors, the temperature of the segments 8 is regulated in a closed loop.
  • Infrared sensors can be used, the e.g. are arranged in the lid. With this sensor arrangement, it is possible to Sensing temperature of the reaction mixture directly.
  • Fig. 9 shows a reaction vessel receiving body 9 with six in plan view rectangular segments 8 and one in the shape of a double cross of three itself intersecting rows of reaction vessel holders 12 formed segment 8a.
  • the Six rectangular segments 8 are each a row or column of reaction vessel holders spaced from the next rectangular segment. This segmentation is particularly advantageous for the third operating mode explained above, because the rectangular segments 8 do not touch and therefore simultaneously can be controlled arbitrarily, with only the segment 8a in Form of a double cross is not controlled.
  • the segments 8 of the Christsgafäßability stresses 9 are made of a good heat conducting Metal, e.g. Aluminum, formed.
  • a good heat conducting Metal e.g. Aluminum
  • the above as non-heat-conducting Materials or materials designated as heat-insulating are either plastics or ceramics.
  • FIG. 11 A further embodiment of the device according to the invention is shown in FIG. 11 shown.
  • the individual segments 8b of the reaction vessel receiving body 9 fixed by means of a clamping frame 25 (Fig. 10).
  • the clamping frame 25 is a lattice-shaped longitudinal struts 26 and transverse struts 27th formed, wherein the struts 26, 27 span openings. Through these openings extend the reaction vessel holder 12 of the segments 8b. At present Embodiment are the struts 26, 27 approximately positively the Christsgefäßhaltem 12 and on the on the reaction vessel holders above Base plate 11 on.
  • the clamping frame 25 is provided with holes 28, that of bolts 29 for fixing the tenter on a thermal cycler device 1 be penetrated.
  • the heat sink 30 is provided with holes through which extend the bolt 29, which at the from the reaction vessel receiving body 9 facing away from the heat sink 30 are each fixed with a nut 32.
  • the clamping frame 25 is made of a non-thermally conductive material, in particular made of POM or polycarbonate. It thus allows a fixation of the segments 8b of the reaction vessel receiving body 9, wherein the individual elements between the segments 8b and the heat sink 30 are under tension, so that in the vertical direction a good heat transfer between the individual elements is guaranteed. Since the clamping frame itself is battle-heat-conducting, the heat transfer between two adjacent segments 8b becomes low held. To further reduce the heat transfer between two adjacent Segments may be those in contact with the segments 8b Be provided surfaces of the clamping frame 25 with narrow webs, so that in the areas adjacent to the webs air gaps between the clamping frame 25 and the segments 8b are formed.
  • a heat pipe 33 is installed between two rows of Reaction vessel holders 12 each have a so-called heat pipe 33 is installed.
  • a heat pipe is, for example, from the company THERMACORE INTERNATIONAL, Inc., USA. It consists of a gas-tight jacket in which only a small amount of fluid is located. There is such a thing in the heat pipe low pressure, that the liquid fluid in a state of equilibrium between the liquid and the gaseous state of aggregation and consequently vaporized on a warmer section of the heat pipe and on a cooler one Condensed section. As a result, between the individual sections the Temperature balanced. For example, water or freon is used as the fluid.
  • FIG. 11 A further embodiment of the inventive thermal cycler device 1 is shown in FIG. This thermal cycler device 1 is similar to that in FIG. 11 shown formed, which is why the same parts designated by the same reference numerals are.
  • the segments 8c of this thermal cycler device have no heat pipes on. Instead of heat pipes are in the area below the segments 8c in each case a temperature compensation plate 34 is provided. These temperature compensation plates 34 are sheet-like elements whose area of the base one of the segments 8c corresponds. These temperature compensation plates 34 are Hollow body with a small amount of fluid and work the same way Working principle like the heat pipes. This in turn ensures that it within a segment 8c there are no temperature fluctuations.
  • the temperature compensation plate can also be made of very good thermal conductivity Materials such as e.g. Copper, be formed.
  • additional heating and / or cooling elements e.g. Heaters, Heating coils or Peltier elements, be integrated.
  • the heating and cooling elements support homogeneity and allow faster heating and / or cooling rates.
  • a Peltier element which usually does not have a uniform temperature distribution has, is preferably combined with a flat heating element.
  • the invention is above based on embodiments with 96 recesses for receiving a microtiter plate with 96 reaction vessels.
  • the invention is not limited to this number of recesses. So
  • the reaction vessel receiving body may also have 384 recesses for Have a corresponding microtiter plate.
  • a cooling device with used a liquid cooling medium In the embodiments described above, a cooling device with used a liquid cooling medium. It is also within the scope of the invention possible, instead of a liquid cooling medium and a gaseous cooling medium, in particular to use an air cooling.
  • reaction vessel receiving bodies are made of a base plate formed with approximately tubular reaction vessel holders.
  • a metal block in the recesses for accommodating the reaction vessels of the microtiter plate are.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The invention relates to a device for carrying out chemical or biological reactions, having a reaction vessel receiving element for receiving a microtiter plate with several reaction vessels, where the reaction vessel receiving element has several recesses arranged in a regular pattern to receive the respective reaction vessels, a treating device for heating the reaction vessel receiving element, and a cooling device for cooling the reaction vessel receiving element. The reaction vessel receiving element is divided into several segments so that the individual segments are thermally decoupled from one another, and each segment is assigned a heating device which can be actuated independently of the others. By means of the segmentation of the reaction vessel receiving element, it is possible for zones to be set and held at different temperatures. Since the reaction vessel receiving element is suitable for receiving standard microtiter plates, the device according to the invention may be integrated in existing process sequences.

Description

Die vorliegende Erfindung betrifft eine Vorrichtung zur Durchführung chemischer oder biologischer Reaktionen, mit
einem Reaktionsgefäßaufnahmekörper zum Aufnahmen von Reaktionsgefäßen, wobei der Reaktionsgefäßaufnahmekörper mehrere in einem regelmäßigen Raster angeordnete Ausnehmungen zur Aufnahme von Reaktionsgefäßen aufweist, einer Heizeinrichtung zum Erhitzen des Reaktionsgefäßaufnahmekörpers, und einer Kühleinrichtung zum Kühlen des Reaktionsgefäßaufnahmekörpers.
The present invention relates to a device for carrying out chemical or biological reactions, with
a reaction vessel receiving body for receiving reaction vessels, the reaction vessel receiving body having a plurality of arranged in a regular grid recesses for receiving reaction vessels, a heater for heating the reaction vessel receiving body, and a cooling device for cooling the reaction vessel receiving body.

Diese Vorrichtungen werden als Thermocycler bzw. Thermocyclervorrichtungen bezeichnet und dienen zum Erzeugen von bestimmten Temperaturzyklen, d.h., dass in den Reaktionsgefäßen vorbestimmte Temperaturen eingestellt und vorbestimmte Zeitintervalle gehalten werden.These devices are used as thermal cyclers or thermal cycler devices and are used to generate certain temperature cycles, i. e. that set in the reaction vessels predetermined temperatures and predetermined Time intervals are kept.

Eine derartige Vorrichtung ist aus der US 5,525,300 bekannt. Diese Vorrichtung weist vier Reaktionsgefäßaufnahmekörper auf, die jeweils mit in einem regelmäßigen Raster angeordneten Ausnehmungen ausgebildet sind. Das Raster der Ausnehmungen entspricht einem von standardisierten Mikrotiterplatten bekannten Raster von Reaktionsgefäßen, so dass Mikrotiterplatten mit ihren Reaktionsgefäßen in die Ausnehmungen eingesetzt werden können.Such a device is known from US 5,525,300. This device has four reaction vessel receiving bodies, each with in a regular Grid arranged recesses are formed. The grid of the recesses corresponds to one known from standardized microtiter plates Raster of reaction vessels, leaving microtiter plates with their reaction vessels can be used in the recesses.

Die Heiz- und Kühleinrichtungen eines der Reaktionsgefäßaufnahmekörper sind derart ausgebildet, dass eine sich über den Reaktionsgefäßaufnahmekörper erstreckender Temperaturgradient erzeugt werden kann. Dies bedeutet, dass während eines Temperaturzyklusses in den einzelnen Reaktionsgefäßen unterschiedliche Temperaturen erzielt werden können. Hierdurch ist es möglich, bestimmte Experimente gleichzeitig mit unterschiedlichen Temperaturen auszuführen.The heating and cooling means of one of the reaction vessel receiving body are formed such that a over the reaction vessel receiving body extending temperature gradient can be generated. This means that while a temperature cycle in the individual reaction vessels different Temperatures can be achieved. This makes it possible to specific Perform experiments simultaneously with different temperatures.

Dieser Temperaturgradient wird zum Ermitteln der optimalen Denaturierungstemperatur, der optimalen Annealingtemperatur und der optimalen Elongationstemperatur einer PCR-Reaktion verwendet. Hierzu wird in den einzelnen Reaktionsgefäßen das gleiche Reaktionsgemisch eingebracht und dann die zum Durchführen der PCR-Reaktion notwendigen Temperaturzyklen ausgeführt. Ein solcher Temperaturzyklus umfaßt das Erhitzen der Reaktionsgemische auf die Denaturierungstemperatur, die üblicherweise im Bereich von 90°-95°C liegt, das Abkühlen auf die Annealingtemperatur, die üblicherweise im Bereich von 40°-60°C liegt, und das Erhitzen auf die Elongationstemperatur, die üblicherweise im Bereich von 70°-75°C liegt. Ein solcher Zyklus wird mehrere Male wiederholt, wodurch eine vorbestimmte DNA-Sequenz amplifiziert wird.This temperature gradient is used to determine the optimal denaturation temperature, the optimal annealing temperature and the optimal elongation temperature used a PCR reaction. This is done in the individual reaction vessels introduced the same reaction mixture and then to carry out the PCR reaction necessary temperature cycles executed. Such a temperature cycle involves heating the reaction mixtures to the denaturation temperature, which is usually in the range of 90 ° -95 ° C, the cooling on the Annealing temperature, which is usually in the range of 40 ° -60 ° C, and the Heating to the elongation temperature, usually in the range of 70 ° -75 ° C. lies. Such a cycle is repeated several times, whereby a predetermined DNA sequence is amplified.

Da ein Temperaturgradient eingestellt werden kann, werden in den einzelnen Reaktionsgefäßen unterschiedliche aber vorbestimmte Temperaturen eingestellt. Nach Abarbeitung der Zyklen kann anhand der Reaktionsprodukte der einzelnen Reaktionsgefäße festgestellt werden, bei welchen Temperaturen die PCR-Reaktion das für den Anwender optimale Ergebnis liefert. Das Ergebnis kann hierbei z.B. hinsichtlich der Produktmenge als auch der Produktqualität optimiert werden.Since a temperature gradient can be adjusted, in the individual reaction vessels set different but predetermined temperatures. After completion of the cycles can be determined by the reaction products of the individual Reaction vessels are detected, at which temperatures the PCR reaction which provides the user with optimal results. The result can be here e.g. be optimized in terms of product quantity as well as product quality.

Die Annealingtemperatur, bei der die Primer angelagert werden, hat einen starken Einfluß auf das Ergebnis. Aber auch die Elongationstemperatur kann sich vor- bzw. nachteilhaft auf das Ergebnis auswirken. Bei einer höheren Elongationstemperatur wird die Anlagerung der Basen beschleunigt, wobei die Wahrscheinlichkeit von Fehlern mit höherer Temperatur steigt. Zudem ist bei einer höheren Elongationstemperatur die Lebensdauer der Polymerase kürzer.The annealing temperature at which the primers are annealed has a strong Influence on the result. But the elongation temperature can also be or adversely affect the result. At a higher elongation temperature the accumulation of the bases is accelerated, whereby the probability of higher temperature errors. In addition, at a higher elongation temperature the life of the polymerase shorter.

Eine Thermocyclervorrichtung, bei der ein Temperaturgradient eingestellt werden kann, stellt eine erhebliche Erleichterung bei der Ermittlung der gewünschten Temperaturen dar, da ein Reaktionsgemisch in einer einzigen Thermocyclervorrichtung gleichzeitig Zyklen mit unterschiedlichen Temperaturen unterzogen werden kann.A thermal cycler device that adjusts a temperature gradient can, provides a significant facilitation in identifying the desired Temperatures, as a reaction mixture in a single Thermocyclervorrichtung simultaneously undergo cycles with different temperatures can.

Ein weiterer wesentlicher Parameter für den Erfolg einer PCR-Reaktion ist die Verweildauer bei den einzelnen Temperaturen für die Denaturierung, das Annealing und der Elongation und die Änderungsrate der Temperatur. Diese Parameter können bei der bekannten Vorrichtung nicht in einer Versuchsreihe an einem einzigen Reaktionsgefäßhalter variiert werden. Will man unterschiedliche Verweildauern und Änderungsraten testen, kann man dies in mehreren Versuchsreihen entweder in einer Thermocyclervorrichtung nacheinander oder in mehreren Thermocyclervorrichtungen gleichzeitig ausführen.Another important parameter for the success of a PCR reaction is the Dwell time at the individual temperatures for denaturation, annealing and the elongation and the rate of change of the temperature. These parameters can not in the known device in a series of experiments on a single Reaction vessel holder can be varied. Do you want different lengths of stay and rate of change, this can be done in several series of experiments either in a thermal cycler device sequentially or in multiple thermal cycler devices run at the same time.

Hierzu gibt es sogenannte Multiblock-Thermocyclervorrichtungen mit mehreren Reaktionsgefäßaufnahmekörpern, die jeweils mit separaten Kühl-, Heiz- und Steuereinrichtungen versehen sind (siehe US 5,525,300). Das zu testende Reaktionsgemisch muß auf mehrere Mikrotiterplatten verteilt werden, um dann unabhängig voneinander getestet zu werden.For this purpose, there are so-called multiblock Thermocyclervorrichtungen with several Reaction vessel receiving bodies, each with separate cooling, heating and control devices are provided (see US 5,525,300). The reaction mixture to be tested must be spread over several microtiter plates to be independent to be tested by each other.

Für die Ermittlung der optimalen Verweildauern und Temperaturänderungsraten benötigt man entweder mehrere Thermocyclervorrichtungen oder eine Multiblock-Thermocyclervorrichtung, oder man muß nacheinander in mehreren Versuchsreihen testen. Die Anschaffung mehrerer Thermocyclervorrichtungen oder einer Multiblock-Thermocyclervorrichtung ist teuer und das Durchführen mehrerer aufeinanderfolgender Versuchsreihen dauert lange. Zudem ist die Handhabung aufwendig, wenn nur ein Teil der Reaktionsgefäße mehrerer Mikrotiterplatten gefüllt wird und diese jeweils in einer eigenen Versuchsreihe getestet bzw. optimiert werden. Dies ist insbesondere bei automatisch arbeitenden Vorrichtungen nachteilig, in welchen die Reaktionsgemische weiteren Arbeitsvorgängen unterzogen werden, da dann mehrere Mikrotiterplatten separat gehandhabt werden müssen. Zudem ist es äußerst unpraktisch, wenn nur ein Teil der Reaktionsgefäße der Mikrotiterplatten gefüllt sind, denn die Geräte zur Weiterverarbeitung, wie z.B. Probenkämme zum Übertragen der Reaktionsprodukte auf eine Elektrophoresevorrichtung, sind oftmals auf das Raster der Mikrotiterplatten ausgelegt, weshalb eine Weiterverarbeitung entsprechend beschränkt ist, wenn nur ein Teil der Reaktionsgefäße der Mikrotiterplatte benutzt werden.For determining the optimal residence times and temperature change rates one requires either several thermal cycler devices or a multi-block thermal cycler device, or one must successively in several test series testing. The purchase of multiple thermal cycler devices or a multi-block thermal cycler device is expensive and performing several consecutive Test series takes a long time. In addition, the handling is complicated, if only a part of the reaction vessels of several microtiter plates is filled and These are each tested or optimized in a separate series of experiments. This is particularly disadvantageous in automatically operating devices in which the reaction mixtures are subjected to further operations, since then several microtiter plates must be handled separately. It is also extreme impractical if only a portion of the microtiter plates are filled, because the equipment for further processing, such. Sample combs for Transferring the reaction products to an electrophoresis device are often designed for the grid of microtiter plates, which is why further processing is limited accordingly, if only a part of the reaction vessels of the microtiter plate to be used.

Aus der US 5,819,842 geht eine Vorrichtung zum individuellen, kontrollierten Beheizen mehrerer Proben hervor. Diese Vorrichtung weist mehrere flächig ausgebildete Heizelemente auf, die rasterartig an einer Arbeitsoberfläche angeordnet sind. Unterhalb der Heizelemente ist eine Kühleinrichtung ausgebildet, die sich über alle Heizelemente erstreckt. Im Betrieb wird eine besonders ausgestaltete Probenplatte auf die Arbeitsoberfläche aufgesetzt. Diese Probenplatte weist eine Gitterplatte auf, die an der Unterseite mit einer Folie bespannt ist. In den Ausnehmungen der Gitterplatte werden die Proben eingebracht. Die Proben liegen bei dieser Vorrichtung lediglich durch die Folie getrennt auf den einzelnen Heizelementen auf. Hierdurch wird ein unmittelbarer Wärmeübergang erzielt. Jedoch ist bei dieser Vorrichtung nachteilig, dass keine handelsübliche Mikrotiterplatte verwendet werden kann.From US 5,819,842 is a device for individual, controlled heating several samples. This device has a plurality of flat Heating elements, which are arranged like a grid on a work surface. Below the heating elements, a cooling device is formed which extends over all Heating elements extends. In operation, a specially designed sample plate placed on the work surface. This sample plate has a grid plate on, which is covered at the bottom with a foil. In the recesses the grid plate, the samples are introduced. The samples are at this Device only separated by the film on the individual heating elements on. As a result, an immediate heat transfer is achieved. However, this is Device disadvantageous that no commercially available microtiter plate are used can.

Mit der zunehmenden Automatisierung in der Biotechnologie werden Thermocycler zunehmend in automatisch arbeitenden Fertigungslinien und Robotern als einer von mehreren Arbeitsplätzen eingesetzt. Hierbei ist es üblich, dass die Proben in Mikrotiterplatten gefüllt von einem Arbeitsplatz zum nächsten weitergereicht werden. Würde in einem solchen automatisch arbeitenden Fertigungsprozess die Vorrichtung gemäß der US 5,819,842 eingesetzt werden, so müssten die Proben vor der Temperierung aus einer Mikrotiterplatte in die besonders ausgebildet Probenplatte und nach der Temperierung aus der Probenplatte in eine Mikrotiterplatte pipettiert werden. Hierbei besteht die Gefahr einer Kontamination der Proben. Die Verwendung dieser besonders ausgebildeten Probenplatte muss deshalb als äußerst nachteilig angesehen werden.With the increasing automation in biotechnology become thermal cyclers increasingly in automatically working production lines and robots as one used by several workstations. It is customary that the samples in Microtiter plates filled from one workstation to the next. Would in such an automatic manufacturing process, the device are used according to US 5,819,842, so the samples before the temperature control from a microtiter plate in the specially designed sample plate and after the temperature control from the sample plate into a microtiter plate be pipetted. There is a risk of contamination of the samples. The Use of this specially designed sample plate must therefore be considered extremely be considered disadvantageous.

Die WO 98/20975 beschreibt einen Thermocycler, der in vier Segmente unterteilt ist, die separat voneinander ansteuerbar sind. Werden die einzelnen Felder unterschiedlich angesteuert, so stellen sich Temperaturgradienten über weite Bereiche des Thermocyclers ein. WO 98/20975 describes a thermal cycler which is divided into four segments is, which are separately controllable. Will the individual fields be different? controlled, so are temperature gradients over a wide range of the thermal cycler.

Die US 5,716,842 betrifft eine miniaturisierte Thermocyclervorrichtung mit einer meanderförmig verlaufend ausgebildeten Reaktionskammer. Einzelne Abschnitte der Reaktionskammer werden hierbei auf unterschiedliche Temperaturen eingestellt, so dass beim Durchströmen der Reaktionsflüssigkeit durch die Reaktionskammer die Reaktionsflüssigkeit in Abhängigkeit vom Ort unterschiedlichen Temperaturen ausgesetzt ist und ein vorbestimmtes Temperaturprofil abfährt. Dieses Temperaturprofil wird derart eingestellt, dass die Reaktionsflüssigkeit eine PCR-Reaktion ausführt.US 5,716,842 relates to a miniaturized thermal cycler device with a meandering trained reaction chamber. Individual sections the reaction chamber are adjusted to different temperatures, so that when flowing through the reaction liquid through the reaction chamber the reaction liquid depending on the location of different temperatures is suspended and a predetermined temperature profile decreases. This Temperature profile is adjusted so that the reaction liquid is a PCR reaction performs.

Die US 4,950,608 zeigt eine Thermocyclervorrichtung, die einen Temperierblock 12 aufweist, in dem Heat-Pipes integriert sind, um eine möglichst gleichmäßige Temperaturverteilung - hier in vertikaler Richtung - zu gewährleisten. Diese Heat-Pipes entsprechen den in der vorliegenden Patentanmeldung auf Seite beschriebenen Heat-Pipes, die als Temperaturausgleichselement dienen. An der Unterseite dieses Temperierblockes sind Heizelemente und eine Kühlkammer vorgesehen, mit welchem der Temperierblock entsprechend erwärmt oder gekühlt werden kann.US 4,950,608 shows a thermocycling apparatus comprising a tempering block 12, are integrated in the heat pipes, as uniform as possible Temperature distribution - here in the vertical direction - to ensure. These heat pipes correspond to those described in the present patent application on page Heat pipes, which serve as a temperature compensation element. On the bottom this tempering block are provided heating elements and a cooling chamber, with which the tempering be heated or cooled accordingly can.

Die EP 0 488 769 A2 zeigt eine Thermocyclervorrichtung, bei welcher der temperierbare Bereich in einen zentralen Bereich und in Randbereiche unterteilt ist, wobei die Randbereiche unabhängig vom zentralen Bereich ansteuerbar sind. Die Randbereiche werden in der Regel mit größerer Heizleistung als der zentrale Bereich angesteuert, um damit den größeren Wärmeabfluss im Bereich der Randbereiche auszugleichen. Dies dient zur gleichmäßigen Temperatureinstellung über den gesamten temperierbaren Bereich.EP 0 488 769 A2 shows a thermocycling device in which the temperature-controllable Area is divided into a central area and border areas, where the edge areas can be controlled independently of the central area. The Edge areas are usually with greater heat output than the central area controlled, so that the greater heat dissipation in the area of the edge areas compensate. This is for uniform temperature adjustment via the entire temperature range.

Der Erfindung liegt die Aufgabe zugrunde, die eingangs genannte Vorrichtung derart weiterzubilden, dass die oben beschriebenen Nachteile vermieden werden und die Parameter des PCR-Verfahrens sehr flexibel optimiert werden können. The invention is based on the object, the device mentioned in the introduction to develop that the disadvantages described above are avoided and the parameters of the PCR process can be optimized very flexibly.

Die Erfindung weist zur Lösung dieser Aufgabe die im Anspruch 1 angegebenen Merkmale auf. Vorteilhafte Ausgestaltungen hiervon sind in den weiteren Ansprüchen angegeben.The invention has to solve this problem specified in claim 1 Features on. Advantageous embodiments thereof are in the further claims specified.

Die Erfindung zeichnet sich dadurch aus, dass der Reaktionsgefäßaufnahmekörper in mehrere Segmente unterteilt ist, und die einzelnen Segmente thermisch entkoppelt sind und jedem Segment eine Heizeinrichtung zugeordnet ist, die unabhängig voneinander ansteuerbar sind.The invention is characterized in that the reaction vessel receiving body is divided into several segments, and the individual segments thermally are decoupled and each segment is assigned a heating device that is independent can be controlled from each other.

Hierdurch können die einzelnen Segmente der Vorrichtung voneinander unabhängig auf unterschiedliche Temperaturen eingestellt werden. Dies ermöglicht, dass in den Segmenten nicht nur unterschiedliche Temperarturniveaus eingestellt werden können, sondern diese auch unterschiedlich lange gehalten bzw. mit unterschiedlichen Änderungsraten verändert werden können. Die erfindungsgemäße Vorrichtung erlaubt somit eine Optimierung aller für ein PCR-Verfahren kritischen physikalischen Parameter, wobei der Optimierungsvorgang an einem einzigen Reaktionsgefäßaufnahmekörper durchgeführt werden kann, in dem eine Mikrotiterplatte eingesetzt werden kann.As a result, the individual segments of the device can be independent of each other be set to different temperatures. This allows in not only different temperature levels are set to the segments can, but also held for different lengths or with different Change rates can be changed. The device according to the invention thus allows optimization of all critical for a PCR process physical Parameter, wherein the optimization process on a single reaction vessel receiving body can be performed in which a microtiter plate can be used.

Mit der erfindungsgemäßen Vorrichtung ist es deshalb möglich, auch die Verweildauern und die Temperaturänderungsraten zu optimieren, ohne dass hierzu das Reaktionsgemisch auf unterschiedliche Mikrotiterplatten verteilt werden muß.With the device according to the invention it is therefore possible, also the residence times and to optimize the rates of temperature change without the need for Reaction mixture must be distributed to different microtiter plates.

Die erfindungsgemäße Thermocyclervorrichtung ist insbesondere zum Optimieren des Multiplex-PCR-Verfahrens geeignet, bei welchem mehrere unterschiedliche Primer eingesetzt werden.The thermal cycler device according to the invention is in particular for optimization the multiplex PCR method, in which several different Primers are used.

Die vorstehende Aufgabe, die Merkmale und Vorteile nach der vorliegenden Erfindung können unter Berücksichtigung der folgenden, detaillierten Beschreibung der bevorzugten Ausführungsformen der vorliegenden Erfindung und unter Bezugnahme auf die zugehörigen Zeichnungen besser verstanden werden. The above object, features and advantages of the present invention can take into account the following, detailed description of preferred embodiments of the present invention and with reference be understood better on the accompanying drawings.

Die Erfindung wird im folgenden anhand der Zeichnungen näher erläutert. Diese zeigen in:

Fig.1
einen Schnitt durch eine erfindungsgemäße Vorrichtung zum Durchführen chemischer oder biologischer Reaktionen nach einem ersten Ausführungsbeispiel,
Fig. 2
einen Schnitt durch einen Bereich einer erfindungsgemäßen Vorrichtung zum Durchführen chemischer oder biologischer Reaktionen nach einem zweiten Ausführungsbeispiel,
Fig. 3
schematisch die Vorrichtung aus Fig. 2 in der Draufsicht,
Fig. 4
schematisch eine Vorrichtung nach einem dritten Ausführungsbeispiel in der Draufsicht,
Fig. 5
einen Bereich der Vorrichtung aus Fig. 4 in einer Schnittdarstellung entlang der Linie A-A,
Fig. 6 bis
9 schematisch jeweils eine Draufsicht auf Reaktionsgefäßaufnahmekörper mit unterschiedlicher Segmentierung,
Fig. 10
einen Spannrahmen in der Draufsicht,
Fig. 11
eine erfindungsgemäße Vorrichtung, bei welcher Segmente eines Reaktionsgefäßaufnahmekörpers mit dem Spannrahmen nach Fig. 10 fixiert sind, und
Fig. 12
eine weitere Ausführungsform einer erfindungsgemäßen Vorrichtung im Schnitt, bei welcher Segmente eines Reaktionsgefäßaufnahmekörpers mit dem Spannrahmen nach Fig. 10 fixiert sind.
The invention will be explained in more detail below with reference to the drawings. These show in:
Fig.1
a section through a device according to the invention for carrying out chemical or biological reactions according to a first embodiment,
Fig. 2
a section through a portion of a device according to the invention for carrying out chemical or biological reactions according to a second embodiment,
Fig. 3
schematically the device of Fig. 2 in plan view,
Fig. 4
schematically a device according to a third embodiment in plan view,
Fig. 5
4 shows a section of the device from FIG. 4 in a sectional view along the line AA,
Fig. 6 to
9 is a schematic plan view of reaction vessel receiving bodies with different segmentation,
Fig. 10
a clamping frame in the plan view,
Fig. 11
a device according to the invention, in which segments of a reaction vessel receiving body are fixed to the clamping frame of FIG. 10, and
Fig. 12
a further embodiment of a device according to the invention in section, in which segments of a reaction vessel receiving body with the clamping frame of FIG. 10 are fixed.

In Fig. 1 ist ein erstes Ausführungsbeispiel der erfindungsgemäßen Vorrichtung 1 zur Durchführung chemischer und/oder biologischer Reaktionen schematisch im Schnitt dargestellt.In Fig. 1 is a first embodiment of the device 1 according to the invention for carrying out chemical and / or biological reactions schematically in Section shown.

Die Vorrichtung weist ein Gehäuse 2 mit einer Bodenwandung 3 und Seitenwandungen 4 auf. Ein Stück oberhalb der Bodenwandung 3 ist parallel zur Bodenwandung 3 eine Zwischenwandung 5 angeordnet, auf welcher mehrere Sockel 5a ausgebildet sind. Bei dem in Fig. 1 gezeigten Ausführungsbeispiel sind insgesamt sechs Sockel 5a vorgesehen, die in zwei Reihen á drei Sockel 5a angeordnet sind.The device has a housing 2 with a bottom wall 3 and side walls 4 on. A piece above the bottom wall 3 is parallel to the bottom wall 3, an intermediate wall 5 is arranged, on which a plurality of base 5a are formed. In the embodiment shown in Fig. 1 are total six sockets 5a provided, which are arranged in two rows á three sockets 5a.

Auf den Sockeln 5a ist jeweils ein Wärmetauscher 6, ein Peltierelement 7 und ein Segment 8 eines Reaktionsgefäßaufnahmekörpers 9 angeordnet. Der Wärmetauscher 6 ist Bestandteil einer Kühleinrichtung und das Peltierelement 7 ist Bestandteil einer kombinierten Heiz- und Kühleinrichtung. Die auf den Sockeln 5a angeordneten Elemente (Wärmetauscher, Peltierelement, Segment) sind mit einem gut wärmeleitenden Klebeharz verklebt, wodurch zwischen diesen Elementen ein guter Wärmeübergang realisiert wird, und die Elemente zudem fest zu einem Segmentteil 10 verbunden sind. Die Vorrichtung weist insgesamt sechs derartige Segmentteile 10 auf. Anstelle von Klebeharz kann auch eine Wärmeleitfolie oder eine Wärmeleitpaste vorgesehen werden.On the bases 5a is a respective heat exchanger 6, a Peltier element 7 and a Segment 8 of a reaction vessel receiving body 9 is arranged. The heat exchanger 6 is part of a cooling device and the Peltier element 7 is part a combined heating and cooling device. The on the sockets 5a arranged elements (heat exchanger, Peltier element, segment) are with a glued good heat-conductive adhesive resin, creating between these elements a good heat transfer is realized, and the elements also become one Segment part 10 are connected. The device has a total of six such Segment parts 10 on. Instead of adhesive resin may also be a heat conducting or a Wärmeleitpaste be provided.

Die Segmente 8 des Reaktionsgefäßaufnahmekörpers 9 weisen jeweils eine Basisplatte 11 mit einstückig daran ausgebildeten rohrförmigen, dünnwandigen Reaktionsgefäßhaltern 12 auf. Bei dem in Fig. 1 dargestellten Ausführungsbeispiel sind jeweils 4 x 4 Reaktionsgefäßhalter 12 auf einer Basisplatte 11 angeordnet. Der Abstand d zwischen benachbarten Segmenten 8 ist derart bemessen, dass die Reaktionsgefäßhalter 12 aller Segmente 8 in einem regelmäßigen Raster mit konstantem Rasterabstand D angeordnet sind. Der Rasterabstand D ist so gewählt, dass eine standardisierte Mikrotiterplatte mit ihren Reaktionsgefäßen in die Reaktionsgefäßhalter 12 eingesetzt werden kann. The segments 8 of the reaction vessel receiving body 9 each have a base plate 11 integrally formed thereon tubular, thin-walled reaction vessel holders 12 on. In the embodiment shown in Fig. 1 In each case 4 x 4 reaction vessel holder 12 are arranged on a base plate 11. The distance d between adjacent segments 8 is dimensioned such that the reaction vessel holder 12 of all segments 8 in a regular grid with constant grid spacing D are arranged. The grid spacing D is chosen that a standardized microtiter plate with their reaction vessels in the Reaction vessel holder 12 can be used.

Durch Vorsehen des Abstandes d zwischen benachbarten Segmenten wird ein Luftspalt gebildet, der die Segmente 8 bzw. die Segmentteile 10 thermisch entkoppelt.By providing the distance d between adjacent segments becomes Air gap formed, which thermally decouples the segments 8 and the segment parts 10.

Die Reaktionsgefäßhalter 12 der in Fig. 1 gezeigten Vorrichtung bilden ein Raster mit insgesamt 96 Reaktionsgefäßhaltern die in acht Reihen á zwölf Reaktionsgefäßhalter 12 angeordnet sind.The reaction vessel holders 12 of the device shown in Fig. 1 form a grid with a total of 96 reaction vessel holders in eight rows á twelve reaction vessel holder 12 are arranged.

Die Peltierelemente 7 sind jeweils an eine erste Steuereinrichtung 13 elektrisch angeschlossen. Die Wärmetauscher 6 sind jeweils über einen separaten Kühlkreislauf 14 mit einer zweite Steuereinrichtung 15 verbunden. Als Kühlmedium wird bspw. Wasser verwendet, das in der Kühltemperatur-Steuereinrichtung gekühlt wird, bevor es zu einem der Wärmetauscher 6 befördert wird.The Peltier elements 7 are each electrically connected to a first control device 13 connected. The heat exchangers 6 are each via a separate cooling circuit 14 connected to a second control device 15. As a cooling medium For example, water used in the cooling temperature control device is used is before it is transported to one of the heat exchanger 6.

Die erste Steuereinrichtung 13 und die zweite Steuereinrichtung 15 sind an eine zentrale Steuereinrichtung 16 angeschlossen, die die in der Vorrichtung auszuführenden Temperaturzyklen steuert. In jedem Kühlkreislauf 14 ist ein Schaltventil 19 eingebracht, das von der zentralen Steuereinheit 16 zum Öffnen oder Schließen des jeweiligen Kühlkreislaufes 14 gesteuert wird.The first control device 13 and the second control device 15 are connected to a central control device 16 connected to the to be executed in the device Temperature cycles controls. In each cooling circuit 14 is a switching valve 19th introduced by the central control unit 16 for opening or closing the respective cooling circuit 14 is controlled.

Am Gehäuse 2 ist schwenkbar ein Deckel 17 befestigt, in dem weitere Heizelemente 18 in Form von Peltierelementen, Heizfolien oder Halbleiterheizelementen angeordnet sein können. Die Heizelemente 18 bilden Deckelheizelemente, die jeweils einem Segment 8 zugeordnet und einzeln mit der ersten Steuereinrichtung 13 verbunden sind, so dass jedes Heizelement 18 individuell angesteuert werden kann.On the housing 2, a lid 17 is pivotally mounted, in which further heating elements 18 in the form of Peltier elements, heating foils or semiconductor heating elements can be arranged. The heating elements 18 form Deckelheizelemente, the each associated with a segment 8 and individually with the first control device 13 are connected so that each heating element 18 are controlled individually can.

Nachfolgend wird die Funktionsweise der erfindungsgemäßen Vorrichtung näher erläutert.The operation of the device according to the invention will be described in more detail below explained.

Es gibt drei Betriebsmodi. There are three modes of operation.

Im ersten Betriebsmodus werden alle Segmente auf die gleiche Temperatur eingestellt, d.h., dass auf allen Segmenten die gleichen Temperaturzyklen abgefahren werden. Dieser Betriebsmodus entspricht dem Betrieb einer herkömmlichen Thermocyclervorrichtung.In the first operating mode all segments are set to the same temperature, that is, the same temperature cycles were run on all segments become. This mode of operation corresponds to the operation of a conventional one Thermocycler.

Im zweiten Betriebsmodus werden die Segmente mit unterschiedlichen Temperaturen angesteuert, wobei die Temperaturen so gesteuert werden, dass die Temperaturdifferenz ΔT benachbarter Segmente 8 kleiner als ein vorbestimmter Wert K ist, der bspw. 5°-15°C beträgt. Der für K zu wählende Wert hängt von der Güte der thermischen Entkopplung ab. Für K kann ein umso höherer Wert gewählt werden, je besser die thermische Entkopplung ist.In the second operating mode, the segments are at different temperatures controlled, the temperatures being controlled so that the temperature difference ΔT of adjacent segments 8 less than a predetermined value K is, for example, 5 ° -15 ° C. The value to be chosen for K depends on the quality of the thermal decoupling. For K, a higher value can be chosen the better the thermal decoupling.

Die vom Anwender eingegebenen Temperaturzyklen können von der zentralen Steuereinrichtung 16 automatisch auf die Segmente 8 verteilt werden, so dass die Temperaturdifferenzen zwischen benachbarten Segmenten so klein wie möglich gehalten werden.The user entered temperature cycles can be from the central Control device 16 are automatically distributed to the segments 8, so that the Temperature differences between adjacent segments as small as possible being held.

Dieser zweite Betriebsmodus kann mit einer Funktion versehen sein, mit der der Anwender lediglich einen einzigen Temperaturzyklus bzw. PCR-Zyklus eingibt, und die zentrale Steuereinrichtung 16 dann diesen Zyklus automatisch variiert. Die zu variierenden Parameter, wie Temperatur, Verweildauer oder Temperaturänderungsrate, können vom Anwender einzeln oder in Kombination gewählt werden. Die Variation der Parameter erfolgt entweder nach einer linearen oder sigmoiden Verteilung.This second operating mode can be provided with a function with which the User enters only a single temperature cycle or PCR cycle, and the central controller 16 then automatically varies this cycle. The too varying parameters, such as temperature, residence time or temperature change rate, can be selected by the user individually or in combination. The variation of the parameters takes place either after a linear or sigmoidal Distribution.

Im dritten Betriebsmodus werden nur ein Teil der Segmente angesteuert. Die Segmente 8 besitzen in der Draufsicht (Fig. 3, Fig. 4, Fig. 6 bis 9) Seitenkanten 20. Bei diesem Betriebsmodus werden die zu einem angesteuerten Segment 8 an dessen Seitenkanten benachbarten Segmente 8 nicht angesteuert. Bilden die Segmente 8 selbst ein regelmäßiges Raster (Fig. 3, Fig. 4, Fig. 6, Fig. 7 und Fig. 8), so sind die angesteuerten Segmente wie in einem Schachbrettmuster verteilt. Bei dem in Fig. 1 bis 4 gezeigten Ausführungsbeispielen können drei der sechs Segmente 8 angesteuert werden, nämlich die zwei äußeren Segmente einer Reihe und das mittlere Segment der anderen Reihe.In the third operating mode, only a part of the segments are activated. The Segments 8 have side edges 20 in plan view (FIGS. 3, 4, 6 to 9). In this mode of operation, they become a driven segment 8 whose side edges adjacent segments 8 are not driven. Educate the Segments 8 themselves a regular grid (Fig. 3, Fig. 4, Fig. 6, Fig. 7 and Fig. 8), the driven segments are distributed as in a checkerboard pattern. In the embodiments shown in FIGS. 1 to 4, three of the six Segments 8 are driven, namely the two outer segments of a row and the middle segment of the other row.

Bei diesem Betriebsmodus werden die angesteuerten Segmente nicht durch die anderen Segmente beeinflußt, wodurch deren Temperatur vollkommen unabhängig von den weiteren angesteuerten Segmenten eingestellt werden können. Hierdurch ist es möglich, unterschiedlichste Temperaturzyklen auf den einzelnen Segmenten abzufahren, wobei eines der Segmente bspw. auf die Denaturierungstemperatur aufgeheizt und ein anderes auf der Annealingtemperatur gehalten wird. So ist es möglich, die Verweildauern, d.h., die Zeitintervalle während der die Denaturierungstemperatur, Annealingtemperatur und Elongationstemperatur gehalten wird, als auch die Temperaturänderungsraten nach belieben einzustellen und gleichzeitig an den einzelnen Segmenten abzufahren. Hierdurch ist es möglich, nicht nur die Temperaturen, sondern auch die Verweildauern und die Temperaturänderungsraten zu optimieren.In this mode of operation, the driven segments are not affected by the affected other segments, whereby their temperature completely independent can be adjusted by the other driven segments. hereby It is possible to different temperature cycles on the individual To descend segments, wherein one of the segments, for example, to the denaturation temperature heated and kept another at the annealing temperature becomes. So it is possible to keep the dwell times, i.e., the time intervals during the the denaturation temperature, annealing temperature and elongation temperature is held, as well as the temperature change rates set arbitrarily and at the same time leave at the individual segments. This makes it possible not only the temperatures, but also the dwell times and the rates of temperature change to optimize.

Bei diesem Betriebsmodus kann es zweckmäßig sein, die nicht angesteuerten Segmente 8 etwas zu erhitzen, so dass deren Temperatur etwa im Bereich der niedrigsten Temperatur der hierzu benachbarten angesteuerten Segmente liegt. Hierdurch wird vermieden, dass die nicht angesteuerten Segmente eine Wärmesenke für die angesteuerten Segment bilden und deren Temperaturprofil nachteilig beeinflussen.In this operating mode, it may be appropriate, the non-driven Segments 8 to heat something, so that their temperature is approximately in the range of lowest temperature of the adjacent adjacent driven segments. This avoids that the non-driven segments a heat sink form for the driven segment and their temperature profile disadvantageous influence.

Ein zweites Ausführungsbeispiel der erfindungsgemäßen Vorrichtung ist in Fig. 2 und 3 gezeigt. Der grundsätzliche Aufbau entspricht dem aus Fig. 1 weshalb gleiche Teile mit gleichen Bezugszeichen versehen sind.A second embodiment of the device according to the invention is shown in FIG. 2 and 3. The basic structure corresponds to that of FIG. 1, why the same Parts are provided with the same reference numerals.

Das zweite Ausführungsbeispiel unterscheidet sich vom ersten Ausführungsbeispiel dadurch, dass die zu den Seitenwandungen 4 des Gehäuses 2 benachbarten Seitenkanten 20 der Segmente 8 in eine an der Innenfläche der Seitenwandungen 4 umlaufenden Nut 21 eingreifen und darin bspw. durch Kleben fixiert sind. Hierdurch sind die einzelnen Segmentteile 10 räumlich fixiert, wodurch sichergestellt ist, dass trotz der Ausbildung der Spalte zwischen den Segmentteilen 10 alle Reaktionsgefäßhalter 12 im Raster der Reaktionsgefäße einer Mikrotiterplatte angeordnet sind. Die Seitenwandungen 4 des Gehäuses 2 sind aus einem nichtwärmeleitenden Material ausgebildet. Dieses Ausführungsbeispiel kann auch dahingehend abgewandelt werden, dass die Nut 21 in einem vom Gehäuse 2 separat ausgebildeten Rahmen eingebracht ist. Der Rahmen und die darin eingesteckten Segmente bilden bei der Fertigung ein separat handhabbares Teil, das auf die Heiz- und Kühleinrichtungen aufgeklebt wird.The second embodiment differs from the first embodiment in that the adjacent to the side walls 4 of the housing 2 Side edges 20 of the segments 8 in one on the inner surface of the side walls Engage 4 circumferential groove 21 and therein, for example, are fixed by gluing. hereby the individual segment parts 10 are spatially fixed, thereby ensuring is that despite the formation of the gap between the segment parts 10 all reaction vessel holder 12 arranged in the grid of the reaction vessels of a microtiter plate are. The side walls 4 of the housing 2 are made of a non-heat-conducting Material formed. This embodiment may also be so be modified so that the groove 21 in a separate from the housing 2 trained frame is introduced. The frame and its inserted Segments form a separately manageable part in the production, which on the Heating and cooling devices is glued.

Ein drittes Ausführungsbeispiel ist schematisch in Fig. 4 und 5 dargestellt. Bei diesem Ausführungsbeispiel sind in den Bereichen zwischen den Segmentteilen 10 und zwischen den Segmentteilen 10 und den Seitenwandungen 4 des Gehäuses 2 Streben 22 aus einem nicht wärmeleitenden Material etwas unterhalb der Basisplatten 11 der Segmente 8 angeordnet. An den Seitenkanten 20 der Segmente 8 bzw. der Basisplatten 11 sind nach unten abgewinkelte Hakenelemente 23 ausgebildet. Diese Hakenelemente 23 greifen in korrespondierende Ausnehmungen der Streben 22 ein (Fig. 5), wodurch die Segmente 8 in ihrer Lage fixiert sind. Die Hakenelemente 23 benachbarter Segmente 8 sind zueinander versetzt angeordnet. Die Streben 22 bilden somit ein Gitter, in dessen Öffnungen jeweils ein Segment 8 eingesetzt werden kann.A third embodiment is shown schematically in FIGS. 4 and 5. In this Embodiment are in the areas between the segment parts 10th and between the segmental parts 10 and the side walls 4 of the housing 2 Struts 22 of a non-thermally conductive material just below the base plates 11 of the segments 8 arranged. At the side edges 20 of the segments eighth or the base plates 11 are formed downwardly angled hook elements 23. These hook elements 23 engage in corresponding recesses of the Struts 22 a (Fig. 5), whereby the segments 8 are fixed in position. The hook elements 23 adjacent segments 8 are arranged offset to one another. The struts 22 thus form a grid, in whose openings in each case a segment. 8 can be used.

Diese Art der Lagefixierung ist sehr vorteilhaft, da die Grenzflächen zwischen den Segmenten 8 und den Streben 22 sehr klein sind, wodurch die Wärmeübertragung über die Streben 22 entsprechend gering ist. Zudem kann diese Anordnung auch bei den beengten Raumverhältnissen zwischen benachbarten Segmentteilen einfach realisiert werden.This type of positional fixation is very advantageous because the interfaces between the Segments 8 and the struts 22 are very small, causing heat transfer is correspondingly low over the struts 22. In addition, this arrangement can also in the confined spaces between adjacent segment parts easy will be realized.

In den Fig. 6 bis 9 sind schematisch in der Draufsicht Reaktionsgefäßaufnahmekörper 9 gezeigt, die weitere Abwandlungen der erfindungsgemäßen Vorrichtung darstellen. Bei diesen Reaktionsgefäßaufnahmekörpern 9 sind die einzelnen Segmente 8 mittels Stegen 24 aus einem wärmeisolierenden Material zu einer Einheit verbunden. Die Streben 22 sind zwischen den Seitenkanten 20 der Basisplatten 11 angeordnet und an diesen bspw. durch Kleben fixiert. In Figs. 6 to 9 are schematically in plan view reaction vessel receiving body 9, the further modifications of the device according to the invention represent. In these reaction vessel receiving bodies 9 are the individual Segments 8 by means of webs 24 of a heat-insulating material to a Unit connected. The struts 22 are between the side edges 20 of the base plates 11 arranged and fixed to this example. By gluing.

Die Segmentierung des Reaktionsgefäßaufnahmekörpers aus Fig. 6 entspricht derjenigen des ersten und zweiten Ausführungsbeispiels (Fig. 1-3), wobei auf jedem Segment 8 4 x 4 Reaktionsgefäßhalter angeordnet sind.The segmentation of the reaction vessel receiving body of Fig. 6 corresponds those of the first and second embodiments (Figs. 1-3), wherein on each Segment 8 4 x 4 reaction vessel holder are arranged.

Der in Fig. 7 gezeigte Reaktionsgefäßaufnahmekörper 9 ist aus 24 Segmenten 8 mit jeweils 4 x 4 Reaktionsgefäßhalter 12 zusammengesetzt, wobei die Segmente 8 wiederum mittels thermisch isolierender Stege 24 verbunden sind.The reaction vessel receiving body 9 shown in FIG. 7 is composed of 24 segments 8 each with 4 x 4 Reaction vessel holder 12 composed, wherein the segments 8 are in turn connected by means of thermally insulating webs 24.

Bei dem in Fig. 8 gezeigten Reaktionsgefäßaufnahmekörper 9 weist jedes Segment 8 lediglich einen einzigen Reaktionsgefäßhalter 12 auf.In the reaction vessel receiving body 9 shown in Fig. 8, each segment has 8 only a single reaction vessel holder 12.

Bei den relativ fein untergliederten Reaktionsgefäßaufnahmekörpern 9 ist es zweckmäßig in die Thermocyclervorrichtung Temperatursensoren zu integrieren, die die Temperaturen der einzelnen Segmente abtasten, so dass nach dem von den Temperatursensoren ermittelten Temperaturwerten die Temperatur der Segmente 8 in einer geschlossenen Regelschleife geregelt wird.In the case of the relatively finely subdivided reaction vessel receiving bodies 9 it is convenient to integrate in the thermal cycler temperature sensors, which scan the temperatures of the individual segments, so that after the Temperature values determined by the temperature sensors, the temperature of the segments 8 is regulated in a closed loop.

Als Temperatursensoren können bspw. Infrarotsensoren verwendet werden, die z.B. im Deckel angeordnet sind. Mit dieser Sensoranordnung ist es möglich, die Temperatur des Reaktionsgemisches direkt abzutasten.As temperature sensors, for example. Infrared sensors can be used, the e.g. are arranged in the lid. With this sensor arrangement, it is possible to Sensing temperature of the reaction mixture directly.

Fig. 9 zeigt einen Reaktionsgefäßaufnahmekörper 9 mit sechs in der Draufsicht rechteckigen Segmenten 8 und ein in der Form eines Doppelkreuzes aus drei sich kreuzenden Reihen von Reaktionsgefäßhaltern 12 ausgebildetes Segment 8a. Die sechs rechteckigen Segmente 8 sind jeweils eine Reihe bzw. Spalte von Reaktionsgefäßhaltern vom nächsten rechteckigen Segment beabstandet. Diese Segmentierung ist besonders vorteilhaft für den oben erläuterten dritten Betriebsmodus, da sich die rechteckförmigen Segmente 8 nicht berühren und deshalb gleichzeitig beliebig angesteuert werden können, wobei lediglich das Segment 8a in Form eines Doppelkreuzes nicht angesteuert wird.Fig. 9 shows a reaction vessel receiving body 9 with six in plan view rectangular segments 8 and one in the shape of a double cross of three itself intersecting rows of reaction vessel holders 12 formed segment 8a. The Six rectangular segments 8 are each a row or column of reaction vessel holders spaced from the next rectangular segment. This segmentation is particularly advantageous for the third operating mode explained above, because the rectangular segments 8 do not touch and therefore simultaneously can be controlled arbitrarily, with only the segment 8a in Form of a double cross is not controlled.

Die Segmente 8 des Reaktionsgafäßaufnahmekörpers 9 sind aus einem gut wärmeleitenden Metall, wie z.B. Aluminium, ausgebildet. Die oben als nichtwärmeleitenden Materialien bzw. als wärmeisolierend bezeichneten Materialien sind entweder Kunststoffe oder Keramiken.The segments 8 of the Reaktionsgafäßaufnahmekörpers 9 are made of a good heat conducting Metal, e.g. Aluminum, formed. The above as non-heat-conducting Materials or materials designated as heat-insulating are either plastics or ceramics.

Ein weiteres Ausführungsbeispiel der erfindungsgemäßen Vorrichtung ist in Fig. 11 gezeigt. Bei diesem Ausführungsbeispiel sind die einzelnen Segmente 8b des Reaktionsgefäßaufnahmekörpers 9 mittels eines Spannrahmens 25 (Fig. 10) fixiert.A further embodiment of the device according to the invention is shown in FIG. 11 shown. In this embodiment, the individual segments 8b of the reaction vessel receiving body 9 fixed by means of a clamping frame 25 (Fig. 10).

Der Spannrahmen 25 ist gitterförmig aus Längsstreben 26 und Querstreben 27 ausgebildet, wobei die Streben 26, 27 Öffnungen aufspannen. Durch diese Öffnungen erstrecken sich die Reaktionsgefäßhalter 12 der Segmente 8b. Beim vorliegenden Ausführungsbeispiel liegen die Streben 26, 27 etwa formschlüssig an den Reaktionsgefäßhaltem 12 an und auf der an den Reaktionsgefäßhaltern vorstehenden Basisplatte 11 auf. Der Spannrahmen 25 ist mit Bohrungen 28 versehen, die von Schraubbolzen 29 zum Fixieren des Spannrahmens auf einer Thermocyclervorrichtung 1 durchgriffen werden.The clamping frame 25 is a lattice-shaped longitudinal struts 26 and transverse struts 27th formed, wherein the struts 26, 27 span openings. Through these openings extend the reaction vessel holder 12 of the segments 8b. At present Embodiment are the struts 26, 27 approximately positively the Reaktionsgefäßhaltem 12 and on the on the reaction vessel holders above Base plate 11 on. The clamping frame 25 is provided with holes 28, that of bolts 29 for fixing the tenter on a thermal cycler device 1 be penetrated.

Unterhalb der Segmente 8b ist jeweils ein separat ansteuerbares Peltierelement 7 und ein sich über den Bereich aller Segmente 8b erstreckender Kühlkörper 30 angeordnet. Zwischen dem Kühlkörper 30 und dem Peltierelement 7 und zwischen dem Peltierelement 7 und dem jeweiligen Segment 8b ist jeweils eine Wärmeleitfolie 31 angeordnet. Der Kühlkörper 30 ist mit Bohrungen versehen, durch die sich die Schraubbolzen 29 erstrecken, die an der vom Reaktionsgefäßaufnahmekörper 9 abgewandten Seite des Kühlkörpers 30 jeweils mit einer Mutter 32 fixiert sind.Below the segments 8b is in each case a separately controllable Peltier element 7th and a heat sink 30 extending over the area of all the segments 8b is arranged. Between the heat sink 30 and the Peltier element 7 and between the Peltier element 7 and the respective segment 8b is in each case a heat-conducting foil 31 arranged. The heat sink 30 is provided with holes through which extend the bolt 29, which at the from the reaction vessel receiving body 9 facing away from the heat sink 30 are each fixed with a nut 32.

Der Spannrahmen 25 ist aus einem nicht wärmeleitenden Material, insbesondere aus POM oder Polycarbonat ausgebildet. Er erlaubt somit eine Fixierung der Segmente 8b des Reaktionsgefäßaufnahmekörpers 9, wobei die einzelnen Elemente zwischen den Segmenten 8b und dem Kühlkörper 30 unter Spannung stehen, so dass in vertikaler Richtung ein guter Wärmeübergang zwischen den einzelnen Elementen gewährleistet ist. Da der Spannrahmen selbst schlacht wärmeleitend ist, wird die Wärmeübertragung zwischen zwei benachbarten Segmenten 8b gering gehalten. Zur weiteren Verminderung des Wärmeübergangs zwischen zwei benachbarten Segmenten können die mit den Segmenten 8b in Kontakt stehenden Flächen des Spannrahmens 25 mit schmalen Stegen versehen sein, so dass in den an die Stege angrenzenden Bereichen Luftspalte zwischen dem Spannrahmen 25 und den Segmenten 8b ausgebildet sind.The clamping frame 25 is made of a non-thermally conductive material, in particular made of POM or polycarbonate. It thus allows a fixation of the segments 8b of the reaction vessel receiving body 9, wherein the individual elements between the segments 8b and the heat sink 30 are under tension, so that in the vertical direction a good heat transfer between the individual elements is guaranteed. Since the clamping frame itself is battle-heat-conducting, the heat transfer between two adjacent segments 8b becomes low held. To further reduce the heat transfer between two adjacent Segments may be those in contact with the segments 8b Be provided surfaces of the clamping frame 25 with narrow webs, so that in the areas adjacent to the webs air gaps between the clamping frame 25 and the segments 8b are formed.

Bei dem in Fig. 11 gezeigte Ausführungsbeispiel sind zwischen zwei Reihen von Reaktionsgefäßhaltern 12 ist jeweils eine sogenannte Heat-Pipe 33 eingebaut. Eine solche Heat-Pipe wird bspw. von der Firma THERMACORE INTERNATIONAL, Inc., USA vertrieben. Sie besteht aus einem gasdichten Mantel, in dem sich lediglich eine geringe Menge Fluid befindet. In der Heat-Pipe besteht ein derart geringer Druck, dass sich das flüssige Fluid in einem Gleichgewichtszustand zwischen dem flüssigen und dem gasförmigen Aggregatszustand befindet und folglich an einem wärmeren Abschnitt der Heat-Pipe verdampft und an einem kühleren Abschnitt kondensiert. Hierdurch wird zwischen den einzelnen Abschnitten die Temperatur ausgeglichen. Als Fluid wird bspw. Wasser oder Freon verwendet.In the embodiment shown in Fig. 11 are between two rows of Reaction vessel holders 12 each have a so-called heat pipe 33 is installed. Such a heat pipe is, for example, from the company THERMACORE INTERNATIONAL, Inc., USA. It consists of a gas-tight jacket in which only a small amount of fluid is located. There is such a thing in the heat pipe low pressure, that the liquid fluid in a state of equilibrium between the liquid and the gaseous state of aggregation and consequently vaporized on a warmer section of the heat pipe and on a cooler one Condensed section. As a result, between the individual sections the Temperature balanced. For example, water or freon is used as the fluid.

Durch die Integration einer solchen Heat-Pipe in die Segmente 8b des Reaktionsgefäßaufnahmekörpers 9 wird ein Temperaturausgleich über das Segment 8b bewerkstelligt. Hierdurch wird sichergestellt, dass auf dem gesamten Segment 8b die gleiche Temperatur vorliegt.By integrating such a heat pipe into the segments 8b of the reaction vessel receiving body 9, temperature equalization is accomplished across the segment 8b. This ensures that on the entire segment 8b the same temperature is present.

Eine weitere Ausführungsform der erfindungsgemäßen Thermocyclervorrichtung 1 ist in Fig. 12 gezeigt. Diese Thermocyclervorrichtung 1 ist ähnlich wie die in Fig. 11 gezeigte ausgebildet, weshalb gleiche Teile mit gleichen Bezugszeichen bezeichnet sind.A further embodiment of the inventive thermal cycler device 1 is shown in FIG. This thermal cycler device 1 is similar to that in FIG. 11 shown formed, which is why the same parts designated by the same reference numerals are.

Die Segmente 8c dieser Thermocyclervorrichtung 1 weisen jedoch keine Heat-Pipes auf. Anstelle von Heat-Pipes sind im Bereich unterhalb der Segmente 8c jeweils eine Temperaturausgleichsplatte 34 vorgesehen. Diese Temperaturausgleichsplatten 34 sind flächenförmige Elemente, deren Fläche der Grundfläche eines der Segmente 8c entspricht. Diese Temperaturausgleichsplatten 34 sind Hohlkörper mit einer geringen Menge an Fluid und arbeiten nach dem gleichen Funktionsprinzip wie die Heat-Pipes. Hiermit wird wiederum sichergestellt, dass es innerhalb eines Segmentes 8c keine Temperaturschwankungen gibt. The segments 8c of this thermal cycler device 1, however, have no heat pipes on. Instead of heat pipes are in the area below the segments 8c in each case a temperature compensation plate 34 is provided. These temperature compensation plates 34 are sheet-like elements whose area of the base one of the segments 8c corresponds. These temperature compensation plates 34 are Hollow body with a small amount of fluid and work the same way Working principle like the heat pipes. This in turn ensures that it within a segment 8c there are no temperature fluctuations.

Die Temperaturausgleichsplatte kann jedoch auch aus sehr gut wärmeleitenden Materialen, wie z.B. Kupfer, ausgebildet sein. In eine solche Temperaturausgleichsplatte können zusätzliche Heiz- und/oder Kühlelemente, wie z.B. Heizfolien, Heizwendeln oder Peltierelemente, integriert sein. Die Heiz- und Kühlelemente unterstützen die Homogenität und erlauben schnellere Heiz- und/oder Kühlraten. Ein Peltierelement, das in der Regel keine gleichmäßige Temperaturverteilung aufweist, wird vorzugsweise mit einem flächigen Heizelement kombiniert.However, the temperature compensation plate can also be made of very good thermal conductivity Materials such as e.g. Copper, be formed. In such a temperature compensation plate additional heating and / or cooling elements, e.g. Heaters, Heating coils or Peltier elements, be integrated. The heating and cooling elements support homogeneity and allow faster heating and / or cooling rates. A Peltier element, which usually does not have a uniform temperature distribution has, is preferably combined with a flat heating element.

Die Erfindung ist oben anhand von Ausführungsbeispielen mit 96 Ausnehmungen zum Aufnehmen einer Mikrotiterplatte mit 96 Reaktionsgefäßen beschrieben. Die Erfindung ist jedoch nicht auf diese Anzahl von Ausnehmungen beschränkt. So kann der Reaktionsgefäßaufnahmekörper bspw. auch 384 Ausnehmungen zum Aufnehmen einer entsprechenden Mikrotiterplatte besitzen. Hinsichtlich vorstehend im einzelnen nicht näher erläuterter Merkmale der Erfindung wird in übrigen ausdrücklich auf die Ansprüche und die Zeichnung verwiesen.The invention is above based on embodiments with 96 recesses for receiving a microtiter plate with 96 reaction vessels. The However, the invention is not limited to this number of recesses. So For example, the reaction vessel receiving body may also have 384 recesses for Have a corresponding microtiter plate. With regard to above in detail not explained in detail features of the invention will be in the rest expressly referred to the claims and the drawings.

Bei den oben beschriebenen Ausführungsbeispielen wird eine Kühleinrichtung mit einem flüssigen Kühlmedium verwendet. Im Rahmen der Erfindung ist es auch möglich, anstelle eines flüssigen Kühlmediums auch ein gasförmiges Kühlmedium, insbesondere eine Luftkühlung zu verwenden.In the embodiments described above, a cooling device with used a liquid cooling medium. It is also within the scope of the invention possible, instead of a liquid cooling medium and a gaseous cooling medium, in particular to use an air cooling.

Die oben beschriebenen Reaktionsgefäßaufnahmekörper sind aus einer Basisplatte mit etwa rohrförmigen Reaktionsgefäßhaltern ausgebildet. Im Rahmen der Erfindung ist es auch möglich, einen Metallblock zu verwenden, in dem Ausnehmungen zum Aufnehmen der Reaktionsgefäße der Mikrotiterplatte eingebracht sind. The above-described reaction vessel receiving bodies are made of a base plate formed with approximately tubular reaction vessel holders. As part of the Invention, it is also possible to use a metal block, in the recesses for accommodating the reaction vessels of the microtiter plate are.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
ThermocydervorrichtungThermocydervorrichtung
22
Gehäusecasing
33
Bodenwandungbottom wall
44
Seitenwandungsidewall
55
Zwischenwandungintermediate wall
5a5a
Sockelbase
66
Wärmetauscherheat exchangers
77
PeltierelementPeltier element
88th
Segmentsegment
8a8a
Segment in der Form eines DoppelkreuzesSegment in the form a double cross
8b8b
Segmentsegment
8c8c
Segmentsegment
99
ReaktionsgefäßaufnahmekörperReaction vessel receiving element
1010
Segmentteilsegment portion
1111
Basisplattebaseplate
1212
ReaktionsgefäßhalterReaction vessel holder
1313
erste Steuereinrichtungfirst control device
1414
KühlkreislaufCooling circuit
1515
zweite Steuereinrichtungsecond control device
1616
zentrale Steuereinrichtungcentral control device
1717
Deckelcover
1818
Heizelementheating element
1919
Schaltventilswitching valve
2020
Seitenkantenside edges
2121
Nutgroove
2222
Strebenpursuit
2323
Hakenelementhook element
2424
Stegweb
2525
Spannrahmententer
2626
Längsstrebelongitudinal strut
2727
Querstrebecrossmember
2828
Bohrungdrilling
2929
Schraubbolzenbolts
3030
Kühlkörperheatsink
3131
WärmeleitfolieHeat conducting
3232
Muttermother
3333
Heat-PipeHeat pipe
3434
TemperaturausgleichsplatteTemperature compensation plate

Claims (17)

  1. Device for carrying out of chemical or biological reactions with a reaction vessel receiving element (9) for receiving a microtiter plate with several reaction vessels,
    wherein the reaction receiving element (9) has several recesses arranged in a regular pattern to receive the respective reaction vessels,
    a heating device (7) for heating the reaction vessel receiving element (9), and a cooling device (6) for cooling the reaction vessel receiving element (9),
    wherein the reaction vessel receiving element (9) is divided into several segments (8), and
    each segment (8) is assigned a heating device (7), wherein the heating device (7) may be actuated independently of one another,
    characterised in that
    the individual segments (8) are thermally decoupled in such a way that different temperature levels may be set and maintained in two adjacent segments.
  2. Device according to claim 1,
    characterised in that
    each segment (8) of the reaction vessel receiving element (9) is assigned a cooling device (6), wherein the cooling devices (6) may be actuated independently of one another.
  3. Device according to claim 1 or 2,
    characterised in that
    the segments (8) of the reaction vessel receiving element (9) are each comprised of a base plate (11) with one or more tubular, thin-walled reaction vessel holders (12), which form one piece together with the base plate (11).
  4. Device according to any of claims 1 to 3,
    characterised in that
    the individual segments (8) are thermally decoupled by means of an air gap formed between adjacent segments (8).
  5. Device according to any of claims 1 to 3,
    characterised in that
    the individual segments (8) are thermally decoupled by means of a gap, formed between adjacent segments (8), in which a thermal insulator is inserted.
  6. Device according to any of claims 1 to 5,
    characterised in that
    each of the heating devices has a Peltier element (7), wherein in each case one segment (8) of the reaction vessel receiving element (9) is assigned a Peltier element (7), and the Peltier elements (7) are thermally coupled to the respective segments (8).
  7. Device according to any of claims 1 to 6,
    characterised in that
    the cooling devices comprise a Peltier element (7) and/or a heat exchanger (6),
    wherein in each case one segment (8) of the reaction vessel receiving element (9) is assigned a Peltier element (7) and/or a heat exchanger (6).
  8. Device according to claim 7,
    characterised in that
    the heat exchanger (6) is provided with cooling ducts through which a fluid may flow,
    wherein the fluidic flow of individual heat exchangers (6) may be controlled independently of one another.
  9. Device according to claim 8,
    characterised in that
    that the fluid is a cooling fluid, in particular water.
  10. Device according to any of claims 1 to 9,
    characterised in that
    the reaction vessel receiving element (9) is divided into at least four segments (8).
  11. Device according to any of claims 1 to 10,
    characterised in that
    the individual segments (8) each have the same number of recesses.
  12. Device according to any of the preceding claims,
    characterised in that
    on their side edges (20) the segments (8) have downwards-facing hook elements (23) by which they rest on ties 22.
  13. Device according to any of claims 1 to 12,
    characterised in that
    each segment (8) is assigned a temperature sensor with which the temperature of the segment (8) concerned is sensed, with the temperature of the segment (8) being controlled on the basis of the temperatures sensed by the individual sensors.
  14. Device according to any of claims 1 to 3,
    characterised in that
    each segment (8b, 8c) is assigned one or more temperature equalisation elements (33, 34).
  15. Device according to any of claims 1 to 14,
    characterised in that
    it has a control unit to actuate the heating device and the cooling device, wherein the control unit (15, 16) is so designed that the cooling devices of the individual segments (8) may be actuated individually.
  16. Device according to claim 15,
    characterised in that
    in one operating mode the control unit (13, 15, 16) actuates only a part of the segments, wherein the segments (8) have side edges (20), and the segments (8) adjoining the side edges (20) of an actuated segment (8) are not actuated.
  17. Device according to claim 15 or 16,
    characterised in that
    in one operating mode the segments are so actuated that the temperature difference between adjacent segments (8) is less than a predetermined temperature difference (ΔT).
EP00966090A 1999-10-01 2000-09-29 Device for carrying out chemical or biological reactions Expired - Lifetime EP1216098B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE29917313U 1999-10-01
DE29917313U DE29917313U1 (en) 1999-10-01 1999-10-01 Device for carrying out chemical or biological reactions
PCT/EP2000/009569 WO2001024930A1 (en) 1999-10-01 2000-09-29 Device for carrying out chemical or biological reactions

Publications (2)

Publication Number Publication Date
EP1216098A1 EP1216098A1 (en) 2002-06-26
EP1216098B1 true EP1216098B1 (en) 2003-07-23

Family

ID=8079714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00966090A Expired - Lifetime EP1216098B1 (en) 1999-10-01 2000-09-29 Device for carrying out chemical or biological reactions

Country Status (9)

Country Link
US (6) US7611674B2 (en)
EP (1) EP1216098B1 (en)
JP (1) JP2003511221A (en)
KR (1) KR100696138B1 (en)
AT (1) ATE245487T1 (en)
AU (1) AU774199B2 (en)
DE (2) DE29917313U1 (en)
NO (1) NO20021340L (en)
WO (1) WO2001024930A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10512915B2 (en) 2010-05-07 2019-12-24 Hitachi High-Technologies Corporation Nucleic acid amplifier and nucleic acid inspection device employing the same

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7133726B1 (en) * 1997-03-28 2006-11-07 Applera Corporation Thermal cycler for PCR
DE29917313U1 (en) 1999-10-01 2001-02-15 Mwg Biotech Ag Device for carrying out chemical or biological reactions
EP2381116A1 (en) 2000-11-16 2011-10-26 California Institute of Technology Apparatus and methods for conducting assays and high throughput screening
DE10062889A1 (en) * 2000-12-12 2002-06-27 Eppendorf Ag Laboratory temperature control device for temperature control at different temperatures
DE10062890A1 (en) * 2000-12-12 2002-06-27 Eppendorf Ag Laboratory temperature control device for temperature control of reaction samples
EP1228804B1 (en) * 2001-02-05 2005-11-23 Eppendorf Ag Device for tempering reaction samples
WO2002081729A2 (en) * 2001-04-06 2002-10-17 California Institute Of Technology Nucleic acid amplification utilizing microfluidic devices
JP4639558B2 (en) * 2001-09-07 2011-02-23 株式会社島津製作所 Microwell chip
WO2003048295A1 (en) 2001-11-30 2003-06-12 Fluidigm Corporation Microfluidic device and methods of using same
WO2003085379A2 (en) 2002-04-01 2003-10-16 Fluidigm Corporation Microfluidic particle-analysis systems
DE10221763A1 (en) 2002-05-15 2003-12-04 Eppendorf Ag Thermal cycler with temperature control block controlled in cycles
GB0219393D0 (en) * 2002-08-20 2002-09-25 Quanta Biotech Ltd Control apparatus
GB0221167D0 (en) * 2002-09-12 2002-10-23 Quanta Biotech Ltd Control apparatus
CA2500283A1 (en) 2002-09-25 2004-04-08 California Institute Of Technology Microfluidic large scale integration
US8871446B2 (en) 2002-10-02 2014-10-28 California Institute Of Technology Microfluidic nucleic acid analysis
US8676383B2 (en) 2002-12-23 2014-03-18 Applied Biosystems, Llc Device for carrying out chemical or biological reactions
US7604965B2 (en) 2003-04-03 2009-10-20 Fluidigm Corporation Thermal reaction device and method for using the same
WO2004105947A2 (en) 2003-05-23 2004-12-09 Bio-Rad Laboratories, Inc. Localized temperature control for spatial arrays of reaction media
US20040241048A1 (en) 2003-05-30 2004-12-02 Applera Corporation Thermal cycling apparatus and method for providing thermal uniformity
NL1024578C2 (en) * 2003-10-21 2005-04-22 Univ Delft Tech Device for carrying out a reaction.
US7833709B2 (en) 2004-05-28 2010-11-16 Wafergen, Inc. Thermo-controllable chips for multiplex analyses
US7799283B2 (en) * 2004-11-12 2010-09-21 Ortho-Clinical Diagnostics, Inc. Heating and cooling multiple containers or multi-chamber containers
EP1710017B1 (en) 2005-04-04 2012-12-19 Roche Diagnostics GmbH Thermocycling of a block comprising multiple samples
JP4630786B2 (en) * 2005-10-04 2011-02-09 キヤノン株式会社 Biochemical treatment apparatus, DNA amplification and purification apparatus, and DNA testing apparatus including the apparatus
DE102006004157A1 (en) * 2006-01-30 2007-08-02 Eppendorf Ag Device for incubating cells, comprises a sterile or sterilizable portable container, which encloses an integrated- and/or culture container for the reception of the cells, and an arrangement having a sterile filter and incubator
US7815868B1 (en) 2006-02-28 2010-10-19 Fluidigm Corporation Microfluidic reaction apparatus for high throughput screening
US8232091B2 (en) 2006-05-17 2012-07-31 California Institute Of Technology Thermal cycling system
JP2009537152A (en) * 2006-05-17 2009-10-29 カリフォルニア インスティテュート オブ テクノロジー Temperature cycle system
EP2057435A4 (en) 2006-06-23 2011-04-20 Life Technologies Corp Systems and methods for cooling in biological analysis instruments
DE102007003754A1 (en) * 2007-01-19 2008-07-24 Eppendorf Ag Temperature control device with calibration device
KR20100019409A (en) 2007-01-22 2010-02-18 웨이퍼젠, 인크. Apparatus for high throughput chemical reactions
US9475051B2 (en) 2007-02-27 2016-10-25 Sony Corporation Nucleic acid amplifier
WO2008117200A2 (en) * 2007-03-23 2008-10-02 Koninklijke Philips Electronics N.V. Integrated microfluidic device with reduced peak power consumption
DE202007018930U1 (en) * 2007-11-28 2009-11-19 Nickl, Julius, Dr. Thermal oscillation for the cyclic tempering of biological medical and chemical samples
JP4544335B2 (en) 2008-04-15 2010-09-15 ソニー株式会社 Reaction processing equipment
JP2009254260A (en) * 2008-04-15 2009-11-05 Sony Corp Reaction treatment device
DE102008023660B4 (en) * 2008-04-21 2010-02-11 Hirt Zerspanungstechnik Gmbh Device for heating an object by means of a water bath
WO2012033396A1 (en) * 2008-12-18 2012-03-15 Universiti Sains Malaysia A disposable multiplex polymerase chain reaction (pcr) chip and device
SG184539A1 (en) * 2010-04-09 2012-11-29 Life Technologies Corp Improved thermal uniformity for thermal cycler instrumentation using dynamic control
CN103675303B (en) 2010-07-23 2016-02-03 贝克曼考尔特公司 Sensing system
DE102010040685A1 (en) * 2010-09-14 2012-03-15 Hamilton Bonaduz Ag Temperature control device for the thermal consolidation of drug beads
JP5689274B2 (en) * 2010-10-05 2015-03-25 株式会社日立ハイテクノロジーズ Nucleic acid test apparatus and container transport method
WO2012075360A1 (en) 2010-12-03 2012-06-07 Idaho Technology, Inc. Thermal cycler apparatus and related methods
US8945843B2 (en) * 2010-12-09 2015-02-03 Analogic Corporation Thermocooler with thermal breaks that thermally isolate a thermocycling region from at least one guard heat region
JP2011160811A (en) * 2011-05-20 2011-08-25 Sony Corp Reaction treatment device
JP5759818B2 (en) * 2011-07-25 2015-08-05 株式会社日立ハイテクノロジーズ Nucleic acid testing equipment
EP3373015A1 (en) 2011-11-07 2018-09-12 Beckman Coulter Inc. Aliquotter system and workflow
BR112014011048A2 (en) 2011-11-07 2017-05-02 Beckman Coulter Inc robotic arm
JP2014532881A (en) 2011-11-07 2014-12-08 ベックマン コールター, インコーポレイテッド Magnetic braking for specimen transport systems
BR112014011043A2 (en) 2011-11-07 2017-06-13 Beckman Coulter Inc specimen container detection
EP2776848B1 (en) 2011-11-07 2019-12-25 Beckman Coulter, Inc. System and method for transporting sample containers
WO2013070755A2 (en) 2011-11-07 2013-05-16 Beckman Coulter, Inc. Centrifuge system and workflow
DE102011119174A1 (en) 2011-11-23 2013-05-23 Inheco Industrial Heating And Cooling Gmbh Vapor Chamber
JP5801334B2 (en) * 2013-03-08 2015-10-28 株式会社日立ハイテクノロジーズ Nucleic acid amplification apparatus and nucleic acid test apparatus using the same
US20140338860A1 (en) * 2013-05-17 2014-11-20 Anthony Walter Demsia Combination Vessel Holder for Heat Block Incubation
US20160214110A1 (en) 2013-09-16 2016-07-28 Life Technologies Corporation Apparatuses, Systems and Methods for Providing Thermocycler Thermal Uniformity
GB201319759D0 (en) 2013-11-08 2013-12-25 Thomsen Lars Device and method for heating a fluid chamber
CN103642683A (en) * 2013-12-19 2014-03-19 江苏金太生命科技有限公司 Polymerase chain reaction (PCR) instrument capable of performing multiple PCR experiments
GB201401584D0 (en) * 2014-01-29 2014-03-19 Bg Res Ltd Intelligent detection of biological entities
EP3107658B1 (en) 2014-02-18 2018-07-04 Life Technologies Corporation Apparatuses, systems and methods for providing scalable thermal cyclers and isolating thermoelectric devices
DE102014018308A1 (en) 2014-12-10 2016-06-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Temperature control body for a multiwell plate and method and apparatus for freezing and / or thawing biological samples
CN107407685B (en) 2015-02-20 2021-08-03 宝生物工程(美国)有限公司 Method for rapid and accurate dispensing, visualization and analysis of individual cells
SG10201700260XA (en) * 2016-06-10 2018-01-30 Star Array Pte Ltd Rapid thermal cycling for sample analyses and processing
CN109070044B (en) 2016-07-21 2021-07-30 宝生物工程(美国)有限公司 Multi-Z-plane imaging and dispensing using multi-aperture device
CN106244447A (en) * 2016-07-29 2016-12-21 车团结 A kind of Polymerized human serum albumin and temperature control system thereof
CN106047688A (en) * 2016-07-29 2016-10-26 车团结 PCR (polymerase chain reaction) instrument and temperature control system for same
US10427162B2 (en) 2016-12-21 2019-10-01 Quandx Inc. Systems and methods for molecular diagnostics
GB2576304B (en) * 2018-07-26 2020-09-09 Evonetix Ltd Accessing data storage provided using double-stranded nucleic acid molecules
WO2020190035A1 (en) * 2019-03-18 2020-09-24 Seegene, Inc. Thermal cycler comprising sample holder assembly
CN112604616A (en) * 2020-11-17 2021-04-06 华东师范大学 Automatic control system and method for continuous synthesis of microchemical reaction and online monitoring

Family Cites Families (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3063893A (en) * 1959-11-24 1962-11-13 Kenya Pyrethrum Board Stabilized pyrethrum compositions
US3036893A (en) 1960-03-14 1962-05-29 Scientific Industries Automatic chemical analyzer
US3260413A (en) * 1964-08-31 1966-07-12 Scientific Industries Automatic chemical analyzer
US3216804A (en) * 1962-01-31 1965-11-09 Scientific Industries Automatic chemical analyzer and sample dispenser
US3128239A (en) * 1962-06-29 1964-04-07 Robert Z Page Biological detection equipment
US3261668A (en) * 1962-08-14 1966-07-19 Scientific Industries Chemical analyzer tape
US3271112A (en) * 1962-12-12 1966-09-06 Donald L Williams Apparatus for laboratory testing
US3368872A (en) * 1964-08-31 1968-02-13 Scientific Industries Automatic chemical analyzer
US3581072A (en) * 1968-03-28 1971-05-25 Frederick Nymeyer Auction market computation system
US3573747A (en) * 1969-02-24 1971-04-06 Institutional Networks Corp Instinet communication system for effectuating the sale or exchange of fungible properties between subscribers
US4412287A (en) * 1975-05-29 1983-10-25 Braddock Iii Walter D Automated stock exchange
DE3265723D1 (en) 1982-03-18 1985-10-03 Turgut Koruk Quantized (digital) heating plate
US4903201A (en) * 1983-11-03 1990-02-20 World Energy Exchange Corporation Automated futures trading exchange
US4677552A (en) * 1984-10-05 1987-06-30 Sibley Jr H C International commodity trade exchange
US4674044A (en) * 1985-01-30 1987-06-16 Merrill Lynch, Pierce, Fenner & Smith, Inc. Automated securities trading system
US5656493A (en) * 1985-03-28 1997-08-12 The Perkin-Elmer Corporation System for automated performance of the polymerase chain reaction
US5038852A (en) * 1986-02-25 1991-08-13 Cetus Corporation Apparatus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps
US5333675C1 (en) * 1986-02-25 2001-05-01 Perkin Elmer Corp Apparatus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps
JPH0743748B2 (en) * 1986-02-17 1995-05-15 株式会社オークネット Information transmission processing method of auction information transmission processing system
CA1339653C (en) * 1986-02-25 1998-02-03 Larry J. Johnson Appartus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps
US4864516A (en) * 1986-03-10 1989-09-05 International Business Machines Corporation Method for implementing an on-line presentation in an information processing system
US4799156A (en) * 1986-10-01 1989-01-17 Strategic Processing Corporation Interactive market management system
US4823265A (en) * 1987-05-11 1989-04-18 Nelson George E Renewable option accounting and marketing system
EP0342155A3 (en) * 1988-05-13 1990-06-27 Agrogen-Stiftung Laboratory device for optional heating and cooling
GB8814962D0 (en) * 1988-06-23 1988-07-27 Lep Scient Ltd Biochemical reaction machine
US4865986A (en) * 1988-10-06 1989-09-12 Coy Corporation Temperature control apparatus
DE8814398U1 (en) * 1988-11-17 1989-02-16 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften Ev, 3400 Goettingen, De
US4950608A (en) * 1989-04-25 1990-08-21 Scinics Co., Ltd. Temperature regulating container
US5504007A (en) 1989-05-19 1996-04-02 Becton, Dickinson And Company Rapid thermal cycle apparatus
US5168446A (en) * 1989-05-23 1992-12-01 Telerate Systems Incorporated System for conducting and processing spot commodity transactions
US5077665A (en) * 1989-05-25 1991-12-31 Reuters Limited Distributed matching system
US5136501A (en) * 1989-05-26 1992-08-04 Reuters Limited Anonymous matching system
US5101353A (en) * 1989-05-31 1992-03-31 Lattice Investments, Inc. Automated system for providing liquidity to securities markets
US5297031A (en) * 1990-03-06 1994-03-22 Chicago Board Of Trade Method and apparatus for order management by market brokers
US5205200A (en) * 1990-07-26 1993-04-27 Wright John J Hydraulic booster device for linear actuator
DE4029004C1 (en) * 1990-09-13 1992-04-02 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften Ev, 3400 Goettingen, De
US5063507A (en) * 1990-09-14 1991-11-05 Plains Cotton Cooperative Association Goods database employing electronic title or documentary-type title
US5243515A (en) * 1990-10-30 1993-09-07 Lee Wayne M Secure teleprocessing bidding system
US5258908A (en) * 1990-11-02 1993-11-02 Foreign Exchange Transaction Services, Inc. Detection and prevention of duplicate trading transactions over a communications network
US5305200A (en) * 1990-11-02 1994-04-19 Foreign Exchange Transaction Services, Inc. Financial exchange system having automated recovery/rollback of unacknowledged orders
US5280422A (en) * 1990-11-05 1994-01-18 Watlow/Winona, Inc. Method and apparatus for calibrating and controlling multiple heaters
KR100236506B1 (en) * 1990-11-29 2000-01-15 퍼킨-엘머시터스인스트루먼츠 Apparatus for polymerase chain reaction
GB9027249D0 (en) * 1990-12-17 1991-02-06 Reuters Ltd Offer matching system
US5297032A (en) * 1991-02-01 1994-03-22 Merrill Lynch, Pierce, Fenner & Smith Incorporated Securities trading workstation
CA2059078C (en) * 1991-02-27 1995-10-03 Alexander G. Fraser Mediation of transactions by a communications system
US5994056A (en) * 1991-05-02 1999-11-30 Roche Molecular Systems, Inc. Homogeneous methods for nucleic acid amplification and detection
EP0528084B1 (en) * 1991-08-15 1999-05-19 International Business Machines Corporation System and method for processing data representing stored images
US5426281A (en) * 1991-08-22 1995-06-20 Abecassis; Max Transaction protection system
FI915731A0 (en) * 1991-12-05 1991-12-05 Derek Henry Potter FOERFARANDE OCH ANORDNING FOER REGLERING AV TEMPERATUREN I ETT FLERTAL PROV.
US5375055A (en) * 1992-02-03 1994-12-20 Foreign Exchange Transaction Services, Inc. Credit management for electronic brokerage system
DE4234086A1 (en) * 1992-02-05 1993-08-12 Diagen Inst Molekularbio METHOD FOR DETERMINING NUCLEIC ACID SEQUENCES AMPLIFIED IN VITRO
US5325297A (en) * 1992-06-25 1994-06-28 System Of Multiple-Colored Images For Internationally Listed Estates, Inc. Computer implemented method and system for storing and retrieving textual data and compressed image data
US5598557A (en) * 1992-09-22 1997-01-28 Caere Corporation Apparatus and method for retrieving and grouping images representing text files based on the relevance of key words extracted from a selected file to the text files
CA2100134C (en) * 1992-09-29 1999-06-22 Raymond Otto Colbert Secure credit/debit card authorization
US5601141A (en) * 1992-10-13 1997-02-11 Intelligent Automation Systems, Inc. High throughput thermal cycler
US5794219A (en) * 1996-02-20 1998-08-11 Health Hero Network, Inc. Method of conducting an on-line auction with bid pooling
US5441576A (en) 1993-02-01 1995-08-15 Bierschenk; James L. Thermoelectric cooler
JPH0728689A (en) * 1993-07-09 1995-01-31 Hitachi Ltd Information processor
US5377258A (en) * 1993-08-30 1994-12-27 National Medical Research Council Method and apparatus for an automated and interactive behavioral guidance system
US5525300A (en) * 1993-10-20 1996-06-11 Stratagene Thermal cycler including a temperature gradient block
US5394324A (en) * 1993-12-08 1995-02-28 Xerox Corporation Auction-based control system for energy resource management in a building
US5694546A (en) * 1994-05-31 1997-12-02 Reisman; Richard R. System for automatic unattended electronic information transport between a server and a client by a vendor provided transport software with a manifest list
DE4435107C1 (en) * 1994-09-30 1996-04-04 Biometra Biomedizinische Analy Miniaturized flow thermal cycler
US5717989A (en) * 1994-10-13 1998-02-10 Full Service Trade System Ltd. Full service trade system
US5715314A (en) * 1994-10-24 1998-02-03 Open Market, Inc. Network sales system
JPH08161412A (en) * 1994-12-07 1996-06-21 Oak Net:Kk Auction information transmitting and processing system
US6058378A (en) * 1995-02-22 2000-05-02 Citibank, N.A. Electronic delivery system and method for integrating global financial services
US5553145A (en) * 1995-03-21 1996-09-03 Micali; Silvia Simultaneous electronic transactions with visible trusted parties
US5845265A (en) * 1995-04-26 1998-12-01 Mercexchange, L.L.C. Consignment nodes
US7937312B1 (en) * 1995-04-26 2011-05-03 Ebay Inc. Facilitating electronic commerce transactions through binding offers
US5689652A (en) * 1995-04-27 1997-11-18 Optimark Technologies, Inc. Crossing network utilizing optimal mutual satisfaction density profile
US5845266A (en) * 1995-12-12 1998-12-01 Optimark Technologies, Inc. Crossing network utilizing satisfaction density profile with price discovery features
US5640569A (en) * 1995-04-28 1997-06-17 Sun Microsystems, Inc. Diverse goods arbitration system and method for allocating resources in a distributed computer system
US5657389A (en) * 1995-05-08 1997-08-12 Image Data, Llc Positive identification system and method
US5706457A (en) * 1995-06-07 1998-01-06 Hughes Electronics Image display and archiving system and method
US5664115A (en) * 1995-06-07 1997-09-02 Fraser; Richard Interactive computer system to match buyers and sellers of real estate, businesses and other property using the internet
US5826244A (en) * 1995-08-23 1998-10-20 Xerox Corporation Method and system for providing a document service over a computer network using an automated brokered auction
US5873069A (en) * 1995-10-13 1999-02-16 American Tv & Appliance Of Madison, Inc. System and method for automatic updating and display of retail prices
US5715402A (en) * 1995-11-09 1998-02-03 Spot Metals Online Method and system for matching sellers and buyers of spot metals
US5771291A (en) * 1995-12-11 1998-06-23 Newton; Farrell User identification and authentication system using ultra long identification keys and ultra large databases of identification keys for secure remote terminal access to a host computer
US5884056A (en) * 1995-12-28 1999-03-16 International Business Machines Corporation Method and system for video browsing on the world wide web
US5905975A (en) * 1996-01-04 1999-05-18 Ausubel; Lawrence M. Computer implemented methods and apparatus for auctions
US6055518A (en) * 1996-02-01 2000-04-25 At&T Corporation Secure auction systems
US5926794A (en) * 1996-03-06 1999-07-20 Alza Corporation Visual rating system and method
US5850442A (en) * 1996-03-26 1998-12-15 Entegrity Solutions Corporation Secure world wide electronic commerce over an open network
US6243691B1 (en) * 1996-03-29 2001-06-05 Onsale, Inc. Method and system for processing and transmitting electronic auction information
US5835896A (en) * 1996-03-29 1998-11-10 Onsale, Inc. Method and system for processing and transmitting electronic auction information
US6825047B1 (en) * 1996-04-03 2004-11-30 Applera Corporation Device and method for multiple analyte detection
US5799285A (en) * 1996-06-07 1998-08-25 Klingman; Edwin E. Secure system for electronic selling
US5890138A (en) * 1996-08-26 1999-03-30 Bid.Com International Inc. Computer auction system
US5802856A (en) * 1996-07-31 1998-09-08 Stanford University Multizone bake/chill thermal cycling module
US6047264A (en) * 1996-08-08 2000-04-04 Onsale, Inc. Method for supplying automatic status updates using electronic mail
JP3407561B2 (en) * 1996-09-04 2003-05-19 株式会社日立製作所 Auction apparatus and method
US6119137A (en) * 1997-01-30 2000-09-12 Tumbleweed Communications Corp. Distributed dynamic document conversion server
US6192407B1 (en) * 1996-10-24 2001-02-20 Tumbleweed Communications Corp. Private, trackable URLs for directed document delivery
US5790790A (en) * 1996-10-24 1998-08-04 Tumbleweed Software Corporation Electronic document delivery system in which notification of said electronic document is sent to a recipient thereof
DE19646115C2 (en) * 1996-11-08 2000-05-25 Eppendorf Geraetebau Netheler Use of temperature control devices for temperature control of a temperature control block
DE29623597U1 (en) * 1996-11-08 1999-01-07 Eppendorf Geraetebau Netheler Temperature control block with temperature control devices
US5905974A (en) * 1996-12-13 1999-05-18 Cantor Fitzgerald Securities Automated auction protocol processor
US6035402A (en) * 1996-12-20 2000-03-07 Gte Cybertrust Solutions Incorporated Virtual certificate authority
US5924072A (en) * 1997-01-06 1999-07-13 Electronic Data Systems Corporation Knowledge management system and method
CA2287379C (en) * 1997-01-10 2005-10-04 Silicon Gaming-Nevada Method and apparatus for providing authenticated, secure on-line communication between remote locations
US5872848A (en) * 1997-02-18 1999-02-16 Arcanvs Method and apparatus for witnessed authentication of electronic documents
US6047274A (en) * 1997-02-24 2000-04-04 Geophonic Networks, Inc. Bidding for energy supply
US5922074A (en) * 1997-02-28 1999-07-13 Xcert Software, Inc. Method of and apparatus for providing secure distributed directory services and public key infrastructure
JP3357812B2 (en) * 1997-03-18 2002-12-16 株式会社東芝 Mutual credit server device and distributed mutual credit system
US5803500A (en) * 1997-03-27 1998-09-08 Mossberg; Bjoern E. F. Method and kit for conducting an auction
EP2156892B1 (en) * 1997-03-28 2013-05-08 Applera Corporation Thermal cycler for PCR
US6061448A (en) * 1997-04-01 2000-05-09 Tumbleweed Communications Corp. Method and system for dynamic server document encryption
US5974412A (en) * 1997-09-24 1999-10-26 Sapient Health Network Intelligent query system for automatically indexing information in a database and automatically categorizing users
US6106784A (en) * 1997-09-26 2000-08-22 Applied Chemical & Engineering Systems, Inc. Thawing station
US6558947B1 (en) 1997-09-26 2003-05-06 Applied Chemical & Engineering Systems, Inc. Thermal cycler
AU9786798A (en) * 1997-10-10 1999-05-03 Biosepra Inc. Aligned multiwell multiplate stack and method for processing biological/chemicalsamples using the same
US5991739A (en) * 1997-11-24 1999-11-23 Food.Com Internet online order method and apparatus
US6093370A (en) * 1998-06-11 2000-07-25 Hitachi, Ltd. Polynucleotide separation method and apparatus therefor
US6058417A (en) * 1998-10-23 2000-05-02 Ebay Inc. Information presentation and management in an online trading environment
US6178408B1 (en) * 1999-07-14 2001-01-23 Recot, Inc. Method of redeeming collectible points
US6633785B1 (en) * 1999-08-31 2003-10-14 Kabushiki Kaisha Toshiba Thermal cycler and DNA amplifier method
DE29917313U1 (en) 1999-10-01 2001-02-15 Mwg Biotech Ag Device for carrying out chemical or biological reactions
US7437325B2 (en) * 2002-03-05 2008-10-14 Pablo Llc System and method for performing automatic spread trading
GB2366628B (en) * 2000-09-11 2002-09-18 Bookham Technology Plc Method and apparatus for temperature control
US7727479B2 (en) * 2000-09-29 2010-06-01 Applied Biosystems, Llc Device for the carrying out of chemical or biological reactions
US7340429B2 (en) * 2000-10-23 2008-03-04 Ebay Inc. Method and system to enable a fixed price purchase within a online auction environment
US7813995B2 (en) * 2002-03-05 2010-10-12 Trading Technologies International, Inc. System and method for estimating a spread value
DE10221763A1 (en) 2002-05-15 2003-12-04 Eppendorf Ag Thermal cycler with temperature control block controlled in cycles
US7523064B2 (en) * 2002-11-13 2009-04-21 Trading Technologies International, Inc. System and method for facilitating trading of multiple tradeable objects in an electronic trading environment
US8676383B2 (en) 2002-12-23 2014-03-18 Applied Biosystems, Llc Device for carrying out chemical or biological reactions
US20040241048A1 (en) * 2003-05-30 2004-12-02 Applera Corporation Thermal cycling apparatus and method for providing thermal uniformity
US7122799B2 (en) 2003-12-18 2006-10-17 Palo Alto Research Center Incorporated LED or laser enabled real-time PCR system and spectrophotometer
US7398229B2 (en) * 2004-06-04 2008-07-08 Isis Innovation Limited System and method for conducting electronic commerce
WO2006002403A1 (en) 2004-06-23 2006-01-05 Applera Corporation Thermal cycler
SG184539A1 (en) 2010-04-09 2012-11-29 Life Technologies Corp Improved thermal uniformity for thermal cycler instrumentation using dynamic control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10512915B2 (en) 2010-05-07 2019-12-24 Hitachi High-Technologies Corporation Nucleic acid amplifier and nucleic acid inspection device employing the same

Also Published As

Publication number Publication date
DE29917313U1 (en) 2001-02-15
EP1216098A1 (en) 2002-06-26
US20070110634A1 (en) 2007-05-17
US8721972B2 (en) 2014-05-13
AU774199B2 (en) 2004-06-17
AU7660500A (en) 2001-05-10
KR20020038765A (en) 2002-05-23
NO20021340D0 (en) 2002-03-18
US20140030170A1 (en) 2014-01-30
DE50003023D1 (en) 2003-08-28
US9914125B2 (en) 2018-03-13
WO2001024930A1 (en) 2001-04-12
US20070140926A1 (en) 2007-06-21
ATE245487T1 (en) 2003-08-15
JP2003511221A (en) 2003-03-25
US7611674B2 (en) 2009-11-03
NO20021340L (en) 2002-03-18
US20100120100A1 (en) 2010-05-13
KR100696138B1 (en) 2007-03-20
US20100120099A1 (en) 2010-05-13
US20120264206A1 (en) 2012-10-18
US8389288B2 (en) 2013-03-05

Similar Documents

Publication Publication Date Title
EP1216098B1 (en) Device for carrying out chemical or biological reactions
EP1054735B1 (en) Miniaturized temperature-zone flow reactor
DE19519015C1 (en) Miniaturised multi-chamber thermo-cycler for polymerase chain reaction
DE60108482T2 (en) PROCESS OPTIMIZING REACTOR WITH PARALLEL FLOW
US7727479B2 (en) Device for the carrying out of chemical or biological reactions
DE60030789T2 (en) Temperature control for multi-vessel reaction device
DE69133211T3 (en) Device and vessels for carrying out a polymerase chain reaction
EP0731732B1 (en) Miniaturized flow thermocycler
DE60029256T2 (en) DEVICE FOR QUICK THERMAL RECYCLING
DE69434604T2 (en) THERMAL CIRCULAR PROCESSING DEVICE WITH TEMPERATURE GRADIENT BLOCK
DE69935230T2 (en) DEVICE FOR THERMAL AND LIQUID CIRCULATION FOR HYBRIDIZING NUCLEIC ACIDS
EP0442942B1 (en) Apparatus for selectively adjusting the temperature of a test specimen to various values
DE69627699T2 (en) SLIDE HOLDER
EP0444144B1 (en) Thermostatic device
EP1256378A2 (en) Device and method for parallel conducting of experiments
DE60201257T2 (en) METHOD AND DEVICE FOR CONTINUOUSLY IMPLEMENTING A BIOLOGICAL, CHEMICAL OR BIOCHEMICAL REACTION
DE10221763A1 (en) Thermal cycler with temperature control block controlled in cycles
DE102004025538A1 (en) Temperature control method and apparatus for the temperature treatment of small quantities of liquid
DE102019204850B4 (en) Method for amplifying DNA, rotator and system for amplifying DNA
DE102009015869A1 (en) Tempering device for tempering two-dimensionally arranged proteins in micro titer plate, has resistor elements attached at adapted admixture in regions, where measurements of sample parameters are accomplished during adjustment of sensor
EP1924361A1 (en) Laboratory temperature control device with top face
DE20221055U1 (en) Thermocycler for amplifying nucleic acid stretches in probe, comprises temperature controlling block that is sub-divided into segments each receiving specimens and are thermally separated and are controlled separately
DE19948636A1 (en) New tempering device used in medical, biological and biotechnological fields, comprises a Peltier element coupled to heat exchanger elements, and a control or regulating unit
EP1228804A2 (en) Device for tempering reaction samples

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020306

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20030723

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030723

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030723

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030723

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030723

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50003023

Country of ref document: DE

Date of ref document: 20030828

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030929

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030929

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031023

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031103

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030723

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
BERE Be: lapsed

Owner name: *MWG-BIOTECH A.G.

Effective date: 20030930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090514 AND 20090520

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20100121 AND 20100127

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190815

Year of fee payment: 20

Ref country code: DE

Payment date: 20190917

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190926

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50003023

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200928