EP1192287B1 - Verfahren zum herstellen von nicht kornorientiertem elektroblech - Google Patents

Verfahren zum herstellen von nicht kornorientiertem elektroblech Download PDF

Info

Publication number
EP1192287B1
EP1192287B1 EP00918861A EP00918861A EP1192287B1 EP 1192287 B1 EP1192287 B1 EP 1192287B1 EP 00918861 A EP00918861 A EP 00918861A EP 00918861 A EP00918861 A EP 00918861A EP 1192287 B1 EP1192287 B1 EP 1192287B1
Authority
EP
European Patent Office
Prior art keywords
strip
rolling
hot
annealing
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00918861A
Other languages
English (en)
French (fr)
Other versions
EP1192287A1 (de
Inventor
Rudolf Kawalla
Hans Pircher
Karl Ernst Friedrich
Brigitte Hammer
Jürgen Schneider
Olaf Fischer
Carl-Dieter Wuppermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Stahl AG filed Critical ThyssenKrupp Stahl AG
Priority to SI200030038T priority Critical patent/SI1192287T1/xx
Publication of EP1192287A1 publication Critical patent/EP1192287A1/de
Application granted granted Critical
Publication of EP1192287B1 publication Critical patent/EP1192287B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing

Definitions

  • the invention relates to a method for producing not grain-oriented electrical sheet, in which from a made of a steel material, such as cast Slabs, bands, curtains or thin slabs, a Hot strip is made, the electric sheet a low turnover loss and a high turnover Polarization and good mechanical properties has.
  • a steel material such as cast Slabs, bands, curtains or thin slabs
  • a Hot strip is made, the electric sheet a low turnover loss and a high turnover Polarization and good mechanical properties has.
  • Such non-grain oriented electrical sheets are mainly used as nuclear material in electrical Machines, such as motors and generators, with rotating magnetic flux direction used.
  • non-grain oriented electrical sheet are here under the DIN EN 10106 ("final annealed Electrical sheet ”) and DIN EN 10165 (" not final annealed Electrical sheet ”) falling electric sheets understood. In addition, also become more anisotropic varieties as long as they are not grain-oriented Electric sheets apply.
  • Non-grain oriented Electrical sheet metal not only affects Non-grain oriented electrical sheets with high losses (P1.5 ⁇ 5 - 6 W / kg), but also sheets with medium (3.5 W / kg ⁇ P1.5 ⁇ 5.5 W / kg) and low losses (P1.5 ⁇ 3.5). Therefore one strives, the entire spectrum the weak, medium and highly silicated Electrotechnical steels in terms of its to improve magnetic polarization values.
  • the object of the invention is a inexpensive way to produce electrical sheets indicate with improved properties.
  • a method for producing non-grain oriented electrical steel in which from a starting material, such as cast slabs, strips or thin slabs, made of a steel with (in wt .-%) 0.001 - 0.05% C, ⁇ 1 , 5% Si, ⁇ 0.4% Al, with Si + 2 Al ⁇ 1.7%, 0.1-1.2% Mn, optionally up to a total of 1.5% of alloying additives, such as P, Sn, Sb, Zr, V, Ti, N, Ni, Co, Nb and / or B, and the remainder being iron and conventional accompanying elements, a hot strip is produced by directing the starting material directly from the casting heat or after a previous reheating to at least 1000 ° C and at most 1180 ° C reheating temperature hot rolled in several forming passes and then coiled, wherein during the hot rolling at least the first forming pass in Austenit with at least one further forming pass in the two-phase mixing area austenite / ferrite is
  • the magnetic Properties of an electrical sheet by deformation during the individual in the course of hot rolling continuous forming passes depending on respective structural state influenced.
  • Crucial part has thereby the rolling in Two-phase mixed area, whereas the proportion of deformation should be as low as possible in the ferrite region.
  • the inventive method is therefore particularly for the processing of such Fe-Si alloys suitable, which is a pronounced two-phase mixed region between have the austenite and the ferrite region.
  • the hot rolling according to the invention is usually in one formed of several rolling stands Finishing roll completed.
  • those traversed in the austenitic area serve Umformstiche to, the thickness of the hot strip before the Start of rolling in the two-phase mixed area so to adjust that during the im Two-phase mixing zone rolling ("Mixing rollers") desired overall shape change safely is reached.
  • the mixing rolls also include at least one forming pass. However, preferably several forming passes in the mixed area austenite / ferrite go through to those required in this mixing rollers Overall shape change of at least 35% sure to reach and so the desired attitude of the To obtain hot strip microstructure.
  • total change in shape ⁇ h is understood here to mean the ratio of the decrease in thickness during rolling in the respective phase region to the thickness of the strip when entering the relevant phase region.
  • a hot strip produced according to the invention has, for example, a thickness h 0 after rolling in the austenite region. In the course of the subsequent rolling in the two-phase mixing zone, the thickness of the hot strip is reduced to h 1 .
  • the total deformation ⁇ h during rolling in the two-phase mixed area austenite / ferrite should reach at least 35% in order to set the desired magnetic and technological properties favorable state of the hot-rolled strip in terms of grain size, texture and precipitates or prepare for subsequent processing steps.
  • Optimal processing results can be achieved if the total deformation in the biphasic mixed area austenite / ferrite is limited to a maximum of 60%.
  • the inventive method allows by a both in terms of temperature control as also with regard to the staggering of the transformations optimized rolling strategy in combination with a suitably selected reel temperature the most cost-effective Production of a high-quality electrical steel material.
  • An advantageous embodiment of the invention is characterized in that the hot strip is finished rolled after forming in the austenite exclusively in the two-phase mixed area austenite / ferrite.
  • the total change in shape ⁇ h achieved during rolling in the two-phase mixed region austenite / ferrite should amount to at least 50%.
  • rolling in the ferrite state of the hot strip is completely avoided.
  • tapes made from Fe-Si steels which have a pronounced two-phase mixed region of austenite / ferrite in the transition from austenite to ferrite. This can be avoided by a suitable choice of the ratio of deformation and forming rate, ie utilization of the heat generated during the forming, an optimal temperature control in terms of avoiding cooling of the rolling stock and thus a complete conversion into ferrite.
  • At least one forming pass in the ferrite region is carried out following the rolling in the two-phase mixed region austenite / ferrite.
  • the total deformation ⁇ h achieved during rolling in the ferrite region should be at least 10% and at most 33%.
  • the rolling in the ferrite is limited to a minimum, so that the center of gravity of the deformation is unchanged in the mixed area austenite / ferrite despite the final rolling in the ferrite.
  • the Hot strip is already softened in the coil, with his Characteristics determining characteristics, such as grain size, Texture and excretions are positively affected.
  • Such an "in-line" running Annealing of the coiled at high temperature, in the coil not substantially cooled hot strip can a otherwise necessary Completely replace hot band bake annealing. Let it be Annealed hot strips with particularly good magnetic and technological properties produce. The required time and Energy expenditure is considerably lower than with the conventionally for improving the properties hot strip annealing performed by electrical steel.
  • the hot strip after rolling in the finishing scale at a reel temperature of less than 600 ° C, in particular less than 550 ° C, reeled.
  • the reeling at these temperatures results in the concerned Alloys to a solidified hot strip state.
  • At least one of the last Forming passes in the ferrite area with lubrication hot rolled.
  • hot rolling with lubrication occur on the one hand lower shear deformations, so that the rolled Band in the result a more homogeneous structure over the Cross section receives.
  • the Lubrication reduces the rolling forces, so that over the each rolling pass a higher reduction in thickness possible is. Therefore it can, depending on the desired Characteristics of the electric sheet to be produced, be advantageous if all in the ferrite occurring forming passes with a rolling lubrication be performed.
  • the hot strip after reeling and Cooling additionally at an annealing temperature of annealed at least 740 ° C.
  • This glow can be in the Hood furnace or in a continuous furnace
  • Thin slabs or cast strips when cast as a starting material Thin slabs or cast strips are used, can produce hot strips whose thickness ⁇ 1.5 mm is.
  • the production of high quality Bands can be characterized in this context accomplish that the cast starting material in a Cast rolling mill has been produced and coming from this is passed directly into the rolling mill.
  • Hot rolled strips produced according to the invention have such good properties Characteristics that they are suitable for a variety of Use applications directly as electrical sheets let, without the need for another cold rolling requires one about a smoothing or a passing going out cold deformation is made. Therefore there is a preferred embodiment of the invention in that the hot strip is made up and as Electrical sheet is delivered.
  • Hot strip is processed, especially good magnetic Properties can be achieved when hot rolling in Mixed austenite / ferrite is terminated. It has shown that in particular so under avoidance of the Ferrit capablees hot rolled hot strips suitable are without further deformation in the course of a Cold rolling to be delivered to the end user.
  • the magnetic Characteristics of the according to the invention produced hot-rolled Bandes be improved by the fact that the stained Hot strip at a degree of deformation of more than 3 to no more than 15% temper rolling. This too Reworking does not lead to typical thickness reduction, which would be comparable to the typical cold rolling achieved because of the achieved high degrees of deformation Change in strip thickness. Rather, additional Deformation energy introduced into the band, which a positive influence on the later processability of the Dressing rolled strip has.
  • the invention delivered as a hot strip Electrical sheet can in the usual way before his Assembly and delivery at one Annealing temperature> 740 ° C final annealing. Becomes on the other hand, the final annealing was carried out at the processor, so can a non-annealed electric hot strip for be provided by the hot strip before his Assembly and delivery at annealing temperatures > 650 ° C recrystallizing to a non-annealed electrical steel is annealed.
  • the hot strip produced in accordance with the invention is but also because of its mechanical properties particularly suitable, in a conventional manner einoder to be cold-rolled in several stages to a final thickness. If the cold rolling is carried out in several stages, should follow at least one of the cold rolling stages an intermediate annealing done to the good mechanical Maintain properties of the band.
  • a "fully-finished" -Ebandroband produced be then joins the cold rolling Final annealing at an annealing temperature, which preferably> 740 ° C.
  • Cold-rolled electrical steel produced according to the invention is excellent cutting and punching and is suitable as such, especially to components such as Slats or blanks to be processed.
  • components such as Slats or blanks to be processed.
  • the final annealing of the cold-rolled electric sheet preferably in one decarburizing atmosphere.
  • the invention is based on Embodiments explained in more detail.
  • J2500 refers to the following the magnetic polarization at magnetic Field strengths of 2500 A / m, 5000 A / m or 10000 A / m.
  • P 1.0 or P 1.5 is the Loss of magnetization at a polarization of 1.0 T or 1.5 T and a frequency of 50 Hz understood.
  • the Finishing roll is at least the first forming pass exclusively in Austenitic area.
  • Table 2 shows the magnetic properties J 2500 , J 5000 , J 10000 , P 1.0 and P 1.5 for two electrical sheets B1, B2 produced from steels A and B, respectively.
  • the respective hot-rolled strips intended for the production of the electrical sheets B1, B2 have been rolled to completion in the austenitic area at a total degree of deformation ⁇ h of 66% in the two-phase mixed area austenite / ferrite.
  • the rolled hot strips were then rewound at a reel temperature of 750 ° C. Immediately thereafter, the coiled hot strips were cooled and fed to further processing.
  • Table 3 shows the magnetic properties J 2500 , J 5000 , J 10000 , P 1.0 and P 1.5 for electrical sheets B3, B4, B5.
  • the sheet B3 has been produced using the steel A, the sheet B4 using the steel B and the sheet B5 using the steel C.
  • the hot strips intended for the production of the electrical steel sheets B3, B4, B5 have also been converted exclusively in the austenite / ferrite two-phase mixed region after the transformation in the austenite region.
  • the total conversion ⁇ h achieved during rolling in the mixing area was 66%. Subsequently, the hot strips were rewound at a temperature of 750 ° C.
  • Table 4 shows the magnetic properties J 2500 , J 5000 , J 10000 , P 1.0 and P 1.5 for electrical sheets B6, B7, B8, which, in the order given, are also based on steels A, B and C have been generated.
  • the hot strips intended for the production of the electric sheets B6, B7, B8 have been formed after the transformation in the austenite area in the two-phase mixed area austenite / ferrite.
  • the total conversion ⁇ h achieved in the two-phase mixed area was 50%.
  • the hot-rolled strip has undergone several forming passes in the ferrite area.
  • the total conversion ⁇ h achieved in the ferrite region was less than 30%.
  • the thus finished rolled hot strip was coiled at a temperature of 750 ° C.
  • Table 5 shows the magnetic properties J 2500 , J 5000 , J 10000 , P 1.0 and P 1.5 for electrical sheets B9, B10, B11.
  • the sheet B9 has been produced using the steel A, the sheet B10 using the steel B and the sheet B11 using the steel C.
  • the hot strips intended for the production of the electrical steel sheets B9, B10, B11 have been subjected to the same transformations in the finishing roll scale as the strips intended for the production of the metal sheets B6, B7, B8.
  • the thus finished rolled hot strip was coiled at a temperature of 750 ° C.
  • Tables 8a-8c show the magnetic properties J 2500 , J 5000 , J 10000 , P 1.0 and P 1.5 for the three electrical sheets C1-C3 and D1-D3, respectively, produced from steels C and D, respectively ,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Metal Rolling (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Herstellen von nicht kornorientiertem Elektroblech, bei dem aus einem aus einem Stahl erzeugten Vormaterial, wie gegossenen Brammen, Bändern, Vorbändern oder Dünnbrammen, ein Warmband gefertigt wird, wobei das Elektroblech einen geringen Ummangetisierungsverlust und eine hohe Polarisation sowie gute mechanische Eigenschaften besitzt. Derartige nichtkornorientierte Elektrobleche werden hauptsächlich als Kernmaterial in elektrischen Maschinen, wie Motoren und Generatoren, mit rotierender magnetischer Flußrichtung verwendet.
Unter dem Begriff "nichtkornorientiertes Elektroblech" werden hier unter die DIN EN 10106 ("schlußgeglühtes Elektroblech") und DIN EN 10165 ("nicht schlußgeglühtes Elektroblech") fallende Elektrobleche verstanden. Darüber hinaus werden auch stärker anisotrope Sorten einbezogen, solange sie nicht als kornorientierte Elektrobleche gelten.
Von der verarbeitenden Industrie wird die Forderung gestellt, nichtkornorientierte Elektrobleche zur Verfügung zu stellen, deren magnetische Eigenschaften gegenüber herkömmlichen Blechen dieser Art angehoben sind. So sollen die Ummagnetisierungsverluste herabgesetzt und die Polarisation im jeweils genutzten Induktionsbereich erhöht werden. Gleichzeitig ergeben sich aus den jeweiligen Be- und Verarbeitungsschritten, welchen die Elektrobleche im Zusammenhang mit ihren Verwendungen unterworfen werden, spezielle Anforderungen an die mechanisch-technologischen Eigenschaften der Elektrobleche. In diesem Zusammenhang kommt der Schneidbarkeit der Bleche, z.B. beim Stanzen, besondere Bedeutung zu.
Durch die Erhöhung der magnetischen Polarisation wird der Magnetisierungsbedarf reduziert. Damit einhergehend gehen auch die Kupferverluste zurück, welche einen wesentlichen Anteil an den beim Betrieb elektrischer Maschinen entstehenden Verluste haben. Der wirtschaftliche Wert nichtkornorientierter Elektrobleche mit erhöhter Permeabilität ist daher erheblich.
Die Forderung nach höherpermeablen nichtkornorientierten Elektroblechsorten betrifft nicht nur nichtkornorientierte Elektrobleche mit hohen Verlusten (P1,5 ≥ 5 - 6 W/kg), sondern auch Bleche mit mittleren (3,5 W/kg ≤ P1,5 ≤ 5,5 W/kg) und niedrigen Verlusten (P1,5 ≤ 3.5). Daher ist man bemüht, das gesamte Spektrum der schwach-, mittel- und hochsilizierten elektrotechnischen Stähle hinsichtlich seiner magnetischen Polarisationswerte zu verbessern.
Ein Weg, basierend auf mittel- oder schwachsilizierten Legierungen ein höherpermeables Elektroblech herzustellen, besteht darin, im Zuge der Herstellung das Warmband einer Warmbandglühung zu unterziehen. So wird beispielsweise in der WO 96/00306 vorgeschlagen, ein für die Erzeugung eines Elektroblechs bestimmtes Warmband im Austenitgebiet fertig zu walzen und das Haspeln bei Temperaturen oberhalb der vollständigen Umwandlung in Ferrit vorzunehmen. Zusätzlich ist ein Glühen des Coils unmittelbar aus der Walzhitze vorgesehen. Auf diese Weise wird ein Endprodukt mit guten magnetischen Eigenschaften erhalten. Allerdings müssen dazu wegen des hohen Energieaufwands für das Wärmen vor und während des Warmwalzens sowie wegen der erforderlichen Legierungszusätze erhöhte Kosten in Kauf genommen werden.
Gemäß der EP 0 469 980 ist eine erhöhte Haspeltemperatur in Kombination mit einer zusätzlichen Warmbandglühung anzustreben, um auch bei niedrigen Legierungsgehalten brauchbare magnetische Eigenschaften zu erhalten. Auch dies kann nur unter Inkaufnahme zusätzlicher Kosten bewerkstelligt werden.
Die Aufgabe der Erfindung besteht darin, einen kostengünstigen Weg zur Herstellung von Elektroblechen mit verbesserten Eigenschaften anzugeben.
Diese Aufgabe wird durch ein Verfahren zum Herstellen von nicht kornorientiertem Elektroblech gelöst, bei dem aus einem Vormaterial, wie gegossenen Brammen, Bändern oder Dünnbrammen, das aus einem Stahl mit (in Gew.-%) 0,001 - 0,05 % C, ≤ 1,5 % Si, ≤ 0,4 % Al, mit Si + 2 Al ≤ 1,7 %, 0,1 - 1,2 % Mn, gegebenenfalls bis insgesamt 1,5 % an Legierungszusätzen, wie P, Sn, Sb, Zr, V, Ti, N, Ni, Co, Nb und/oder B, und als Rest Eisen sowie üblichen Begleitelementen hergestellt ist, ein Warmband erzeugt wird, indem das Vormaterial direkt aus der Gießhitze oder nach einem vorhergehenden Wiedererwärmen auf eine mindestens 1000 °C und höchstens 1180 °C betragende Wiedererwärmungstemperatur in mehreren Umformstichen warmgewalzt und anschließend gehaspelt wird, wobei während des Warmwalzens mindestens der erste Umformstich im Austenitgebiet und mindestens ein weiterer Umformstich im Zweiphasenmischgebiet Austenit / Ferrit durchgeführt wird und wobei während des Walzens im Zweiphasenmischgebiet eine Gesamtformänderung εh von mindestens 35 % erreicht wird.
Gemäß der Erfindung werden die magnetischen Eigenschaften eines Elektroblechs durch eine Verformung während der einzelnen im Zuge des Warmwalzens durchlaufenen Umformstiche in Abhängigkeit vom jeweiligen Gefügezustand gezielt beeinflußt. Entscheidenden Anteil hat dabei das Walzen im Zweiphasenmischgebiet, wogegen der Anteil der Umformung im Ferritgebiet möglichst gering sein soll. Das erfindungsgemäße Verfahren ist daher insbesondere für die Verarbeitung von solchen Fe-Si-Legierungen geeignet, welche ein ausgeprägtes Zweiphasenmischgebiet zwischen dem Austenit- und dem Ferritgebiet aufweisen.
Die Abstimmung der Legierungszusätze an ferrit- und austenitbildenden Elementen ist unter Berücksichtigung der erfindungsgemäß vorgesehenen Gehaltsbereiche der einzelnen Elemente ausgehend von einer Basiszusammensetzung von (Si + 2Al) ≤ 1,7 vorzunehmen; und zwar derart, daß eine ausreichende Ausprägung des Zweiphasenmischgebiets gegeben ist.
Im Fall der Verwendung von gegossenen Brammen als Vormaterial werden diese auf eine Temperatur ≥ 1000 °C wiedererwärmt, so daß das Material sich vollständig im austenitischen Zustand befindet. Aus dem gleichen Grunde werden auch gegossene Dünnbrammen oder gegossene Bänder unter Ausnutzung der Gießhitze direkt eingesetzt und erforderlichenfalls auf Walzanfangstemperatur von mehr als 1000 °C erwärmt. Dabei wächst die erforderliche Wiedererwärmungstemperatur mit zunehmendem Si-Gehalt, wobei eine Obergrenze von 1180 °C nicht überschritten wird.
Das Warmwalzen gemäß der Erfindung wird in der Regel in einer aus mehreren Walzgerüsten gebildeten Fertigwalzstaffel durchgeführt. Dabei besteht der Zweck des in einem oder mehreren Stichen erfolgenden Walzens im Austenitgebiet zum einen darin, den Übergang vom Austenit ins Zweiphasenmischgebiet und vom Zweiphasenmischgebiet ins Ferritgebiet kontrolliert innerhalb der Fertigwalzstaffel durchführen zu können. Zum anderen dienen die im Austenitgebiet durchlaufenen Umformstiche dazu, die Dicke des Warmbands vor dem Beginn des Walzens im Zweiphasenmischgebiet so einzustellen, daß die während des im Zweiphasenmischgebiet erfolgenden Walzens ("Mischwalzen") erwünschte Gesamtformänderung sicher erreicht wird. Das Mischwalzen umfaßt ebenfalls mindestens einen Umformstich. Vorzugsweise werden jedoch mehrere Umformstiche im Mischgebiet Austenit / Ferrit durchlaufen, um die bei diesem Mischwalzen geforderte Gesamtformänderung von mindestens 35 % sicher zu erreichen und so die gewünschte Einstellung des Warmbandgefüges zu erhalten.
Unter der "Gesamtformänderung εh" wird hier das Verhältnis der Dickenabnahme während des Walzens im jeweiligen Phasengebiet zur Dicke des Bandes beim Eintritt in das betreffende Phasengebiet verstanden. Dieser Definition entsprechend weist ein gemäß der Erfindung hergestelltes Warmband beispielsweise nach dem Walzen im Austenitgebiet eine Dicke h0 auf. Im Zuge des darauffolgenden Walzens im Zweiphasenmischgebiet wird die Dicke des Warmbands auf h1 reduziert. Definitionsgemäß ergibt sich damit die beispielsweise während des Mischwalzens erreichte Gesamtformänderung εh zu (h0 - h1) / h0 mit h0 = Dicke beim Eintritt in das erste im Mischzustand Austenit / Ferrit durchlaufene Walzgerüst und h1 = Dicke beim Verlassen des letzten im Mischzustand durchlaufenen Walzgerüsts.
Gemäß der Erfindung soll die Gesamtformänderung εh während des Walzens im Zweiphasenmischgebiet Austenit / Ferrit mindestens 35 % erreichen, um einen die gewünschten magnetischen und technologischen Eigenschaften begünstigenden Zustand des warmgewalzten Bandes hinsichtlich Korngröße, Textur und Ausscheidungen einzustellen bzw. für die nachfolgenden Verarbeitungsschritte vorzubereiten. Optimale Verarbeitungsergebnisse lassen sich dabei erzielen, wenn die Gesamtverformung im Zweiphasenmischgebiet Austenit / Ferrit auf höchstens 60 % beschränkt ist.
Durch das schwerpunktmäßig als Mischwalzen unter weitgehender Umgehung eines Walzens im Ferritgebiet erfolgende Warmwalzen läßt sich ein Warmband erzeugen, welches im weiteren zur Herstellung eines Elektroblechs und zur Fertigung von Bauteilen mit hervorragenden magnetischen Eigenschaften genutzt werden kann. Kosten verursachende zusätzliche Verarbeitungsschritte oder das Einhalten bestimmter hoher Temperaturen während des Warmwalzens sind zu diesem Zweck nicht erforderlich. Statt dessen ermöglicht das erfindungsgemäße Verfahren durch eine sowohl hinsichtlich der Temperaturführung als auch hinsichtlich der Staffelung der Umformungen optimierte Walzstrategie in Verbindung mit einer geeignet gewählten Haspeltemperatur die kostengünstige Erzeugung eines hochwertigen Elektroblechmaterials.
Es ist festgestellt worden, daß sich schon durch die Kombination der erfindungsgemäßen Maßnahmen und die Einhaltung des für die Verformung im Mischgebiet Austenit / Ferrit erfindungsgemäß vorgesehenen Bereichs der Formänderung von 35 % bis 60 % Elektrobleche herstellen lassen, deren Eigenschaften den Eigenschaften von solchen in herkömmlicher Weise hergestellten Elektroblechen gleichkommen, die zusätzliche zeit- und kostenaufwendige Verfahrensschritte, wie ein ergänzendes Warmbandglühen, durchlaufen haben. Weiter ist festgestellt worden, daß für den Fall, daß ein Warmbandglühen in Ergänzung der erfindungsgemäßen Vorgehensweise angewendet wird, das Zusammenwirken dieser Maßnahmen zu Elektroblechen führt, die in ihren magnetischen und mechanischen Eigenschaften herkömmlich hergestellten Elektroblechen überlegen sind. Somit bewirkt die Erfindung einerseits eine deutliche Verminderung der Kosten bei der Herstellung von qualitativ hochwertigen Elektroblechen. Andererseits lassen sich auf Grundlage des erfindungsgemäßen Verfahrens Bleche erzeugen, deren Eigenschaften herkömmlich erzeugten Elektroblechen weit überlegen sind.
Eine vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, daß das Warmband nach der Umformung im Austenitgebiet ausschließlich im Zweiphasenmischgebiet Austenit / Ferrit fertig gewalzt wird. Insbesondere bei dieser Variante der Erfindung sollte die während des Walzens im Zweiphasenmischgebiet Austenit / Ferrit erreichte Gesamtformänderung εh mindestens 50 % betragen. Bei dieser Variante des erfindungsgemäßen Verfahrens wird das Walzen im Ferritzustand des Warmbandes vollständig vermieden. Besonders geeignet für diese Abfolge der Walzschritte unter Ausschluß des Walzens im Ferritgebiet sind Bänder, welche basierend auf Fe-Si-Stählen hergestellt sind, die ein ausgeprägtes Zweiphasenmischgebiet Austenit / Ferrit beim Übergang vom Austenit ins Ferrit besitzen. Hierbei kann durch eine geeignete Wahl des Verhältnisses von Umformgrad und Umformgeschwindigkeit, d.h. Ausnutzung der bei der Umformung entstehenden Wärme, eine optimale Temperaturführung im Sinne der Vermeidung einer Abkühlung des Walzgutes und damit eine vollständige Umwandlung in Ferrit vermieden werden.
Gemäß einer alternativen Variante des erfindungsgemäßen Verfahrens wird im Anschluß an das Walzen im Zweiphasenmischgebiet Austenit / Ferrit mindestens ein Umformstich im Ferritgebiet durchgeführt. Dabei sollte die während des Walzens im Ferritgebiet erreichte Gesamtformänderung εh mindestens 10 % und höchstens 33 % betragen. Auch bei dieser Ausgestaltung der Erfindung ist das Walzen im Ferritgebiet auf ein Mindestmaß beschränkt, so daß der Schwerpunkt der Umformung trotz des abschließenden Walzens im Ferritgebiet unverändert im Mischgebiet Austenit / Ferrit liegt.
Grundsätzlich eignet sich für die Durchführung des erfindungsgemäßen Verfahrens eine Haspeltemperatur von mindestens 700 °C. Bei Einhaltung dieser Haspeltemperatur kann eine Warmbandglühung ganz oder zumindest zum wesentlichen Teil eingespart werden. Das Warmband wird schon im Coil entfestigt, wobei die seine Eigenschaften bestimmenden Merkmale, wie Korngröße, Textur und Ausscheidungen, positiv beeinflußt werden. Besonders vorteilhaft ist es in diesem Zusammenhang, wenn das gehaspelte Warmband aus der Coilhitze einer direkten Glühung unterzogen wird und wenn die Glühzeit bei einer Glühtemperatur oberhalb 700 °C mindestens 15 Minuten beträgt. Eine solche "in-line" ausgeführte Glühung des bei hoher Temperatur aufgehaspelten, im Coil nicht wesentlich abgekühlten Warmbandes kann eine andernfalls unter Umständen erforderliche Warmbandhaubenglühung vollständig ersetzen. So lassen sich geglühte Warmbänder mit besonders guten magnetischen und technologischen Eigenschaften herstellen. Der dazu erforderliche Zeit- und Energieaufwand ist erheblich geringer als bei der herkömmlicherweise zur Verbesserung der Eigenschaften von Elektroblech durchgeführten Warmbandglühung.
Gemäß einer insbesondere für die Verarbeitung eines Stahls mit einem Si-Gehalt von mindestens 0,7 Gewichts-% besonders geeigneten Ausgestaltung der Erfindung wird das Warmband nach dem Walzen in der Fertigstaffel bei einer Haspeltemperatur von weniger als 600 °C, insbesondere weniger als 550 °C, gehaspelt. Das Haspeln bei diesen Temperaturen führt bei den betreffenden Legierungen zu einem verfestigten Warmbandzustand.
Vorzugsweise wird mindestens bei einem der letzten Umformstiche im Ferritgebiet mit Schmierung warmgewalzt. Durch das Warmwalzen mit Schmierung treten einerseits geringere Scherverformungen auf, so daß das gewalzte Band im Ergebnis eine homogenere Struktur über den Querschnitt erhält. Andererseits werden durch die Schmierung die Walzkräfte vermindert, so daß über dem jeweiligen Walzstich eine höhere Dickenabnahme möglich ist. Daher kann es, je nach den gewünschten Eigenschaften des zu erzeugenden Elektroblechs, vorteilhaft sein, wenn sämtliche im Ferritgebiet erfolgenden Umformstiche mit einer Walzschmierung durchgeführt werden.
Unabhängig von der jeweils gewählten Abfolge der Walzschritte kann eine weitere Verbesserung der Eigenschaften des erzeugten Elektrobandes dadurch erreicht werden, daß das Warmband nach dem Haspeln und Abkühlen zusätzlich bei einer Glühtemperatur von mindestens 740 °C geglüht wird. Dieses Glühen kann im Haubenofen oder im Durchlaufofen durchgeführt werden.Insbesondere dann, wenn als Vormaterial gegossene Dünnbrammen oder gegossene Bänder eingesetzt werden, lassen sich Warmbänder erzeugen, deren Dicke ≤ 1,5 mm ist. Die Erzeugung von qualitativ besonders hochwertigen Bändern läßt sich in diesem Zusammenhang dadurch bewerkstelligen, daß das gegossene Vormaterial in einer Gießwalzanlage erzeugt worden ist und aus dieser kommend direkt in die Walzstraße geleitet wird.
Erfindungsgemäß erzeugte Warmbänder weisen so gute Eigenschaften auf, daß sie sich für eine Vielzahl von Anwendungszwecken direkt als Elektrobleche einsetzen lassen, ohne daß es dazu eines nochmaligen Kaltwalzens bedarf, bei dem eine über ein Glätten oder Dressieren hinausgehende Kaltverformung vorgenommen wird. Daher besteht eine bevorzugte Ausgestaltung der Erfindung darin, daß das Warmband konfektioniert und als Elektroblech ausgeliefert wird.
Zu beachten ist, daß in solchen Fällen, in denen direkt eingesetztes Vormaterial in erfindungsgemäßer Weise zu Warmband verarbeitet wird, besonders gute magnetische Eigenschaften erreicht werden, wenn das Warmwalzen im Mischgebiet Austenit / Ferrit beendet wird. Es hat sich gezeigt, daß insbesondere derart unter Meidung des Ferritgebietes warmgewalzte Warmbänder dazu geeignet sind, ohne eine weitere Verformung im Zuge eines Kaltwalzens an den Endverwender ausgeliefert zu werden.
Desweiteren ist festgestellt worden, daß ein erforderlichenfalls gebeiztes, erfindungsgemäß erzeugtes Warmband sich für bestimmte Anwendungszwecke ohne jede abschließende Kaltverformung einsetzten läßt. Für spezielle Anforderungen, bei denen eine verbesserte Verarbeitbarkeit des erfindungsgemäß erzeugten und ohne ausgeprägtes Kaltwalzen ausgelieferten Elektrowarmbandes gefordert wird, kann dies dadurch erreicht werden, daß das gebeizte Warmband bei einem Umformgrad von ≤ 3 % glattgewalzt wird. Durch das Glättwalzen werden Unebenheiten der Bandoberfläche geglättet, ohne daß es zu einer nennenswerten Beeinflussung des im Zuge des Warmwalzens erzeugten Gefügezustands kommt.
Alternativ oder ergänzend zu einem reinen Glättstich der voranstehend erläuterten Art können neben der Oberflächenbeschaffenheit auch die magnetischen Eigenschaften des erfidungsgemäß Erzeugten warmgewalzten Bandes dadurch verbessert werden, daß das gebeizte Warmband bei einem Umformgrad von mehr als 3 bis höchstens 15 % dressiergewalzt wird. Auch dieses Nachwalzen führt zu keiner typischen Dickenreduzierung, die vergleichbar wären mit den beim typischen Kaltwalzen wegen der dabei erzielten hohen Umformgrade erzielten Veränderung der Banddicke. Vielmehr wird zusätzliche Verformungsenergie in das Band eingebracht, welche einen positiven Einfluß auf die spätere Verarbeitbarkeit des dressiergewalzten Bandes hat.
Das erfindungsgemäß als Warmband ausgelieferte Elektroblech kann in der üblichen Weise vor seiner Konfektionierung und Auslieferung bei einer Glühtemperatur > 740 °C schlußgeglüht werden. Wird dagegen die Schlußglühung beim Verarbeiter durchgeführt, so kann ein nichtschlußgeglühtes Elektro-Warmband zur verfügung gestellt werden, indem das Warmband vor seiner Konfektionierung und Auslieferung bei Glühtemperaturen > 650 °C rekristallisierend zu einem nichtschlußgeglühten Elektroband geglüht wird.
Das auf erfindungsgemäße Weise hergestellte Warmband ist aufgrund seiner mechanischen Eigenschaften jedoch auch besonders dazu geeignet, in herkömmlicher Weise einoder mehrstufig auf eine Enddicke kaltgewalzt zu werden. Sofern das Kaltwalzen mehrstufig durchgeführt wird, sollte im Anschluß an mindestens eine der Kaltwalzstufen ein Zwischenglühen erfolgen, um die guten mechanischen Eigenschaften des Bandes beizubehalten.
Soll ein "fully-finished"-Elektroband hergestellt werden, so schließt sich an das Kaltwalzen ein Schlußglühen bei einer Glühtemperatur an, welche vorzugsweise > 740 °C ist.
Soll dagegen ein "semi-finished"-Elektroband erzeugt werden, so schließt sich an das gegebenenfalls mehrstufig durchgeführte Kaltwalzen ein rekristallisierendes Glühen im Hauben- oder Durchlaufofen bei Temperaturen von mindestens 650 °C an. Im Anschluß daran wird das kaltgewalzte und geglühte Elektroband gerichtet und nachgewalzt.
Erfindungsgemäß hergestelltes, kaltgewalztes Elektroband ist hervorragend schneid- und stanzbar und eignet sich als solches besonders dazu, zu Bauelementen, wie Lamellen oder Ronden, verarbeitet zu werden. Im Falle der Verarbeitung eines "semi-finished"-Elektroblechs werden zweckmäßigerweise die aus diesem Elektroblech hergestellten Bauelemente beim Anwender schlußgeglüht.
Unabhängig davon, ob ein "semi-" oder ein "fullyfinished" Elektroblech erzeugt wird, erfolgt gemäß einer weiteren Ausgestaltung der Erfindung die Schlußglühung des kaltgewalzten Elektroblechs vorzugsweise in einer entkohlenden Atmosphäre.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
"J2500", "J5000" bzw. "J10000" bezeichnen im folgenden die magnetische Polarisation bei magnetischen Feldstärken von 2500 A/m, 5000 A/m bzw. 10000 A/m.
Unter "P 1,0" bzw. "P 1,5" wird der Ummagnetisierungsverlust bei einer Polarisation von 1,0 T bzw. 1,5 T und einer Frequenz von 50 Hz verstanden.
Die in den nachfolgenden Tabellen angegebenen magnetischen Eigenschaften sind jeweils an Einzelstreifen längs der Walzrichtung gemessen worden.
In Tabelle 1 sind für drei zur erfindungsgemäßen Herstellung von Elektroblech verwendete Stähle die Gehalte der wesentlichen Legierungsbestandteile in Gewichts-% angegeben.
Stahl C Si Al Mn
A 0,008 0,1 0,12 0,34
B 0,008 0,33 0,25 0,81
C 0,007 1,19 0,13 0,23
Die aus den Stählen A, B bzw. C gegossenen Brammen sind als Vormaterial jeweils auf eine Temperatur von mehr als 1000 °C wiedererwärmt und in eine mehrere Walzgerüste umfassende Fertigwalzstaffel geleitet worden. In der Fertigwalzstaffel ist mindestens der erste Umformstich ausschließlich im Austenitgebiet durchgeführt worden.
In Tabelle 2 sind die magnetischen Eigenschaften J2500, J5000, J10000, P1,0 und P1,5 für zwei aus den Stählen A bzw. B erzeugten Elektrobleche B1, B2 angegeben. Die für die Herstellung der Elektrobleche B1, B2 bestimmten jeweiligen Warmbänder sind im Anschluß an das Walzen im Austenitgebiet bei einem Gesamtumformgrad εh von 66 % im Zweiphasenmischgebiet Austenit / Ferrit fertig gewalzt worden. Die gewalzten Warmbänder sind daraufhin bei einer Haspeltemperatur von 750 °C gehaspelt worden. Unmittelbar anschließend sind die gehaspelten Warmbänder abgekühlt und der Weiterverarbeitung zugeleitet worden.
Blech J2500 [T] J5000 [T] J10000 [T] P1,0 [W/kg] P1,5 [W/kg]
B1 1,739 1,813 1,9091 3,594 7,130
B2 1,724 1,802 1,896 3,002 5,959
In Tabelle 3 sind die magnetischen Eigenschaften J2500, J5000, J10000, P1,0 und P1,5 für Elektrobleche B3, B4, B5 angegeben. Das Blech B3 ist unter Verwendung des Stahls A, das Blech B4 unter Verwendung des Stahls B und das Blech B5 unter Verwendung des Stahls C erzeugt worden. Die zur Herstellung der Elektrobleche B3, B4, B5 bestimmten Warmbänder sind ebenfalls nach der Umformung im Austenitgebiet ausschließlich im Zweiphasenmischgebiet Austenit / Ferrit umgeformt worden. Die dabei erreichte Gesamtumformung εh beim Walzen im Mischgebiet betrug 66 %. Anschließend sind die Warmbänder bei einer Temperatur von 750 °C gehaspelt worden. Im Unterschied zur Herstellung der Elektrobleche B1, B2 sind die für die Herstellung der Bleche B3, B4, B5 bestimmten Warmbänder dann jedoch für eine Zeit von mindestens 15 Minuten auf der Haspeltemperatur gehalten worden, bevor sie der Weiterverarbeitung zu Kaltband zugeführt worden sind.
Blech J2500 [T] J5000 [T] J10000 [T] P1,0 [W/kg] P1,5 [W/kg]
B3 1,755 1,828 1,920 3,258 6,522
B4 1,737 1,812 1,909 3,075 6,101
B5 1,689 1,765 1,859 2,596 5,304
In Tabelle 4 sind die magnetischen Eigenschaften J2500, J5000, J10000, P1,0 und P1,5 für Elektrobleche B6, B7, B8 angegeben, welche, in der angegebenen Reihenfolge, ebenfalls basierend auf den Stählen A, B bzw. C erzeugt worden sind. Die zur Herstellung der Elektrobleche B6, B7, B8 bestimmten Warmbänder sind nach der Umformung im Austenitgebiet im Zweiphasenmischgebiet Austenit / Ferrit umgeformt worden. Die dabei erreichte Gesamtumformung εh im Zweiphasenmischgebiet betrug 50 %. Anschließend hat das Warmband mehrere Umformstiche im Ferritgebiet durchlaufen. Die dabei erreichte Gesamtumformung εh im Ferritgebiet betrug weniger als 30 %. Das derart fertig gewalzte Warmband ist bei einer Temperatur von 750 °C gehaspelt worden. Unmittelbar anschließend ist das Warmband im Coil abgekühlt worden.
Blech J2500 [T] J5000 [T] J10000 [T] P1,0 [W/kg] P1,5 [W/kg]
B6 1,748 1,822 1,916 3,564 7,121
B7 1,721 1,797 1,893 2,935 5,868
B8 1,709 1,791 1,884 2,630 5,246
In Tabelle 5 sind die magnetischen Eigenschaften J2500, J5000, J10000, P1,0 und P1,5 für Elektrobleche B9, B10, B11 angegeben. Das Blech B9 ist unter Verwendung des Stahls A, das Blech B10 unter Verwendung des Stahls B und das Blech B11 unter Verwendung des Stahls C erzeugt worden. Die zur Herstellung der Elektrobleche B9, B10, B11 bestimmten Warmbänder sind in der Fertigwalzstaffel denselben Umformungen unterzogen worden wie die zur Herstellung der Bleche B6, B7, B8 bestimmten Bänder. Das derart fertig gewalzte Warmband ist bei einer Temperatur von 750 °C gehaspelt worden. Im Unterschied zur Herstellung der Elektrobleche B6, B7, B8 sind die für die Herstellung der Bleche B9, B10, B11 bestimmten Warmbänder dann jedoch für eine Zeit von mindestens 15 Minuten auf der Haspeltemperatur gehalten worden, bevor sie der Weiterverarbeitung zu Kaltband zugeführt worden sind.
Blech J2500 [T] J5000 [T] J10000 [T] P1,0 [W/kg] P1,5 [W/kg]
B9 1,746 1,819 1,914 3,305 6,657
B10 1,731 1,805 1,901 2,909 5,811
B11 1,690 1,765 1,858 2,587 5,304
In Tabelle 6 sind die magnetischen Eigenschaften J2500, J5000, J10000, P1,0 und P1,5 für ein Elektroblech B12 angegeben, das basierend auf dem Stahl C erzeugt worden ist. Nach der Umformung im Austenitgebiet ist das zur Herstellung des Elektroblechs B12 bestimmte Warmband ausschließlich im Zweiphasenmischgebiet Austenit / Ferrit umgeformt worden. Die dabei erreichte Gesamtumformung εh im Zweiphasenmischgebiet betrug 66 %. Das fertig gewalzte Warmband ist dann bei einer Temperatur von weniger als 600 °C gehaspelt worden. Unmittelbar anschließend ist das Warmband im Coil abgekühlt worden.
Blech J2500 [T] J5000 [T] J10000 [T] P1,0 [W/kg] P1,5 [W/kg]
B12 1,724 1,800 1,894 2,577 5,105
In Tabelle 7 sind für zwei andere zur Herstellung eines erfindungsgemäß erzeugten und daraufhin ohne ausgeprägtes Kaltwalzen konfektionierten und als Elektroblech ausgelieferten Warmbandes verwendeten Stähle die Gehalte der für die Eigenschaften wesentlichen Legierungsbestandteile in Gewichts-% angegeben.
Stahl C Si Al Mn
C 0,008 0,10 0,12 0,34
D 0,007 1,19 0,13 0,23
Entsprechend den in Tabelle 7 angegebenen Zusammensetzungen gebildete Schmelzen sind in einer Gießwalzanlage kontinuierlich zu jeweils einem Vorband gegossen worden, welches ebenso kontinuierlich in eine mehrere Walzgerüste umfassende Warmwalzstaffel geleitet worden ist. Beim Warmwalzen der entsprechend erzeugten Elektrobleche C1 - C3 und D1 - D3 ist der Schwerpunkt der Verformung jeweils in den Bereich gelegt worden, in dem das jeweilige Band sich im austenitischen Zustand befindet. Der letzte Stich des Warmwalzens ist jedoch erfindungsgemäß im Austenit / Ferrit-Mischgebiet durchgeführt worden. Die dabei erzielte Gesamtverformung εH betrug 40 %. Anschließend sind die Warmbänder jeweils bei einer Temperatur von 750 °C gehaspelt worden.
In den Tabellen 8a - 8c sind die magnetischen Eigenschaften J2500, J5000, J10000, P1,0 und P1,5 für die jeweils drei aus den Stählen C bzw. D erzeugten Elektrobleche C1 - C3 bzw. D1 - D3 angegeben.
Im Fall der Beispiele C1, D1 (Tabelle 8a) sind die Warmbänder nach der Abkühlung direkt zu handelsüblichen Elektroblechen konfektioniert und an den Endverwender ausgeliefert worden. Im Fall der Beispiele C2, D2 (Tabelle 8b) sind die Warmbänder vor ihrer Auslieferung an den Endverwender gebeizt und zusätzlich einem Glättstich unterworfen worden. Bei diesem Glättstich ist eine Verformung εH von maximal 3 % erreicht worden. Die Bänder C3, D3 (Tabelle 8c) sind vor ihrer Auslieferung nach einem Beizen jeweils dressiergewalzt worden.
Blech J2500 [T] J5000 [T] J10000 [T] P1,0 [W/kg] P1,5 [W/kg]
C1 1,646 1,729 1,522 5,941 13,276
D1 1,642 1,716 1,548 4,095 9,647
Blech J2500 [T] J5000 [T] J10000 [T] P1,0 [W/kg] P1,5 [W/kg]
C2 1,661 1,735 1,577 5,409 13,285
D2 1,621 1,699 1,535 3,716 8,776
Blech J2500 [T] J5000 [T] J10000 [T] P1,0 [W/kg] P1,5 [W/kg]
C3 1,642 1,716 1,548 4,095 9,647
D3 1,608 1,686 1,529 3,023 7,447
Es zeigt sich, daß auch die erfindungsgemäß als Warmbänder erzeugten und als solche ohne ein ausgeprägtes Kaltwalzen an den Endverbraucher gelieferten Elektrobleche C1 - C3 bzw. D1 - D3 hervorragende magnetische Eigenschaften besitzen, die sie ohne weiteres zur Verwendung für eine Vielzahl von Anwendungszwecken geeignet machen.
Vergleichsuntersuchungen, die an 1 mm dicken, nach dem erfindungsgemäßen Verfahren erzeugten Elektroblechen und Elektroblechen durchgeführt worden sind, die in konventioneller Weise warm- und kaltgewalzt worden sind, zeigen, daß die erzielbaren Werte der magnetischen Polaristaion und die erzielbaren Werte des spezifischen Ummagnetisierungsverlustes der erfindungsgemäß erzeugten Elektrobleche in engen Bereichen mit denjenigen Werten übereinstimmen, die für die betreffenden Eigenschaften an herkömmlich erzeugten Elektroblechen ermittelt werden konnten.

Claims (27)

  1. Verfahren zum Herstellen von nicht kornorientiertem Elektroblech, bei dem aus einem Vormaterial, wie gegossenen Brammen, Bändern, Vorbändern oder Dünnbrammen, das aus einem Stahl mit (in Gewichts-%)
    C: 0,001 - 0,05 %
    Si: ≤ 1,5 %
    Al: ≤ 0,4 %
       mit Si + 2Al ≤ 1,7 %
    Mn: 0,1 - 1,2 %
       gegebenenfalls bis insgesamt 1,5 % an Legierungszusätzen, wie P, Sn, Sb, Zr, V, Ti, N, Ni, Co, Nb und/oder B, und
       als Rest Eisen sowie üblichen Begleitelementen
    hergestellt ist, ein Warmband erzeugt wird, indem das Vormaterial direkt aus der Gießhitze oder nach einem vorhergehenden Wiedererwärmen auf eine mindestens 1000 °C und höchstens 1180 °C betragende Wiedererwärmungstemperatur in mehreren Umformstichen warmgewalzt und anschließend gehaspelt wird, wobei während des Warmwalzens mindestens der erste Umformstich im Austenitgebiet und mindestens ein weiterer Umformstich im Zweiphasenmischgebiet Austenit / Ferrit durchgeführt wird und wobei während des Walzens im Zweiphasenmischgebiet eine Gesamtformänderung εh von mindestens 35 % erreicht wird.
  2. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Gesamtformänderung εh höchstens 60 % beträgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Warmband nach der Umformung im Austenitgebiet ausschließlich im Zweiphasenmischgebiet Austenit / Ferrit fertig gewalzt wird.
  4. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die während des Walzens im Zweiphasenmischgebiet Austenit / Ferrit erreichte Gesamtformänderung εh mindestens 50 % beträgt.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß im Anschluß an das Walzen im Zweiphasenmischgebiet Austenit / Ferrit mindestens ein Umformstich im Ferritgebiet durchgeführt wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die während des Walzens im Ferritgebiet erreichte Gesamtformänderung εh mindestens 10 % und höchstens 33 % beträgt.
  7. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Haspeltemperatur mindestens 700 °C beträgt.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das gehaspelte Warmband aus der Coilhitze einer direkten Glühung unterzogen wird und d a ß die Glühzeit bei einer Glühtemperatur oberhalb 700 °C mindestens 15 Minuten beträgt.
  9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der Stahl einen Si-Gehalt von mindestens 0,7 Gewichts-% aufweist.
  10. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Haspeltemperatur weniger als 600 °C, insbesondere weniger als 550 °C, beträgt.
  11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß das Warmband in unmittelbarem Anschluß an das Haspeln im Coil beschleunigt abgekühlt wird.
  12. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß während des Warmwalzens im Ferritgebiet mindestens ein Umformstich mit Schmierung durchgeführt wird.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß alle Umformstiche im Ferritgebiet mit einer Walzenschmierung durchgeführt werden.
  14. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß das Warmband nach dem Haspeln bei einer Glühtemperatur von mindestens 740 °C geglüht wird.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß das Glühen des zu einem Coil gehaspelten Warmbands im Haubenofen durchgeführt wird.
  16. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß das Glühen im Durchlaufofen durchgeführt wird.
  17. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Dicke des Warmbandes ≤ 1,5 mm ist.
  18. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß das Warmband konfektioniert und als Elektroblech ausgeliefert wird.
  19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß das Warmband vor seiner Konfektionierung und Auslieferung bei einem Umformgrad von ≤ 3 % glattgewalzt wird.
  20. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß das Warmband vor seiner Konfektionierung und Auslieferung bei einem Umformgrad von > 3 - 15 % dressiergewalzt wird.
  21. Verfahren nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, daß das Warmband vor seiner Konfektionierung und Auslieferung bei einer Glühtemperatur > 740 °C schlußgeglüht wird.
  22. Verfahren nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, daß das Warmband vor seiner Konfektionierung und Auslieferung bei Glühtemperaturen > 650 °C rekristallisierend zu einem nichtschlußgeglühten Elektroband geglüht wird.
  23. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß das Warmband ein- oder mehrstufig auf eine Enddicke kaltgewalzt wird.
  24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, daß das Kaltwalzen mehrstufig durchgeführt wird und d a β im Anschluß an mindestens eine der Kaltwalzstufen ein Zwischenglühen erfolgt.
  25. Verfahren nach einem der Ansprüche 23 oder 24, dadurch gekennzeichnet, daß das Kaltband im Anschluß an das Kaltwalzen bei einer Glühtemperatur > 740 °C schlußgeglüht wird.
  26. Verfahren nach einem der Ansprüche 23 oder 24, dadurch gekennzeichnet, daß das Kaltband nach dem Kaltwalzen in einem Haubenoder Durchlaufofen bei Glühtemperaturen > 650 °C rekristallisierend zu einem nicht schlußgeglühten Elektroband geglüht und im Anschluß daran gerichtet und nachgewalzt wird.
  27. Verfahren nach einem der Ansprüche 21, 22, 25 oder 26, dadurch gekennzeichnet, daß die Glühung in einer entkohlenden Atmosphäre durchgeführt wird.
EP00918861A 1999-07-05 2000-04-07 Verfahren zum herstellen von nicht kornorientiertem elektroblech Expired - Lifetime EP1192287B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200030038T SI1192287T1 (en) 1999-07-05 2000-04-07 Method for producing non-grain oriented electric sheet steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19930519 1999-07-05
DE19930519A DE19930519C1 (de) 1999-07-05 1999-07-05 Verfahren zum Herstellen von nicht kornorientiertem Elektroblech
PCT/EP2000/003125 WO2001002610A1 (de) 1999-07-05 2000-04-07 Verfahren zum herstellen von nicht kornorientiertem elektroblech

Publications (2)

Publication Number Publication Date
EP1192287A1 EP1192287A1 (de) 2002-04-03
EP1192287B1 true EP1192287B1 (de) 2003-01-08

Family

ID=7913403

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00918861A Expired - Lifetime EP1192287B1 (de) 1999-07-05 2000-04-07 Verfahren zum herstellen von nicht kornorientiertem elektroblech

Country Status (12)

Country Link
US (1) US6773514B1 (de)
EP (1) EP1192287B1 (de)
JP (2) JP2003504508A (de)
KR (1) KR100707503B1 (de)
AT (1) ATE230803T1 (de)
AU (1) AU3965500A (de)
BR (1) BR0012227A (de)
DE (2) DE19930519C1 (de)
ES (1) ES2189751T3 (de)
MX (1) MXPA02000156A (de)
PL (1) PL194908B1 (de)
WO (1) WO2001002610A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4303431B2 (ja) * 2000-12-11 2009-07-29 新日本製鐵株式会社 超高磁束密度無方向性電磁鋼板およびその製造方法
DE10153234A1 (de) * 2001-10-31 2003-05-22 Thyssenkrupp Stahl Ag Für die Herstellung von nichtkornorientiertem Elektroblech bestimmtes, warmgewalztes Stahlband und Verfahren zu seiner Herstellung
DE10221793C1 (de) 2002-05-15 2003-12-04 Thyssenkrupp Electrical Steel Ebg Gmbh Nichtkornorientiertes Elektroband oder -blech und Verfahren zu seiner Herstellung
DE102005063058B3 (de) * 2005-12-29 2007-05-24 Thyssenkrupp Nirosta Gmbh Verfahren zum Herstellen eines Kaltbands mit ferritischem Gefüge
US8333923B2 (en) * 2007-02-28 2012-12-18 Caterpillar Inc. High strength gray cast iron
CN102839266B (zh) * 2012-09-21 2015-07-22 马钢(集团)控股有限公司 屈服强度为250MPa级冷轧磁极钢的生产方法
CR20170156A (es) * 2014-10-20 2017-09-22 Arcelormittal Método de producción de hojalata conteniendo una lámina de acero de silicio de grano no orientado, lámina de acero obtenida y uso de esta.
WO2016079565A1 (en) 2014-11-18 2016-05-26 Arcelormittal Method for manufacturing a high strength steel product and steel product thereby obtained
JP6048699B2 (ja) 2015-02-18 2016-12-21 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法ならびにモータコア
KR102062184B1 (ko) * 2015-08-04 2020-01-03 제이에프이 스틸 가부시키가이샤 자기 특성이 우수한 무방향성 전자 강판의 제조 방법
KR102175064B1 (ko) * 2015-12-23 2020-11-05 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR102045655B1 (ko) * 2017-12-26 2019-12-05 주식회사 포스코 자기적 특성 및 형상이 우수한 박물 무방향성 전기강판 및 그 제조방법
KR102109241B1 (ko) * 2017-12-26 2020-05-11 주식회사 포스코 형상 품질이 우수한 무방향성 전기강판 및 그 제조방법
CN113481435B (zh) * 2021-06-29 2022-09-16 鞍钢股份有限公司 一种900MPa级热轧复相钢及其生产方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4177091A (en) * 1978-08-16 1979-12-04 General Electric Company Method of producing silicon-iron sheet material, and product
JP2501219B2 (ja) * 1987-12-25 1996-05-29 川崎製鉄株式会社 無方向性電磁鋼板の製造方法
JPH0723509B2 (ja) * 1988-10-13 1995-03-15 新日本製鐵株式会社 優れた鉄損特性を有する無方向性電磁鋼板の製造方法
FR2665181B1 (fr) * 1990-07-30 1994-05-27 Ugine Aciers Procede de fabrication de tole d'acier magnetique a grains non orientes et tole obtenue par ce procede.
EP0567612A4 (de) * 1991-10-22 1994-04-05 Po Hang Iron & Steel Elektrisch nichtorientierte stahlplatten mit hohen magnetischen eigenschaften und deren herstellung.
JPH05156359A (ja) * 1991-12-06 1993-06-22 Sumitomo Metal Ind Ltd 小型トランス用電磁鋼板の製造方法
JPH05287382A (ja) * 1992-04-09 1993-11-02 Nippon Steel Corp 全周特性の優れた無方向性電磁鋼板の製造法
JP3375998B2 (ja) * 1993-01-26 2003-02-10 川崎製鉄株式会社 無方向性電磁鋼板の製造方法
JP3331401B2 (ja) * 1993-03-31 2002-10-07 新日本製鐵株式会社 全周磁気特性の優れた無方向性電磁鋼板の製造方法
JP3348802B2 (ja) * 1993-06-30 2002-11-20 新日本製鐵株式会社 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
KR100207834B1 (ko) * 1994-06-24 1999-07-15 다나카 미노루 고 자속 밀도와 저 철손을 갖는 무방향성 전기강판의 제조방법
JPH1150209A (ja) * 1997-08-05 1999-02-23 Kawasaki Steel Corp 無方向性電磁鋼熱延板
KR100340503B1 (ko) * 1997-10-24 2002-07-18 이구택 무방향성전기강판의제조방법
DE19807122C2 (de) * 1998-02-20 2000-03-23 Thyssenkrupp Stahl Ag Verfahren zur Herstellung von nichtkornorientiertem Elektroblech

Also Published As

Publication number Publication date
ES2189751T3 (es) 2003-07-16
KR100707503B1 (ko) 2007-04-16
BR0012227A (pt) 2002-04-02
KR20020035827A (ko) 2002-05-15
JP5529418B2 (ja) 2014-06-25
EP1192287A1 (de) 2002-04-03
AU3965500A (en) 2001-01-22
ATE230803T1 (de) 2003-01-15
PL194908B1 (pl) 2007-07-31
US6773514B1 (en) 2004-08-10
MXPA02000156A (es) 2002-07-30
JP2003504508A (ja) 2003-02-04
DE50001064D1 (de) 2003-02-13
DE19930519C1 (de) 2000-09-14
PL353181A1 (en) 2003-11-03
WO2001002610A1 (de) 2001-01-11
JP2009149993A (ja) 2009-07-09

Similar Documents

Publication Publication Date Title
DE60306365T3 (de) Verfahren zum kontinuierlichen giessen von nichtorientiertem elektrostahlband
EP0619376B1 (de) Verfahren zur Herstellung von kornorientierten Elektroblechen mit verbesserten Ummagnetisierungsverlusten
EP1194600B1 (de) Verfahren zum herstellen von nichtkornorientiertem elektroblech
EP1263993B1 (de) Verfahren zum herstellen von nichtkornorientiertem elektroblech
EP1056890B1 (de) Verfahren zur herstellung von nichtkornorientiertem elektroblech
EP2612942B1 (de) Nicht kornorientiertes Elektroband oder -blech, daraus hergestelltes Bauteil und Verfahren zur Erzeugung eines nicht kornorientierten Elektrobands oder -blechs
EP1192287B1 (de) Verfahren zum herstellen von nicht kornorientiertem elektroblech
DE10221793C1 (de) Nichtkornorientiertes Elektroband oder -blech und Verfahren zu seiner Herstellung
DE3147584C2 (de) Verfahren zur Herstellung von kornorientiertem Siliciumstahl in Band- oder Blechform
DE3220307C2 (de) Verfahren zum Herstellen von kornorientiertem Siciliumstahlblech oder -band
EP1440173B1 (de) Für die herstellung von nichtkornorientiertem elektroblech bestimmtes, warmgewalztes stahlband und verfahren zu seiner herstellung
EP1194599B1 (de) Verfahren zum herstellen von nicht kornorientiertem elektroblech
EP1444372B1 (de) Verfahren zur herstellung von nichtkornorientiertem elektroblech
WO2002048410A1 (de) Verfahren zum herstellen von warmband oder -blech aus einem mikrolegierten stahl
DE69817900T2 (de) Niobium enthaltender Stahl und Verfahren zur Herstellung von Flachprodukten aus diesem Stahl
EP1411140B1 (de) Verfahren zum Herstellen eines besonders gut verformbaren kaltgewalzten Stahlbands oder -blechs
DE3035085A1 (de) Kohlenstoffarmes elektrostahlblech und verfahren zu seiner herstellung
DE10139699C2 (de) Nichtkornorientiertes Elektroblech oder -band und Verfahren zu seiner Herstellung
WO2003014404A1 (de) Nichtkornorientiertes elektroblech oder -band und verfahren zu seiner herstellung
DE2307862A1 (de) Legierung fuer transformatorkernmaterial und verfahren zur verarbeitung solcher legierungen
DE10159501A1 (de) Nichtkornorientiertes Elektroblech oder -band und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI PAYMENT 20020105

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP STAHL AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020618

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 20020105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030108

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030108

REF Corresponds to:

Ref document number: 230803

Country of ref document: AT

Date of ref document: 20030115

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50001064

Country of ref document: DE

Date of ref document: 20030213

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030407

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030408

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030408

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030108

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2189751

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1192287E

Country of ref document: IE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190423

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190419

Year of fee payment: 20

Ref country code: DE

Payment date: 20190418

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190418

Year of fee payment: 20

Ref country code: BE

Payment date: 20190424

Year of fee payment: 20

Ref country code: FR

Payment date: 20190418

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190822

Year of fee payment: 20

Ref country code: GB

Payment date: 20190418

Year of fee payment: 20

Ref country code: AT

Payment date: 20190424

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50001064

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200406

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200406

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20200407

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200721

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 230803

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200408