EP1173658B1 - Verfahren und schaltungsanordnung zum betrieb eines magnetventils - Google Patents

Verfahren und schaltungsanordnung zum betrieb eines magnetventils Download PDF

Info

Publication number
EP1173658B1
EP1173658B1 EP01911384A EP01911384A EP1173658B1 EP 1173658 B1 EP1173658 B1 EP 1173658B1 EP 01911384 A EP01911384 A EP 01911384A EP 01911384 A EP01911384 A EP 01911384A EP 1173658 B1 EP1173658 B1 EP 1173658B1
Authority
EP
European Patent Office
Prior art keywords
voltage
solenoid valve
circuit arrangement
current
volt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP01911384A
Other languages
English (en)
French (fr)
Other versions
EP1173658A1 (de
Inventor
Hermann Gaessler
Udo Diehl
Karsten Mischker
Rainer Walter
Juergen Schiemann
Christian Grosse
Volker Beuche
Stefan Reimer
Uwe Liskow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26004355&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1173658(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE10057778A external-priority patent/DE10057778A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1173658A1 publication Critical patent/EP1173658A1/de
Application granted granted Critical
Publication of EP1173658B1 publication Critical patent/EP1173658B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils

Definitions

  • the present invention relates to a method for operating a solenoid valve, in particular for actuating an electro-hydraulic gas exchange valve control, an injection valve or an intake or exhaust valve of an internal combustion engine.
  • the solenoid valve is controlled in a three-phase cycle controlled.
  • the invention relates to a use of a circuit arrangement for operating a solenoid valve, in particular for actuating an electro-hydraulic gas exchange valve control, an injection valve or an intake or exhaust valve of an internal combustion engine.
  • the circuit arrangement is used to carry out the method according to the invention. It comprises two switching elements for applying a first predetermined magnitude voltage to the solenoid valve during a starting phase, applying a second predetermined level voltage lower than the first voltage to the solenoid valve during a holding phase and disconnecting the solenoid valve from both voltages turn-off.
  • each gas exchange valve of an electro-hydraulic gas exchange valve control has its own actuator for opening and closing.
  • the actuator has an actuator, which is divided in the interior by a hydraulic differential piston in a first chamber and a second chamber.
  • a first solenoid valve and on the outlet side of the first chamber a second solenoid valve is arranged.
  • the second solenoid valve is first closed, immediately after the first solenoid valve is opened. From the supply side, high pressure oil may flow into the first chamber of the actuator via the first solenoid valve. The closed second solenoid valve prevents the oil from flowing out of the first chamber to a tank. In the first chamber there is a comparable pressure as in the second chamber. The side facing the first chamber of the differential piston has a much larger effective area than the second chamber side facing. A resulting force causes an opening movement of the gas exchange valve.
  • the gas exchange valve is held statically open during full or partial stroke.
  • the first solenoid valve is closed, so that both solenoid valves are closed for the supply or the drain of the oil.
  • a third phase when the first solenoid valve is still closed, the second solenoid valve is opened, so that the oil that has flowed into the first chamber can drain off again.
  • the pressure in the first chamber is greatly reduced compared to the pressure in the second chamber, and there is a closing movement of the gas exchange valve.
  • a current sensing element is arranged in the holding circuit, which adjusts the amount of the holding voltage in response to the determined actual value of the holding current and a set value of the holding current.
  • the object of the present invention to improve the electromagnetic compatibility of a circuit arrangement for operating a solenoid valve, wherein the circuit arrangement comprises switching elements through which between different voltage applied to the solenoid valve voltages, at least between a first voltage to Generation of a pull-in current and a second voltage for generating a holding current, can be switched.
  • the invention proposes starting of the method for operating a solenoid valve of the type mentioned above, that the solenoid valve is connected in a starting phase for generating a controlled attraction current for a predetermined period of time to a first voltage of predetermined level, predetermined in a holding phase for generating a controlled holding current to a second voltage Height is connected and disconnected in a shutdown phase of both voltages.
  • the armature of the solenoid valve should tighten as quickly as possible. This is achieved by an overcurrent.
  • the magnetic coil of the solenoid valve is connected to the first voltage for a predetermined period of time.
  • the first voltage is much higher than, for example, a vehicle electrical system voltage of a motor vehicle, i. For example, as the voltage of the vehicle battery.
  • the operation of the solenoid valve during the tightening phase with the high first voltage is therefore also referred to as boost mode. Due to the high first voltage results in a particularly fast construction of the attraction current in the solenoid.
  • the time duration is predetermined such that the armature current necessary for a quick and secure tightening of the armature is achieved.
  • the attracted armature of the solenoid valve is held by a reduced, constant holding current. Due to the magnetic field characteristic is sufficient for holding the armature a much smaller force and consequently a smaller current than for the suit of the armature.
  • the solenoid of the solenoid valve is connected to the second voltage of predetermined height. The second voltage has a lower height as the first tension. The supply of the electromagnet by the second voltage ensures a constant holding current (regardless of fluctuations in the voltage of the electrical system) through the solenoid.
  • the solenoid of the solenoid valve is disconnected from both voltages.
  • no current flows through the electromagnet after a decay phase and the armature returns to its original position.
  • the current can be dissipated in various ways (eg, diode erase, zener diode erasure, R-C erasure).
  • the degraded energy during the decay phase can be recovered in different ways.
  • the inventive method does not provide any control, but only a control of the current of the solenoid valve.
  • the current of the solenoid valve is obtained by applying a voltage of predetermined magnitude to the solenoid valve due to the coil resistance of the solenoid coil of the solenoid valve. This applies both in the tightening phase and in the holding phase of the solenoid valve.
  • the invention can be dispensed with a current detection, directly via a current measuring element or indirectly via a voltage divider, which is formed by a measuring resistor and the coil resistance of the magnetic coil of the solenoid valve, and a current control by means of a current regulator.
  • a current detection directly via a current measuring element or indirectly via a voltage divider, which is formed by a measuring resistor and the coil resistance of the magnetic coil of the solenoid valve, and a current control by means of a current regulator.
  • Voltage tracking can be used to compensate for the effects of relevant changes in the current branches on the current flowing through the solenoids.
  • Relevant changes in the current branches are, for example, the change of the coil resistance of the magnetic coil of a solenoid valve due to temperature changes in the magnetic coil.
  • a temperature compensation is not a current control, but only an adaptive current control.
  • the solenoid valve is not controlled clocked, as in the current control.
  • EMC electromagnetic compatibility
  • the first voltage is derived and stabilized by voltage boosting from a vehicle electrical system voltage.
  • the vehicle electrical system voltage corresponds, for example, the voltage of a motor vehicle battery.
  • a voltage converter in particular a DC-DC converter
  • the second voltage is derived and stabilized by voltage reduction or voltage boosting from a vehicle electrical system voltage.
  • the potential of the second voltage is clearly below the potential of the first voltage.
  • the voltage reduction or the voltage step-up can, for example, by means of a voltage converter, in particular a DC-DC converter, performed.
  • a 42 volt voltage which is available in a 42 volt electrical system of a motor vehicle
  • a lower voltage in particular a 12 volt Voltage or a 9 volt voltage, which is available in the 42 volt electrical system
  • This development relates to a 42 volt electrical system, in which usually also a lower voltage, in particular a 12 volt voltage or a 9 volt voltage, is available, which can be used directly as a second voltage.
  • a voltage reduction of a vehicle electrical system voltage for generating the second voltage can thus be dispensed with. This results in less power loss and results in a lower heat generation of a final stage for actuating the solenoid valve.
  • the voltages are varied in such a way that the resulting current during the pull-in phase or the resulting current during the hold phase is constant over all operating points.
  • both voltages or only one of the two voltages can be varied. In this way, for example, voltage changes due to temperature fluctuations can be compensated.
  • the temperature of the magnetic coil of Solenoid detected and the voltages are adapted to the temperature coefficient of the coil resistance of the solenoid.
  • the temperature of the magnetic coils can be detected at a representative location.
  • the temperature is detected only at a solenoid valve or at a few selected solenoid valves.
  • the temperature compensation enables adaptive current control.
  • the solenoid valve is connected in the tightening phase by closing two switching elements to the first voltage.
  • a clever series connection of the switching elements results in a safety function for the solenoid valve. Only when both switching elements are closed, the solenoid valve can tighten, because only then the high first voltage for the tightening operation is applied to the solenoid valve.
  • a magnetic valve is inadvertently activated during a critical point in time.
  • an opening gas exchange valve for example, the times at which the cylinder piston is at the top, would be a critical time. Opening the gas exchange valve during this critical time could result in a collision of the gas exchange valve with the cylinder piston. This could, as well as a collision of a gas exchange valve with another gas exchange valve of the same cylinder, lead to damage to the internal combustion engine.
  • the circuit arrangement has means for voltage tracking in order to compensate for the effects of relevant changes in magnetic coils of the solenoid valves on the current flowing through the magnetic coils.
  • Relevant changes in the current branches are, for example, the change of the coil resistance of the magnetic coil of a solenoid valve due to temperature changes in the magnetic coil.
  • the circuit arrangement comprise means for temperature compensation in order to compensate for the effects of a change in the coil resistance of the magnetic coil of the solenoid valves due to temperature changes in the magnetic coil.
  • This can be, for example by means of a voltage tracking, which compensates for the effects of relevant changes in the current branches on the current flowing through the solenoid current.
  • a temperature compensation is not a current control, but only an adaptive current control.
  • the circuit arrangement has a voltage boost converter for deriving the first voltage from a vehicle electrical system voltage and for stabilizing the first voltage. Furthermore, it is proposed that the circuit arrangement has a voltage step-down converter or a voltage step-up converter for deriving the second voltage from a vehicle electrical system voltage and for stabilizing the second voltage.
  • the voltage step-up converter and the voltage step-down converter are designed, for example, as DC / DC converters.
  • the circuit arrangement according to the invention thus has two central and independent DC / DC converter with stable fixed voltage for the supply of the magnetic coil of the solenoid valve during the attraction phase and during the holding phase.
  • the circuit arrangement a 42 volt power source, which is available in a 42 volt electrical system of a motor vehicle, for generating the first voltage and another voltage source, in particular a 12 volt power source or a 9 volt voltage source, which is available in the 42 volt electrical system, for generating the second voltage.
  • a 42 volt electrical system is usually next to a 42 volt voltage source also another voltage source, in particular, a 12 volt power source or a 9 volt power source.
  • the voltage of the further voltage source can be used directly as a second voltage.
  • the use of aistsstiefsetzstellers for generating the second voltage can thus be dispensed with. This results in less power loss and results in a lower heat generation of a final stage for actuating the solenoid valve.
  • a first terminal of the solenoid valve is connected via the first switching element to the first voltage and via a first diode to the second voltage and that a second terminal of the solenoid valve via means for power dissipation and energy recovery is connected to the first voltage and via the second switching element to ground.
  • the means for power dissipation and energy recovery can be designed arbitrarily. The person skilled in a variety of ways are known.
  • the means for power dissipation and energy recovery are formed as a second diode. By the first diode, the first voltage is decoupled from the second voltage. The second diode serves to de-energize the magnetic coil of the solenoid valve and, at the same time, recover the energy after the solenoid has been disconnected from both voltages.
  • a first terminal of the solenoid valve is connected via the first switching element to the first voltage and via the second switching element and a diode to the second voltage and that a second terminal of the solenoid valve is connected to ground.
  • Each gas exchange valve 1 has its own actuator to open and close 10.
  • the actuator 10 has an actuator 2, in which a hydraulic differential piston 3 is slidably mounted.
  • the interior of the actuator 2 is divided into an upper chamber 4 and a lower chamber 5.
  • the surface difference between the top and the bottom of the differential piston 3 results in the same pressure in the upper chamber 4 and the lower chamber 5 to a movement of the differential piston 3 in the actuator 2 and to open the gas exchange valve.
  • the actuator 10 is supplied from a supply side 8 oil at a high pressure and passed through a first solenoid valve 6 in the first chamber 4 of the actuator 2. From the first chamber 4, the oil passes through a second solenoid valve 7 in a tank 9. From the supply side 8 branches off another line 15, which opens into the second chamber 5 of the actuator 2 and the oil from the supply side 8 with a high Pressure in the second chamber 5 passes.
  • the gas exchange valve 1 performs an opening movement.
  • the second solenoid valve 7 is first closed to prevent the outflow of oil from the upper chamber 4 to the tank 9 out.
  • oil is passed from the supply side 8 at high pressure in the upper chamber 4 of the actuator 2. Because of the larger area at the top in comparison to the subset of the differential piston 3 results in a down directed resultant force on the differential piston 3, which leads to an opening movement of the gas exchange valve 1.
  • the gas exchange valve 1 which is open with full or partial lift (determined by the opening duration of the first solenoid valve), is kept statically open.
  • the first solenoid valve 6 is also closed.
  • the gas exchange valve 1 performs a closing movement.
  • the first solenoid valve 6 is kept closed and the second solenoid valve 7 is opened, so that the oil can flow out of the upper chamber 4.
  • About the oil pressure in the lower chamber 5 acts a closing force on the underside of the differential piston 3, whereby this moves upward and the gas exchange valve 1 is closed.
  • each gas exchange valve 1 has its own actuator 10 for opening and closing.
  • each cylinder In a 4-valve engine, each cylinder has two intake valves and two exhaust valves for the gas exchange.
  • eight solenoid valves 6, 7 are required for each cylinder of the internal combustion engine. Accordingly, for an electrohydraulic gas exchange valve control of a 4-cylinder internal combustion engine already 32 solenoid valves needed, which must be electrically controlled.
  • the invention proposes before, the solenoid valve 6; 7 in a three-phase cycle to control.
  • a tightening phase is used to generate a pull-in current.
  • the solenoid valve 6; 7 for a predetermined period of time to a first voltage U_1 vorbeer height connected.
  • a holding phase serves to generate a holding current which is smaller than the starting current.
  • the solenoid valve 6; 7 connected to a second lower voltage U_2 predetermined height.
  • the solenoid valve 6; 7 separated from both voltages U_1, U_2.
  • the magnetic coil of the solenoid valve 6; 7 flowing electricity not regulated but controlled.
  • the current flowing through the solenoid turns as a function of the coil resistance of the magnetic coil and the applied voltage U_1; U_2 on.
  • FIG. 1 shows a circuit arrangement according to the invention in accordance with a first preferred embodiment.
  • the solenoid valve to be controlled is designated by the reference MV.
  • the solenoid valve MV is, for example, a solenoid valve 6; 7 of an electrohydraulic gas exchange valve control (see Figure 4), an injection valve or an intake or an exhaust valve of an internal combustion engine.
  • a first terminal 20 of the solenoid valve MV is connected via a first switching element S_1 to the first voltage U_1 and via a first diode D_1 to the second voltage U_2.
  • the first diode D_1 serves to decouple the first voltage U_1 from the second voltage U_2.
  • a second terminal 21 of the solenoid valve MV is connected via a second diode D_2 to the first voltage U_1 and via a second switching element S_2 to ground.
  • the second diode D_2 is used for power reduction in the solenoid valve MV and at the same time the energy recovery at the transition from the first phase to the second phase, after the solenoid valve MV has been separated from two voltages U_1, U_2.
  • any other means of power dissipation and energy recovery may be used instead of the second diode D_2 (eg Zener diode, RC circuit).
  • the second diode D_2 instead of as shown in Fig. 1, is arranged parallel to the solenoid valve MV.
  • the first voltage U_1 is derived and stabilized by a voltage boost converter designed as a DC voltage converter 22 from a vehicle electrical system voltage U_batt.
  • the second voltage U_2 is also derived and stabilized from the vehicle electrical system voltage U_batt by a voltage step-down converter or voltage step-up converter designed as a DC-DC converter 23.
  • the second voltage U_2 is significantly lower than the first voltage U_1.
  • the first switching element S_1 and the second switching element S_2 are driven by drive circuits 24, 25 (dashed line).
  • the magnetic coil is set by closing the switching elements S_1, S_2 for a predetermined period of time T_1 to the voltage source U_1.
  • the time T_1 is determined so that the necessary starting current for a quick and secure tightening of the armature of the solenoid valve MV is achieved.
  • the switching elements S_1, S_2 are opened.
  • the current is then reduced again via the second diode D_2 (diode freewheel) until the holding current level is reached.
  • the second switching element S_2 is then closed again.
  • the second voltage U_2 takes over the supply of the magnetic coil of the solenoid valve MV and ensures a constant holding current.
  • the diode D_1 is necessary to avoid a short circuit from the first voltage U_1 to the second voltage U_2 when the first switching element S_1 is closed.
  • the second switching element S_2 is also opened when the first switching element S_1 is open.
  • the result is a rapid power reduction by current feedback via the second diode D_2 to the first voltage U_1 (high potential). Due to the current feedback via the second diode D_2, a particularly energy-saving operation of the solenoid valve MV is possible with the circuit arrangement according to the invention.
  • the circuit arrangement according to FIG. 1 represents a considerable safety advantage over the circuit arrangements known from the prior art for the operation of a solenoid valve.
  • the magnetic valve MV can only be applied when both switching elements S_1 and S_2 are closed.
  • a faulty, unwanted tightening of the solenoid valve MV would, for example, allow opening of the gas exchange valve 1 even at times when the piston of the cylinder of the internal combustion engine is in its top dead center. This could lead to a collision between the gas exchange valve 1 and the piston, which could lead to damage to the internal combustion engine.
  • FIG. 2 shows a circuit arrangement according to the invention in accordance with a second preferred embodiment.
  • the first terminal 20 of the solenoid valve MV is connected via the first switching element S_1 to the first voltage U_1 and via the second switching element S_2 and a diode D_3 to the second voltage U_2.
  • the diode D_3 has the task of the first voltage U_1 of the second To untap tension U_2.
  • the second port 21 of the solenoid valve MV is connected to ground.
  • suitable means for power dissipation and energy recovery for example.
  • In the form of another diode (not shown), which is arranged parallel to the solenoid valve MV.
  • the tightening phase of the armature of the solenoid valve MV is tightened by closing the first switching element S_1.
  • the first switching element S_1 is opened.
  • the second switching element S_2 is closed.
  • the second voltage U_2 takes over the supply of the solenoid valve MV.
  • the second switching element S_2 is opened. In this embodiment, only the first switching element S_1 is energized in the starting phase. The second switching element S_2 is not energized during this time and therefore has no electrical power loss.
  • FIG. 3 shows a circuit arrangement according to the invention in accordance with a third preferred embodiment.
  • This circuit arrangement differs from that shown in FIG. 1 in that the use of a voltage step-up converter 22 or a voltage step-down converter 23 for deriving the first voltage U_1 or the second voltage U_2 from the vehicle electrical system voltage U_batt is dispensed with.
  • the switching elements S_1 and S_2 could also be arranged as in FIG. 2, as in FIG.
  • the circuit arrangement shown in Figure 3 is based on a 42 volt electrical system of a motor vehicle.
  • the 42 volt electrical system has a 42 volt power source 26 and a trained as a 12 volt voltage source further voltage source 27. Instead of the 12 volt voltage source, a 9 volt or any other voltage source could be provided.
  • the 42 volt voltage is mainly used to supply power to powerful assistance systems (x-by-wire systems) in the motor vehicle. Automotive systems with lower power consumption are powered by the other voltage source with energy.
  • the 42 volt voltage of the 42 volt voltage source 26 is used as the first voltage U_1 and the 12 volt voltage of the further voltage source 27 as the second voltage U_2.
  • the 42 volt voltage is applied to the solenoid valve MV and the 12 volt voltage is applied during the hold phase.
  • the 12 volt voltage is then turned off.
  • the switching elements S_1 and S_2 is switched from the 42 volt voltage to the 12 volt voltage and then turned off the 12 volt voltage.
  • Both 42V and 12V circuits can be optimized for dynamics and power dissipation.
  • the control of the solenoid valve MV could also be via a discharge capacitor (not shown), which is charged via a voltage source U_batt, 26 or 27, after a drive signal from the voltage source U_batt, 26 or 27 is separated and then the solenoid valve MV is energized in a discharge curve.
  • a discharge capacitor (not shown), which is charged via a voltage source U_batt, 26 or 27, after a drive signal from the voltage source U_batt, 26 or 27 is separated and then the solenoid valve MV is energized in a discharge curve.
  • the level of the voltages U_1 and U_2 to the coil temperature.
  • the temperature of the magnetic coils could be detected at a representative point. This temperature compensation makes it possible to adaptively control the current flowing through the magnetic coil to a constant value during the starting phase or during the holding phase.
  • the current flowing through the magnetic coil of the solenoid valve MV could be detected and the voltages U_1 and / or U_2 adapted to the current profile, which is no longer erfindungssezeß.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Magnetically Actuated Valves (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Betrieb eines Magnetventils, insbesondere zur Betätigung einer elektrohydraulischen Gaswechsel-Ventilsteuerung, eines Einspritzventils oder eines Einlass- oder Auslassventils einer Brennkraftmaschine. Das Magnetventil wird in einem drei Phasen umfassenden Zyklus gesteuert beaufschlagt.
  • Außerdem betrifft die Erfindung eine Verwendung einer Schaltungsanordnung zum Betrieb eines Magnetventils, insbesondere zur Betätigung einer elektrohydraulischen Gaswechsel-Ventilsteuerung, eines Einspritzventils oder eines Einlass- oder Auslassventils einer Brennkraftmaschine. Die Schaltungsanordnung wird zur Durchführung des erfindungsgemäßen Verfahrens verwendet. Sie umfasst zwei Schaltglieder zum Anlegen einer ersten Spannung vorgegebener Höhe an das Magnetventil während einer Anzugsphase, zum Anlegen einer zweiten Spannung vorgegebener Höhe, die niedriger ist als die erste Spannung, an das Magnetventil während einer Haltephase und zum Trennen des Magnetventils von beiden Spannungen in einer Abschaltphase.
  • Stand der Technik
  • Aus dem Stand der Technik ist die elektrohydraulische Gaswechsel-Ventilsteuerung einer Brennkraftmaschine zur nockenwellenfreien Betätigung der Gaswechsel-Ventile der Brennkraftmaschine bekannt. Jedes Gaswechsel-Ventil einer elektrohydraulischen Gaswechsel-Ventilsteuerung hat zum Öffnen und Schließen einen eigenen Steller. Der Steller weist ein Stellglied auf, das im Inneren durch einen hydraulischen Differenzialkolben in eine erste Kammer und eine zweite Kammer unterteilt ist. Auf der Einlaßseite der ersten Kammer ist ein erstes Magnetventil und auf der Auslaßseite der ersten Kammer ein zweites Magnetventil angeordnet. Bei der Betätigung der elektrohydraulischen Gaswechsel-Ventilsteuerung werden drei Phasen unterschieden:
  • In einer ersten Phase wird zunächst das zweite Magnetventil geschlossen, unmittelbar danach wird das erste Magnetventil geöffnet. Von der Versorgungsseite kann über das erste Magnetventil Öl mit einem hohen Druck in die erste Kammer des Stellgliedes fließen. Durch das geschlossene zweite Magnetventil wird ein Abströmen des Öls aus der ersten Kammer zu einem Tank hin verhindert. In der ersten Kammer herrscht ein vergleichbarer Druck wie in der zweiten Kammer. Die der ersten Kammer zugewandten Seite des Differenzialkolbens hat eine wesentlich größere Wirkfläche als die der zweiten Kammer zugewandte Seite. Eine resultierende Kraft bewirkt eine Öffnungsbewegung des Gaswechsel-Ventils.
  • In einer zweiten Phase wird das Gaswechsel-Ventil bei Vollhub oder Teilhub statisch offen gehalten. Dazu wird das erste Magnetventil geschlossen, so dass beide Magnetventile für den Zulauf bzw. den Ablauf des Öls geschlossen sind.
  • In einer dritten Phase wird bei weiterhin geschlossenem ersten Magnetventil das zweite Magnetventil geöffnet, so dass das in die erste Kammer zugeflossene Öl wieder abfließen kann. Der Druck in der ersten Kammer verringert sich sehr stark gegenüber dem Druck in der zweiten Kammer, und es kommt zu einer Schließbewegung des Gaswechsel-Ventils.
  • Aus dem Stand der Technik ist es des weiteren bekannt, mehrere Einlass- und Auslassventile je Zylinder einer Brennkraftmaschine vorzusehen. Bei der 4-Ventiltechnik hat bspw. jeder Zylinder zwei Einlassventile und zwei Auslassventile für den Gaswechsel. Bei einem Steller je Gaswechsel-Ventil und zwei Magnetventilen je Steller werden demnach für jeden Zylinder acht Magnetventile benötigt. Bei einer Vier-Zylinder-Brennkraftmaschine ergeben sich somit bereits 32 Magnetventile, die elektrisch angesteuert werden müssen.
  • Aus der US 4,729,056 und der DE 39 20 064 A1 ist ein Verfahren der eingangs genannten Art bekannt. Dabei wird jedoch der durch das Magnetventil fließende Strom geregelt. Bei dem aus der DE 39 20 064 A1 bekannten Verfahren wird das Magnetventil zumindest während der Haltephase getaktet angesteuert und damit auf einen vorgegebenen Haltestrom-Sollwert geregelt. Der Anzugsstrom ist nicht geregelt. Auch bei dem aus der US 4,729,056 bekannten Verfahren wird das Magnetventil getaktet angesteuert, um den durch das Magnetventil fließenden Strom auf einen Strom-Sollwert zu regeln. Durch die getaktete Ansteuerung des Magnetventils ergibt sich eine hochfrequente Abstrahlung elektromagnetischer Wellen und dadurch eine relativ schlechte elektromagnetische Verträglichkeit (EMV).
  • Zur elektrischen Ansteuerung der Magnetventile ist es aus der DE 40 24 496 bekannt, an einem Magnetventil in einer Anzugsphase eine Anzugsspannung und in einer anschließenden Haltephase eine niedrigere Haltespannung anzulegen. Damit der Haltestrom in der Haltephase einen bestimmten Grenzwert nicht überschreitet, ist in dem Haltestromkreis ein Stromfühlglied angeordnet, das die Höhe der Haltespannung in Abhängigkeit von dem ermittelten Istwert des Haltestroms und von einem Sollwert des Haltestroms einstellt.
  • Für jeden Stromregelkreis ist neben der Stromistwert-Erfassung auch ein Stromregler notwendig. Dieser relativ hohe Schaltungsaufwand für die Durchführung einer Stromregelung müsste für jedes einzelne Magnetventil einer elektrohydraulischen Gaswechsel-Ventilsteuerung vorgesehen werden. Dadurch würde sich ein enorm hoher Schaltungsaufwand zur Betätigung einer elektrohydraulischen Gaswechsel-Ventilsteuerung einer Brennkraftmaschine ergeben.
  • Aus den vorgenannten Nachteilen des Standes der Technik ergibt sich die Aufgabe der vorliegenden Erfindung, die elektromagnetische Verträglichkeit einer Schaltungsanordnung zum Betrieb eines Magnetventils zu verbessern, wobei die Schaltungsanordnung Schaltglieder aufweist, durch die zwischen verschiedenen an dem Magnetventil anliegenden Spannungen, zumindest zwischen einer ersten Spannung zur Erzeugung eines Anzugsstroms und einer zweiten Spannung zur Erzeugung eines Haltestroms, umgeschaltet werden kann.
  • Zur Lösung dieser Aufgabe schlägt die Erfindung ausgehend von dem Verfahren zum Betrieb eines Magnetventils der eingangs genannten Art vor, dass das Magnetventil in einer Anzugsphase zur Erzeugung eines gesteuerten Anzugsstroms für eine vorgegebene Zeitdauer an eine erste Spannung vorgegebener Höhe angeschlossen wird, in einer Haltephase zur Erzeugung eines gesteuerten Haltestroms an eine zweite Spannung vorgegebener Höhe angeschlossen wird und in einer Abschaltphase von beiden Spannungen getrennt wird.
  • Vorteile der Erfindung
  • In der Anzugsphase soll der Anker des Magnetventils möglichst schnell anziehen. Dies wird durch eine Stromüberhöhung erreicht. Dazu wird die Magnetspule des Magnetventils für eine vorgegebene Zeitdauer an die erste Spannung angeschlossen. Die erste Spannung ist wesentlich höher als bspw. eine Bordnetzspannung eines Kraftfahrzeugs, d.h. bspw. als die Spannung der Fahrzeugbatterie. Der Betrieb des Magnetventils während der Anzugsphase mit der hohen ersten Spannung wird deshalb auch als Boostbetrieb bezeichnet. Aufgrund der hohen ersten Spannung ergibt sich ein besonders schneller Aufbau des Anzugsstroms in der Magnetspule. Die Zeitdauer ist derart vorgegeben, dass der für ein schnelles und sicheres Anziehen des Ankers notwendige Ankerstrom erreicht wird.
  • Während der Haltephase wird der angezogene Anker des Magnetventils durch einen reduzierten, konstanten Haltestrom gehalten. Aufgrund der Magnetfeldkennlinie reicht für das Halten des Ankers eine wesentlich kleinere Kraft und demzufolge ein kleinerer Strom als für den Anzug des Ankers aus. Während der Haltephase ist die Magnetspule des Magnetventils an die zweite Spannung vorgegebener Höhe angeschlossen. Die zweite Spannung hat eine geringere Höhe als die erste Spannung. Die Versorgung des Elektromagneten durch die zweite Spannung gewährleistet einen konstanten Haltestrom (unabhängig von Schwankungen der Spannung des Bordnetzes) durch die Magnetspule.
  • In der Abschaltphase wird der Elektromagnet des Magnetventils von beiden Spannungen getrennt. Infolge dessen fließt durch den Elektromagneten nach einer Abklingphase kein Strom mehr und der Anker kehrt in seine Ausgangsposition zurück. Während der Abklingphase kann der Strom auf unterschiedliche Arten (z. B. Diodenlöschung, Zenerdiodenlöschung, R-C-Löschung) abgebaut werden. Zudem kann die abgebaute Energie während der Abklingphase auf unterschiedliche Arten zurückgewonnen werden.
  • Das erfindungsgemäße Verfahren sieht keine Regelung, sondern lediglich eine Steuerung des Stroms des Magnetventils vor. Der Strom des Magnetventils ergibt sich durch Anlegen einer Spannung vorgegebener Höhe an das Magnetventil aufgrund des Spulenwiderstands der Magnetspule des Magnetventils. Dies gilt sowohl in der Anzugsphase als auch in der Haltephase des Magnetventils.
  • Erfindungsgemäß kann auf eine Stromerfassung, direkt über ein Strommessglied oder indirekt über einen Spannungsteiler, der durch einen Messwiderstand und den Spulenwiderstand der Magnetspule des Magnetventils gebildet wird, und auf eine Stromregelung mittels eines Stromreglers verzichtet werden. Dadurch wird der Betrieb des Magnetventils entscheidend vereinfacht. Das erfindungsgemäße Verfahren ermöglich auf einfache Weise ein exaktes Ansteuern sämtlicher Magnetventile einer elektrohydraulischen Gaswechsel-Ventilsteuerung einer Brennkraftmaschine. Eine Stromregelung für jedes der Magnetventile ist bei dem erfindungsgemäßen Verfahren durch eine exakte zeitliche Ansteuerung bei genau definierten Versorgungsspannungen ersetzt.
  • Durch eine Spannungsnachführung können die Auswirkungen von relevanten Änderungen in den Stromzweigen auf den durch die Magnetspulen fließenden Strom kompensiert werden. Relevante Änderungen in den Stromzweigen sind bspw. die Änderung des Spulenwiderstands der Magnetspule eines Magnetventils aufgrund von Temperaturänderungen in der Magnetspule. Eine solche Temperaturkompensation stellt jedoch keine Stromregelung, sondern lediglich eine adaptive Stromsteuerung dar.
  • Bei dem erfindungsgemäßen Verfahren wird das Magnetventil nicht, wie bei der Stromregelung, getaktet angesteuert. Durch die Vermeidung der Taktung kann die Schaltverlustleistung und die hochfrequente Abstrahlung elektromagnetischer Wellen vermindert werden, wodurch sich eine wesentlich bessere elektromagnetische Verträglichkeit (EMV) ergibt.
  • Gemäß einer vorteilhaften Weiterbildung der vorliegenden Erfindung wird vorgeschlagen, dass die erste Spannung durch Spannungshochsetzung aus einer Bordnetzspannung abgeleitet und stabilisiert wird. Die Bordnetzspannung entspricht bspw. der Spannung einer Kraftfahrzeugbatterie. Zur Spannungshochsetzung kann ein Spannungswandler, insbesondere ein Gleichspannungswandler, eingesetzt werden. Gemäß einer anderen vorteilhaften Weiterbildung der vorliegenden Erfindung wird vorgeschlagen, dass die zweite Spannung durch Spannungsabsenkung oder Spannungshochsetzung aus einer Bordnetzspannung abgeleitet und stabilisiert wird. Das Potenzial der zweiten Spannung liegt deutlich unter dem Potenzial der ersten Spannung. Auch die Spannungsabsenkung bzw. die Spannungshochsetzung kann bspw. mittels eines Spannungswandlers, insbesondere eines Gleichspannungswandlers, durchgeführt werden.
  • Gemäß noch einer anderen vorteilhaften Weiterbildung der vorliegenden Erfindung wird vorgeschlagen, dass für die erste Spannung eine 42 Volt-Spannung, die in einem 42 Volt-Bordnetz eines Kraftfahrzeugs zur Verfügung steht, und als die zweite Spannung eine niedrigere Spannung, insbesondere eine 12 Volt-Spannung oder eine 9 Volt-Spannung, die in dem 42 Volt-Bordnetz zur Verfügung steht, herangezogen wird. Diese Weiterbildung bezieht sich auf ein 42 Volt-Bordnetz, in dem üblicherweise auch eine niedrigere Spannung, insbesondere eine 12 Volt-Spannung oder eine 9 Volt-Spannung, zur Verfügung steht, die unmittelbar als zweite Spannung herangezogen werden kann. Auf eine Spannungsabsenkung einer Bordnetzspannung zum Erzeugen der zweiten Spannung kann somit verzichtet werden. Dadurch entsteht weniger Verlustleistung und es ergibt sich eine geringere Wärmeentwicklung einer Endstufe zur Betätigung des Magnetventils.
  • Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung wird vorgeschlagen, dass die Spannungen derart variiert werden, dass der resultierende Strom während der Anzugsphase bzw. der resultierende Strom während der Haltphase über alle Betriebspunkte konstant ist. Selbstverständlich können beide Spannungen oder aber nur eine der beiden Spannungen variiert werden. Auf diese Weise können bspw. Spannungsänderungen aufgrund von Temperaturschwankungen ausgeglichen werden.
  • Vorteilhafterweise wird die Temperatur der Magnetspule des Magnetventils erfasst und werden die Spannungen an den Temperaturgang des Spulenwiderstandes der Magnetspule angepasst. Für diese Temperaturkompensation kann die Temperatur der Magnetspulen an einer repräsentativen Stelle erfasst werden. Zur Vereinfachung des Aufbaus einer elektrohydraulischen Gaswechsel-Ventilsteuerung einer Brennkraftmaschine ist es denkbar, dass die Temperatur nur an einem Magnetventil oder an einigen wenigen ausgewählten Magnetventilen erfasst wird. Durch die Temperaturkompensation wird eine adaptive Stromsteuerung ermöglicht.
  • Gemäß einer vorteilhaften Weiterbildung der vorliegenden Erfindung wird vorgeschlagen, dass das Magnetventil in der Anzugsphase durch Schließen von zwei Schaltgliedern an die erste Spannung angeschlossen wird. Durch eine geschickte Reihenschaltung der Schaltglieder ergibt sich eine Sicherheitsfunktion für das Magnetventil. Nur wenn beide Schaltglieder geschlossen sind, kann das Magnetventil anziehen, weil nur dann die hohe erste Spannung für den Anzugsvorgang an dem Magnetventil anliegt. Dadurch wird verhindert, dass bei einem defekten Schaltglied (permanent geschlossen) oder bei einer fehlerhaften Ansteuerung eines Schaltgliedes ein Magnetventil während eines kritischen Zeitpunktes ungewollt aktiviert wird. Für ein öffnendes Gaswechsel-Ventil wären bspw. die Zeitpunkte, in denen der Zylinderkolben oben steht, ein kritischer Zeitpunkt. Ein Öffnen des Gaswechsel-Ventils während dieses kritischen Zeitpunktes könnte zu einer Kollision des Gaswechsel-Ventils mit dem Zylinderkolben führen. Das könnte, ebenso wie eine Kollision eines Gaswechsel-Ventils mit einem anderen Gaswechsel-Ventil desselben Zylinders, zu einer Beschädigung der Brennkraftmaschine führen.
  • Zur Lösung der Aufgabe der vorliegenden Erfindung wird ausgehend von der Verwendung einer Schaltungsanordnung der eingangs genannten Art außerdem vorgeschlagen, dass die erste Spannung zur Erzeugung eines gesteuerten Anzugsstroms und die zweite Spannung zur Erzeugung eines gesteuerten Haltestroms dient.
  • Durch den Verzicht auf eine Stromregelung bei der erfindungsgemäßen Schaltungsanordnung kann eine wesentliche Reduktion des Schaltungsaufwandes und der Schaltungskosten durch Anwendung der Stromsteuerung erzielt werden. Der Aufwand für die zentrale Bereitstellung der beiden Spannungen ist deutlich geringer als der Aufwand für eine Stromregelung für jedes zu betätigende Magnetventil. Durch eine geringe Anzahl von Komponenten bei der erfindungsgemäßen Schaltungsanordnung kann zudem die Ausfallwahrscheinlichkeit reduziert werden.
  • Gemäß einer vorteilhaften Weiterbildung der vorliegenden Erfindung wird vorgeschlagen, dass die Schaltungsanordnung Mittel zur Spannungsnachführung aufweist, um Auswirkungen von relevanten Änderungen in Magnetspulen der Magnetventile auf den durch die Magnetspulen fließenden Strom zu kompensieren. Relevante Änderungen in den Stromzweigen sind bspw. die Änderung des Spulenwiderstands der Magnetspule eines Magnetventils aufgrund von Temperaturänderungen in der Magnetspule.
  • Gemäß einer bevorzugten Ausführungsform der Erfindung wird vorgeschlagen, dass die Schaltungsanordnung Mittel zur Temperaturkompensation aufweist, um die Auswirkungen einer Änderung des Spulenwiderstands der Magnetspule der Magnetventile aufgrund von Temperaturänderungen in der Magnetspule zu kompensieren. Dies kann beispielsweise mittels einer Spannungsnachführung erfolgen, welche die Auswirkungen von relevanten Änderungen in den Stromzweigen auf den durch die Magnetspulen fließenden Strom kompensiert. Eine solche Temperaturkompensation stellt jedoch keine Stromregelung, sondern lediglich eine adaptive Stromsteuerung dar.
  • Gemäß einer anderen vorteilhaften Weiterbildung der vorliegenden Erfindung wird vorgeschlagen, dass die Schaltungsanordnung einen Spannungshochsetzsteller zum Ableiten der ersten Spannung aus einer Bordnetzspannung und zum Stabilisieren der ersten Spannung aufweist. Des weiteren wird vorgeschlagen, dass die Schaltungsanordnung einen Spannungstiefsetzsteller oder einen Spannungshochsetzsteller zum Ableiten der zweiten Spannung aus einer Bordnetzspannung und zum Stabilisieren der zweiten Spannung aufweist. Der Spannungshochsetzsteller und der Spannungstiefsetzsteller sind bspw. als DC/DC-Wandler ausgebildet. Die erfindungsgemäße Schaltungsanordnung weist somit zwei zentrale und unabhängige DC/DC-Wandler mit stabiler Festspannung für die Versorgung der Magnetspule des Magnetventils während der Anzugsphase und während der Haltephase auf.
  • Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung wird vorgeschlagen, dass die Schaltungsanordnung eine 42 Volt-Spannungsquelle, die in einem 42 Volt-Bordnetz eines Kraftfahrzeugs zur Verfügung steht, zum Erzeugen der ersten Spannung und eine weitere Spannungsquelle, insbesondere eine 12 Volt-Spannungsquelle oder eine 9 Volt-Spannungsquelle, die in dem 42 Volt-Bordnetz zur Verfügung steht, zum Erzeugen der zweiten Spannung aufweist. In einem 42 Volt-Bordnetz steht neben einer 42 Volt-Spannungsquelle üblicherweise auch eine weitere Spannungsquelle, insbesondere eine 12 Volt-Spannungsquelle oder eine 9 Volt-Spannungsquelle, zur Verfügung. Die Spannung der weiteren Spannungsquelle kann unmittelbar als zweite Spannung herangezogen werden. Auf den Einsatz eines Spannungstiefsetzstellers zum Erzeugen der zweiten Spannung kann somit verzichtet werden. Dadurch entsteht weniger Verlustleistung und es ergibt sich eine geringere Wärmeentwicklung einer Endstufe zur Betätigung des Magnetventils.
  • Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung wird vorgeschlagen, dass ein erster Anschluss des Magnetventils über das erste Schaltglied an die erste Spannung und über eine erste Diode an die zweite Spannung angeschlossen ist und dass ein zweiter Anschluss des Magnetventils über Mittel zum Stromabbau und zur Energierückgewinnung an die erste Spannung und über das zweite Schaltglied an Masse angeschlossen ist. Die Mittel zum Stromabbau und zur Energierückgewinnung können beliebig ausgebildet sein. Dem Fachmann sind dazu eine Vielzahl von Möglichkeiten bekannt. Vorzugsweise sind die Mittel zum Stromabbau und zur Energierückgewinnung als eine zweite Diode ausgebildet. Durch die erste Diode wird die erste Spannung von der zweiten Spannung entkoppelt. Die zweite Diode dient dem Stromabbau in der Magnetspule des Magnetventil und gleichzeitig der Energierückgewinnung, nachdem die Magnetspule von beiden Spannungen getrennt worden ist.
  • Alternativ wird vorgeschlagen, dass ein erster Anschluss des Magnetventils über das erste Schaltglied an die erste Spannung und über das zweite Schaltglied und eine Diode an die zweite Spannung angeschlossen ist und dass ein zweiter Anschluss des Magnetventils an Masse angeschlossen ist.
  • Bei der elektrohydraulischen Ventilsteuerung entfällt zur Ansteuerung der Gaswechsel-Ventile die Nockenwelle. Jedes Gaswechsel-Ventil 1 hat zum Öffnen und Schließen einen eigenen Steller 10. Der Steller 10 weist ein Stellglied 2 auf, in dem ein hydraulischer Differenzialkolben 3 verschiebbar gelagert ist. Durch den Differenzialkolben 3 wird das Innere des Stellgliedes 2 in eine obere Kammer 4 und eine untere Kammer 5 unterteilt. Die Flächendifferenz zwischen der Oberseite und der Unterseite des Differenzialkolbens 3 führt bei gleichem Druck in der oberen Kammer 4 und der unteren Kammer 5 zu einer Bewegung des Differenzialkolbens 3 in dem Stellglied 2 und zum Öffnen des Gaswechsel-Ventils 1.
  • Dem Steller 10 wird von einer Versorgungsseite 8 Öl mit einem hohen Druck zugeführt und über ein erstes Magnetventil 6 in die erste Kammer 4 des Stellgliedes 2 geleitet. Aus der ersten Kammer 4 gelangt das Öl über ein zweites Magnetventil 7 in einen Tank 9. Von der Versorgungsseite 8 zweigt eine weitere Leitung 15 ab, die in die zweite Kammer 5 des Stellgliedes 2 mündet und über die Öl von der Vorsorgungsseite 8 mit einem hohen Druck in die zweite Kammer 5 gelangt.
  • Die Ansteuerung des elektrohydraulisch betätigten Gaswechsel-Ventils 1 erfolgt in drei Phasen:
  • In einer ersten Phase führt das Gaswechsel-Ventil 1 eine Öffnungsbewegung aus. Hierzu wird zuerst das zweite Magnetventil 7 geschlossen, um das Abströmen des Öls aus der oberen Kammer 4 zu dem Tank 9 hin zu verhindern. Durch Öffnen des ersten Magnetventils 6 wird Öl von der Vorsorgungsseite 8 mit hohem Druck in die obere Kammer 4 des Stellgliedes 2 geleitet. Wegen der größeren Fläche an der Oberseite im Vergleich zu der Untersetite des Differenzialkolbens 3 ergibt sich eine nach unten gerichtete resultierende Kraft an dem Differenzialkolben 3, die zu einer Öffnungsbewegung des Gaswechsel-Ventils 1 führt.
  • In einer zweiten Phase wird das mit Voll- oder Teilhub (bestimmt durch die Öffnungsdauer des ersten Magnetventils) geöffnete Gaswechsel-Ventil 1 statisch offengehalten. Dazu wird bei weiterhin geschlossenem zweiten Magnetventil 7 auch das erste Magnetventil 6 geschlossen. Während dieser Phase sind also beide Magnetventile 6, 7, d.h. der Zulauf und der Ablauf der oberen Kammer 4, geschlossen.
  • Während einer dritten Phase führt das Gaswechsel-Ventil 1 eine Schließbewegung aus. Hierzu wird das erste Magnetventil 6 geschlossen gehalten und das zweite Magnetventil 7 geöffnet, so dass das Öl aus der oberen Kammer 4 abfließen kann. Über den Öldruck in der unteren Kammer 5 wirkt eine schließende Kraft auf die Unterseite des Differenzialkolbens 3, wodurch dieser nach oben bewegt und das Gaswechsel-Ventil 1 geschlossen wird.
  • Bei einer elektrohydraulischen Gaswechsel-Ventilsteuerung weist jedes Gaswechsel-Ventil 1 zum Öffnen und Schließen einen eigenen Steller 10 auf. Bei einer Brennkraftmaschine mit 4-Ventiltechnik hat jeder Zylinder zwei Einlaßventile und zwei Auslaßventile für den Gaswechsel. Demzufolge werden für jeden Zylinder der Brennkraftmaschine acht Magnetventile 6, 7 benötigt. Dementsprechend sind für eine elektrohydraulische Gaswechsel-Ventilsteuerung einer 4-Zylinder-Brennkraftmaschine bereits 32 Magnetventile nötig, die elektrisch angesteuert werden müssen.
  • Um die Ansteuerung von Magnetventilen, insbesondere von Magnetventilen 6, 7 zur Betätigung einer elektrohydraulischen Gaswechsel-Ventilsteuerung einer Brennkraftmaschine, zu vereinfachen, schlägt die Erfindung vor, das Magnetventil 6; 7 in einem drei Phasen umfassenden Zyklus anzusteuern. Eine Anzugsphase dient zur Erzeugung eines Anzugsstroms. Während der Anzugsphase wird das Magnetventil 6; 7 für eine vorgegebene Zeitdauer an eine erste Spannung U_1 vorgebener Höhe angeschlossen. Eine Haltephase dient zur Erzeugung eines Haltestroms, der kleiner als der Anzugsstrom ist. Während der Haltephase wird das Magnetventil 6; 7 an eine zweite niedrigere Spannung U_2 vorgegebener Höhe angeschlossen. Während einer Abschaltphase wird das Magnetventil 6; 7 von beiden Spannungen U_1, U_2 getrennt.
  • Erfindungsgemäß wird der durch die Magnetspule des Magnetventils 6; 7 fließende Strom also nicht geregelt sondern gesteuert. Der durch die Magnetspule fließende Strom stellt sich in Abhängigkeit von dem Spulenwiderstand der Magnetspule und von der anliegenden Spannung U_1; U_2 ein.
  • In Figur 1 ist eine erfindungsgemäße Schaltungsanordnung gemäß einer ersten bevorzugten Ausführungsform dargestellt. Das anzusteuernde Magnetventil ist mit dem Bezugszeichen MV bezeichnet. Das Magnetventil MV ist bspw. ein Magnetventil 6; 7 einer elektrohydraulischen Gaswechsel-Ventilsteuerung (vgl. Figur 4), ein Einspritzventil oder ein Einlaß- oder ein Auslaßventil einer Brennkraftmaschine. Ein erster Anschluß 20 des Magnetventils MV ist über ein erstes Schaltglied S_1 an die erste Spannung U_1 und über eine erste Diode D_1 an die zweiten Spannung U_2 angeschlossen. Die erste Diode D_1 dient der Entkopplung der ersten Spannung U_1 von der zweiten Spannung U_2. Ein zweiter Anschluß 21 des Magnetventils MV ist über eine zweite Diode D_2 an die erste Spannung U_1 und über ein zweites Schaltglied S_2 an Masse angeschlossen. Die zweite Diode D_2 dient dem Stromabbau in dem Magnetventil MV und gleichzeitig der Energierückgewinnung beim Übergang von der ersten Phase zu der zweiten Phase, nachdem das Magnetventil MV von beiden Spannungen U_1, U_2 getrennt worden ist. Statt der zweiten Diode D_2 können natürlich beliebige andere Mittel zum Stromabbau und zur Energierückgewinnung eingesetzt werden (z. B. Zenerdiode, R-C-Schaltung). Des weiteren ist es denkbar, dass die zweite Diode D_2 statt wie in Fig. 1 dargestellt, parallel zu dem Magnetventil MV angeordnet wird.
  • Die erste Spannung U_1 wird durch einen als Gleichspannungswandler 22 ausgebildeten Spannungshochsetzsteller aus einer Bordnetzspannung U_batt abgeleitet und stabilisiert. Die zweite Spannung U_2 wird von einem als Gleichspannungswandler 23 ausgebildeten Spannungstiefsetzsteller oder Spannungshochsetzsteller ebenfalls aus der Bordnetzspannung U_batt abgeleitet und stabilisiert. Die zweite Spannung U_2 ist deutlich niedriger als die erste Spannung U_1. Das erste Schaltglied S_1 und das zweite Schaltglied S_2 werden von Ansteuerschaltungen 24, 25 angesteuert (gestrichelte Linie).
  • In der Anzugsphase des Magnetventils MV wird die Magnetspule durch Schließen der Schaltglieder S_1, S_2 für eine vorgegebene Zeitdauer T_1 an die Spannungsquelle U_1 gelegt. Die Zeitdauer T_1 ist so bestimmt, dass der notwendige Anzugsstrom für ein schnelles und sicheres Anziehen des Ankers des Magnetventils MV erreicht wird.
  • Beim Übergang in die Haltephase werden die Schaltglieder S_1, S_2 geöffnet. Der Strom wird dann über die zweite Diode D_2 so weit wieder abgebaut (Diodenfreilauf), bis das Haltestromniveau erreicht ist. Zu diesem Zeitpunkt (Beginn der zweiten Phase) wird dann das zweite Schaltglied S_2 wieder geschlossen. Dadurch übernimmt die zweite Spannung U_2 die Versorgung der Magnetspule des Magnetventils MV und gewährleistet einen konstanten Haltestrom. Die Diode D_1 ist notwendig, um einen Kurzschluß von der ersten Spannung U_1 zu der zweiten Spannung U_2 bei geschlossenem ersten Schaltglied S_1 zu vermeiden.
  • Während der Abschaltphase wird bei geöffnetem ersten Schaltglied S_1 auch das zweite Schaltglied S_2 geöffnet. Die Folge ist ein schneller Stromabbau durch Stromrückspeisung über die zweite Diode D_2 auf die erste Spannung U_1 (hohes Potenzial). Aufgrund der Stromrückspeisung über die zweite Diode D_2 ist mit der erfindungsgemäßen Schaltungsanordnung ein besonders energieschonender Betrieb des Magnetventils MV möglich.
  • Die Schaltungsanordnung gemäß Figur 1 stellt zudem einen erheblichen Sicherheitsgewinn gegenüber den aus dem Stand der Technik bekannten Schaltungsanordnungen zum Betrieb eines Magnetventils dar. Das Magnetventil MV kann nämlich nur dann anziehen, wenn beide Schaltglieder S_1 und S_2 geschlossen sind. Ein fehlerhaftes, unerwünschtes Anziehen des Magnetventils MV würde bspw. ein Öffnen des Gaswechsel-Ventils 1 auch zu Zeitpunkten ermöglichen, in denen sich der Kolben des Zylinders der Brennkraftmaschine in seinem oberen Totpunkt befindet. Dies könnte zu einer Kollision zwischen dem Gaswechsel-Ventil 1 und dem Kolben führen, was zu einer Beschädigung der Brennkraftmaschine führen könnte. Dasselbe gilt für eine Kollision zwischen zwei GaswechselVentilen desselben Zylinders der Brennkraftmaschine.
  • In Figur 2 ist eine erfindungsgemäße Schaltungsanordnung gemäß einer zweiten bevorzugten Ausführungsform dargestellt. Der erste Anschluss 20 des Magnetventils MV ist über das erste Schaltglied S_1 an die erste Spannung U_1 und über das zweite Schaltglied S_2 und eine Diode D_3 an die zweite Spannung U_2 angeschlossen. Die Diode D_3 hat die Aufgabe, die erste Spannung U_1 von der zweiten Spannung U_2 zu entloppeln. Der zweite Anschluss 21 des Magnetventils MV ist an Masse angeschlossen. Obwohl in Fig. 2 nicht dargestellt, könnten natürlich auch in dieser Schaltungsanordnung geeignete Mittel zum Stromabbau und zur Energierückgewinnung vorgesehen werden, bspw. in Form einer weiteren Diode (nicht dargestellt), die parallel zu dem Magnetventil MV angeordnet wird.
  • In der Anzugsphase wird der Anker des Magnetventils MV durch Schließen des ersten Schaltgliedes S_1 angezogen. Während des Übergangs in die Haltephase wird das erste Schaltglied S_1 geöffnet. Nachdem der Strom auf den Haltewert abgesunken ist, wird das zweite Schaltglied S_2 geschlossen. Dadurch übernimmt die zweite Spannung U_2 die Versorgung des Magnetventils MV. Während der Abschaltphase wird das zweite Schaltglied S_2 geöffnet. Bei dieser Ausführungsform wird in der Anzugsphase nur das erste Schaltglied S_1 bestromt. Das zweite Schaltelement S_2 wird während dieser Zeit nicht bestromt und hat demzufolge auch keine elektrische Verlustleistung.
  • In Figur 3 ist eine erfindungsgemäße Schaltungsanordnung gemäß einer dritten bevorzugten Ausführungsform dargestellt. Diese Schaltungsanordnung unterscheidet sich von der in Figur 1 dargestellten dadurch, dass auf den Einsatz eines Spannungshochsetzstellers 22 oder eines Spannungstiefsetzstellers 23 zum Ableiten der ersten Spannung U_1 bzw. der zweiten Spannung U_2 aus der Bordnetzspannung U_batt verzichtet wird. Bei der Schaltungsanordnung aus Figur 3 könnten die Schaltglieder S_1 und S_2 statt wie in Figur 1 auch wie in Figur 2 angeordnet sein.
  • Die in Figur 3 dargestellte Schaltungsanordnung geht von einem 42 Volt-Bordnetz eines Kraftfahrzeugs aus. Das 42 Volt-Bordnetz weist eine 42 Volt-Spannungsquelle 26 und eine als 12 Volt-Spannungsquelle ausgebildete weitere Spannungsquelle 27 auf. Statt der 12 Volt-Spannungsquelle könnte auch eine 9 Volt- oder eine beliebige andere Spannungsquelle vorgesehen sein. Die 42 Volt-Spannung wird hauptsächlich zur Energieversorgung von leistungsstarken Assistenzsystemen (x-by-wire-Systemen) in dem Kraftfahrzeug herangezogen. Kraftfahrzeugsysteme mit geringerer Leistungsaufnahme werden von der weiteren Spannungsquelle mit Energie versorgt.
  • Die 42 Volt-Spannung der 42 Volt-Spannungsquelle 26 wird als erste Spannung U_1 und die 12 Volt-Spannung der weiteren Spannungsquelle 27 als zweite Spannung U_2 herangezogen. Während der Anzugsphase liegt an dem Magnetventil MV die 42 Volt-Spannung und während der Haltephase die 12 Volt-Spannüng an. Am Ende der Haltephase wird die 12 Volt-Spannung dann abgeschaltet. Mit Hilfe der Schaltglieder S_1 und S_2 wird von der 42 Volt-Spannung auf die 12 Volt-Spannung umgeschaltet und die 12 Volt-Spannung dann abgeschaltet. Beide 42 V- und 12 V-Kreise können hinsichtlich Dynamik und Verlustleistung optimiert werden.
  • Statt wie in den vorangegangenen Figuren dargestellt, könnte die Ansteuerung des Magnetventils MV auch über einen Entladekondensator (nicht dargestellt) erfolgen, der über eine Spannungsquelle U_batt, 26 oder 27 aufgeladen wird, nach einem Ansteuersignal von der Spannungsquelle U_batt, 26 oder 27 getrennt wird und dann das Magnetventil MV in einer Entladekurve mit Energie versorgt. Zu Beginn der Ansteuerung während der Anzugsphase liefert der Entladekondensator eine relativ hohe Spannung, bspw. eine 42 Volt-Spannung. Während der Haltephase ist die Kondensatorspannung dann abgefallen und hat bspw. 12 Volt oder 9 Volt erreicht. Mit dieser niedrigeren Spannung wird das Magnetventil dann während der Haltephase angesteuert.
  • Zur Kompensation des Temperaturgangs des Spulenwiderstands der Magnetspule des Magnetventils MV kann eine Anpassung des Niveaus der Spannungen U_1 und U_2 an die Spulentemperatur vorgenommen werden. Dazu könnte die Temperatur der Magnetspulen an einer repräsentativen Stelle erfaßt werden. Durch diese Temperaturkompensation wird eine adaptive Steuerung des durch die Magnetspule fließenden Stromes auf einen konstanten Wert während der Anzugsphase bzw. während der Haltephase möglich. Alternativ könnte der durch die Magnetspule des Magnetventils MV fließende Strom erfaßt und die Spannungen U_1 und/oder U_2 an den Stromverlauf angepaßt werden, was jedoch nicht mehr erfindungssemäß ist.

Claims (16)

  1. Verfahren zum Betrieb eines Magnetventils (MV), insbesondere zur Betätigung einer elektrohydraulischen Gaswechsel-Ventilsteuerung, eines Einspritzventils oder eines Einlass- oder Auslassventils einer Brennkraftmaschine, wobei das Magnetventil (MV) in einem drei Phasen umfassenden Zyklus gesteuert beaufschlagt wird, dadurch gekennzeichnet, dass das Magnetventil (MV) in einer Anzugsphase zur Erzeugung eines gesteuerten Anzugsstroms für eine vorgegebene Zeitdauer (T_1) an eine erste Spannung (U_1) vorgegebener Höhe angeschlossen wird, in einer Haltephase zur Erzeugung eines gesteuerten Haltestroms an eine zweite Spannung (U_2) vorgegebener Höhe angeschlossen wird und in einer Abschaltphase von beiden Spannungen (U_1, U_2) getrennt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die erste Spannung (U_1) durch Spannungshochsetzung aus einer Bordnetzspannung (U_batt) abgeleitet und stabilisiert wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zweite Spannung (U_2) durch Spannungsabsenkung oder Spannungshochsetzung aus einer Bordnetzspannung (U_batt) abgeleitet und stabilisiert wird.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass für die erste Spannung (U_1) eine 42 Volt-Spannung, die in einem 42 Volt-Bordnetz eines Kraftfahrzeugs zur Verfügung steht, und als die zweite Spannung (U_2) eine niedrigere Spannung, insbesondere eine 12 Volt-Spannung oder eine 9 Volt-Spannung, die in dem 42 Volt-Bordnetz zur Verfügung steht, herangezogen wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Spannungen (U_1, U_2) derart variiert werden, dass der resultierende Anzugsstromverlauf bzw. der resultierende Haltestrom konstant sind.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Temperatur der Magnetspule des Magnetventils (MV) erfasst wird und die Spannungen (U_1, U_2) an den Temperaturgang des Spulenwiderstandes der Magnetspule angepasst werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Magnetventil (MV) in der Anzugsphase durch Schließen von zwei Schaltgliedern (S_1, S_2) an die erste Spannung (U_1) angeschlossen wird.
  8. Verwendung einer Schaltungsanordnung zum Betrieb eines Magnetventils (MV), insbesondere zur Betätigung einer elektrohydraulischen Gaswechsel-Ventilsteuerung, eines Einspritzventils oder eines Einlass- oder Auslassventils einer Brennkraftmaschine, zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 7, wobei die Schaltungsanordnung zwei Schaltglieder (S_1, S_2) zum Anlegen einer ersten Spannung (U_1) vorgegebener Höhe an das Magnetventil (MV) während einer Anzugsphase, zum Anlegen einer zweiten Spannung (U_2) vorgegebener Höhe, die niedriger ist als die erste Spannung (U_1), an das Magnetventil (MV) während einer Haltephase und zum Trennen des Magnetventils (MV) von beiden Spannungen (U_1, U_2) in einer Abschaltphase aufweist, dadurch gekennzeichnet, dass die erste Spannung (U_1) zur Erzeugung eines gesteuerten Anzugsstroms und die zweite Spannung (U_2) zur Erzeugung eines gesteuerten Haltestroms dient.
  9. Verwendung der Schaltungsanordnung nach Anspruch 8, dadurch gekennzeichnet, dass die Schaltungsanordnung Mittel zur Spannungsnachführung aufweist, um Auswirkungen von relevanten Änderungen in Magnetspulen der Magnetventile auf den durch die Magnetspulen fließenden Strom zu kompensieren.
  10. Verwendung der Schaltungsanordnung nach Anspruch 9, dadurch gekennzeichnet, dass die Schaltungsanordnung Mittel zur Temperaturkompensation aufweist, um die Auswirkungen einer Änderung des Spulenwiderstands der Magnetspule der Magnetventile aufgrund von Temperaturänderungen in der Magnetspule zu kompensieren.
  11. Verwendung der Schaltungsanordnung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Schaltungsanordnung einen Spannungshochsetzsteller (22) zum Ableiten der ersten Spannung (U_1) aus einer Bordnetzspannung (U_batt) und zum Stabilisieren der ersten Spannung (U_1) aufweist.
  12. Verwendung der Schaltungsanordnung nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass die Schaltungsanordnung einen Spannungstiefsetzsteller (23) oder einen Spannungshochsetzsteller zum Ableiten der zweiten Spannung (U_2) aus einer Bordnetzspannung (U_batt) und zum Stabilisieren der zweiten Spannung (U_2) aufweist.
  13. Verwendung der Schaltungsanordnung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Schaltungsanordnung eine 42 Volt-Spannungsquelle (26), die in einem 42 Volt-Bordnetz eines Kraftfahrzeugs zur Verfügung steht, zum Erzeugen der ersten Spannung (U_1) und eine weitere Spannungsquelle (27), insbesondere eine 12 Volt-Spannungsquelle oder eine 9 Volt-Spannungsquelle, die in dem 42 Volt-Bordnetz zur Verfügung steht, zum Erzeugen der zweiten Spannung (U_2) aufweist.
  14. Verwendung der Schaltungsanordnung nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass ein erster Anschluss (20) des Magnetventils (MV) über das erste Schaltglied (S_1) an die erste Spannung (U_1) und über eine erste Diode (D_1) an die zweite Spannung (U_2) angeschlossen ist und dass ein zweiter Anschluss (21) des Magnetventils (MV) über Mittel zum Stromabbau und zur Energierückgewinnung an die erste Spannung (U_1) und über das zweite Schaltglied (S_2) an Masse angeschlossen ist.
  15. Verwendung der Schaltungsanordnung nach Anspruch 14, dadurch gekennzeichnet, dass die Mittel zum Stromabbau und zur Energierückgewinnung als eine zweite Diode (D_2) ausgebildet sind.
  16. Verwendung der Schaltungsanordnung nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass ein erster Anschluss (20) des Magnetventils (MV) über das erste Schaltglied (S_1) an die erste Spannung (U_1) und über das zweite Schaltglied (S_2) und eine Diode (D_3) an die zweite Spannung (U_2) angeschlossen ist und dass ein zweiter Anschluss (21) des Magnetventils an Masse angeschlossen ist.
EP01911384A 2000-02-16 2001-01-25 Verfahren und schaltungsanordnung zum betrieb eines magnetventils Revoked EP1173658B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10006849 2000-02-16
DE10006849 2000-02-16
DE10057778A DE10057778A1 (de) 2000-02-16 2000-11-22 Verfahren und Schaltungsanordnung zum Betrieb eines Magnetventils
DE10057778 2000-11-22
PCT/DE2001/000279 WO2001061156A1 (de) 2000-02-16 2001-01-25 Verfahren und schaltungsanordnung zum betrieb eines magnetventils

Publications (2)

Publication Number Publication Date
EP1173658A1 EP1173658A1 (de) 2002-01-23
EP1173658B1 true EP1173658B1 (de) 2005-09-21

Family

ID=26004355

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01911384A Revoked EP1173658B1 (de) 2000-02-16 2001-01-25 Verfahren und schaltungsanordnung zum betrieb eines magnetventils

Country Status (6)

Country Link
US (1) US6772737B2 (de)
EP (1) EP1173658B1 (de)
JP (1) JP2003522919A (de)
AU (1) AU771141B2 (de)
DE (1) DE50107464D1 (de)
WO (1) WO2001061156A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009011244A1 (de) * 2009-03-02 2010-09-09 Continental Automotive Gmbh Schaltungsanordnung zum Betreiben einer induktiven Last

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1423860A1 (de) * 2001-07-12 2004-06-02 Mecel Aktiebolag Verfahren zur solenoidsteuerung
DE10234098A1 (de) * 2002-07-26 2004-02-05 Robert Bosch Gmbh Verfahren zur Steuerung und/oder Regelung eines Gleichspannungswandlers für wenigstens zwei elektromagnetische Ventile einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
ITBO20030388A1 (it) * 2003-06-23 2004-12-24 Magneti Marelli Powertrain Spa Metodo e dispositivo di controllo di un gruppo elettroidraulico
WO2006009555A1 (en) * 2003-07-21 2006-01-26 Siemens Vdo Automotive Corporation Power supply and control method for injector driver module
US7133268B2 (en) * 2003-12-01 2006-11-07 Texas Instruments Incorporated Current control via a variable voltage snubbing network
US6971346B2 (en) * 2004-03-18 2005-12-06 Ford Global Technologies, Llc System for controlling electromechanical valves in an engine
US6948461B1 (en) * 2004-05-04 2005-09-27 Ford Global Technologies, Llc Electromagnetic valve actuation
JP4182922B2 (ja) * 2004-06-17 2008-11-19 いすゞ自動車株式会社 排気弁駆動制御方法及び装置
US6978745B1 (en) * 2004-07-13 2005-12-27 Ford Global Technologies, Llc System for controlling electromechanical valves in an engine
CN102176632A (zh) * 2004-08-31 2011-09-07 美国能量变换公司 提供不间断电源的设备及其方法
DE602004004664T2 (de) * 2004-10-08 2007-11-08 C.R.F. S.C.P.A. Vorrichtung zum Steuern der Elektroeinspritzventile und Elektroventile einer Brennkraftmaschine und eine Methode dafür
JP4482913B2 (ja) * 2005-04-01 2010-06-16 Smc株式会社 電磁弁及び電磁弁駆動回路
WO2008068057A2 (de) * 2006-05-26 2008-06-12 Robert Bosch Gmbh Verfahren zum gaswechsel einer brennkraftmaschine
ES2321998B1 (es) * 2006-06-30 2010-03-04 Universitat Politecnica De Catalunya Dispositivo electronico para proveer la alimentacion electrica e insensibilizar de las perturbaciones de la red electrica a los electroimanes en general y en especial a los de los contactores electromagneticos.
US8132548B2 (en) * 2007-01-25 2012-03-13 Ford Global Technologies, Llc Engine valve control system and method
US7415950B2 (en) * 2007-01-25 2008-08-26 Ford Global Technologies, Llc Engine valve control system and method
DE102007006179B4 (de) * 2007-02-07 2008-10-16 Continental Automotive Gmbh Schaltungsanordnung und Verfahren zum Betreiben einer induktiven Last
US8681468B2 (en) * 2009-10-28 2014-03-25 Raytheon Company Method of controlling solenoid valve
DE102009056802B4 (de) 2009-12-03 2019-05-29 Robert Bosch Gmbh Ansteuerelektronik für ein elektromagnetisch betätigtes Ventil zum Betrieb einer hydrostatischen Verdrängereinheit
FR2976618B1 (fr) * 2011-06-16 2016-02-12 Continental Automotive France Circuit et procede de commande d'un injecteur a solenoide
DE102012211994A1 (de) * 2012-07-10 2014-01-16 Continental Automotive Gmbh Steuergerät zur Ansteuerung zumindest einen Kraftstoffeinspritzventils und Schaltungsanordnung mit einem solchen Steuergerät
DE102016208234B3 (de) * 2016-05-12 2017-10-12 Continental Automotive Gmbh Vorrichtung zur Ansteuerung eines Magnetventils
US11352975B1 (en) 2021-06-24 2022-06-07 Ford Global Technologies, Llc Methods and systems for estimating injector tip temperatures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729056A (en) * 1986-10-02 1988-03-01 Motorola, Inc. Solenoid driver control circuit with initial boost voltage
DE3920064A1 (de) * 1989-06-20 1991-01-03 Bosch Gmbh Robert Schaltungsanordnung zum betrieb von elektromagnetischen verbrauchern

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758260A (en) * 1972-06-19 1973-09-11 Emerson Electric Co Burner flame detection circuit
US4150654A (en) * 1977-08-11 1979-04-24 Caterpillar Tractor Co Engine and fuel shutdown control
US4297742A (en) * 1977-08-11 1981-10-27 Caterpillar Tractor Co. Engine and fuel shutdown control
US4453652A (en) * 1981-09-16 1984-06-12 Nordson Corporation Controlled current solenoid driver circuit
US4922878A (en) * 1988-09-15 1990-05-08 Caterpillar Inc. Method and apparatus for controlling a solenoid operated fuel injector
DE3921308A1 (de) * 1989-06-29 1991-01-10 Bosch Gmbh Robert Versorgungsschaltung fuer den betrieb eines elektromagnetischen verbrauchers
DE4021486A1 (de) * 1990-07-05 1992-01-16 Bosch Gmbh Robert Schaltungsanordnung zum betrieb von elektromagnetischen verbrauchern
DE4024496A1 (de) 1990-08-02 1992-02-06 Bosch Gmbh Robert Schaltungsanordnung zum betrieb von elektromagnetischen verbrauchern
US5020988A (en) * 1990-10-22 1991-06-04 Honeywell Inc. Intermittent pilot type burner control with a single control relay
FR2689306B1 (fr) 1992-03-24 1997-04-30 Valeo Electronique Circuit d'alimentation pour relais electromagnetique.
US5435717A (en) * 1993-04-30 1995-07-25 Honeywell Inc. Burner control system with continuous check of hot surface ignitor during run cycle
US6308690B1 (en) * 1994-04-05 2001-10-30 Sturman Industries, Inc. Hydraulically controllable camless valve system adapted for an internal combustion engine
US5499157A (en) * 1994-11-09 1996-03-12 Woodward Governor Company Multiplexed electronic fuel injection control system
GB9422742D0 (en) * 1994-11-11 1995-01-04 Lucas Ind Plc Drive circuit
US5622148A (en) * 1995-12-04 1997-04-22 Ford Motor Company Control for a motor vehicle cranking system
DE19640659B4 (de) * 1996-10-02 2005-02-24 Fev Motorentechnik Gmbh Verfahren zur Betätigung eines elektromagnetischen Aktuators mit Beeinflussung des Spulenstroms während der Ankerbewegung
US5765513A (en) * 1996-11-12 1998-06-16 Ford Global Technologies, Inc. Electromechanically actuated valve
DE19728840A1 (de) * 1997-07-05 1999-01-07 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erfassung eines Schaltzeitpunktes eines Magnetventils
US6014956A (en) * 1997-12-22 2000-01-18 Caterpillar Inc. Electronic control for a hydraulically activated, electronically controlled injector fuel system and method for operating same
US5975057A (en) * 1998-04-02 1999-11-02 Motorola Inc. Fuel injector control circuit and system with boost and battery switching, and method therefor
US6119659A (en) 1998-12-07 2000-09-19 Siemens Automotive Corporation Fuel injector having extended voltage range
DE10014228A1 (de) * 2000-03-22 2001-09-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung eines Kraftstoffeinspritzventils
US6390082B1 (en) * 2000-07-13 2002-05-21 Caterpillar Inc. Method and apparatus for controlling the current level of a fuel injector signal during sudden acceleration
US6572074B2 (en) * 2001-04-18 2003-06-03 Ford Global Technologies, Llc Electromechanical valve actuator with air piston to aid in soft landing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729056A (en) * 1986-10-02 1988-03-01 Motorola, Inc. Solenoid driver control circuit with initial boost voltage
DE3920064A1 (de) * 1989-06-20 1991-01-03 Bosch Gmbh Robert Schaltungsanordnung zum betrieb von elektromagnetischen verbrauchern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009011244A1 (de) * 2009-03-02 2010-09-09 Continental Automotive Gmbh Schaltungsanordnung zum Betreiben einer induktiven Last

Also Published As

Publication number Publication date
US20020157650A1 (en) 2002-10-31
US6772737B2 (en) 2004-08-10
AU4043901A (en) 2001-08-27
JP2003522919A (ja) 2003-07-29
AU771141B2 (en) 2004-03-11
DE50107464D1 (de) 2006-02-02
EP1173658A1 (de) 2002-01-23
WO2001061156A1 (de) 2001-08-23

Similar Documents

Publication Publication Date Title
EP1173658B1 (de) Verfahren und schaltungsanordnung zum betrieb eines magnetventils
EP0704097B1 (de) Vorrichtung und ein verfahren zur ansteuerung eines elektromagnetischen verbrauchers
DE19907505B4 (de) Verfahren und Vorrichtung zur Steuerung einer Stromanstiegszeit während mehrfacher Kraftstoffeinspritzvorgänge
EP0985814B1 (de) Verfahren und Vorrichtung zur Steuerung wenigstens eines Magnetventils
WO2011131467A2 (de) Verfahren zum betreiben einer brennkraftmaschine, bei dem ein magnetventil zum einspritzen von kraftstoff betätigt wird
EP0812461B1 (de) Vorrichtung zur ansteuerung wenigstens eines elektromagnetischen verbrauchers
DE19539071A1 (de) Vorrichtung zur Ansteuerung wenigstens eines elektromagnetischen Verbrauchers
DE4322199C2 (de) Verfahren und Einrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DE102012112841B4 (de) Steuerungsverfahren und Steuervorrichtung für einen Elektromagneten
EP2635784A1 (de) Verfahren zum betreiben eines schaltgliedes
DE102011077987A1 (de) Verfahren zum Betreiben einer Kraftstofffördereinrichtung
DE19533131C2 (de) Verfahren und Vorrichtung zum Ansteuern eines elektromagnetischen Verbrauchers
DE10057778A1 (de) Verfahren und Schaltungsanordnung zum Betrieb eines Magnetventils
WO2017216041A1 (de) Verfahren und vorrichtung zur ermittlung von bestromungsdaten für ein stellglied eines einspritzventils eines kraftfahrzeugs
DE102007024129A1 (de) Verfahren und Vorrichtung für ein Ölkreislaufmanagement in einer Verbrennungskraftmaschine
EP0945610A2 (de) Verfahren und Vorrichtung zum Schalten einer Induktivität
DE19521676A1 (de) Regelung des Anzuges eines Ankers eines Schaltmagneten und Schaltanordnung zur Durchführung des Verfahrens
DE69804801T2 (de) Leistungssteuerschaltung für einen elektromagnetischen betätiger, wie einspritzventil oder elektromagnetventil
DE102016219375B3 (de) Betreiben eines Kraftstoffinjektors mit hydraulischem Anschlag bei reduziertem Kraftstoffdruck
WO2018077343A1 (de) Steuerschaltung sowie verfahren zum verbessern der messbarkeit eines mechanischen einschaltvorganges eines elektromagnetischen aktors
DE102015221630A1 (de) Verfahren zum Ansteuern eines Stellers
DE102005050551A1 (de) Energieversorgungseinheit für ein Kraftfahrzeug und Verfahren zum Betreiben einer Energieversorgungseinheit
DE102016221170B4 (de) Verfahren zum Laden eines Kondensators in einer elektronischen Steuerschaltung eines elektromagnetischen Aktors
EP1231360B1 (de) Verfahren zum Starten einer Brennkraftmaschine mit elektromagnetischen Ventiltrieben
DE19826037A1 (de) Verfahren und Vorrichtung zur Ansteuerung wenigstens eines Verbrauchers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20020225

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT SE

17Q First examination report despatched

Effective date: 20040902

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SE

REF Corresponds to:

Ref document number: 50107464

Country of ref document: DE

Date of ref document: 20051027

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 6

REF Corresponds to:

Ref document number: 50107464

Country of ref document: DE

Date of ref document: 20060202

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060321

Year of fee payment: 6

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: FEV MOTORENTECHNIK GMBH & CO. KG

Effective date: 20060620

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070124

Year of fee payment: 7

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20071026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070118

Year of fee payment: 7

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070125