EP1144721B1 - Fabrication de materiau - Google Patents

Fabrication de materiau Download PDF

Info

Publication number
EP1144721B1
EP1144721B1 EP00900068A EP00900068A EP1144721B1 EP 1144721 B1 EP1144721 B1 EP 1144721B1 EP 00900068 A EP00900068 A EP 00900068A EP 00900068 A EP00900068 A EP 00900068A EP 1144721 B1 EP1144721 B1 EP 1144721B1
Authority
EP
European Patent Office
Prior art keywords
substrate
aerosol
nozzle unit
outlet
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00900068A
Other languages
German (de)
English (en)
Other versions
EP1144721A1 (fr
Inventor
Kwang-Leong Choy
Junfa Mei
Bo Su
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial College of Science Technology and Medicine
Original Assignee
Imperial College of Science Technology and Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imperial College of Science Technology and Medicine filed Critical Imperial College of Science Technology and Medicine
Publication of EP1144721A1 publication Critical patent/EP1144721A1/fr
Application granted granted Critical
Publication of EP1144721B1 publication Critical patent/EP1144721B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles

Definitions

  • the present invention relates to a method of and an apparatus for depositing a solid film on a substrate.
  • Material films in particular ceramic films, have wide ranging structural and functional applications. These different applications often require films of different thickness, but there is no single commercially cost-effective film or coating deposition technique for depositing both thin films, typically films having a thickness of less than 1 ⁇ m, and thick films, typically films having a thickness greater than 10 ⁇ m.
  • Vapour processing techniques including chemical vapour deposition (CVD) and physical vapour deposition (PVD), have been used to fabricate thin films, but, because of the slow deposition rate and expensive equipment, are not suited to the deposition of thick films of large area. Moreover, the coating of substrates of complex shape is particularly difficult using a PVD technique.
  • CVD chemical vapour deposition
  • PVD physical vapour deposition
  • Sol-gel processing techniques have also been used to deposit thin films, but, while thin films can be achieved in a single coating run, thicker films provided by a single coating are cracked and thus thick solid films have to be built up by performing a plurality of successive coating runs.
  • Spray pyrolysis where a film is deposited by delivering an aerosol generated by ultrasonic atomisation to a heated substrate, has been used to deposit both thin and thick films as disclosed, for example, in EP-A-0103505 and GB-A-1362803, but the deposition efficiency is usually very low because of the very high loss of the aerosol to the environment, which loss is unacceptable both for environmental reasons and cost reasons where the precursor materials can be expensive and the deposition rate is very low. Furthermore, the deposition of very thick films, typically films having a thickness of greater than 150 ⁇ m, by spray pyrolysis is difficult.
  • the present invention provides a method of depositing in situ a solid film on a substrate, comprising the steps of: providing a substrate; heating the substrate such as to provide for deposition of a solid film; providing a nozzle unit for delivering an aerosol to the substrate, the nozzle unit including at least one outlet through which a directed flow of the aerosol is delivered and at least one electrode; generating an aerosol comprising droplets of a material solution upstream of the nozzle unit; providing a flow of the aerosol through the nozzle unit so as to deliver a directed flow of the aerosol from the at least one outlet; and generating an electric field between the substrate and the at least one electrode such that the aerosol droplets are charged with a positive or negative charge and the directed aerosol flow is attracted towards the substrate.
  • the substrate is heated to a temperature of less than about 1050 °C, more preferably less than about 800 °C.
  • the substrate is heated during deposition.
  • the thermal environment is such as to maintain a decreasing temperature gradient in a direction away from the substrate towards the nozzle unit.
  • the material solution is an aqueous solution.
  • the material solution is a non-aqueous solution.
  • Preferred non-aqueous solvents include acetylacetone, methanol and 2-methoxyethanol.
  • the aerosol droplets are charged prior to exiting the at least one outlet.
  • the aerosol droplets are at least partially charged after exiting the at least one outlet.
  • the aerosol droplets are charged by the at least one electrode.
  • the at least one electrode extends upstream of the at least one outlet.
  • the at least one electrode comprises an elongate element.
  • the distal end of the at least one electrode is located at substantially the centre of the at least one outlet.
  • the distal end of the at least one electrode includes a plurality of tips.
  • the nozzle unit includes a tubular section upstream of each outlet.
  • the tubular section is an elongate section.
  • the tubular section is a linear section.
  • the tubular section is substantially cylindrical.
  • the at least one electrode extends substantially entirely through the associated tubular section.
  • the at least one electrode extends substantially along the central axis of the associated tubular section.
  • At least the inner surface of the tubular section is composed of an insulating material.
  • the aerosol flow is provided by entraining the aerosol in a flow of a carrier gas fed to the nozzle unit.
  • the carrier gas is a gas reactive to the material solution.
  • the carrier gas is a gas non-reactive to the material solution.
  • the flow of the carrier gas is provided, typically by controlling the flow rate, temperature and/or direction, such as to maintain the decreasing temperature gradient.
  • the aerosol is delivered to the substrate such as to achieve a film growth rate of at least 0.2 ⁇ m per minute.
  • the aerosol is delivered to the substrate such as to achieve a film growth rate of at least 1 ⁇ m per minute.
  • the flow rate through the at least one outlet is at least 5 ml per minute, more preferably at least 50 ml per minute.
  • the nozzle unit is configured such that the aerosol flow from the at least one outlet is directed upwards, more preferably substantially vertically upwards.
  • the nozzle unit includes a perforated member upstream of the at least one outlet.
  • the perforated member comprises a mesh.
  • the distance between the at least one outlet and the substrate is less than about 100 mm, more preferably less than about 50 mm.
  • the substrate is held stationary relative to the nozzle unit.
  • the method further comprises the step of moving the nozzle unit relative to the substrate.
  • the substrate is rotated, tilted and/or translated relative to the nozzle unit.
  • deposition is performed at atmospheric pressure.
  • deposition is performed below atmospheric pressure.
  • deposition is performed above atmospheric pressure.
  • the method further comprises the step of varying one or both of the composition and concentration of the material solution during deposition.
  • the method further comprises the step of reversing the polarity between the substrate and the at least one electrode at intervals during deposition.
  • the method further comprises the step of locally heating at least one area of the substrate.
  • the method further comprises the step of one or both of electrically or magnetically steering the aerosol droplets in transit from the nozzle unit to the substrate.
  • the film is one or both of a structural film or a functional film; typically, for use in engineering and medical applications.
  • the film is one of a dense or porous film.
  • the film is one of an amorphous or crystalline film.
  • the film is a composite film.
  • the film is a compositionally-graded film.
  • the film is a multi-layered film.
  • the film is an inorganic film.
  • the film is a ceramic film, more preferably an electroceramic film.
  • the film is an organic film.
  • the film is a polymer film.
  • the present invention also provides an apparatus for depositing in situ a solid film on a substrate, comprising: a substrate holder for holding a substrate; a heater for heating the substrate such as to provide for deposition of a solid film; an aerosol generator for generating an aerosol comprising droplets of a material solution; a nozzle unit in communication with, and downstream of, the aerosol generator for delivering the aerosol to the substrate, the nozzle unit including at least one outlet through which a directed flow of the aerosol is in use delivered and at least one electrode; and a high voltage supply for generating an electric field between the substrate and the at least one electrode such as to apply a positive or negative charge to the aerosol droplets and attract the directed aerosol flow towards the substrate.
  • the apparatus is configured to maintain a decreasing temperature gradient in a direction away from the substrate towards the nozzle unit.
  • the at least one electrode extends upstream of the at least one outlet.
  • the at least one electrode comprises an elongate element.
  • the distal end of the at least one electrode is located at substantially the centre of the at least one outlet.
  • the distal end of the at least one electrode includes a single tip.
  • the tubular section is an elongate section.
  • the tubular section is a linear section.
  • the tubular section is substantially cylindrical.
  • the at least one electrode extends substantially entirely through the associated tubular section.
  • the at least one electrode extends substantially along the central axis of the associated tubular section.
  • At least the inner surface of the tubular section is composed of an insulating material.
  • the apparatus further comprises a gas supply unit in communication with the aerosol generator for supplying a flow of a carrier gas for entraining the aerosol and delivering the same through the nozzle unit.
  • a gas supply unit in communication with the aerosol generator for supplying a flow of a carrier gas for entraining the aerosol and delivering the same through the nozzle unit.
  • the at least one outlet is directed upwards, more preferably substantially vertically upwards.
  • the distance between the at least one outlet and the substrate is less than about 100 mm, more preferably less than about 50 mm.
  • the nozzle unit and the substrate holder are held in fixed relation.
  • the substrate holder is rotatable, tiltable and/or translatable relative to the nozzle unit.
  • the nozzle unit includes a perforated member upstream of the at least one outlet.
  • the perforated member comprises a mesh.
  • the present invention is able, unlike the ESAVD technique disclosed in WO-A-97/21848, to utilise both aqueous and non-aqueous precursor solutions and particularly colloidal sol solutions, and allows much higher deposition rates, typically at least twice the rate possible using the ESAVD technique. Further, unlike the deposition technique disclosed in EP-A-0103505, crystalline, in particular dense, films can be produced in a single run without requiring a post-deposition heat treatment.
  • an organic precursor solution is not essentially required and in delivering the aerosol upwardly, preferably substantially vertically upwardly, to a downwardly-facing substrate, a more stable thermal environment can be maintained at the surface of the substrate so as to allow for a more precise control of the film deposition and hence provide an improved film.
  • a deposition efficiency of at least 90 % has been obtained, which enhanced deposition efficiency reduces the product cost and minimises the loss of the possibly harmful precursor materials to the environment.
  • Figure 1 illustrates a film deposition apparatus in accordance with a first embodiment of the present invention.
  • the film deposition apparatus comprises a heater 1, in this embodiment a tube furnace, for providing a heated zone, and a substrate holder 3 for holding a substrate 5 in the heated zone such as to provide a decreasing temperature gradient in a direction away from the surface of the substrate 5 to be coated.
  • the substrate holder 3 is movably disposed relative to the heater 1 such as to be able to alter both the temperature and the temperature gradient at the surface of the substrate 5 to be coated.
  • the substrate holder 3 is also rotatably disposed about the longitudinal axis of the heater 1 such as to present a moving surface of the substrate 5 to be coated to one end of the heater 1 and thereby enable more uniform film deposition.
  • the film deposition apparatus further comprises a motor unit 7 which is coupled to the substrate holder 3 such as on operation to rotate the same, and a computer 9 for controlling the operation of the motor unit 7.
  • the film deposition apparatus further comprises a nozzle unit 11 for delivering a directed aerosol flow to the substrate 5 to be coated.
  • the nozzle unit 11 comprises a tubular section 15, in this embodiment an elongate cylindrical section, which includes an inlet port 17 at one end thereof through which an aerosol flow is introduced and an outlet port 18 at the other end thereof through which a directed aerosol flow is delivered to the substrate 5 to be coated, the internal geometry of the tubular section 15 being such as to confer directionality to the aerosol flow.
  • the distance between the outlet port 18 of the nozzle unit 11 and the substrate 5 is preferably less than 100 mm, more preferably less than 50 mm, and still more preferably not more than 20 mm.
  • the tubular section 15 is formed of a non-conductive, insulating material, such as a ceramic, glass or quartz, which can withstand the high temperatures developed by the heater 1.
  • the nozzle unit 11 further comprises a perforated member 19 disposed at the inlet port 17 of the tubular section 15, with the flow path through the tubular section 15 being through the perforations 20 in the perforated member 19.
  • the perforated member 19 is a conductive member, preferably formed of aluminium, stainless steel or an indium-tin oxide coated plate.
  • the nozzle unit 11 further comprises an electrode 21, in this embodiment an elongate element, such as a wire, having a single sharp-pointed tip, which is attached to the perforated member 19 and extends co-axially through the length of the tubular section 15, in this embodiment with the tip thereof located downstream of the outlet port 18.
  • the electrode 21 can be formed of any conductive material, but is preferably formed of aluminium, stainless steel or tungsten. In a modified nozzle unit 11, as illustrated in Figure 5, the electrode 21 can be multi-tipped.
  • the film deposition apparatus further comprises an aerosol generator 25 for providing a flow of an aerosol to the inlet port 17 of the nozzle unit 11.
  • the aerosol generator 25 comprises a chamber 27 which includes first and second inlet ports 29, 31 and an outlet port 33 connected to the inlet port 17 of the nozzle unit 11, and defines a reservoir 35 for containing a precursor solution 37 to be aerosolised and a head space 39 in which an aerosol collects when generated.
  • the aerosol generator 25 further comprises a liquid level controller 41 connected by a line 42 to the first inlet port 29 of the chamber 27 for maintaining a constant volume of the precursor solution 37 in the reservoir 35.
  • the aerosol generator 25 further comprises a piezoelectric transducer 43 which is driven by a power supply 44 and is in communication with the reservoir 35 through a transfer medium 45, such as water, contained separately from the precursor solution 37 such that on operation of the piezoelectric transducer 43 the liquid precursor 37 is ultrasonically vibrated to generate an aerosol in the head space 39.
  • a transfer medium 45 such as water
  • the piezoelectric transducer 43 is operated at a frequency in the range of from 1.7 to 3 MHz, thereby allowing aerosols to be achieved at a rate of greater than 5 ml per minute with a droplet size of less than 2 ⁇ m and a narrow size distribution.
  • the aerosol generator 25 further comprises a gas supply unit 47 connected through a delivery line 49 to the second inlet port 31 of the chamber 27 for providing a flow of a carrier gas through the chamber 27 such as to entrain the aerosol in the head space 39 and transport the same to the substrate 5 through the nozzle unit 11.
  • the delivery line 49 includes a flow regulating valve 51 for controlling the flow rate of aerosol to the substrate 5.
  • the carrier gas comprises at least one of air, Ar, H 2 S, N 2 , NH 3 and O 2 .
  • pressure reducing means such as a vacuum pump, could be provided for applying a reduced pressure at the outlet port 18 of the tubular section 15 so as to draw the aerosol as a flow therethrough.
  • the film deposition apparatus further comprises a high voltage d.c. supply 53 connected between the electrode 21 and the substrate 5 such as to establish an electric field between the same, which electric field charges the aerosol droplets on passing the electrode 21 and causes the charged droplets to be attracted to the substrate 5 on exiting the outlet port 18 of the nozzle unit 11.
  • a high voltage d.c. supply 53 connected between the electrode 21 and the substrate 5 such as to establish an electric field between the same, which electric field charges the aerosol droplets on passing the electrode 21 and causes the charged droplets to be attracted to the substrate 5 on exiting the outlet port 18 of the nozzle unit 11.
  • the voltage applied between the electrode 21 and the substrate 5 is from 10 to 30 kV.
  • the aerosol generator 25 is operated to provide a gas flow entraining aerosol droplets through the nozzle unit 11, which flow through the nozzle unit 11 provides a directed aerosol flow from the outlet port 18 of the tubular section 15 and results in charging of the aerosol droplets on passing the electrode 21.
  • the charged aerosol droplets are attracted to the substrate 5, with the flow rate of the aerosol, and the temperature and temperature gradient at the surface of the substrate 5 being optimised to achieve the desired film properties, typically one of a porous or dense solid film.
  • the thermal environment and the velocity of the directed aerosol flow can be configured such that the aerosol droplets are vaporised/decomposed close to the surface of the substrate 5 or impact the surface of the substrate 5 prior to vaporisation/decomposition. This process is continued until a film of the required thickness has been achieved on the substrate 5.
  • the film deposition apparatus comprises a heater 101, in this embodiment a resistance heater, and a substrate holder 103 for holding a substrate 105 mounted to the heater 101 such as to provide a decreasing temperature gradient in a direction away from the surface of the substrate 5 to be coated.
  • the substrate holder 103 includes an insulating member 106 which extends forwardly about the periphery of the substrate 105 and is configured to maintain a uniform temperature and temperature gradient at the surface of the substrate 105 to be coated.
  • the substrate 105 is heated by contact heating, here resistance heating, non-contact heating, such as by way of an infra-red lamp, could be employed to heat the substrate 105.
  • the film deposition apparatus further comprises a nozzle unit 111 for delivering a directed aerosol flow to the substrate 105 to be coated.
  • the nozzle unit 111 is of the same kind as employed in the film deposition apparatus of the above-described first embodiment, with corresponding reference signs being used to designate like parts.
  • the nozzle unit 111 comprises a tubular section 115, in this embodiment an elongate cylindrical section, which includes an inlet port 117 at one end thereof through which an aerosol flow is introduced and an outlet port 118 at the other end thereof through which a directed aerosol flow is delivered to the substrate 105 to be coated, the internal geometry of the tubular section 115 being such as to confer directionality to the aerosol flow.
  • the distance between the outlet port 118 of the nozzle unit 111 and the substrate 105 is preferably less than 100 mm, more preferably less than 50 mm, and still more preferably not more than 20 mm.
  • the tubular section 115 is formed of a non-conductive, insulating material, such as a ceramic, glass or quartz, which can withstand the high temperatures developed by the heater 101.
  • the nozzle unit 111 further comprises a perforated member 119 disposed at the inlet port 117 of the tubular section 115, with the flow path through the tubular section 115 being through the perforations 120 in the perforated member 119.
  • the perforated member 119 is a conductive member, preferably formed of aluminium, stainless steel, tungsten or an indium-tin oxide coated plate.
  • the nozzle unit 111 further comprises an electrode 121, in this embodiment an elongate element, such as a wire, having a single sharp-pointed tip, which is attached to the perforated member 119 and extends co-axially through the length of the tubular section 115, in this embodiment with the tip thereof located downstream of the outlet port 118.
  • the electrode 121 can be formed of any conductive material, but is preferably formed of aluminium, stainless steel or tungsten. In a modified nozzle unit 111, as illustrated in Figure 5, the electrode 121 can be multi-tipped.
  • the aerosol generator 125 further comprises a piezoelectric transducer 143 which is driven by a power supply 144 and is in communication with the reservoir 135 through a transfer medium 145, such as water, contained separately from the precursor solution 137 such that on operation of the piezoelectric transducer 143 the precursor solution 137 is ultrasonically vibrated to generate an aerosol in the head space 139.
  • the aerosol generator 125 further comprises a gas supply unit 147 connected through a delivery line 149 to the second inlet port 131 of the chamber 127 for providing a flow of a carrier gas through the chamber 127 such as to entrain the aerosol in the head space 139 and transport the same to the substrate 105 through the nozzle unit 111.
  • the delivery line 149 includes a flow regulating valve 151 for controlling the flow rate of aerosol delivered to the substrate 105.
  • the carrier gas comprises at least one of air, Ar, H 2 S, N 2 , NH 3 and O 2 .
  • pressure reducing means such as a vacuum pump, could be provided for applying a reduced pressure at the outlet port 118 of the tubular section 115 so as to draw the aerosol as a flow therethrough.
  • the film deposition apparatus further comprises a high voltage d.c. supply 153 connected between the electrode 121 and the substrate 105 such as to establish an electric field between the same, which electric field charges the aerosol droplets on passing the electrode 121 and causes the charged droplets to be attracted to the substrate 105 on exiting the outlet port 118 of the nozzle unit 111.
  • the voltage applied between the electrode 121 and the substrate 105 is from 10 to 30 kV.
  • the film deposition apparatus further comprises an X-Y-Z table 155 connected to the nozzle unit 111 so as to allow for movement of the nozzle unit 111 relative to the substrate 105 in coating substrates of large area and non-planar shape, and a computer 157 for controlling the X-Y-Z table 155.
  • the X-Y-Z table 155 could be replaced by an X-Y table.
  • the aerosol generator 125 is operated to provide a gas flow entraining aerosol droplets through the nozzle unit 111, which flow through the nozzle unit 111 provides a directed aerosol flow from the outlet port 118 of the tubular section 115 and results in charging of the aerosol droplets on passing the electrode 121.
  • the charged aerosol droplets are attracted to the substrate 105, with the flow rate of the aerosol, and the temperature and temperature gradient at the surface of the substrate 105 being optimised to achieve the desired film properties, typically one of a porous or dense solid film.
  • a non-aqueous precursor solution for the deposition of a BaZrO 3 film was first prepared as follows. Barium metal (as supplied by Aldrich) was completely dissolved in a volume of 2-methoxyethanol (as supplied by Aldrich) by stirring at room temperature to form a barium alkoxide solution. A stoichiometric amount of zirconium n-propoxide, a 70 wt% solution in n-propanol (as supplied by Aldrich), was then added to the barium methoxyoxide solution and refluxed at 124 °C, the boiling point of 2-methoxyethanol, for five hours.
  • a volume of 2-methoxyethanol was added to the refluxed solution to provide a 0.05 M precursor solution.
  • a BaZrO 3 film was deposited on a silver substrate 5, with a substrate temperature of 600 °C, a substrate 5 to nozzle unit 11 distance of 30 mm, an electric field voltage of 10 kV, the piezoelectric transducer 43 of the aerosol generator 25 being operated at a frequency of 1.7 MHz and power of 50 W, and nitrogen being supplied at 30 ml per minute as the carrier gas. Nitrogen was used as the carrier gas to minimise the reaction between the barium and carbon dioxide in the air.
  • the resulting film formed in a single run without the need for any post-deposition heat treatment, was a crystalline BaZrO 3 film as characterized by the X-ray diffraction pattern illustrated in Figure 7.
  • a 0.01 M aqueous precursor solution for the deposition of a CdS film was first prepared using cadmium chloride and thiourea. Using the apparatus of the second-described embodiment and the so-prepared solution, a CdS film was deposited on a glass substrate 105, with a substrate temperature of 450 °C, a substrate 105 to nozzle unit 111 distance of 20 mm, an electric field voltage of 10 kV, the piezoelectric transducer 143 of the aerosol generator 125 being operated at a frequency of 1.7 MHz and power of 50 W, a deposition time of five minutes, and air being supplied at 50 ml per minute as the carrier gas.
  • the resulting film formed in a single run without the need for any post-deposition heat treatment, was a dense, crystalline CdS film having a thickness of about 1 ⁇ m, with a columnar structure and a smooth and uniform surface. SEM micrographs of the resulting film are illustrated in Figures 8(a) and (b).
  • the present invention has been described in its preferred embodiments and can be modified in many different ways within the scope of the invention as defined by the appended claims.
  • the nozzle units 11, 111 could be modified to include a plurality of outlet ports 18, 118 or the film deposition apparatus could be modified to include a plurality of nozzle units 11, 111.

Claims (61)

  1. Procédé consistant à déposer in situ un film solide sur un substrat, comprenant les étapes consistant à :
    procurer un substrat ;
    chauffer le substrat pour pouvoir y déposer un film solide ;
    procurer une unité de buse pour distribuer un aérosol sur le substrat, l'unité de buse englobant au moins une sortie à travers laquelle un courant dirigé de l'aérosol est distribué et au moins une électrode ;
    générer un aérosol comprenant des gouttelettes d'une solution de matière en amont de l'unité de buse ;
    procurer un courant de l'aérosol à travers l'unité de buse de façon à distribuer un courant dirigé de l'aérosol depuis ladite au moins une sortie ; et
    générer un champ électrique entre le substrat et ladite au moins une électrode de telle sorte que les gouttelettes d'aérosol sont chargées avec une charge positive ou négative et de telle sorte que le courant d'aérosol dirigé est attiré en direction du substrat.
  2. Procédé selon la revendication 1, dans lequel le substrat est chauffé à une température inférieure à environ 1050 °C, de préférence inférieure à environ 800 °C.
  3. Procédé selon la revendication 1 ou 2, dans lequel le substrat est chauffé lors de la déposition.
  4. Procédé selon la revendication 3, dans lequel l'environnement thermique est tel que l'on maintient un gradient de température décroissant dans la direction allant vers l'unité de buse en s'écartant du substrat.
  5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la solution de matière est une solution aqueuse.
  6. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la solution de matière est une solution non aqueuse.
  7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel les gouttelettes d'aérosol sont chargées au moins en partie avant de quitter ladite au moins une sortie.
  8. Procédé selon la revendication 7, dans lequel les gouttelettes d'aérosol sont chargées avant de quitter ladite au moins une sortie.
  9. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel les gouttelettes d'aérosol sont chargées au moins en partie après avoir quitté ladite au moins une sortie.
  10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel les gouttelettes d'aérosol sont chargées par ladite au moins une électrode.
  11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel ladite au moins une électrode est disposée au moins en partie dans chaque courant d'aérosol.
  12. Procédé selon l'une quelconque des revendications 1 à 11, dans lequel ladite au moins une électrode s'étend en amont de ladite au moins une sortie.
  13. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel ladite au moins une électrode comprend un élément allongé.
  14. Procédé selon l'une quelconque des revendications 1 à 13, dans lequel l'extrémité distale de ladite au moins une électrode est disposée essentiellement au centre de ladite au moins une sortie.
  15. Procédé selon l'une quelconque des revendications 1 à 14, dans lequel l'extrémité distale de ladite au moins une électrode englobe une seule pointe.
  16. Procédé selon l'une quelconque des revendications 1 à 14, dans lequel l'extrémité distale de ladite au moins une électrode englobe plusieurs pointes.
  17. Procédé selon l'une quelconque des revendications 1 à 16, dans lequel l'unité de buse englobe une section tubulaire en amont de chaque sortie.
  18. Procédé selon la revendication 17, dans lequel la section tubulaire est une section allongée.
  19. Procédé selon la revendication 17 ou 18, dans lequel la section tubulaire est une section linéaire.
  20. Procédé selon l'une quelconque des revendications 17 à 19, dans lequel la section tubulaire est essentiellement cylindrique.
  21. Procédé selon l'une quelconque des revendications 17 à 20, dans lequel ladite au moins une électrode s'étend de manière essentiellement complète à travers la section tubulaire associée.
  22. Procédé selon l'une quelconque des revendications 17 à 21, dans lequel ladite au moins une électrode s'étend essentiellement le long de l'axe central de la section tubulaire associée.
  23. Procédé selon l'une quelconque des revendications 1 à 22, dans lequel au moins la surface interne de la section tubulaire est composée d'une matière isolante.
  24. Procédé selon l'une quelconque des revendications 1 à 23, dans lequel le courant d'aérosol est procuré en entraínant l'aérosol dans un courant de gaz porteur qui alimente l'unité de buse.
  25. Procédé selon l'une quelconque des revendications 1 à 23, dans lequel le courant d'aérosol est procuré en appliquant une pression réduite sur ladite au moins une sortie de façon à entraíner l'aérosol dans un courant de gaz porteur aspiré à travers l'unité de buse.
  26. Procédé selon la revendication 24 ou 25, dans lequel le gaz porteur est un gaz apte à réagir vis-à-vis de la solution de matière.
  27. Procédé selon la revendication 24 ou 25, dans lequel le gaz porteur est un gaz inerte vis-à-vis de la solution de matière.
  28. Procédé selon l'une quelconque des revendications 24 à 27, lorsqu'elle dépend de la revendication 4, dans lequel le courant de gaz porteur est procuré de façon à maintenir le gradient de température décroissant.
  29. Procédé selon l'une quelconque des revendications 1 à 28, dans lequel l'aérosol est distribué au substrat de façon à obtenir une vitesse de croissance du film d'au moins 0,2 um par minute, de préférence d'au moins 1 µm par minute, de manière plus préférée d'au moins 2 µm par minute.
  30. Procédé selon l'une quelconque des revendications 1 à 29, dans lequel le débit à travers ladite au moins une sortie s'élève à au moins 5 ml par minute, de préférence à au moins 50 ml par minute.
  31. Procédé selon l'une quelconque des revendications 1 à 30, dans lequel l'unité de buse est configurée de telle sorte que le courant d'aérosol dirigé depuis ladite au moins une sortie est dirigé vers le haut, de préférence vers le haut en position essentiellement verticale.
  32. Procédé selon l'une quelconque des revendications 1 à 31, dans lequel l'unité de buse englobe un élément perforé en amont de ladite au moins une sortie.
  33. Procédé selon l'une quelconque des revendications 1 à 32, dans lequel la tension appliquée est inférieure à environ 35 kilovolts, de préférence inférieure à environ 20 kilovolts.
  34. Procédé selon l'une quelconque des revendications 1 à 33, dans lequel la distance entre ladite au moins une sortie et le substrat est inférieure à environ 100 mm, de préférence inférieure à environ 50 mm.
  35. Procédé selon l'une quelconque des revendications 1 à 34, dans lequel dans lequel le substrat est maintenu stationnaire par rapport à l'unité de buse.
  36. Procédé selon l'une quelconque des revendications 1 à 34, dans lequel comprenant en outre l'étape consistant à déplacer l'unité de buse par rapport au substrat.
  37. Procédé selon la revendication 36, dans lequel on fait tourner le substrat, on le fait basculer et/ou on le soumet à une translation par rapport à l'unité de buse.
  38. Procédé selon l'une quelconque des revendications 1 à 37, lorsqu'il est mis en oeuvre sous la pression atmosphérique.
  39. Procédé selon l'une quelconque des revendications 1 à 37, lorsqu'il est mis en oeuvre sous une pression inférieure à la pression atmosphérique.
  40. Procédé selon l'une quelconque des revendications 1 à 37, lorsqu'il est mis en oeuvre sous une pression supérieure à la pression atmosphérique.
  41. Appareil pour déposer in situ un film solide sur un substrat, comprenant :
    un support de substrat pour maintenir un substrat ; un dispositif de chauffage pour chauffer le substrat de façon à pouvoir y déposer un film solide ;
    un générateur d'aérosol pour générer un aérosol comprenant des gouttelettes d'une solution de matière ;
    une unité de buse en communication avec le générateur d'aérosol et en aval de ce dernier pour distribuer l'aérosol au substrat, l'unité d'aérosol englobant au moins une sortie à travers laquelle un courant dirigé de l'aérosol est distribué en état de marche, et au moins une électrode ; et
    une alimentation de haute tension pour générer un champ électrique entre le substrat et ladite au moins une électrode de façon à appliquer une charge positive ou négative sur les gouttelettes d'aérosol et de façon à attirer le courant d'aérosol dirigé en direction du substrat.
  42. Appareil selon la revendication 41, dans lequel il est configuré pour maintenir un gradient de température décroissant dans la direction allant vers l'unité de buse en s'écartant du substrat.
  43. Appareil selon la revendication 41 ou 42, dans lequel ladite au moins une électrode s'étend en amont de ladite au moins une sortie.
  44. Appareil selon l'une quelconque des revendications 41 à 43, dans lequel ladite au moins une électrode comprend un élément allongé.
  45. Appareil selon l'une quelconque des revendications 41 à 44, dans lequel l'extrémité distale de ladite au moins une électrode est disposée essentiellement au centre de ladite au moins une sortie.
  46. Appareil selon l'une quelconque des revendications 41 à 45, dans lequel l'extrémité distale de ladite au moins une électrode englobe une seule pointe.
  47. Appareil selon l'une quelconque des revendications 41 à 45, dans lequel l'extrémité distale de ladite au moins une électrode englobe plusieurs pointes.
  48. Appareil selon l'une quelconque des revendications 41 à 47, dans lequel l'unité de buse englobe une section tubulaire en amont de chaque sortie.
  49. Appareil selon la revendication 48, dans lequel la section tubulaire est une section allongée.
  50. Appareil selon la revendication 48 ou 49, dans lequel la section tubulaire est une section linéaire.
  51. Appareil selon l'une quelconque des revendications 48 à 50, dans lequel la section tubulaire est essentiellement cylindrique.
  52. Appareil selon l'une quelconque des revendications 48 à 51, dans lequel ladite au moins une électrode s'étend de manière essentiellement complète à travers la section tubulaire associée.
  53. Appareil selon l'une quelconque des revendications 48 à 52, dans lequel ladite au moins une électrode s'étend essentiellement le long de l'axe central de la section tabulaire associée.
  54. Appareil selon l'une quelconque des revendications 48 à 53, dans lequel au moins la surface interne de la section tubulaire est composée d'une matière isolante.
  55. Appareil selon l'une quelconque des revendications 41 à 54, comprenant en outre une unité d'alimentation de gaz en communication avec le générateur d'aérosol pour alimenter un courant de gaz porteur destiné à entraíner l'aérosol et à distribuer ce dernier à travers l'unité de buse.
  56. Appareil selon l'une quelconque des revendications 41 à 55, dans lequel ladite au moins une sortie est dirigée vers le haut, de préférence vers le haut en position essentiellement verticale.
  57. Appareil selon l'une quelconque des revendications 41 à 56, dans lequel la distance entre ladite au moins une sortie et le substrat est inférieure à environ 100 mm, de préférence inférieure à environ 50 mm.
  58. Appareil selon l'une quelconque des revendications 41 à 57, dans lequel l'unité de buse et le substrat sont maintenus dans une relation fixe.
  59. Appareil selon l'une quelconque des revendications 41 à 57, dans lequel l'unité de buse et le substrat sont configurés de façon à pouvoir se déplacer l'un par rapport à l'autre.
  60. Appareil selon la revendication 59, dans lequel on peut faire tourner le substrat, le faire basculer et/ou le soumettre à une translation par rapport à l'unité de buse.
  61. Appareil selon l'une quelconque des revendications 41 à 60, dans lequel l'unité de buse englobe un élément perforé en amont de ladite au moins une sortie.
EP00900068A 1999-01-15 2000-01-05 Fabrication de materiau Expired - Lifetime EP1144721B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9900955 1999-01-15
GBGB9900955.7A GB9900955D0 (en) 1999-01-15 1999-01-15 Material deposition
PCT/GB2000/000013 WO2000042234A1 (fr) 1999-01-15 2000-01-05 Fabrication de matériau

Publications (2)

Publication Number Publication Date
EP1144721A1 EP1144721A1 (fr) 2001-10-17
EP1144721B1 true EP1144721B1 (fr) 2004-11-10

Family

ID=10845993

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00900068A Expired - Lifetime EP1144721B1 (fr) 1999-01-15 2000-01-05 Fabrication de materiau

Country Status (9)

Country Link
US (1) US6800333B2 (fr)
EP (1) EP1144721B1 (fr)
JP (1) JP2002535482A (fr)
AU (1) AU1883500A (fr)
CA (1) CA2359822A1 (fr)
DE (1) DE60015725T2 (fr)
GB (2) GB9900955D0 (fr)
RU (1) RU2001122806A (fr)
WO (1) WO2000042234A1 (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3823591B2 (ja) * 1999-03-25 2006-09-20 三菱電機株式会社 Cvd原料用気化装置およびこれを用いたcvd装置
US6908045B2 (en) * 2003-01-28 2005-06-21 Casio Computer Co., Ltd. Solution spray apparatus and solution spray method
US7798420B2 (en) * 2005-02-11 2010-09-21 Battelle Memorial Institute Aerosol dispensing device and method
JP4789551B2 (ja) * 2005-09-06 2011-10-12 株式会社半導体エネルギー研究所 有機el成膜装置
JP2008043944A (ja) * 2006-07-21 2008-02-28 Matsushita Electric Ind Co Ltd 微粒子の製造方法及び装置
JP2008153147A (ja) * 2006-12-20 2008-07-03 Seiko Epson Corp プラズマ処理装置
US20080196627A1 (en) * 2007-02-16 2008-08-21 Core Technologies, Inc. Vitreous enamel coating powder
US7361207B1 (en) 2007-02-28 2008-04-22 Corning Incorporated System and method for electrostatically depositing aerosol particles
GB0814174D0 (en) * 2008-08-02 2008-09-10 Eastman Kodak Co A method of making solar cells by dry powder printing
US20100126227A1 (en) * 2008-11-24 2010-05-27 Curtis Robert Fekety Electrostatically depositing conductive films during glass draw
FI20080674A0 (fi) * 2008-12-22 2008-12-22 Beneq Oy Menetelmä lasin pinnoittamiseksi
DE102009002320B4 (de) * 2009-04-09 2013-11-07 Hochschule für angewandte Wissenschaft und Kunst Fachhochschule Hildesheim/Holzminden/Göttingen Verfahren zur Reduzierung des elektrischen Kontaktwiderstands einer Oberfläche eines metallischen Körpers und Vorrichtung zur Durchführung des Verfahrens
FI20095651A0 (fi) * 2009-06-10 2009-06-10 Beneq Oy Menetelmä ja laitteisto lasisubstraatin pinnoittamiseksi
DE102009044043A1 (de) * 2009-09-17 2011-03-31 Kerona Gmbh Verwendung eines raumtemperaturhärtenden Beschichtungsmittels
CN101759372B (zh) * 2009-12-31 2012-10-10 中国科学院广州能源研究所 一体化超声喷雾热解镀膜装置
US9032905B2 (en) 2010-06-21 2015-05-19 Beneq Oy Apparatus and method for coating glass substrate
US20130164452A1 (en) * 2010-06-21 2013-06-27 Beneq Oy Apparatus and method for coating glass substrate
US20130078388A1 (en) * 2010-06-29 2013-03-28 Beneq Oy Apparatus and method for charging nanoparticles
CN102744177B (zh) * 2012-07-10 2014-10-08 重庆理工大学 一种超声雾化薄膜喷涂机
DE102013103504A1 (de) * 2013-04-09 2014-10-09 Hartmut Frey Verfahren zur Herstellung von Lithium-Luft-Akkumulatoren mittels Hochdrucksprühen und Vorrichtung dazu
MX2016014588A (es) 2014-05-12 2017-05-25 Prince Minerals Llc Material compuesto de vidrio adecuado para proporcionar un recubrimiento protector sobre substratos no tratados.
KR101569288B1 (ko) * 2014-08-28 2016-07-21 성균관대학교산학협력단 에어로졸 생성 장치 및 방법
JP3208344U (ja) * 2015-11-16 2017-01-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 低蒸気圧のエアゾールに支援されるcvd
US10273577B2 (en) * 2015-11-16 2019-04-30 Applied Materials, Inc. Low vapor pressure aerosol-assisted CVD
EP3463677A4 (fr) * 2016-06-01 2020-02-05 Arizona Board of Regents on behalf of Arizona State University Système et procédés de pulvérisation par dépôt de revêtements particulaires
CN109046817B (zh) * 2018-07-13 2023-09-05 金华职业技术学院 一种大分子沉积方法
CN113755826A (zh) * 2021-08-26 2021-12-07 新沂市锡沂高新材料产业技术研究院有限公司 一种基于电晕荷电的氧化镓薄膜沉积***及薄膜沉积方法
CN114990522B (zh) * 2022-04-14 2023-08-08 重庆理工大学 一种热分解薄膜制备装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3436257A (en) * 1964-07-30 1969-04-01 Norma J Vance Metal silicate coating utilizing electrostatic field
FR2531880A1 (fr) * 1982-08-18 1984-02-24 Commissariat Energie Atomique Procede de fabrication de couches minces
SU1319914A1 (ru) * 1985-12-02 1987-06-30 Научно-Производственное Объединение "Лакокраспокрытие" Электростатический распылитель порошковых материалов
SU1607967A1 (ru) * 1988-12-19 1990-11-23 Московский энергетический институт Электростатический распылитель
JPH0550015A (ja) * 1991-08-09 1993-03-02 Kobe Steel Ltd 塗装方法
US5344676A (en) * 1992-10-23 1994-09-06 The Board Of Trustees Of The University Of Illinois Method and apparatus for producing nanodrops and nanoparticles and thin film deposits therefrom
CA2240625A1 (fr) * 1995-12-14 1997-06-19 Imperial College Of Science, Technology & Medicine Depot de films ou de revetement et formation de poudres
US5916640A (en) * 1996-09-06 1999-06-29 Msp Corporation Method and apparatus for controlled particle deposition on surfaces
GB9711080D0 (en) * 1997-05-29 1997-07-23 Imperial College Film or coating deposition on a substrate

Also Published As

Publication number Publication date
WO2000042234A1 (fr) 2000-07-20
US6800333B2 (en) 2004-10-05
GB0000078D0 (en) 2000-02-23
CA2359822A1 (fr) 2000-07-20
EP1144721A1 (fr) 2001-10-17
AU1883500A (en) 2000-08-01
JP2002535482A (ja) 2002-10-22
RU2001122806A (ru) 2005-01-20
GB2347369A (en) 2000-09-06
DE60015725T2 (de) 2005-11-03
US20020106452A1 (en) 2002-08-08
GB9900955D0 (en) 1999-03-10
DE60015725D1 (de) 2004-12-16

Similar Documents

Publication Publication Date Title
EP1144721B1 (fr) Fabrication de materiau
EP0870075B1 (fr) Depot de films ou de revetement et formation de poudres
EP0985056B1 (fr) Depot d'une pellicule ou d'un revetement sur un substrat
US6358567B2 (en) Colloidal spray method for low cost thin coating deposition
JP4727355B2 (ja) 成膜方法
US6296910B1 (en) Film or coating deposition on a substrate
Matsuzaki et al. Growth of yttria stabilized zirconia thin films by metallo-organic, ultrasonic spray pyrolysis
JP2008231471A (ja) 進行プラズマ成膜方法、プラズマ焼成基材及びプラズマ成膜装置
JP5677312B2 (ja) ガラスをコーティングする方法および装置
JP2014173150A (ja) 撥水性薄膜の製造方法および撥水処理装置
US7784306B1 (en) Material deposition
CN114405797A (zh) 一种基于液料等离子喷涂技术的石墨烯涂层及其喷涂工艺
Tucić et al. Synthesis of thin films by the pyrosol process
MARINKOVIĆ et al. SYNTHESIS OF THIN FILMS BY THE PYROSOL PROCESS
Bohac et al. Chemical spray Deposition of Ceramic films
Aleksandar et al. Synthesis of thin films by the pyrosol process
JPH0790556A (ja) 高周波誘導プラズマ成膜装置
GB2308132A (en) Depositing films on a substrate using an electric field
JP2007296817A (ja) 液体吐出ヘッド
JPH01116081A (ja) 機能性セラミックス薄膜の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010803

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20020328

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60015725

Country of ref document: DE

Date of ref document: 20041216

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050811

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20120116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60015725

Country of ref document: DE

Representative=s name: FROHWITTER PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60015725

Country of ref document: DE

Owner name: INNOVATIVE MATERIALS PROCESSING TECHNOLOGIES L, GB

Free format text: FORMER OWNER: IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY & MEDICINE, LONDON, GB

Effective date: 20130319

Ref country code: DE

Ref legal event code: R082

Ref document number: 60015725

Country of ref document: DE

Representative=s name: FROHWITTER PATENT- UND RECHTSANWAELTE, DE

Effective date: 20130319

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 60015725

Country of ref document: DE

Effective date: 20130403

REG Reference to a national code

Ref country code: DE

Ref legal event code: R073

Ref document number: 60015725

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60015725

Country of ref document: DE

Effective date: 20130801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R074

Ref document number: 60015725

Country of ref document: DE

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: DE

Effective date: 20131223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R074

Ref document number: 60015725

Country of ref document: DE

Effective date: 20131223

Ref country code: DE

Ref legal event code: R074

Ref document number: 60015725

Country of ref document: DE

Effective date: 20131226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140130

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140131

Year of fee payment: 15

Ref country code: FR

Payment date: 20140130

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150210

Year of fee payment: 16

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60015725

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160802

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190204

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200104